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This paper proposes an enhanced approach to modeling and forecasting volatility using high frequency data.
Using a forecasting model based on Realized GARCH with multiple time-frequency decomposed realized
volatility measures, we study the influence of different timescales on volatility forecasts. The decomposition
of volatility into several timescales approximates the behaviour of traders at corresponding investment hori-
zons. The proposed methodology is moreover able to account for impact of jumps due to a recently proposed
jump wavelet two scale realized volatility estimator. We propose a realized Jump-GARCH models estimated
in two versions using maximum likelihood as well as observation-driven estimation framework of general-
ized autoregressive score. We compare forecasts using several popular realized volatility measures on foreign
exchange rate futures data covering the recent financial crisis. Our results indicate that disentangling jump
variation from the integrated variation is important for forecasting performance. An interesting insight into
the volatility process is also provided by its multiscale decomposition. We find that most of the information
for future volatility comes from high frequency part of the spectra representing very short investment hori-
zons. Our newly proposed models outperform statistically the popular as well conventional models in both

one-day and multi-period-ahead forecasting.
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1. Introduction

In contrast to the conventional framework of a generalized au-
toregressive conditional heteroscedasticity (GARCH) model, volatil-
ity is directly observed and can be used for forecasting when high
frequency data are applied.! While Hansen and Lunde (2005) argue
that GARCH(1,1) can hardly be beaten by any other model, recent
active research shows that with help of high frequency measures,
we can improve the volatility forecasts significantly. Mcmillan and
Speight (2012) for example utilize intra-day data and show that we

" We are grateful to the editor Lorenzo Peccati and two anonymous referees for
many useful comments and suggestions, which greatly improved the paper. We are
also grateful to David Veredas and Karel Najzar, and seminar participants at the Mod-
eling High Frequency Data in Finance 3 in New York (July 2011) and Computational and
Financial Econometrics in Oviedo (December 2012) for many useful discussions. The
research leading to these results has received funding from the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under grant agreement No. FP7-SSH-
612955 (FinMaP). Support from the Czech Science Foundation under the 13-32263S
and 13-24313S project is gratefully acknowledged.

* Corresponding author at: Institute of Economic Studies, Charles University in
Prague, Opletalova 26, 110 00, Prague, Czech Republic. Tel.: +420 776 259273.
E-mail address: barunik@utia.cas.cz, barunik@fsv.cuni.cz (J. Barunik).
1" A vast quantity of literature on several aspects of estimating volatility using high
frequency data is nicely surveyed by McAleer and Medeiros (2008).

http://dx.doi.org/10.1016/j.ejor.2015.12.010
0377-2217/© 2015 Elsevier B.V. All rights reserved.

can obtain forecasts superior to forecasts from GARCH(1,1). Louzis,
Xanthopoulos-Sisinis, and Refenes (2013) assesse the informational
content of alternative realized volatility estimators using Realized
GARCH in Value-at-Risk prediction. We extend this line of research by
investigating the importance of disentangling jump variation and in-
tegrated variance in recently developed framework, which combines
appeal of a widely used GARCH(1,1) and high frequency data. More-
over, we employ recently developed multiscale estimators which de-
compose volatility into several investment horizons? and allow us to
study the influence of intraday investment horizons on the volatility
forecasts.

Traders on financial markets make their decisions over different
time horizons, for example, minutes, hours, days, or even longer such
as months and years (Corsi, 2009; Gengay, Selcuk, & Whitcher, 2005;
LeBaron, 2001; Ramsey, 2002). Nevertheless, majority of the em-
pirical literature studies the relationships in the time domain only
aggregating the behavior across all investment horizons. A notable
exception is the Heterogenous Autoregressive approach (HAR) for re-
alized volatility proposed by Corsi (2009). Although staying in the

2 An investment horizon refers to the length of time that an investor expects to hold
a security or portfolio.
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time domain solely, Corsi (2009) builds his model on the idea of the
investors’ heterogeneity.

In our work, we ask if wavelet decomposition can provide better
insight into the foreign exchange volatility modeling and forecast-
ing.> Wavelets are often successfully used as a de-noising tool (Haven,
Liu, & Shen, 2012; Sun & Meinl, 2012). One particularly appealing fea-
ture of wavelets is that they can be embedded into stochastic pro-
cesses, as shown by Antoniou and Gustafson (1999). Thus we can
conveniently use them to extend the theory of realized measures to
obtain decomposed volatility as shown by Fan and Wang (2007), or
Barunik and Vacha (2015). One of the common issues with the in-
terpretation of wavelets in economic applications is that they are
filter, thus they can hardly be used for forecasting in econometrics.
Models based on wavelets are often outperformed by simple bench-
mark models, as shown by Fernandez (2008). Rather, they can pro-
vide a useful “lens” into the spectral properties of the time series.
Our wavelet-based estimator of realized volatility uses wavelets only
to decompose the daily variation of the returns using intraday infor-
mation, hence the problem with forecasts is no longer an issue. As
wavelets are used to measure realized volatility at different invest-
ment horizons, we can construct a forecasting model based on the
wavelet decomposed volatility conveniently.

Several attempts to use wavelets in the estimation of realized vari-
ation have emerged in the past few years. Hog and Lunde (2003)
were the first to suggest a wavelet estimator of realized variance.
Capobianco (2004), for example, proposes to use a wavelet transform
as a comparable estimator of quadratic variation. Subbotin (2008)
uses wavelets to decompose volatility into a multi-horizon scale. One
exception is the work of Fan and Wang (2007), who were the first to
use the wavelet-based realized variance estimator together with the
methodology for estimation of jumps. Barunik and Vacha (2015), re-
visit and extend this work and using large Monte Carlo study show
that their estimator improves forecasting of the volatility substan-
tially when compared to other estimators. Moreover, Barunik and
Vacha (2015) attempt to use the estimators to decompose stock mar-
ket volatility into several investment horizons in a non-parametric
way.

Motivated by previous results, this paper focuses on proposing
a model which will improve the modeling and forecasting of for-
eign exchange volatility. Similarly to Lanne (2007); Andersen, Boller-
slev, and Huang (2011); and Sévi (2014), we use the decomposition
of the quadratic variation with the intention of building a more ac-
curate forecasting model. Our approach is very different though, as
we use wavelets to decompose the integrated volatility into sev-
eral investment horizons and jumps. Moreover, we employ recently
proposed realized GARCH framework of Hansen, Huang, and Shek
(2012). In contrast to popular HAR framework of Corsi (2009), real-
ized GARCH allows to model jointly returns and realized measures of
volatility, while key feature is a measurement equation that relates
the realized measure to the conditional variance of returns. In ad-
dition, we benchmark our approach to several measures of realized
volatility and jumps, namely realized volatility estimator proposed by
Andersen, Bollerslev, Diebold, and Labys (2003), the bipower varia-
tion estimator of Barndorff-Nielsen and Shephard (2004), the median
realized volatility of Andersen, Dobrev, and Schaumburg (2012), and
finally jump wavelet two-scale realized variance (JWTSRV) estimator
of Barunik and Vacha (2015) in the framework of Realized GARCH,
and we find significant differences in volatility forecasts, while our
JWTSRV estimator brings the largest improvement. We use Realized
GARCH models of Hansen et al. (2012) as well as realized GAS of
Huang, Wang, and Zhang (2014) based on the observation-driven
estimation framework of generalized autoregressive score models

3 Our interest is in return variation, although models attempting to capture the
prices directly may be of interest.

to build a realized Jump-GARCH modeling strategy. In addition, we
also utilize Realized GARCH with multiple realized measures (Hansen
& Huang, 2012) to build a time-frequency model for forecasting
volatility.

