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a b s t r a c t

This paper proposes an enhanced approach to modeling and forecasting volatility using high frequency data.

Using a forecasting model based on Realized GARCH with multiple time-frequency decomposed realized

volatility measures, we study the influence of different timescales on volatility forecasts. The decomposition

of volatility into several timescales approximates the behaviour of traders at corresponding investment hori-

zons. The proposed methodology is moreover able to account for impact of jumps due to a recently proposed

jump wavelet two scale realized volatility estimator. We propose a realized Jump-GARCH models estimated

in two versions using maximum likelihood as well as observation-driven estimation framework of general-

ized autoregressive score. We compare forecasts using several popular realized volatility measures on foreign

exchange rate futures data covering the recent financial crisis. Our results indicate that disentangling jump

variation from the integrated variation is important for forecasting performance. An interesting insight into

the volatility process is also provided by its multiscale decomposition. We find that most of the information

for future volatility comes from high frequency part of the spectra representing very short investment hori-

zons. Our newly proposed models outperform statistically the popular as well conventional models in both

one-day and multi-period-ahead forecasting.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

In contrast to the conventional framework of a generalized au-

oregressive conditional heteroscedasticity (GARCH) model, volatil-

ty is directly observed and can be used for forecasting when high

requency data are applied.1 While Hansen and Lunde (2005) argue

hat GARCH(1,1) can hardly be beaten by any other model, recent

ctive research shows that with help of high frequency measures,

e can improve the volatility forecasts significantly. Mcmillan and

peight (2012) for example utilize intra-day data and show that we
✩ We are grateful to the editor Lorenzo Peccati and two anonymous referees for

any useful comments and suggestions, which greatly improved the paper. We are

lso grateful to David Veredas and Karel Najzar, and seminar participants at the Mod-

ling High Frequency Data in Finance 3 in New York (July 2011) and Computational and

inancial Econometrics in Oviedo (December 2012) for many useful discussions. The

esearch leading to these results has received funding from the European Union’s Sev-

nth Framework Programme (FP7/2007–2013) under grant agreement No. FP7-SSH-

12955 (FinMaP). Support from the Czech Science Foundation under the 13-32263S

nd 13-24313S project is gratefully acknowledged.
∗ Corresponding author at: Institute of Economic Studies, Charles University in

rague, Opletalova 26, 110 00, Prague, Czech Republic. Tel.: +420 776 259273.

E-mail address: barunik@utia.cas.cz, barunik@fsv.cuni.cz (J. Barunik).
1 A vast quantity of literature on several aspects of estimating volatility using high

requency data is nicely surveyed by McAleer and Medeiros (2008).

f

t

a

L

p

a

e

a

a

ttp://dx.doi.org/10.1016/j.ejor.2015.12.010

377-2217/© 2015 Elsevier B.V. All rights reserved.
an obtain forecasts superior to forecasts from GARCH(1,1). Louzis,

anthopoulos-Sisinis, and Refenes (2013) assesse the informational

ontent of alternative realized volatility estimators using Realized

ARCH in Value-at-Risk prediction. We extend this line of research by

nvestigating the importance of disentangling jump variation and in-

egrated variance in recently developed framework, which combines

ppeal of a widely used GARCH(1,1) and high frequency data. More-

ver, we employ recently developed multiscale estimators which de-

ompose volatility into several investment horizons2 and allow us to

tudy the influence of intraday investment horizons on the volatility

orecasts.

Traders on financial markets make their decisions over different

ime horizons, for example, minutes, hours, days, or even longer such

s months and years (Corsi, 2009; Gençay, Selcuk, & Whitcher, 2005;

eBaron, 2001; Ramsey, 2002). Nevertheless, majority of the em-

irical literature studies the relationships in the time domain only

ggregating the behavior across all investment horizons. A notable

xception is the Heterogenous Autoregressive approach (HAR) for re-

lized volatility proposed by Corsi (2009). Although staying in the
2 An investment horizon refers to the length of time that an investor expects to hold

security or portfolio.

http://dx.doi.org/10.1016/j.ejor.2015.12.010
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.12.010&domain=pdf
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4 Note that our research adds to recent operation research contributions using

wavelets in denoising of financial data, specifically high frequency data research
time domain solely, Corsi (2009) builds his model on the idea of the

investors’ heterogeneity.

In our work, we ask if wavelet decomposition can provide better

insight into the foreign exchange volatility modeling and forecast-

ing.3 Wavelets are often successfully used as a de-noising tool (Haven,

Liu, & Shen, 2012; Sun & Meinl, 2012). One particularly appealing fea-

ture of wavelets is that they can be embedded into stochastic pro-

cesses, as shown by Antoniou and Gustafson (1999). Thus we can

conveniently use them to extend the theory of realized measures to

obtain decomposed volatility as shown by Fan and Wang (2007), or

Barunik and Vacha (2015). One of the common issues with the in-

terpretation of wavelets in economic applications is that they are

filter, thus they can hardly be used for forecasting in econometrics.

Models based on wavelets are often outperformed by simple bench-

mark models, as shown by Fernandez (2008). Rather, they can pro-

vide a useful “lens” into the spectral properties of the time series.

Our wavelet-based estimator of realized volatility uses wavelets only

to decompose the daily variation of the returns using intraday infor-

mation, hence the problem with forecasts is no longer an issue. As

wavelets are used to measure realized volatility at different invest-

ment horizons, we can construct a forecasting model based on the

wavelet decomposed volatility conveniently.

Several attempts to use wavelets in the estimation of realized vari-

ation have emerged in the past few years. Høg and Lunde (2003)

were the first to suggest a wavelet estimator of realized variance.

Capobianco (2004), for example, proposes to use a wavelet transform

as a comparable estimator of quadratic variation. Subbotin (2008)

uses wavelets to decompose volatility into a multi-horizon scale. One

exception is the work of Fan and Wang (2007), who were the first to

use the wavelet-based realized variance estimator together with the

methodology for estimation of jumps. Barunik and Vacha (2015), re-

visit and extend this work and using large Monte Carlo study show

that their estimator improves forecasting of the volatility substan-

tially when compared to other estimators. Moreover, Barunik and

Vacha (2015) attempt to use the estimators to decompose stock mar-

ket volatility into several investment horizons in a non-parametric

way.