The main contribution of the paper is thus threefold.* First, we
propose several model extensions to utilize jumps in the popular Re-
alized GARCH frameworks, as well as build time-frequency model for
forecasting volatility. Second, we use several popular measures as a
benchmark to our time-frequency model. Third, we bring interest-
ing empirical comparison of all frameworks in multiple-period-ahead
forecasting exercise. We show that the most important information
influencing the future volatility in foreign exchange is carried by the
high frequency part of the spectra representing very short investment
horizons. This decomposition gives us an interesting insight into the
volatility process. Our newly proposed time-frequency models and
Jump-GARCH models outperforms the existing modeling strategies
significantly.

2. Theoretical framework for time-frequency decomposition of
realized volatility

While most time series models are naturally set in the time do-
main, wavelet transform help us to enrich the analysis of quadratic
variation by the frequency domain. Traders of the foreign exchange
markets are operating with heterogeneous expectations, ranging
from minutes to days, or even weeks and months. Hence volatility dy-
namics should be understood not only in time but at different invest-
ment horizons as well. In this section, we introduce a multiscale esti-
mator that will allow these features and is moreover able to separate
the continuous part of the price process containing noise from the
jump variation. We will briefly introduce general ideas of construct-
ing the estimator, while for the details necessary to understand the
derivation of the estimator using wavelet theory, we refer to Barunik
and Vacha (2015). In addition, we introduce several other estimators
commonly used in the literature, which will serve as a benchmarks
to us in the empirical application.

In the analysis, we assume that the latent logarithmic asset price
follows a standard jump-diffusion process contamined with mi-
crostructure noise. Let y; be the observed logarithmic prices evolving
over 0 < t < T, which will have two components; the latent, so-called
“true log-price process”, dp; = p¢dt + ordW; + &:dq;, and zero mean
i.i.d. microstructure noise, €;, with variance n2. In a latent process, q¢
is a Poisson process uncorrelated with W;, and the magnitude of the
jump, denoted as Jj, is controlled by factor & ~ N(&, ag). Thus, the
observed price process is y; = p; + €.

The quadratic return variation over the interval [t — h, t], forO < h
< t < T associated with the price process y; can be naturally decom-
posed into two parts: integrated variance of the latent price process,
IV; , and jump variation JV; ,

t
o= [ oPds+ Y R (M
t—h
t—h<l<t
1V,
Lh JVt,h

As detailed by Andersen, Bollerslev, Diebold, and Labys (2001) and
Barndorff-Nielsen and Shephard (2002a), quadratic variation is a nat-
ural measure of variability in the logarithmic price process. A sim-
ple consistent estimator of the overall quadratic variation under the

4 Note that our research adds to recent operation research contributions using
wavelets in denoising of financial data, specifically high frequency data research
(Haven et al., 2012; Marroqui, Moreno et al., 2013; Sun & Meinl, 2012), literature de-
veloping volatility models (Date & Islyaev, 2015; Pun, Chung, & Wong, 2015), literature
contributing to forecasting volatility (Charles, 2010; Christodoulakis, 2007; Sévi, 2014)
and studying stock market returns (Buckley & Long, 2015; Doyle & Chen, 2013; Wang,
Zhang, & Zhou, 2015; Yang & Bessler, 2008).



J. Barunik et al. / European Journal of Operational Research 251 (2016) 329-340 331

assumption of zero noise contamination in the price process is pro-
vided by the well-known realized variance, introduced by Andersen
and Bollerslev (1998). The realized variance over [t — h, t] can be es-
timated as

N
=7 (RV)
QU =Y (A’ )
k=1
where Ay =Ye npkyn ~Veons (bl yn is the k-th intraday return in
N N

the [t — h,t] and N is the number of intraday observations. The es-
timator in Eq. (2) converges in probability to IV, , +JV; , as N — oo
(Andersen & Bollerslev, 1998; Andersen et al., 2001; 2003; Barndorff-
Nielsen & Shephard, 2001; 2002a; 2002b).

While the observed price process y; is contamined with noise and
jumps in real data, we need to account for this, as the main object of
interest is the IV; part of quadratic variation. Zhang, Mykland, and Ait-
Sahalia (2005) propose solution to the noise contamination by intro-
ducing the so-called two-scale realized volatility (TSRV henceforth)
estimator. They adopt a methodology for estimation of the quadratic
variation utilizing all of the available data using an idea of precise bias
estimation. The two-scale realized variation over [t — h, t] is mea-
sured by

N —~ain)

——(TSRV)
- NQvt,h ; (3)

QVih

— (average)

= Qvt,h

where 6\75”,1”) is computed as in Eq. (2) on all available data and

Qu (averaze) is constructed by averaging the estimators Q.Vﬁgff obtained

QVin
on G grids of average size N = N/G as @t(flhuemge) = %chzl @;‘0’2

where the original grid of observation times, M = {t1, ..., ty} is sub-
sampled to M®), g=1,..., G, where N/G — oo as N — oo. For exam-
ple, M(1) will start at the first observation and take an observation
every 5 minutes, M(?) will start at the second observation and take an
observation every 5 minutes, etc. Finally, we average these estimators
through the subsamples, so the variation of the estimator is averaged.

The estimator in Eq. (3) provides the first consistent and asymp-
totic estimator of the quadratic variation of p; with rate of conver-
gence N-1/6, Zhang et al. (2005) also provide the theory for optimal
choice of G grids, G* = cN2/3, where the constant ¢ can be set to min-
imize the total asymptotic variance.

Since we are interested in decomposing quadratic variation into
the integrated variance and jump variation component, we introduce
a methodology for jump detection. Recent evidence from the volatil-
ity forecasting literature indicates that two sources of variation in the
price process substantially differ and impact future volatility in differ-
ent ways. Before introducing our estimator, we introduce two com-
monly used estimators of volatility and integrated variation, which
will be used as benchmark in the empirical exercise.

Barndorff-Nielsen and Shephard (2004; 2006) develop bipower
variation estimator (BV), which can detect the presence of jumps in
high-frequency data. The main idea of the BV estimator is to compare
two measures of the integrated variance, one containing the jump
variation and the other being robust to jumps and hence containing
only the integrated variation part. In our work, we use the (Andersen
et al., 2011) adjustment of the original (Barndorff-Nielsen & Shep-
hard, 2004) estimator, which helps render it robust to certain types of
microstructure noise. The bipower variation over [t — h, t] is defined
by

N
~ (BV) 5 N

Vi =u] zm Z [Ar_ayel | Agyel, (4)

k=3
5 (BV)

where g =m/2=E(|Z]?), and Z ~ N(0, 1), a = 0 and IV,
J&, o2ds. Therefore, IV t(iv) provides a consistent estimator of the in-
tegrated variance. Although QV{'},‘” provides a consistent estimator
of the integrated variance plus the jump variation, the jump variation

may be estimated consistently as the difference between the realized
variance and the realized bipower variation

. —(RV) = (BV)
plimy_, (er,h =V ) =JVen- (5)

Under the assumption of no jump and some other regularity con-
ditions, Barndorff-Nielsen and Shephard (2006) provide the joint
asymptotic distribution of the jump variation.” Using this theory, the
contribution of the jump variation to the quadratic variation of the
price process is measured by

~(BV) =5 RV) S (BV)
I I (I A} (6)
where 1 denotes the indicator function and &, refers to

125> %)
the chosen critical value from the standard normal distribution. The
measure of integrated variance is defined as

~(CBV) = (RV) ~(BV)
Ivt,h = H{Zt(»iV)§¢a}QVf=h + Jl{zl(ﬁvg%}lvf_h R (7)

ensuring that the jump measure and the continuous part add up to
the estimated variance without jumps. Another popular estimator,
which estimates the integrated volatility in the presence of jumps is
the median realized volatility (MedRV), introduced by Andersen et al.
(2012):

I"'\/(MedRV) _ T < N )
e T 64347 \N-2
N
x > med(| Agayel. | Ak ayel. | Awye). (8)
k=3

Under the assumption of no jump and some other regularity condi-
tions, Andersen et al. (2012) provide the joint asymptotic distribu-
tion of the jump variation® analogously to the BV estimator. The in-
tegrated variance and jump variation can be consistently estimated
as

~ (CMedRV) —®V) ~ (MedRV)
IVt,h = ]l{zr(.ll\:ledRV)Sd)a}Qvt,h + ]l{zéﬂhmw%}lvt,h s (9)
— (MedRV) ——RV)  ~ (MedRV)

W™ = 1o, (A - 75™). (10)

2.1. Estimation of jumps and time-frequency realized variance
Fan and Wang (2007) use a different approach to realized volatil-

ity measurement. They use wavelets in order to separate jump varia-
tion from the price process, as well as for estimation of the integrated

5 Under the null hypothesis of no within-day jumps,

Wi -y
—(RV)
Qv

o) _
Zt,h -

2 ==(BV)
((%) +T - 5)% max <1, (;?%‘V"))z>

= (BV) _ . .
where TQ,, = Ntz () Yhis | Ak aye |2 Arsye| 3| Ay_oy: | is asymptotically
standard normally distributed.

6 Under the null hypothesis of no within-day jumps,

é‘\/:RhVJ 7"‘\/:?\:edRV)
— (RV)
Z(MedRV) _ QVin
th = ,
— (MedRV)
T
0.964 max [ 1, 1%,
=~ (MedRV)
(lv, ! )
== (MedRV) 3N

where TQ, = ol (5%) Sy med (| Apayel, [Aroryel, [Arye])* is asymp-
totically standard normally distributed.
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variance on the jump-adjusted data. In addition, wavelet methodol-
ogy offers decomposition of the estimated volatility into scales repre-
senting investment horizons. Therefore, we can observe how partic-
ular investment horizon contributes to the total variance. For a more
detailed description of the wavelet transform used as a building block
of the estimation see Appendix A. In the empirical section, we aim to
study information content of investment horizons for volatility fore-
casting, thus we describe the wavelet jump detection and then in-
troduce the wavelet estimator of integrated variance of Barunik and
Vacha (2015), which allows to decompose the volatility into several
investment horizons.

As in the previous Section, we assume the sample path of the
price process y; = pr + €; will have a finite number of jumps. Fol-
lowing results of Wang (1995) on the wavelet jump detection and
further extension of Fan and Wang (2007) to stochastic processes,
we apply wavelet transform to detect jumps. Using effective local-
ization properties of the wavelets, Fan and Wang (2007) show a way
how to distinguish between continuous and jump part of the stochas-
tic price process with i.i.d. additive noise. They use the first scale
of the discrete wavelet transform (the highest frequency) where the
price process p; dominates the noise €, only close to a jump loca-
tion, otherwise it is very small. In order to detect dominating part
of the process y;, Fan and Wang (2007) use the universal threshold
of Donoho and Johnstone (1994), defined as Dy = d;+/21ogN, where
dr = median{|W x|}/0.6745 for k € [1, N] is a robust estimate of stan-
dard deviation.” When the absolute value of the wavelet coefficient
at the first scale is greater than a threshold D; then the noise €; is
relatively small and the dominance of p; is caused by the jump part,
therefore a jump is detected.

In the empirical part we adapt (Fan & Wang, 2007) procedure
to the “maximal overlap discrete wavelet transform” (MODWT). As
a result a robust estimate of standard deviation has to be modified
as: dr = v2 median{|W; ,|}/0.6745 for k € [1, N]. Since we use the
MODWT, we have k wavelet coefficients at the first scale, which cor-
responds to number of intraday observations, i.e.,k = 1, ..., N.In case
the absolute value of the wavelet coefficient |W, ;| is greater® then
the threshold D; than a jump with size A,J; is detected as

Ayle = (yHH(g),, _y[,th(%l)h)]l{‘lekat} ke[1,N]. (11)

Following Fan and Wang (2007), the jump variation over [t — h, t]
in the discrete time is estimated as the sum of squares of all the esti-
mated jump sizes,

N

V=" (A (12)

k=1

Fan and Wang (2007) prove that using (12), we are able to estimate
the jump variation from the process consistently with the conver-
gence rate of N~1/4,

Having precisely detected jumps, we proceed to jump adjustment
of the observed price process y; over [t — h, t]. We adjust the data for
jumps by subtracting the intraday jumps from the price process as:

AYP = Ayye — A,

where N is the number of intraday observations.

Finally, the volatility can be computed using the jump-adjusted
wavelet two-scale realized variance (JWTSRV) estimator on the jump
adjusted data Aky[(’). The estimator utilizes the TSRV approach of
Zhang et al. (2005) as well as the wavelet jump detection method.

k=1,...N, (13)

7 See A.1 for the definition of wavelet transform.

8 For more information about universal thresholds applied on the MODWT see
Percival and Walden (2000) and Gengay, Selcuk, and Whitcher (2002).

9 Using the MODWT filters, we need to slightly correct the position of the wavelet
coefficients to get the precise jump position, see Percival and Mofjeld (1997).

Another advantage of the estimator is, that it decomposes the in-
tegrated variance into J™ + 1 components, therefore we are able to
study the dynamics of volatility at various investment horizons. Fol-
lowing Barunik and Vacha (2015), we define the JWTSRV estimator
over [t — h, t], on the jump-adjusted data as:

Jm+1 Jm+1 N
~ (JWTSRV) ~ (JWTSRV) ~ (average) N =~ (all)
v, = Z IV = Z (IV].M - vaj_t,,), (14)
j=1 j=1

= (average) 1

where IV, = ¢ Zg:1 Y (l/vj(i))2 is obtained from wavelet

= (all)

coefficient estimates on a grid of size N=N/G, and Wiin=

22]:1 (Wj,k)2 is the wavelet realized variance estimator at a scale
j on all the jump-adjusted observed data, Akyt(’). W; i denotes the
MODWT wavelet coefficient at scale j with position k obtained over
[t —h,t].

Barunik and Vacha (2015) show that the JWTSRV is consistent es-
timator of the integrated variance as it converges in probability to
the integrated variance of the process p¢, and they test the small sam-
ple performance of the estimator in a large Monte Carlo study. The
JWTSRYV is found to be able to recover true integrated variance from
the noisy process with jumps very precisely. Moreover, the JWTSRV
estimator is also tested in forecasting exercise, which confirms to im-
prove forecasting of the integrated variance substantially.

2.1.1. Bootstrapping the jump test using JWTSRV

Although Fan and Wang (2007) showed the effectiveness of the
wavelet jump detection, distribution properties of the estimated
jump variation, and hence any test statistic stay unknown. In order to
test for the presence of jumps using JWTSRV estimator, we propose to
use the bootstrap test. Main reason for bootstrapping the jump test is
that consistent estimator for the integrated quarticity is not analyti-
cally available for JWTSRV estimator. More importantly, finite sample
properties of the jump tests based on functions of realized volatility
estimators can be considerably improved using bootstrap, as noted
by Dovonon, Gongalves, Hounyo, and Meddahi (2014).

In order to obtain the bootstrapped distribution of test statis-
tic under the assumption of no jumps, we generate k intraday re-
turns using estimated integrated part of the quadratic variation as

Ayyi = (l/k)I\A/[(’WTSRV)n,-,t, with n;  ~ N(0, 1) generated indepen-
dently. QVt(RV*) and 6\75’ WTSRY™) are then estimated on the given day
t. Generating b = 1, ..., Brealizations, we obtain
—(RV*) =~ (JWTSRV*)
* b _ QV[J‘I B Ivt,h
t.h( ) - —(RV*) s (15)
Vin

which can be used to construct a bootstrap statistic to test the null
hypothesis of no jumps as:

@(RV*)_ ~ (JWTSRV*)
= A(th*’; - E(Zt*_h (b))
ZUWTSRY) _ QVin ' . (16)
th Var(z;, (b))

The bootstrap expectation and variance both depend on the data. We
will rely on the assumptions of Dovonon et al. (2014), who show that
under general conditions, this statistics will be normally distributed
with limiting variance one, although they provide this result for the
BV estimator. While we leave the rigorous treatment of this approach
with JWTSRV estimator for the future work, we have studied the
properties of the bootstrap test using simulations, which are avail-
able upon request from authors.