Motivated by previous results, this paper focuses on proposing

a model which will improve the modeling and forecasting of for-

eign exchange volatility. Similarly to Lanne (2007); Andersen, Boller-

slev, and Huang (2011); and Sévi (2014), we use the decomposition

of the quadratic variation with the intention of building a more ac-

curate forecasting model. Our approach is very different though, as

we use wavelets to decompose the integrated volatility into sev-

eral investment horizons and jumps. Moreover, we employ recently

proposed realized GARCH framework of Hansen, Huang, and Shek

(2012). In contrast to popular HAR framework of Corsi (2009), real-

ized GARCH allows to model jointly returns and realized measures of

volatility, while key feature is a measurement equation that relates

the realized measure to the conditional variance of returns. In ad-

dition, we benchmark our approach to several measures of realized

volatility and jumps, namely realized volatility estimator proposed by

Andersen, Bollerslev, Diebold, and Labys (2003), the bipower varia-

tion estimator of Barndorff-Nielsen and Shephard (2004), the median

realized volatility of Andersen, Dobrev, and Schaumburg (2012), and

finally jump wavelet two-scale realized variance (JWTSRV) estimator

of Barunik and Vacha (2015) in the framework of Realized GARCH,

and we find significant differences in volatility forecasts, while our

JWTSRV estimator brings the largest improvement. We use Realized

GARCH models of Hansen et al. (2012) as well as realized GAS of

Huang, Wang, and Zhang (2014) based on the observation-driven

estimation framework of generalized autoregressive score models
3 Our interest is in return variation, although models attempting to capture the

prices directly may be of interest.

(

v

c

a

Z

o build a realized Jump-GARCH modeling strategy. In addition, we

lso utilize Realized GARCH with multiple realized measures (Hansen

Huang, 2012) to build a time-frequency model for forecasting

olatility.

The main contribution of the paper is thus threefold.4 First, we

ropose several model extensions to utilize jumps in the popular Re-

lized GARCH frameworks, as well as build time-frequency model for

orecasting volatility. Second, we use several popular measures as a

enchmark to our time-frequency model. Third, we bring interest-

ng empirical comparison of all frameworks in multiple-period-ahead

orecasting exercise. We show that the most important information

nfluencing the future volatility in foreign exchange is carried by the

igh frequency part of the spectra representing very short investment

orizons. This decomposition gives us an interesting insight into the

olatility process. Our newly proposed time-frequency models and

ump-GARCH models outperforms the existing modeling strategies

ignificantly.

. Theoretical framework for time-frequency decomposition of

ealized volatility

While most time series models are naturally set in the time do-

ain, wavelet transform help us to enrich the analysis of quadratic

ariation by the frequency domain. Traders of the foreign exchange

arkets are operating with heterogeneous expectations, ranging

rom minutes to days, or even weeks and months. Hence volatility dy-

amics should be understood not only in time but at different invest-

ent horizons as well. In this section, we introduce a multiscale esti-

ator that will allow these features and is moreover able to separate

he continuous part of the price process containing noise from the

ump variation. We will briefly introduce general ideas of construct-

ng the estimator, while for the details necessary to understand the

erivation of the estimator using wavelet theory, we refer to Barunik

nd Vacha (2015). In addition, we introduce several other estimators

ommonly used in the literature, which will serve as a benchmarks

o us in the empirical application.

In the analysis, we assume that the latent logarithmic asset price

ollows a standard jump-diffusion process contamined with mi-

rostructure noise. Let yt be the observed logarithmic prices evolving

ver 0 ≤ t ≤ T, which will have two components; the latent, so-called

true log-price process”, dpt = μt dt + σt dWt + ξt dqt , and zero mean

.i.d. microstructure noise, εt, with variance η2. In a latent process, qt

s a Poisson process uncorrelated with Wt, and the magnitude of the

ump, denoted as Jl, is controlled by factor ξt ∼ N(ξ̄ , σ 2
ξ
). Thus, the

bserved price process is yt = pt + εt .

The quadratic return variation over the interval [t − h, t], for 0 ≤ h

t ≤ T associated with the price process yt can be naturally decom-

osed into two parts: integrated variance of the latent price process,

Vt, h and jump variation JVt, h

Vt,h =
∫ t

t−h

σ 2
s ds︸ ︷︷ ︸

IVt,h

+
∑

t−h≤l≤t

J2
l︸ ︷︷ ︸

JVt,h

(1)

s detailed by Andersen, Bollerslev, Diebold, and Labys (2001) and

arndorff-Nielsen and Shephard (2002a), quadratic variation is a nat-

ral measure of variability in the logarithmic price process. A sim-

le consistent estimator of the overall quadratic variation under the
Haven et al., 2012; Marroquı, Moreno et al., 2013; Sun & Meinl, 2012), literature de-

eloping volatility models (Date & Islyaev, 2015; Pun, Chung, & Wong, 2015), literature

ontributing to forecasting volatility (Charles, 2010; Christodoulakis, 2007; Sévi, 2014)

nd studying stock market returns (Buckley & Long, 2015; Doyle & Chen, 2013; Wang,

hang, & Zhou, 2015; Yang & Bessler, 2008).



J. Barunik et al. / European Journal of Operational Research 251 (2016) 329–340 331

a

v

a

t

Q

w

t

t

(

N

j

i

S

d

e

v

e

s

Q

w

Q

o

w

s

p

e

o

t

t

g

c

i

t

a

i

p

e

m

w

v

h

t

v

o

e

h

m

b

I

w∫
t

o

m

v

p

U

d

a

c

p

J

w

t

m

I

e

t

w

t

(

I

U

t

t

t

a

I

J

2

i

t

5 Under the null hypothesis of no within-day jumps,

Z (BV )
t,h

=
Q̂V

(RV )

t,h −ÎV
(BV )

t,h

Q̂V
(RV )

t,h√√√√((
π
2

)2 + π − 5

)
1
N

max

(
1,

T̂Q
(BV )

t,h(
ÎV

(BV )

t,h

)2

) ,

where T̂Q
(BV )

t,h = Nμ−3
4/3

(
N

N−4

)∑N
k=5 |�k−4yt |4/3|�k−3yt |4/3|�k−2yt |4/3 is asymptotically

standard normally distributed.
6 Under the null hypothesis of no within-day jumps,

Z (MedRV )
t,h

=
Q̂V

(RV )

t,h −ÎV
(MedRV )

t,h

Q̂V
(RV )

t,h√√√√0.96 1
N

max

(
1,

T̂Q
(MedRV )

t,h(
ÎV

(MedRV )

t,h

)2

) ,

where T̂Q
(MedRV )

t,h = 3πN

9π+72−52
√

3

(
N

N−2

)∑N
k=3 med(|�k−2yt |, |�k−1yt |, |�kyt |)4

is asymp-

totically standard normally distributed.
ssumption of zero noise contamination in the price process is pro-

ided by the well-known realized variance, introduced by Andersen

nd Bollerslev (1998). The realized variance over [t − h, t] can be es-

imated as

V̂
(RV )

t,h =
N∑

k=1

(�kyt )
2
, (2)

here �kyt = y
t−h+( k

N
)h

− y
t−h+( k−1

N
)h

is the k–th intraday return in

he [t − h, t] and N is the number of intraday observations. The es-

imator in Eq. (2) converges in probability to IVt,h + JVt,h as N → ∞
Andersen & Bollerslev, 1998; Andersen et al., 2001; 2003; Barndorff-

ielsen & Shephard, 2001; 2002a; 2002b).