The integrated variance and jump variation can then be consis-
tently estimated as
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= (CJWTSRV) —(RV) =~ (JWTSRV)

Ivt.h = ]l{Zt([ill/\/TSRV)Sq:,u}Qvt,h + H{ZHXVTSRVBQH}IVW S (17)
=~ (JWTSRV) —(RV) =~ (JWTSRV)

.]Vt,h = H{Z[U,?/TSWB@O,}(QVLh _IVt,h ) (18)

3. Aforecasting model based on decomposed integrated
volatilities and jumps

Similarly to Lanne (2007); Andersen et al. (2011); and Sévi (2014),
we use the decomposition of the quadratic variation with the inten-
tion of building a more accurate forecasting model. Our approach
is very different though, as we use wavelets to decompose the in-
tegrated volatility into several investment horizons and jumps first.
Then, we employ recently proposed Realized GARCH framework of
Hansen et al. (2012) and its variants. Realized GARCH allows to model
jointly returns and realized measures of volatility, while key feature is
ameasurement equation that relates the realized measure to the con-
ditional variance of returns. We use the decomposed realized mea-
sures in the Realized GARCH, and expect that our modification will
result in better in-sample fits of the data as well as out-of-sample
forecasts. For comparison, we also use other estimators and study
how they improve the forecasting ability of Realized GARCH.

3.1. Realized Jump GARCH framework for forecasting

The key object of interest in GARCH family is the conditional vari-
ance, hy = var(r¢|F;_1), where r; is a time series of returns. While in
a standard GARCH(1,1) model the conditional variance, h; is depen-
dent on its past h;_; and rt{], Hansen et al. (2012) propose to utilize
realized measures of volatility and make h; dependent on them as
well. The authors introduce so-called measurement equation which
ties the realized measure to latent volatility. The general framework
of Realized GARCH(p, q) models is well connected to existing litera-
ture in Hansen et al. (2012). Here, we restrict ourselves to the simple
log-linear specification of Realized GARCH(1, 1) with Gaussian inno-
vations which we will use to build our model.

Realized GARCH makes use of realized measures of volatility to
help forecast the latent volatility process. In the previous sections,
we have motivated several estimators, which allow us to disentan-
gle continuous part and jump part of the quadratic return varia-
tion. While both parts may carry important information about future
volatility, we propose a modified framework, which includes both.

There are essentially two possible treatments of jumps in the
Realized GARCH framework, depending on the belief about its en-
dogenous or exogenous nature. In a large study, Chatrath, Miao,
Ramchander, and Villupuram (2014); Lahaye, Laurent, and Neely
(2011) show that currency jumps can be explained by U.S. macro an-
nouncements using the realized measures. This provides a good em-
pirical evidence about the exogenous nature of jump arrivals. By ad-
dition of estimated jumps into the variance equation, we propose a
Realized Jump-GARCH(1,1) model (Realized J-GARCH) given by

It = /Eztv (19)
log(h:) = w + Blog(he—1) + vy log(x;—1) + yylog(1 +JVi—1), (20)

log(x;) = & + ¢ log(h) + 112 + Tz + Uy, (21)

where ¢ is the return, x; and JV; are estimated continuous and jump
components of quadratic variation using BV, MedRV, or JWTSRV re-
alized measures, and z; and u; come from Gaussian normal distribu-
tion and are mutually independent. 7,z; + 7,27 is leverage function. If
Jjumps have a significant impact on volatility forecasts, y; coefficient
should be significantly different from zero. For y; = 0, the model re-
duces to the original Realized GARCH.

Hansen et al. (2012) motivate possibility of obtaining feasible
multi-period-ahead forecasts as one of the main advantages of

this framework. Multi-period-ahead predictions with the Realized
GARCH model are straightforward with the use of vector autoregres-
sion structure for log(h;) and log(x;). In this paper, we follow this sim-
ple approach. In order to obtain multiple-period-ahead forecasts, we
need to include jump component to the forecasting structure. Once
we are treating jumps as an exogenous process, we simply use the
ARMA structure for the log(1 +JV;_1), which allows to obtain the
multiple-period-ahead forecasts analogously to the Realized GARCH
model.

3.2. Realized GARCH model based on decomposed integrated volatiles

In addition to jumps, we also utilize decomposition of JWTSRV
to see which investment horizon has impact on the future volatil-
ity as well. We also expect each volatility component at different in-
vestment horizon to carry different information, which should again
help to enhance the final forecasts. To be able to fully explore the de-
compositions, we use the extension of Realized Exponential GARCH
model that can utilize multiple realized volatility measures intro-
duced by Hansen and Huang (2012). The realized EGARCH model with
j=1,..., J™ + 1 volatility components at different investment hori-
zons estimated using JWTSRV in x; ¢ is

It = \/Elt, (22)

log(h) = w + Blog(he 1) + T (ze1) + ¥ U1, (23)
log(x;;) =&+ ¢jlog(he) +6jy(ze) + ujy. (24)
where z; ~ N(0O, 1), and u; ~ N(O, ¥) are mutually and serially inde-
pendent, and ur = (uy;, ..., uj;), and T (z;) = T1z¢ + 7(z2 - 1), and

8(]')(2[) = 5]“12{ + 5]'12(th —-1).

Note that the model is different as the log (h;) equation has the
u;_1 instead of realized measure, and includes leverage function. For
the case when j = 1, model is equivalent to the previous one, and by
simple substitution, we can obtain the relation of parameters directly
(Hansen & Huang, 2012). Hence the model with multiple equations
is just a generalization of the previous work, which allows us to fully
utilize the decomposed volatility into several investment horizons,
and so parameters in vector y’ will provide a good guide for signifi-
cance of various investment horizons on volatility forecasts.

All the models are estimated by quasi-maximum likelihood
farmework (QMLE) and can be easily generalized by assuming differ-
ent distributions of z; and u;. Hansen et al. (2012) provide the asymp-
totic properties of the QMLE, while Hansen and Huang (2012) ex-
tend it to the framework with multiple realized measures, although
the work is currently unfinished. The quasi log-likelihood function is
given by

T
(rx0,%) = —% >
t=1

x | log(27) + log(hy) + 22 + Klog(2m) + log(|Z]) + u[ = 'u |,

=(r) =0(x|r)
(25)

where 0 holds set of parameters to be estimated by maximizing the
quasi log-likelihood with respect to & and X. The log-likelihood can
be divided in two according to the contribution of realized measures
to the log-likelihood value, ¢(x|r) and contribution of returns, ¢(r). In
the empirical analysis, we report the two values as we use conven-
tional GARCH model as a benchmark, so we are able to compare the
fits. It is again straightforward to obtain multiple-period-ahead point
forecasts using estimated parameters. For the details, see for example
Lunde and Olesen (2013)
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3.3. Generalized autoregressive score model with realized measures of
volatility and jumps

Recently introduced observation-driven estimation framework of
Generalized Autoregressive Score (GAS) models due to Creal, Koop-
man, and Lucas (2013) has recently gained considerable popularity.
Huang et al. (2014) propose a new observation-driven time-varying
parameter Realized GARCH, in which the dynamic latent factor is up-
dated by the scaled local density score as a function of past daily re-
turns and realized variance. The new framework is robust to extreme
outliers in observations, hence it may serve as a robustness check to
our modeling strategy. We again add jumps to the original model, ob-
taining Realized Jump GAS Model as