While the observed price process yt is contamined with noise and

umps in real data, we need to account for this, as the main object of

nterest is the IVt part of quadratic variation. Zhang, Mykland, and Aït-

ahalia (2005) propose solution to the noise contamination by intro-

ucing the so-called two-scale realized volatility (TSRV henceforth)

stimator. They adopt a methodology for estimation of the quadratic

ariation utilizing all of the available data using an idea of precise bias

stimation. The two-scale realized variation over [t − h, t] is mea-

ured by

V̂
(T SRV )

t,h = Q̂V
(average)

t,h − N̄

N
Q̂V

(all)

t,h , (3)

here Q̂V
(all)
t,h is computed as in Eq. (2) on all available data and

V̂
(average)
t,h is constructed by averaging the estimators Q̂V

(g)
t,h obtained

n G grids of average size N̄ = N/G as Q̂V
(average)
t,h = 1

G

∑G
g=1 Q̂V

(g)
t,h ,

here the original grid of observation times, M = {t1, . . . , tN} is sub-

ampled to M(g), g = 1, . . . , G, where N/G → ∞ as N → ∞. For exam-

le, M(1) will start at the first observation and take an observation

very 5 minutes, M(2) will start at the second observation and take an

bservation every 5 minutes, etc. Finally, we average these estimators

hrough the subsamples, so the variation of the estimator is averaged.

The estimator in Eq. (3) provides the first consistent and asymp-

otic estimator of the quadratic variation of pt with rate of conver-

ence N−1/6. Zhang et al. (2005) also provide the theory for optimal

hoice of G grids, G∗ = cN2/3, where the constant c can be set to min-

mize the total asymptotic variance.

Since we are interested in decomposing quadratic variation into

he integrated variance and jump variation component, we introduce

methodology for jump detection. Recent evidence from the volatil-

ty forecasting literature indicates that two sources of variation in the

rice process substantially differ and impact future volatility in differ-

nt ways. Before introducing our estimator, we introduce two com-

only used estimators of volatility and integrated variation, which

ill be used as benchmark in the empirical exercise.

Barndorff-Nielsen and Shephard (2004; 2006) develop bipower

ariation estimator (BV), which can detect the presence of jumps in

igh-frequency data. The main idea of the BV estimator is to compare

wo measures of the integrated variance, one containing the jump

ariation and the other being robust to jumps and hence containing

nly the integrated variation part. In our work, we use the (Andersen

t al., 2011) adjustment of the original (Barndorff-Nielsen & Shep-

ard, 2004) estimator, which helps render it robust to certain types of

icrostructure noise. The bipower variation over [t − h, t] is defined

y

V̂
(BV )

t,h = μ−2
1

N

N − 2

N∑
k=3

|�k−2yt |.|�kyt |, (4)

here μa = π/2 = E(|Z|a), and Z ∼ N(0, 1), a ≥ 0 and ÎV
(BV )
t,h →

t
t−h σ 2

s ds. Therefore, ÎV
(BV )
t,h provides a consistent estimator of the in-

egrated variance. Although Q̂V
(RV )
t,h provides a consistent estimator

f the integrated variance plus the jump variation, the jump variation
ay be estimated consistently as the difference between the realized

ariance and the realized bipower variation

limN→∞
(

Q̂V
(RV )

t,h − ÎV
(BV )

t,h

)
= JVt,h. (5)

nder the assumption of no jump and some other regularity con-

itions, Barndorff-Nielsen and Shephard (2006) provide the joint

symptotic distribution of the jump variation.5 Using this theory, the

ontribution of the jump variation to the quadratic variation of the

rice process is measured by

V̂
(BV )

t,h = 1{Z (BV )
t,h

>�α}
(

Q̂V
(RV )

t,h − ÎV
(BV )

t,h

)
, (6)

here 1{Z(BV )
t,h

>�α} denotes the indicator function and �α refers to

he chosen critical value from the standard normal distribution. The

easure of integrated variance is defined as

V̂
(CBV )

t,h = 1{Z (BV )
t,h

≤�α}Q̂V
(RV )

t,h + 1{Z (BV )
t,h

>�α} ÎV
(BV )

t,h , (7)

nsuring that the jump measure and the continuous part add up to

he estimated variance without jumps. Another popular estimator,

hich estimates the integrated volatility in the presence of jumps is

he median realized volatility (MedRV), introduced by Andersen et al.

2012):

V̂
(MedRV )

t,h = π

6 − 4
√

3 + π

(
N

N − 2

)
×

N∑
k=3

med(|�k−2yt |, |�k−1yt |, |�kyt |)2
. (8)

nder the assumption of no jump and some other regularity condi-

ions, Andersen et al. (2012) provide the joint asymptotic distribu-

ion of the jump variation6 analogously to the BV estimator. The in-

egrated variance and jump variation can be consistently estimated

s

V̂
(CMedRV )

t,h = 1{Z (MedRV )
t,h

≤�α}Q̂V
(RV )

t,h + 1{Z (MedRV )
t,h

>�α} ÎV
(MedRV )

t,h , (9)

V̂
(MedRV )

t,h = 1{Z (MedRV )
t,h

>�α}
(

Q̂V
(RV )

t,h − ÎV
(MedRV )

t,h

)
. (10)

.1. Estimation of jumps and time-frequency realized variance

Fan and Wang (2007) use a different approach to realized volatil-

ty measurement. They use wavelets in order to separate jump varia-

ion from the price process, as well as for estimation of the integrated
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variance on the jump–adjusted data. In addition, wavelet methodol-

ogy offers decomposition of the estimated volatility into scales repre-

senting investment horizons. Therefore, we can observe how partic-

ular investment horizon contributes to the total variance. For a more

detailed description of the wavelet transform used as a building block

of the estimation see Appendix A. In the empirical section, we aim to

study information content of investment horizons for volatility fore-

casting, thus we describe the wavelet jump detection and then in-

troduce the wavelet estimator of integrated variance of Barunik and

Vacha (2015), which allows to decompose the volatility into several

investment horizons.

As in the previous Section, we assume the sample path of the

price process yt = pt + εt will have a finite number of jumps. Fol-

lowing results of Wang (1995) on the wavelet jump detection and

further extension of Fan and Wang (2007) to stochastic processes,

we apply wavelet transform to detect jumps. Using effective local-

ization properties of the wavelets, Fan and Wang (2007) show a way

how to distinguish between continuous and jump part of the stochas-

tic price process with i.i.d. additive noise. They use the first scale

of the discrete wavelet transform (the highest frequency) where the

price process pt dominates the noise εt only close to a jump loca-

tion, otherwise it is very small. In order to detect dominating part

of the process yt, Fan and Wang (2007) use the universal threshold

of Donoho and Johnstone (1994), defined as Dt = dt

√
2 log N, where

dt = median{|W1,k|}/0.6745 for k ∈ [1, N] is a robust estimate of stan-

dard deviation.7 When the absolute value of the wavelet coefficient

at the first scale is greater than a threshold Dt then the noise εt is

relatively small and the dominance of pt is caused by the jump part,

therefore a jump is detected.

In the empirical part we adapt (Fan & Wang, 2007) procedure

to the “maximal overlap discrete wavelet transform” (MODWT). As

a result a robust estimate of standard deviation has to be modified

as: dt =
√

2 median{|W1,k|}/0.6745 for k ∈ [1, N].8 Since we use the

MODWT, we have k wavelet coefficients at the first scale, which cor-

responds to number of intraday observations, i.e., k = 1, . . . , N. In case

the absolute value of the wavelet coefficient |W1,k| is greater9 then

the threshold Dt than a jump with size �kJt is detected as

�kJt =
(

yt−h+( k
N )h − yt−h+( k−1

N )h

)
1{|W1,k|>Dt} k ∈ [1, N]. (11)

Following Fan and Wang (2007), the jump variation over [t − h, t]

in the discrete time is estimated as the sum of squares of all the esti-

mated jump sizes,

ĴV t,h =
N∑

k=1

(�kJt )
2
. (12)

Fan and Wang (2007) prove that using (12), we are able to estimate

the jump variation from the process consistently with the conver-

gence rate of N−1/4.

Having precisely detected jumps, we proceed to jump adjustment

of the observed price process yt over [t − h, t]. We adjust the data for

jumps by subtracting the intraday jumps from the price process as:

�ky(J)
t = �kyt − �kJt , k = 1, . . . N, (13)

where N is the number of intraday observations.

Finally, the volatility can be computed using the jump-adjusted

wavelet two-scale realized variance (JWTSRV) estimator on the jump

adjusted data �ky
(J)
t . The estimator utilizes the TSRV approach of

Zhang et al. (2005) as well as the wavelet jump detection method.
7 See A.1 for the definition of wavelet transform.
8 For more information about universal thresholds applied on the MODWT see

Percival and Walden (2000) and Gençay, Selçuk, and Whitcher (2002).
9 Using the MODWT filters, we need to slightly correct the position of the wavelet

coefficients to get the precise jump position, see Percival and Mofjeld (1997).

B

w

p

a

t

nother advantage of the estimator is, that it decomposes the in-

egrated variance into Jm + 1 components, therefore we are able to

tudy the dynamics of volatility at various investment horizons. Fol-

owing Barunik and Vacha (2015), we define the JWTSRV estimator

ver [t − h, t], on the jump-adjusted data as:

V̂
(JW T SRV )

t,h =
Jm+1∑
j=1

ÎV
(JW T SRV )

j,t,h =
Jm+1∑
j=1

(
ÎV

(average)

j,t,h − N̄

N
ÎV

(all)

j,t,h

)
, (14)

here ÎV
(average)
j,t,h = 1

G

∑G
g=1

∑N
k=1(W

(g)
j,k

)2 is obtained from wavelet

oefficient estimates on a grid of size N̄ = N/G, and ÎV
(all)
j,t,h =

N
k=1(W j,k)

2 is the wavelet realized variance estimator at a scale

on all the jump-adjusted observed data, �ky
(J)
t . W j,k denotes the

ODWT wavelet coefficient at scale j with position k obtained over

t − h, t].

Barunik and Vacha (2015) show that the JWTSRV is consistent es-

imator of the integrated variance as it converges in probability to

he integrated variance of the process pt, and they test the small sam-

le performance of the estimator in a large Monte Carlo study. The

WTSRV is found to be able to recover true integrated variance from

he noisy process with jumps very precisely. Moreover, the JWTSRV

stimator is also tested in forecasting exercise, which confirms to im-

rove forecasting of the integrated variance substantially.

.1.1. Bootstrapping the jump test using JWTSRV

Although Fan and Wang (2007) showed the effectiveness of the

avelet jump detection, distribution properties of the estimated

ump variation, and hence any test statistic stay unknown. In order to

est for the presence of jumps using JWTSRV estimator, we propose to

se the bootstrap test. Main reason for bootstrapping the jump test is

hat consistent estimator for the integrated quarticity is not analyti-

ally available for JWTSRV estimator. More importantly, finite sample

roperties of the jump tests based on functions of realized volatility

stimators can be considerably improved using bootstrap, as noted

y Dovonon, Gonçalves, Hounyo, and Meddahi (2014).

In order to obtain the bootstrapped distribution of test statis-

ic under the assumption of no jumps, we generate k intraday re-

urns using estimated integrated part of the quadratic variation as

ky∗
t =

√
(1/k)ÎV

(JW T SRV )
t ηi,t , with ηi, t ∼ N(0, 1) generated indepen-

ently. Q̂V
(RV∗)
t and Q̂V

(JW T SRV ∗)
t are then estimated on the given day

. Generating b = 1, . . . , B realizations, we obtain

∗
t,h(b) = Q̂V

(RV ∗)
t,h − ÎV

(JW T SRV ∗)
t,h

Q̂V
(RV ∗)
t,h

, (15)

hich can be used to construct a bootstrap statistic to test the null

ypothesis of no jumps as:

(JW T SRV )
t,h

=
Q̂V

(RV∗ )

t,h −ÎV
(JW T SRV∗ )

t,h

Q̂V
(RV∗ )

t,h

− E(Z∗
t,h

(b))√
Var(Z∗

t,h
(b))

. (16)

he bootstrap expectation and variance both depend on the data. We

ill rely on the assumptions of Dovonon et al. (2014), who show that

nder general conditions, this statistics will be normally distributed

ith limiting variance one, although they provide this result for the

V estimator. While we leave the rigorous treatment of this approach

ith JWTSRV estimator for the future work, we have studied the

roperties of the bootstrap test using simulations, which are avail-

ble upon request from authors.

The integrated variance and jump variation can then be consis-

ently estimated as
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V̂
(CJW T SRV )

t,h = 1{Z (JW T SRV )
t,h

≤�α}Q̂V
(RV )

t,h + 1{Z (JW T SRV )
t,h

>�α} ÎV
(JW T SRV )

t,h , (17)

V̂
(JW T SRV )

t,h = 1{Z (JW T SRV )
t,h

>�α}
(

Q̂V
(RV )

t,h − ÎV
(JW T SRV )

t,h

)
. (18)

. A forecasting model based on decomposed integrated

olatilities and jumps

Similarly to Lanne (2007); Andersen et al. (2011); and Sévi (2014),

e use the decomposition of the quadratic variation with the inten-

ion of building a more accurate forecasting model. Our approach

s very different though, as we use wavelets to decompose the in-

egrated volatility into several investment horizons and jumps first.

hen, we employ recently proposed Realized GARCH framework of

ansen et al. (2012) and its variants. Realized GARCH allows to model

ointly returns and realized measures of volatility, while key feature is

measurement equation that relates the realized measure to the con-

itional variance of returns. We use the decomposed realized mea-

ures in the Realized GARCH, and expect that our modification will

esult in better in-sample fits of the data as well as out-of-sample

orecasts. For comparison, we also use other estimators and study

ow they improve the forecasting ability of Realized GARCH.