It = \/h>[zfv (26)

log(x;) = & + ¢ log(hy) +di(z2 — 1) + doze + o U, (27)

log(hey1) = 0 +aS Ar + Blog(he) + yylog(1 +JVioq), (28)

where x; and JV; are estimated continuous and jump compo-
nents of quadratic variation using BV, MedRV, or JWTSRV esti-
mators, and z; and u; come from Gaussian normal distribution
and are mutually independent. d (zt2 —1) +dyz: is leverage func-
tion that introduces dependence between the return shock and
volatility shock. The main change in comparison to previous mod-
els is in the dynamics of the latent volatility, driven by the dy-
namic score, where A; = 9 In p(r¢, log(x¢) | F¢_1; log(ht), 6) /0 log(ht)
is the conditional score at time t and S; = —E;_1[92 In p(r¢, log(x¢)|
Fe_1:log(he),0)/32%log(hs)?]~! is the scaling matrix. Analogously
to the QMLE framework, likelihood can be separated to two parts,
which we report in order to be able to compare the fits. Assuming
both z;, and u; follow independent standardized normal distributions,
dynamic score reduces to A¢ =1 (z2 — 1)+ Luc (¢ +d1z? - djzzt),

2
St= 61—2((;52 +3d? + %2 —2d1¢) + 1. Assuming exogenous ARMA
structure for jumps, multiple-period-ahead forecasts are again ob-
tained readily.

3.4. Forecast evaluation using different realized variance measures

To test significant differences of competing models, we use the
Model Confidence Set (MCS) methodology of Hansen, Lunde, and Na-
son (2011). Given a set of forecasting models, Mg, we identify the
model confidence set /\7;‘70( C My, which is the set of models that
contain the best forecasting model given a level of confidence «. For
a given model i € My, the p-value is the threshold confidence level.
Model i belongs to the MCS only if p; > o. MCS methodology repeat-
edly tests the null hypothesis of equal forecasting accuracy

Hop :E[Lis —Lj]=0, forall i jeM

with L; ; being an appropriate loss function of the ith model. Start-
ing with the full set of models, M = My, this procedure sequentially
eliminates the worst-performing model from M when the null is re-
jected. The surviving set of models then belong to the model confi-
dence set /T/l\’lga. Following Hansen et al. (2011), we implement the
MCS using a stationary bootstrap with an average block length of
20 days.'” Two robust loss functions, mean square error (MSE) and
QLIKEare used in the MCS (Patton, 2011), while root mean square er-

ror (RMSE) is reported in the Tables.

10 We have used different block lengths, including the ones depending on the fore-
casting horizons, to assess the robustness of the results, without any change in the final
results. These results are available from the authors upon request.

4. Empirical application: does decomposition bring any
improvement in volatility forecasting?

4.1. Data description

Foreign exchange future contracts are traded on the Chicago
Mercantile Exchange (CME) on a 24 hour basis. As these markets
are among the most liquid, they are suitable for analysis of high-
frequency data. We will estimate the realized volatility of British
pound (GBP), Swiss franc (CHF) and euro (EUR) futures. All contracts
are quoted in the unit value of the foreign currency in US dollars. It
is advantageous to use currency futures data for the analysis instead
of spot currency prices, as they embed interest rate differentials
and do not suffer from additional microstructure noise coming from
over-the-counter trading. The cleaned data are available from Tick
Data, Inc.'!

Itis important to look first at the changes in the trading system be-
fore we proceed with the estimation on the data. In August 2003, for
example, the CME launched the Globex trading platform, and for the
first time ever in a single month, the trading volume on the electronic
trading platform exceeded 1 million contracts every day. On Monday,
December 18, 2006, the CME Globex® electronic trading platform
started offering nearly continuous trading. More precisely, the trad-
ing cycle became 23 hours a day (from 5:00 pm on the previous day
until 4:00 pm on current day, with a 1 hour break in continuous trad-
ing), from 5:00 pm on Sunday until 4:00 pm on Friday. These changes
certainly had a dramatic impact on trading activity and the amount
of information available, resulting in difficulties in comparing the es-
timators on the pre-2003 data, the 2003-2006 data and the post-
2006 data. For this reason, we restrict our analysis to a sample period
extending from January 2, 2007 through August 20, 2014, which con-
tains the most recent financial crisis. The futures contracts we use are
automatically rolled over to provide continuous price records, so we
do not have to deal with different maturities.

The tick-by-tick transactions are recorded in Chicago Time, re-
ferred to as Central Standard Time (CST). Therefore, in a given day,
trading activity starts at 5:00 pm CST in Asia, continues in Europe fol-
lowed by North America, and finally closes at 4:00 pm in Australia. To
exclude potential jumps due to the one-hour gap in trading, we rede-
fine the day in accordance with the electronic trading system. More-
over, we eliminate transactions executed on Saturdays and Sundays,
US federal holidays, December 24 to 26, and December 31 to January
2, because of the low activity on these days, which could lead to esti-
mation bias. Finally, we are left with 1902 days in the sample. Looking
more deeply at higher frequencies, we find a large amount of multi-
ple transactions happening exactly at the same time stamp. We use
the arithmetic average for all observations with the same time stamp.

Having prepared the data, we can estimate the integrated volatil-
ity using different estimators and use them within proposed forecast-
ing framework. For each futures contract, the daily quadratic vari-
ation is estimated using the realized variance estimator. Integrated
variance and jump variation are estimated with the bipower varia-
tion, median estimator, and finally our jump wavelet two-scale real-
ized variance estimator. All the estimators are adjusted for small sam-
ple bias. For convenience, we refer to the estimators in the descrip-
tion of the results as RV, BV, MedRV and JWTSRYV, respectively, while
the BV, MedRV, and JWTSRV estimators are used for decomposition
of continuous and jump part of quadratic variation, and JWTSRV for
decomposition to various investment horizons. We use sampling fre-
quency of 5 minutes.

The decomposition of volatility into the continuous and jump part
is depicted by Fig. 1, which provide the returns, estimated jump and
finally integrated variance components using JWTSRV estimator for

1 http://www.tickdata.com/
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Fig. 1. Daily returns, estimated jump variation and IV; estimated by JWTSRV for (a) GBP, (b) CHF and (c) EUR futures.
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Fig. 2. Decomposed annualized volatility (by 252 days) of GBP, CHF and EUR futures using JWTSRYV, (a) volatility on investment horizons up to 10 minutes, (b) volatility on
investment horizons of 10 to 20 minutes, (c) volatility on investment horizons of 20 to 40 minutes, (d) volatility on investment horizons of 40 to 80 minutes, (e) volatility on
investment horizons up to 1 day. Note that sum of components (a), (b), (c), (d) and (e) give total volatility.

all three futures pairs. Fig. 2 shows the further decomposition into
several investment horizons. For better illustration, we annualize the
square root of the integrated variance in order to get the annualized
volatility and we compute the components of the volatility on sev-
eral investment horizons. Fig. 2 (a—e) shows the investment horizons
of up to 10 minutes, 10 to 20 minutes, 20 to 40 minutes, 40 to 80 min-
utes and up to 1 day, respectively. It is very interesting that most of
the volatility (around 50%) comes from the 5 minute to 10 minute in-
vestment horizons band which is a new empirical insight. Moreover,
the longer the investment horizon, the lower the contribution of the
variance to the total variation.

4.2. In-sample fits

The main results of estimation and forecasting are presented in
this section. The estimation strategy is as follows. For each of three
forex futures considered, namely GBP, CHF and EUR, we first esti-

mate benchmark GARCH (1,1) model. Then, we estimate the Realized
GARCH (1,1) with RV, which will serve as a benchmark model to our
Realized Jump GARCH (1,1) with BV, MedRV, and JWTSRV. All these
models are estimated using QMLE and GAS model frameworks. Fi-
nally, we add Realized GARCH model with multiple JWTSRV compo-
nents to see the impact of investment horizons on forecasts.!?