.1. Realized Jump GARCH framework for forecasting

The key object of interest in GARCH family is the conditional vari-

nce, ht = var(rt |Ft−1), where rt is a time series of returns. While in

standard GARCH(1,1) model the conditional variance, ht is depen-

ent on its past ht−1 and r2
t−1

, Hansen et al. (2012) propose to utilize

ealized measures of volatility and make ht dependent on them as

ell. The authors introduce so-called measurement equation which

ies the realized measure to latent volatility. The general framework

f Realized GARCH(p, q) models is well connected to existing litera-

ure in Hansen et al. (2012). Here, we restrict ourselves to the simple

og-linear specification of Realized GARCH(1, 1) with Gaussian inno-

ations which we will use to build our model.

Realized GARCH makes use of realized measures of volatility to

elp forecast the latent volatility process. In the previous sections,

e have motivated several estimators, which allow us to disentan-

le continuous part and jump part of the quadratic return varia-

ion. While both parts may carry important information about future

olatility, we propose a modified framework, which includes both.

There are essentially two possible treatments of jumps in the

ealized GARCH framework, depending on the belief about its en-

ogenous or exogenous nature. In a large study, Chatrath, Miao,

amchander, and Villupuram (2014); Lahaye, Laurent, and Neely

2011) show that currency jumps can be explained by U.S. macro an-

ouncements using the realized measures. This provides a good em-

irical evidence about the exogenous nature of jump arrivals. By ad-

ition of estimated jumps into the variance equation, we propose a

ealized Jump-GARCH(1,1) model (Realized J-GARCH) given by

t =
√

ht zt , (19)

og(ht ) = ω + β log(ht−1) + γ log(xt−1) + γJ log(1 + JVt−1), (20)

og(xt ) = ξ + φ log(ht ) + τ1zt + τ2z2
t + ut , (21)

here rt is the return, xt and JVt are estimated continuous and jump

omponents of quadratic variation using BV, MedRV, or JWTSRV re-

lized measures, and zt and ut come from Gaussian normal distribu-

ion and are mutually independent. τ1zt + τ2z2
t is leverage function. If

umps have a significant impact on volatility forecasts, γ J coefficient

hould be significantly different from zero. For γJ = 0, the model re-

uces to the original Realized GARCH.

Hansen et al. (2012) motivate possibility of obtaining feasible

ulti-period-ahead forecasts as one of the main advantages of
his framework. Multi-period-ahead predictions with the Realized

ARCH model are straightforward with the use of vector autoregres-

ion structure for log(ht) and log(xt). In this paper, we follow this sim-

le approach. In order to obtain multiple-period-ahead forecasts, we

eed to include jump component to the forecasting structure. Once

e are treating jumps as an exogenous process, we simply use the

RMA structure for the log(1 + JVt−1), which allows to obtain the

ultiple-period-ahead forecasts analogously to the Realized GARCH

odel.

.2. Realized GARCH model based on decomposed integrated volatiles

In addition to jumps, we also utilize decomposition of JWTSRV

o see which investment horizon has impact on the future volatil-

ty as well. We also expect each volatility component at different in-

estment horizon to carry different information, which should again

elp to enhance the final forecasts. To be able to fully explore the de-

ompositions, we use the extension of Realized Exponential GARCH

odel that can utilize multiple realized volatility measures intro-

uced by Hansen and Huang (2012). The realized EGARCH model with

j = 1, . . . , Jm + 1 volatility components at different investment hori-

ons estimated using JWTSRV in xj, t is

t =
√

ht zt , (22)

og(ht ) = ω + β log(ht−1) + τ (zt−1) + γ ′ut−1, (23)

og(x j,t ) = ξ j + φ j log(ht ) + δ( j)(zt ) + uj,t , (24)

here zt ∼ N(0, 1), and ut ∼ N(0, �) are mutually and serially inde-

endent, and ut = (u1,t , . . . , u j,t )
′, and τ (zt ) = τ1zt + τ2(z2

t − 1), and

( j)(zt ) = δ j,1zt + δ j,2(z2
t − 1).

Note that the model is different as the log (ht) equation has the

t−1 instead of realized measure, and includes leverage function. For

he case when j = 1, model is equivalent to the previous one, and by

imple substitution, we can obtain the relation of parameters directly

Hansen & Huang, 2012). Hence the model with multiple equations

s just a generalization of the previous work, which allows us to fully

tilize the decomposed volatility into several investment horizons,

nd so parameters in vector γ ′ will provide a good guide for signifi-

ance of various investment horizons on volatility forecasts.

All the models are estimated by quasi-maximum likelihood

armework (QMLE) and can be easily generalized by assuming differ-

nt distributions of zt and ut. Hansen et al. (2012) provide the asymp-

otic properties of the QMLE, while Hansen and Huang (2012) ex-

end it to the framework with multiple realized measures, although

he work is currently unfinished. The quasi log-likelihood function is

iven by

(r, x; θ,�) = −1

2

T∑
t=1

×

⎛⎝log(2π) + log(ht ) + z2
t︸ ︷︷ ︸

=�(r)

+ K log(2π) + log(|�|) + u′
t�

−1ut︸ ︷︷ ︸
=�(x|r)

⎞⎠,

(25)

here θ holds set of parameters to be estimated by maximizing the

uasi log-likelihood with respect to θ and �. The log-likelihood can

e divided in two according to the contribution of realized measures

o the log-likelihood value, �(x|r) and contribution of returns, �(r). In

he empirical analysis, we report the two values as we use conven-

ional GARCH model as a benchmark, so we are able to compare the

ts. It is again straightforward to obtain multiple-period-ahead point

orecasts using estimated parameters. For the details, see for example

unde and Olesen (2013)
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3.3. Generalized autoregressive score model with realized measures of

volatility and jumps

Recently introduced observation-driven estimation framework of

Generalized Autoregressive Score (GAS) models due to Creal, Koop-

man, and Lucas (2013) has recently gained considerable popularity.

Huang et al. (2014) propose a new observation-driven time-varying

parameter Realized GARCH, in which the dynamic latent factor is up-

dated by the scaled local density score as a function of past daily re-

turns and realized variance. The new framework is robust to extreme

outliers in observations, hence it may serve as a robustness check to

our modeling strategy. We again add jumps to the original model, ob-

taining Realized Jump GAS Model as

rt =
√

ht zt , (26)

log(xt ) = ξ + φ log(ht ) + d1(z2
t − 1) + d2zt + σut , (27)

log(ht+1) = ω + αSt�t + β log(ht ) + γJ log(1 + JVt−1), (28)

where xt and JVt are estimated continuous and jump compo-

nents of quadratic variation using BV, MedRV, or JWTSRV esti-

mators, and zt and ut come from Gaussian normal distribution

and are mutually independent. d1(z2
t − 1) + d2zt is leverage func-

tion that introduces dependence between the return shock and

volatility shock. The main change in comparison to previous mod-

els is in the dynamics of the latent volatility, driven by the dy-

namic score, where �t = ∂ ln p(rt , log(xt )|Ft−1; log(ht ), θ )/∂ log(ht )

is the conditional score at time t and St = −Et−1[∂2 ln p(rt , log(xt )|
Ft−1; log(ht ), θ )/∂2 log(ht )

2]−1 is the scaling matrix. Analogously

to the QMLE framework, likelihood can be separated to two parts,

which we report in order to be able to compare the fits. Assuming

both zt, and ut follow independent standardized normal distributions,

dynamic score reduces to �t = 1
2 (z2

t − 1) + 1
σ ut (φ + d1z2

t − d2
2 zt ),

S−1
t = 1

σ 2 (φ2 + 3d2
1

+ d2
2

4 − 2d1φ) + 1
2 . Assuming exogenous ARMA

structure for jumps, multiple-period-ahead forecasts are again ob-

tained readily.

3.4. Forecast evaluation using different realized variance measures

To test significant differences of competing models, we use the

Model Confidence Set (MCS) methodology of Hansen, Lunde, and Na-

son (2011). Given a set of forecasting models, M0, we identify the

model confidence set M̂∗
1−α ⊂ M0, which is the set of models that

contain the best forecasting model given a level of confidence α. For

a given model i ∈ M0, the p-value is the threshold confidence level.

Model i belongs to the MCS only if p̂i ≥ α. MCS methodology repeat-

edly tests the null hypothesis of equal forecasting accuracy

H0,M : E[Li,t − L j,t ] = 0, for all i, j ∈ M

with Li, t being an appropriate loss function of the ith model. Start-

ing with the full set of models, M = M0, this procedure sequentially

eliminates the worst-performing model from M when the null is re-

jected. The surviving set of models then belong to the model confi-

dence set M̂∗
1−α . Following Hansen et al. (2011), we implement the

MCS using a stationary bootstrap with an average block length of

20 days.10 Two robust loss functions, mean square error (MSE) and

QLIKEare used in the MCS (Patton, 2011), while root mean square er-

ror (RMSE) is reported in the Tables.
10 We have used different block lengths, including the ones depending on the fore-

casting horizons, to assess the robustness of the results, without any change in the final

results. These results are available from the authors upon request.

i

fi

. Empirical application: does decomposition bring any

mprovement in volatility forecasting?

.1. Data description

Foreign exchange future contracts are traded on the Chicago

ercantile Exchange (CME) on a 24 hour basis. As these markets

re among the most liquid, they are suitable for analysis of high-

requency data. We will estimate the realized volatility of British

ound (GBP), Swiss franc (CHF) and euro (EUR) futures. All contracts

re quoted in the unit value of the foreign currency in US dollars. It

s advantageous to use currency futures data for the analysis instead

f spot currency prices, as they embed interest rate differentials

nd do not suffer from additional microstructure noise coming from

ver-the-counter trading. The cleaned data are available from Tick

ata, Inc.11

It is important to look first at the changes in the trading system be-

ore we proceed with the estimation on the data. In August 2003, for

xample, the CME launched the Globex trading platform, and for the

rst time ever in a single month, the trading volume on the electronic

rading platform exceeded 1 million contracts every day. On Monday,

ecember 18, 2006, the CME Globex® electronic trading platform

tarted offering nearly continuous trading. More precisely, the trad-

ng cycle became 23 hours a day (from 5:00 pm on the previous day

ntil 4:00 pm on current day, with a 1 hour break in continuous trad-

ng), from 5:00 pm on Sunday until 4:00 pm on Friday. These changes

ertainly had a dramatic impact on trading activity and the amount

f information available, resulting in difficulties in comparing the es-

imators on the pre-2003 data, the 2003–2006 data and the post–

006 data. For this reason, we restrict our analysis to a sample period

xtending from January 2, 2007 through August 20, 2014, which con-

ains the most recent financial crisis. The futures contracts we use are

utomatically rolled over to provide continuous price records, so we

o not have to deal with different maturities.

The tick-by-tick transactions are recorded in Chicago Time, re-

erred to as Central Standard Time (CST). Therefore, in a given day,

rading activity starts at 5:00 pm CST in Asia, continues in Europe fol-

owed by North America, and finally closes at 4:00 pm in Australia. To

xclude potential jumps due to the one-hour gap in trading, we rede-

ne the day in accordance with the electronic trading system. More-

ver, we eliminate transactions executed on Saturdays and Sundays,

S federal holidays, December 24 to 26, and December 31 to January

, because of the low activity on these days, which could lead to esti-

ation bias. Finally, we are left with 1902 days in the sample. Looking

ore deeply at higher frequencies, we find a large amount of multi-

le transactions happening exactly at the same time stamp. We use

he arithmetic average for all observations with the same time stamp.

Having prepared the data, we can estimate the integrated volatil-

ty using different estimators and use them within proposed forecast-

ng framework. For each futures contract, the daily quadratic vari-

tion is estimated using the realized variance estimator. Integrated

ariance and jump variation are estimated with the bipower varia-

ion, median estimator, and finally our jump wavelet two-scale real-

zed variance estimator. All the estimators are adjusted for small sam-

le bias. For convenience, we refer to the estimators in the descrip-

ion of the results as RV, BV, MedRV and JWTSRV, respectively, while

he BV, MedRV, and JWTSRV estimators are used for decomposition

f continuous and jump part of quadratic variation, and JWTSRV for

ecomposition to various investment horizons. We use sampling fre-

uency of 5 minutes.