Tables 1-Tables 3 contain in-sample fits for GBP futures, CHF fu-
tures and EUR futures on the full sample respectively. By observ-
ing partial log-likelihood ¢(r), we can see immediately that all the

12° All models are estimated with NLopt-BOBYQA optimization algorithm using nloptr
package in R version 3.2.1. Comparison of the models’ elapsed times (running on a
MacBook computer with Intel Core i5 2.6 GHz CPU) computed as 95% trimmed mean
from 30 runs is 0.25 seconds for GAS models and 0.22 seconds for MLE models. We
note that we report the elapsed times from our rather inefficient algorithm, which
become proportionally slower with increasing number of parameters. Elapsed times
can be significantly improved with use of efficient optimization algorithms.



Table 1

Results for the GBP futures: in-sample fits of GARCH(1,1), Realized GARCH(1,1) with RV, Realized Jump-GARCH with BV, MedRV, and JWTSRV estimated using MLE (Realized (Jump) GARCH) and GAS (Realized (Jump) GAS), and finally

. . . ~(WTSRV L . . . . .
Realized GARCH with multiple IVY[ ) volatility decompositions on different investment horizons. Robust standard errors are reported in parentheses.

GARCH Realized (Jump) GARCH Realized (Jump) GAS Realized GARCH with multiple JWTSRV;
RV BV MedRV JWTSRV RV BV MedRV JWTSRV RV j=1 j=2 j=3 j=4 j=5
1) 0.092 0.040 0.095 0.122 0.161 0.013 0.008 0.010 0.014 [0} 0.019
(0.059) (0.030) (0.034) (0.036) (0.036) (0.008) (0.009) (0.009) (0.010) (0.009)
B 0.951 0.757 0.731 0.716 0.707 0.996 0.996 0.996 0.995 B 0.994
(0.007) (0.018) (0.020) (0.021) (0.021) (0.002) (0.003) (0.003) (0.003) (0.003)
Y 0.046 0.224 0.235 0.244 0.242 0.237 0.261 0.275 0.283 Vi —0.011 0.128 0.050 0.008 0.023 0.013
(0.007) (0.018) (0.019) (0.020) (0.020) (0.017) (0.019) (0.020) (0.020) (0.021) (0.029) (0.024) (0.016) (0.011) (0.008)
Vi 0.015 0.008 0.002 0.017 0.009 0.002
(0.005) (0.004) (0.004) (0.005) (0.005) (0.005)
T —0.027
(0.005)
T, 0.032
(0.004)
& -0.128 —0.368 —0.455 —0.602 —0.009 -0.229 -0.320 —0.450 & -0.273 -1.252 —2.052 —2.875 —3.659 —3.876
(0.131) (0.145) (0.153) (0.155) (0.064) (0.136) (0.143) (0.145) (0.125) (0.134) (0.136) (0.140) (0.144) (0.139)
¢ 1.070 1127 1.147 1.189 1.040 1.091 1113 1.150 Pb; 1112 1.168 1.180 1.199 1.198 1.231
(0.039) (0.043) (0.045) (0.046) (0.021) (0.041) (0.043) (0.043) (0.036) (0.039) (0.040) (0.041) (0.042) (0.041)
T4/dy —0.017 —0.024 —0.025 —0.028 0.079 0.064 0.056 0.058 8j1 -0.014 —0.028 —0.026 —0.021 —0.020 -0.032
(0.008) (0.007) (0.007) (0.007) (0.005) (0.005) (0.005) (0.005) (0.008) (0.007) (0.008) (0.010) (0.013) (0.015)
T5/d; 0.087 0.072 0.066 0.068 —0.003 —0.008 —0.009 —0.010 8j.2 0.087 0.060 0.065 0.074 0.087 0.209
(0.006) (0.005) (0.005) (0.005) (0.007) (0.007) (0.007) (0.007) (0.006) (0.005) (0.006) (0.007) (0.009) (0.012)
o(x|r) —613 —533 —486 -506 —625 —546 -501 -523 —2543
or) —5849 —5825 —5824 —5823 —5825 —5825 —5825 —5823 —5825 -5825
Table 2

Results for the CHF futures: in-sample fits of GARCH(1,1), Realized GARCH(1,1) with RV, Realized Jump-GARCH with BV, MedRV, and JWTSRV estimated using MLE (Realized (Jump) GARCH) and GAS (Realized (Jump) GAS), and finally

. . L~ (WTSRY . . . . . .
Realized GARCH with multiple IVY[ ) volatility decompositions on different investment horizons. Robust standard errors are reported in parentheses.

GARCH Realized (Jump) GARCH Realized (Jump) GAS Realized GARCH with multiple JWTSRV;
RV BV MedRV JWTSRV RV BV MedRV JWTSRV RV j=1 j=2 ji=3 j=4 j=5
w 0.092 —0.140 —0.095 —0.108 —0.098 0.018 0.016 0.019 0.023 w 0.033
(0.087) (0.031) (0.034) (0.038) (0.036) (0.012) (0.013) (0.013) (0.013) (0.014)
B 0.936 0.760 0.729 0.707 0.719 0.995 0.994 0.993 0.994 B 0.991
(0.008) (0.018) (0.019) (0.020) (0.020) (0.003) (0.003) (0.003) (0.003) (0.004)
y 0.066 0.276 0.297 0.324 0.311 0.235 0.267 0.275 0.268 Vi 0.030 0.262 -0.020 0.068 -0.010 0.031
(0.008) (0.021) (0.022) (0.023) (0.022) (0.018) (0.019) (0.019) (0.019) (0.033) (0.043) (0.037) (0.026) (0.018) (0.012)
Yy 0.016 0.012 0.004 0.017 0.013 0.002
(0.007) (0.006) (0.005) (0.007) (0.006) (0.006)
T 0.021
(0.007)
T, 0.030
(0.005)
& 0.602 0.389 0.412 0.399 0.786 0.572 0.571 0.536 & 0.677 -0.200 —-0.964 -1.711 —2.534 —2.802
(0.092) (0.099) (0.102) (0.101) (0.075) (0.084) (0.094) (0.093) (0.079) (0.083) (0.085) (0.088) (0.096) (0.101)
] 0.844 0.885 0.875 0.878 0.791 0.833 0.828 0.837 ¢; 0.823 0.846 0.846 0.842 0.850 0.886
(0.024) (0.026) (0.027) (0.027) (0.020) (0.022) (0.025) (0.025) (0.021) (0.022) (0.022) (0.023) (0.026) (0.027)
Tq/dy 0.030 0.020 0.024 0.019 0.083 0.077 0.059 0.059 i1 0.028 0.022 0.016 0.011 0.025 0.001
(0.009) (0.008) (0.008) (0.008) (0.005) (0.005) (0.004) (0.004) (0.008) (0.007) (0.008) (0.010) (0.012) (0.007)
T,/dy 0.098 0.089 0.073 0.074 0.030 0.020 0.025 0.017 3,2 0.100 0.071 0.075 0.084 0.087 0.185
(0.006) (0.006) (0.005) (0.005) (0.008) (0.008) (0.008) (0.008) (0.006) (0.005) (0.006) (0.007) (0.008) (0.012)
£(x|r) —825 -753 -718 —688 —832 —-760 -731 —705 —3286
or) —6199 —6164 —6164 -6163 —6164 - 6173 —6170 —6170 —6169 —-6167
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Table 3

Results for the EUR futures: in-sample fits of GARCH(1,1), Realized GARCH(1,1) with RV, Realized Jump-GARCH with BV, MedRV, and JWTSRV estimated using MLE (Realized (Jump) GARCH) and GAS (Realized (Jump) GAS), and finally

(JWTSRV)

Realized GARCH with multiple IV ;

volatility decompositions on different investment horizons. Robust standard errors are reported in parentheses.

jit

Realized (Jump) GARCH

RV

Realized GARCH with multiple JWTSRV;

RV

Realized (Jump) GAS

GARCH

JWTSRV

MedRV

BV

JWTSRV

MedRV

BV

0.020 0.028
(0.013)