The decomposition of volatility into the continuous and jump part

s depicted by Fig. 1, which provide the returns, estimated jump and

nally integrated variance components using JWTSRV estimator for
11 http://www.tickdata.com/

http://www.tickdata.com/


J. Barunik et al. / European Journal of Operational Research 251 (2016) 329–340 335

Fig. 1. Daily returns, estimated jump variation and IVt estimated by JWTSRV for (a) GBP, (b) CHF and (c) EUR futures.
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Fig. 2. Decomposed annualized volatility (by 252 days) of GBP, CHF and EUR futures using JWTSRV, (a) volatility on investment horizons up to 10 minutes, (b) volatility on

investment horizons of 10 to 20 minutes, (c) volatility on investment horizons of 20 to 40 minutes, (d) volatility on investment horizons of 40 to 80 minutes, (e) volatility on

investment horizons up to 1 day. Note that sum of components (a), (b), (c), (d) and (e) give total volatility.
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12 All models are estimated with NLopt-BOBYQA optimization algorithm using nloptr

package in R version 3.2.1. Comparison of the models’ elapsed times (running on a

MacBook computer with Intel Core i5 2.6 GHz CPU) computed as 95% trimmed mean

from 30 runs is 0.25 seconds for GAS models and 0.22 seconds for MLE models. We

note that we report the elapsed times from our rather inefficient algorithm, which

become proportionally slower with increasing number of parameters. Elapsed times

can be significantly improved with use of efficient optimization algorithms.
ll three futures pairs. Fig. 2 shows the further decomposition into

everal investment horizons. For better illustration, we annualize the

quare root of the integrated variance in order to get the annualized

olatility and we compute the components of the volatility on sev-

ral investment horizons. Fig. 2 (a–e) shows the investment horizons

f up to 10 minutes, 10 to 20 minutes, 20 to 40 minutes, 40 to 80 min-

tes and up to 1 day, respectively. It is very interesting that most of

he volatility (around 50%) comes from the 5 minute to 10 minute in-

estment horizons band which is a new empirical insight. Moreover,

he longer the investment horizon, the lower the contribution of the

ariance to the total variation.

.2. In-sample fits

The main results of estimation and forecasting are presented in

his section. The estimation strategy is as follows. For each of three

orex futures considered, namely GBP, CHF and EUR, we first esti-
ate benchmark GARCH (1,1) model. Then, we estimate the Realized

ARCH (1,1) with RV, which will serve as a benchmark model to our

ealized Jump GARCH (1,1) with BV, MedRV, and JWTSRV. All these

odels are estimated using QMLE and GAS model frameworks. Fi-

ally, we add Realized GARCH model with multiple JWTSRV compo-

ents to see the impact of investment horizons on forecasts.12

Tables 1–Tables 3 contain in-sample fits for GBP futures, CHF fu-

ures and EUR futures on the full sample respectively. By observ-

ng partial log-likelihood �(r), we can see immediately that all the
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Table 1

Results for the GBP futures: in-sample fits of GARCH(1,1), Realized GARCH(1,1) with RV, Realized Jump-GARCH with BV, MedRV, and JWTSRV estimated using MLE (Realized (Jump) GARCH) and GAS (Realized (Jump) GAS), and finally

Realized GARCH with multiple ÎV
(JW T SRV )

j,t volatility decompositions on different investment horizons. Robust standard errors are reported in parentheses.

GARCH Realized (Jump) GARCH Realized (Jump) GAS Realized GARCH with multiple JWTSRVj

RV BV MedRV JWTSRV RV BV MedRV JWTSRV RV j = 1 j = 2 j = 3 j = 4 j = 5

ω 0.092 0.040 0.095 0.122 0.161 0.013 0.008 0.010 0.014 ω 0.019

(0.059) (0.030) (0.034) (0.036) (0.036) (0.008) (0.009) (0.009) (0.010) (0.009)

β 0.951 0.757 0.731 0.716 0.707 0.996 0.996 0.996 0.995 β 0.994

(0.007) (0.018) (0.020) (0.021) (0.021) (0.002) (0.003) (0.003) (0.003) (0.003)

γ 0.046 0.224 0.235 0.244 0.242 0.237 0.261 0.275 0.283 γ j −0.011 0.128 0.050 0.008 0.023 0.013

(0.007) (0.018) (0.019) (0.020) (0.020) (0.017) (0.019) (0.020) (0.020) (0.021) (0.029) (0.024) (0.016) (0.011) (0.008)

γ J 0.015 0.008 0.002 0.017 0.009 0.002

(0.005) (0.004) (0.004) (0.005) (0.005) (0.005)

τ 1 −0.027

(0.005)

τ 2 0.032

(0.004)

ξ −0.128 −0.368 −0.455 −0.602 −0.009 −0.229 −0.320 −0.450 ξ j −0.273 −1.252 −2.052 −2.875 −3.659 −3.876

(0.131) (0.145) (0.153) (0.155) (0.064) (0.136) (0.143) (0.145) (0.125) (0.134) (0.136) (0.140) (0.144) (0.139)

φ 1.070 1.127 1.147 1.189 1.040 1.091 1.113 1.150 φ j 1.112 1.168 1.180 1.199 1.198 1.231

(0.039) (0.043) (0.045) (0.046) (0.021) (0.041) (0.043) (0.043) (0.036) (0.039) (0.040) (0.041) (0.042) (0.041)

τ 1/d1 −0.017 −0.024 −0.025 −0.028 0.079 0.064 0.056 0.058 δj, 1 −0.014 −0.028 −0.026 −0.021 −0.020 −0.032

(0.008) (0.007) (0.007) (0.007) (0.005) (0.005) (0.005) (0.005) (0.008) (0.007) (0.008) (0.010) (0.013) (0.015)

τ 2/d2 0.087 0.072 0.066 0.068 −0.003 −0.008 −0.009 −0.010 δj, 2 0.087 0.060 0.065 0.074 0.087 0.209

(0.006) (0.005) (0.005) (0.005) (0.007) (0.007) (0.007) (0.007) (0.006) (0.005) (0.006) (0.007) (0.009) (0.012)

�(x|r) −613 −533 −486 −506 −625 −546 −501 −523 −2543

�(r) −5849 −5825 −5824 −5823 −5825 −5825 −5825 −5823 −5825 -5825

Table 2

Results for the CHF futures: in-sample fits of GARCH(1,1), Realized GARCH(1,1) with RV, Realized Jump-GARCH with BV, MedRV, and JWTSRV estimated using MLE (Realized (Jump) GARCH) and GAS (Realized (Jump) GAS), and finally

Realized GARCH with multiple ÎV
(JW T SRV )

j,t volatility decompositions on different investment horizons. Robust standard errors are reported in parentheses.