0.018

0.026

(0.015)

(0.013)

(0.012)

0.992
(0.004)
0.308
(0.021)

0.992
(0.003)

0.993
(0.004)
0.296
(0.021)

(0.003)

Vi -0.016 0.182 0.036 0.049 -0.008 0.041
(0.037) (0.022) (0.011)

0.308
(0.021)

0.286 0313 0.321 0.311 0.260
(0.024) (0.020)

(0.024)

0.045
(0.006)

(0.016)

(0.032)

(0.028)

(0.029)

(0.025)

0.001
(0.003)

0.012

0.018

Y

(0.007)

(0.008)

-0.027
(0.006)

0.051
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(0.005)

-3.456
(0.135)
1.077
(0.038)
~0.012

-3.307

(0.143)
1.064

(0.040)

2434
(0.135)
1.034
(0.038)
~0.002

1.032
(0.037)
-0.007

-1.683
(0.131)

~0.866
(0128)
1.015
(0.036)
-0.007

0155

(0.118)
0.948

(0.033)

&

0.101
(0.118)
0.950
(0.034)
0.067

0.230

(0112)
0916

(0.032)

0.297
(0107)
0.901
(0.031)

0.452
(0.099)
0.869
(0.029)

~0.063
(0127)
0.990
(0.036)
~0.009

0.030
(0.224)
0.965
(0.062)
-0.004

0122
(0.124)
0.945
(0.035)

0.302

(0.114)
0.907

(0.033)

0.014
(0.014)

0.001

8j1

0.069
(0.005)

0.076

0.088

0.001

0.001
(0.005)

T1/dy

(0.016)

(0.008) (0.008) (0.009) (0.011)
0.076

(0.005)
0.003

(0.006) (0.006)
0.011

(0.008) (0.008)
0.010

(0.005)
0.083

0.207
(0.012)

0.075

(0.009)

0.073

0.072
(0.005)

0.008 3,2 0.093

(0.007)
-582

0.075
(0.005)
-600
-5990

0.077

0.093
(0.006)

-715

T5/d;

(0.007)

(0.006)

(0.006)

(0.007)
-601
-5992

(0.007)
-651
-5996

(0.008)
-710

(0.005)
582
-5992

(0.006)

-655
-5993

-2555
-5995

o(x|r)
«r)

-5994

-5996

-5994

-6016
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Realized GARCH models bring significant improvement to the con-
ventional GARCH(1,1) without high frequency realized measures, re-
ported by the first column (in testing significance of the difference,
we restrict ourselves to use simple log-likelihood ratio test).

When we focus on comparison of Realized GARCH models, we
can observe further significant differences. Our Jump-GARCH brings
small improvements to the ¢(r) consistent with the literature, but
large improvements in terms of ¢(x|r) when compared to the bench-
mark Realized GARCH with RV. As to the comparison of QMLE and
GAS specifications, original QMLE model outperforms GAS in terms of
likelihood slightly. These observations hold for all three futures used
in the study.

Further comparison of the Realized Jump-GARCH models with
three different realized measures reveals that JWTSRV and MedRV
largely outperform BV, with JWTSRV bringing largest gains for
CHF futures, and MedRV winning the race for the rest. While log-
likelihoods ¢(x|r) uncover rather large differences between the mod-
els, parameter estimates for the different realized measures are very
similar to each other, and are consistent with the estimates found in
the literature.

The most important parameter y; is significantly different from
zero for BV and MedRV estimators, but not for JWTSRV estimator. We
explain this by more strict statistics for testing the null hypothesis
of no jumps in comparison to MedRV and BV, while we use boot-
strap, which corrects the statistics for small sample distortions. As
pointed out by Dovonon et al. (2014), the differences maybe quite se-
vere. Even with this result, we can conclude that jumps bring signif-
icant improvement in the modeling and Realized Jump-GARCH(1,1)
outperforms benchmark Realized GARCH.

Finally, we focus on the Realized GARCH model with multiple
measures, where we use volatility decompositions to several invest-
ment horizons due to our JWTSRV measure, and also include RV rep-
resenting full quadratic variation. We find y; coefficients statistically
different from zero for all three futures. This means that volatility
further decomposed to several investment horizons carry significant
contribution to the future latent volatility. Coefficient is largest at the
first scale, following the second, and the rest. This points us to the re-
sult that mainly volatility from highest frequency impacts the future
volatility.

Turning our attention to ¢;, we can see that it is close to one
(within standard errors) for all investment horizons. Note however
how &; decreases with decreasing scale. This mirrors the different
contributions of the energy (variance of each volatility at different
investment horizon j to total variance) to the latent volatility. From
Eq. (14) we know, that volatility components at different horizons j
always sum up to the total volatility. But Realized GARCH model use
logarithmic transforms, which do not hold this property. Hence, the
expected value of the parameter &; will logically be a total constant
minus log (1/2/), as JWTSRV is simply sum of squared wavelet coef-
ficients on intraday return, which is driven mainly by Brownian mo-
tion. This points us to the conclusion that the most of the informa-
tion can be found in the high frequency part of the spetral density of
returns.

4.3. Multi-period-ahead forecasting results

Motivated by a good in-sample performance of the models, we
study if inclusion of jumps in the model improves the volatility fore-
casts in our newly proposed Realized Jump-GARCH models. We also
wait to see if the model with multiple investment horizons improves
volatility forecasts, and finally, it will be interesting to find out if the
log-likelihood gains also translate to good forecasting performance of
the models.

We use all the Realized GARCH models to produce h = {1, 5, 10}-
day-ahead forecasts based on rolling basis. Table 4 compares RMSE
of all the models. To see if the forecasts are statistically different, we
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Table 4

RMSE (x10~%) from all forecasts for the GBP, CHF, and EUR at different forecasting horizons h = {1, 5, 10}. Forecasts which fall into
the 10% Model Confidence Set (MCS) using both robust MSE and QLIKE loss functions are in bold. In addition, ranking of the models
included in the MCS is provided in the superscript, first is ranking using MSE, second using QLIKE.

Realized (Jump) GARCH Realized (Jump) GAS Multiple
RV BV MedRV JWTSRV RV BV MedRV JWTSRV JWTSRY;
GBP
h= 1.0079) 1.003(7) 1.003(®) 1.004(®) 0.998°:  0.988“+4  0.98633 098222 097201
h=5 0.644%5)  0.658 0.660 0.661 0.643>3)  0.63922  0.64134  0.642¢49  0.633(11
h=10 056121 056633  0569>4  0574%7 057276 056845 057168 05759 055812
CHF
h=1 1.4970) 1.459( 1.517() 1.496() 1.5910) 149741 153075 153882 150904
h=5 1.087>%)  1.027:4  1.095(®) 1.073@ 1.2110) 1.0773:1 112077 1.140@3)  1.087(+2)
h=10 115572 1.079:1  1.119G.7) 112545 1.2240) 110724 113668 116339 112653
EUR
h= 1.28009) 1.2736) 1.253% 1.23023)  1.2798.5) 12787 1.264%4  1.2443.2) 122101
h=5 0.981 0.970®) 0.943¢4) 0.927) 0.960(%) 0.9617) 0.946(%) 093032 091101
h=10 0974 0.936 0.894(6) 0.905() 0.876%) 0.8707) 0.84834  0.84821  0.848(12)

use the Model Confidence Set (MCS) with two robust loss functions,
MSE and QLIKE. Models, which are included in the MCS with the use
of both loss functions are highlighted in bold. In addition, we pro-
vide ranking of the models according to the both loss functions within
MCS in the superscript. First number is ranking due to MSE, second
one is ranking of the models due to QLIKE.

Turning to the results in the Table 4, we can see that Realized
GARCH model with multiple investment horizons is never rejected'>
from the Model Confidence set by neither of the loss functions. More-
over, for GBP and EUR futures, it ranks as the best forecasting model
with exception of forecasting horizon of 10 days, when it ranks as sec-
ond according to QMLE. The model also delivers lowest RMSE of the
forecasts, and ranks second to fifth with CHF futures outperformed
mainly by GAS estimates.

Another model, which is never rejected by neither of the loss func-
tions from MCS is the Realized Jump GAS model with our JWTSRV.
For all three futures and all forecasting horizons, the model ranks as
second best, to eighth best depending on the loss function. Similar re-
sults are delivered also with the use of MedRV, when the model often
ranks third to fifth best, with one exception of forecasting EUR futures
at horizons of five days. Realized Jump GAS model with BV is the third
best model, as it is rejected from the MCS only for EUR futures with
QLIKE loss function.

Most of the Realized (Jump) GARCH models estimated using QMLE
are rejected from MCS by one of the loss functions. The only exception
is CHF forecasts at 10-day-ahead horizon, when the Realized Jump
GARCH model with BV measure ranks best using both loss functions.

Overall, the log-likelihood gains from QMLE estimates do not
translate to better out-of-sample forecasts, as GAS outperforms the
MLE models. Realized Jump-GARCH largely outperforms benchmark
Realized GARCH with RV, and finally our multiple horizon model
outperforms all the models delivering lowest loss functions most
of the times. Thus jump variation as well as further decomposition
of volatility to different scales bring significant improvement to the
volatility forecasts in all tested forex futures.

5. Conclusion

In this paper, we investigate how the decomposed integrated
volatilities and jumps influence the future volatility using real-
ized GARCH framework. Utilizing a jump wavelet two scale realized

13 Note that we use h; as predictor of volatility in the models. Some researchers report
that restricting parameters ¢ = 1 may improve the predictive performance in this case.
We, however do not document significant improvement on our dataset, and make the
results with restricted models available upon request.

volatility estimator, which measures foreign exchange volatility in
the time-frequency domain, we study the influence of intra-day in-
vestment horizons on daily volatility forecasts.

After the introduction of wavelet-based estimation of quadratic
variation together with forecasting model, we compare our estima-
tors to several most popular estimators, namely, realized variance,
bipower variation, and median realized volatility in the forecasting
exercise. Using several Realized GARCH specifications estimated by
QMLE, GAS, and multiple realized measures, the wavelet-based esti-
mator proves to bring significant improvement in the volatility fore-
casts. Models incorporating jumps improve forecasting ability signif-
icantly. Next, we find that while realized Jump GAS models do not
outperform other models in terms of in-sample fits, they largely out-
perform the MLE-based estimates in the forecasts at all forecasting
horizons.

Concluding the empirical findings, we show that our wavelet-
based estimators bring a significant improvement to the volatility
estimation and forecasting. It also offers a new method of time-
frequency modeling of realized volatility which helps us to better un-
derstand the dynamics of stock market behavior. Specifically, it un-
covers that most of the volatility is created on higher frequencies.

Appendix A. Wavelet transform

In this Appendix we briefly introduce basic ideas of wavelet trans-
form. Let us begin with the continuous wavelet transform which is
a cornerstone of the wavelet analysis. Further we introduce a special
form of discrete wavelet transform called the “maximal overlap dis-
crete wavelet transform” (MODWT) that we use in empirical part. Fol-
lowing Daubechies (1992) and Chui (1992), we define doubly-indexed
wavelet function - a wavelet'* as:

o= Ltk

where index k determines the exact position of the wavelet in time,
whereas the scaling index j controls how the wavelet is stretched
or dilated, i.e., frequency resolution of the wavelet. The continuous
wavelet transform, W; i, is a projection of a wavelet function v; x
onto the time series y(t) € L%(R):

Wi = / CyOF Ot

(A1)

(A2)

4 An important czonditions a wavelet function must fulfill is the admissibility condi-
tion: C‘,,=f6’° %df<oo, where W(f) is the Fourier transform of a wavelet ¥/(.). For
more details about wavelet filer conditions see Daubechies (1992)
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Hence, Eq. (A.2) tranforms y(t), time-domain process, into W; , which
is time-frequency (or time-scale) space, where k is the position in
time and j corresponds to a specific frequency. Using the wavelet co-
efficients W;  we can subsequently recover the time series y(t) as
follows:

1 o0 o0 d]
y(t):g/o [/wm,kl/fj,k(t)dk}ﬂ, k=0. (A3)

The continuous wavelet transform preserves variance of the analyzed
time series. It is an important property that allows us to work with
the decomposed wavelet variance. Thus we can write:

1 o 0 P dj
2 _ . —

For a more detailed introduction to continuous wavelet transform
and wavelets, see Daubechies (1992); Chui (1992); and Percival and
Walden (2000).

In empirical applications we work with discrete time series, thus
some form of discretization is needed. The discrete wavelet transform
(DWT),'> which is a parsimonious form of the continuous wavelet
transform allows for an analysis of discrete time series where only a
bounded number of scales is required. The discrete version of wavelet
transform has, however, some serious limitation that make its appli-
cation to real time series rather difficult. These are mainly the sample
size restriction to the power of two and the starting point sensitivity
of the wavelet transform.

Al. Maximal overlap discrete wavelet transform

The MODWT is in some cases superior to the DWT for empirical
data analysis. For example, the problem of sample length restriction is
connected with downsampling procedure of the DWT. However, the
construction of MODWT does not use downsampling, thus vectors of
the wavelet coefficients at all scales have equal length, correspond-
ing to the length of transformed time series. As a consequence, the
MODWT is not restricted to any sample size. In addition, the MODWT
is a translation-invariant; therefore, it is not sensitive to the choice of
the starting point of the examined time series. Similarly as the CWT,
the MODWT wavelet and scaling coefficients can be used for analysis
of variance of a time series in the time-frequency domain. Statistical
properties of the MODWT variance estimators for non-stationary and
non-Gaussian processes are discussed in detail by Serroukh, Walden,
and Percival (2000). For additional details on the MODWT, see Mallat
(1998) and Percival and Walden (2000).

For computation of the MODWT coefficients we apply the pyra-
mid algorithm of Mallat (1998). The procedure is based on filtering
time series with MODWT wavelet filters; the filtered time series is
then filtered again in a subsequent stages to obtain other wavelet
scales. These scales contain information localized at corresponding
frequency bands of analyzed time series.

Let us briefly introduce the pyramid algorithm. In the first stage,
the wavelet coefficients are obtained via circular filtering of time
series y; using the MODWT wavelet and scaling filters hy ; and gy ;
(Percival & Walden, 2000):

1 L1
Wik=Y i Yicimoan, Vik= D &1 Ykt modN- (A5)
1=0 1=0

where L; = 2J=1(L — 1) + 1 defines a width of the wavelet and scal-
ing filters.'6 After the first stage we obtain the wavelet and scaling
coefficients at the first scale (j = 1). The algorithm continues with

15 For a definition and detailed discussion of the discrete wavelet transform, see
Mallat (1998); Percival and Walden (2000); and Gengay et al. (2002).

16 For more information about wavelet filters see for example Percival and Walden
(2000).

the second stage where instead of y; we filter the sequence of scaling
coefficients from the first stage V; ;. using the MODWT wavelet and
scaling filters h, ; and g, | for the second scale, i.e.,

L-1 L-1
Wak =D hoVikcimoan, Vox= Y &21V1 k-l moan. (A.6)
1=0 1=0

We may continue with more stages until the level of decomposition
isj < log,(N). For example, in case we need two levels of decomposi-
tion, i.e, we apply two stages, we obtain two vectors of wavelet coeffi-
cients; Wy i, W, and a vector of the scaling coefficients at scale two
V, k, where k=0,1,..., N — 1. Vectors of wavelet and scaling coef-
ficients reflect variations at specific frequency bands. Generally, W;
represents a frequency band f[1/2/+1,1/27], whereas V; represents
a frequency band f[0, 1/2/+1].
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