GARCH Realized (Jump) GARCH Realized (Jump) GAS Realized GARCH with multiple JWTSRVj

RV BV MedRV JWTSRV RV BV MedRV JWTSRV RV j = 1 j = 2 j = 3 j = 4 j = 5

ω 0.092 −0.140 −0.095 −0.108 −0.098 0.018 0.016 0.019 0.023 ω 0.033

(0.087) (0.031) (0.034) (0.038) (0.036) (0.012) (0.013) (0.013) (0.013) (0.014)

β 0.936 0.760 0.729 0.707 0.719 0.995 0.994 0.993 0.994 β 0.991

(0.008) (0.018) (0.019) (0.020) (0.020) (0.003) (0.003) (0.003) (0.003) (0.004)

γ 0.066 0.276 0.297 0.324 0.311 0.235 0.267 0.275 0.268 γ j 0.030 0.262 -0.020 0.068 -0.010 0.031

(0.008) (0.021) (0.022) (0.023) (0.022) (0.018) (0.019) (0.019) (0.019) (0.033) (0.043) (0.037) (0.026) (0.018) (0.012)

γ J 0.016 0.012 0.004 0.017 0.013 0.002

(0.007) (0.006) (0.005) (0.007) (0.006) (0.006)

τ 1 0.021

(0.007)

τ 2 0.030

(0.005)

ξ 0.602 0.389 0.412 0.399 0.786 0.572 0.571 0.536 ξ j 0.677 −0.200 −0.964 −1.711 −2.534 −2.802

(0.092) (0.099) (0.102) (0.101) (0.075) (0.084) (0.094) (0.093) (0.079) (0.083) (0.085) (0.088) (0.096) (0.101)

φ 0.844 0.885 0.875 0.878 0.791 0.833 0.828 0.837 φ j 0.823 0.846 0.846 0.842 0.850 0.886

(0.024) (0.026) (0.027) (0.027) (0.020) (0.022) (0.025) (0.025) (0.021) (0.022) (0.022) (0.023) (0.026) (0.027)

τ 1/d1 0.030 0.020 0.024 0.019 0.083 0.077 0.059 0.059 δj, 1 0.028 0.022 0.016 0.011 0.025 0.001

(0.009) (0.008) (0.008) (0.008) (0.005) (0.005) (0.004) (0.004) (0.008) (0.007) (0.008) (0.010) (0.012) (0.007)

τ 2/d2 0.098 0.089 0.073 0.074 0.030 0.020 0.025 0.017 δj, 2 0.100 0.071 0.075 0.084 0.087 0.185

(0.006) (0.006) (0.005) (0.005) (0.008) (0.008) (0.008) (0.008) (0.006) (0.005) (0.006) (0.007) (0.008) (0.012)

�(x|r) −825 −753 −718 −688 −832 −760 −731 −705 −3286

�(r) −6199 −6164 −6164 −6163 −6164 − 6173 −6170 −6170 −6169 −6167
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ealized GARCH models bring significant improvement to the con-

entional GARCH(1,1) without high frequency realized measures, re-

orted by the first column (in testing significance of the difference,

e restrict ourselves to use simple log-likelihood ratio test).

When we focus on comparison of Realized GARCH models, we

an observe further significant differences. Our Jump-GARCH brings

mall improvements to the �(r) consistent with the literature, but

arge improvements in terms of �(x|r) when compared to the bench-

ark Realized GARCH with RV. As to the comparison of QMLE and

AS specifications, original QMLE model outperforms GAS in terms of

ikelihood slightly. These observations hold for all three futures used

n the study.

Further comparison of the Realized Jump-GARCH models with

hree different realized measures reveals that JWTSRV and MedRV

argely outperform BV, with JWTSRV bringing largest gains for

HF futures, and MedRV winning the race for the rest. While log-

ikelihoods �(x|r) uncover rather large differences between the mod-

ls, parameter estimates for the different realized measures are very

imilar to each other, and are consistent with the estimates found in

he literature.

The most important parameter γ J is significantly different from

ero for BV and MedRV estimators, but not for JWTSRV estimator. We

xplain this by more strict statistics for testing the null hypothesis

f no jumps in comparison to MedRV and BV, while we use boot-

trap, which corrects the statistics for small sample distortions. As

ointed out by Dovonon et al. (2014), the differences maybe quite se-

ere. Even with this result, we can conclude that jumps bring signif-

cant improvement in the modeling and Realized Jump-GARCH(1,1)

utperforms benchmark Realized GARCH.

Finally, we focus on the Realized GARCH model with multiple

easures, where we use volatility decompositions to several invest-

ent horizons due to our JWTSRV measure, and also include RV rep-

esenting full quadratic variation. We find γ j coefficients statistically

ifferent from zero for all three futures. This means that volatility

urther decomposed to several investment horizons carry significant

ontribution to the future latent volatility. Coefficient is largest at the

rst scale, following the second, and the rest. This points us to the re-

ult that mainly volatility from highest frequency impacts the future

olatility.

Turning our attention to φj, we can see that it is close to one

within standard errors) for all investment horizons. Note however

ow ξ j decreases with decreasing scale. This mirrors the different

ontributions of the energy (variance of each volatility at different

nvestment horizon j to total variance) to the latent volatility. From

q. (14) we know, that volatility components at different horizons j

lways sum up to the total volatility. But Realized GARCH model use

ogarithmic transforms, which do not hold this property. Hence, the

xpected value of the parameter ξ j will logically be a total constant

inus log (1/2j), as JWTSRV is simply sum of squared wavelet coef-

cients on intraday return, which is driven mainly by Brownian mo-

ion. This points us to the conclusion that the most of the informa-

ion can be found in the high frequency part of the spetral density of

eturns.

.3. Multi-period-ahead forecasting results

Motivated by a good in-sample performance of the models, we

tudy if inclusion of jumps in the model improves the volatility fore-

asts in our newly proposed Realized Jump-GARCH models. We also

ait to see if the model with multiple investment horizons improves

olatility forecasts, and finally, it will be interesting to find out if the

og-likelihood gains also translate to good forecasting performance of

he models.

We use all the Realized GARCH models to produce h = {1, 5, 10}-

ay-ahead forecasts based on rolling basis. Table 4 compares RMSE

f all the models. To see if the forecasts are statistically different, we
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Table 4

RMSE (×10−4) from all forecasts for the GBP, CHF, and EUR at different forecasting horizons h = {1, 5, 10}. Forecasts which fall into

the 10% Model Confidence Set (MCS) using both robust MSE and QLIKE loss functions are in bold. In addition, ranking of the models

included in the MCS is provided in the superscript, first is ranking using MSE, second using QLIKE.

Realized (Jump) GARCH Realized (Jump) GAS Multiple

RV BV MedRV JWTSRV RV BV MedRV JWTSRV JWTSRVj

GBP

h = 1 1.007(9) 1.003(7) 1.003(6) 1.004(8) 0.998(5, 5) 0.988(4, 4) 0.986(3, 3) 0.982(2, 2) 0.972(1, 1)

h = 5 0.644(6, 5) 0.658 0.660 0.661 0.643(5, 3) 0.639(2, 2) 0.641(3, 4) 0.642(4, 6) 0.633(1, 1)

h = 10 0.561(2, 1) 0.566(3, 3) 0.569(5, 4) 0.574(8, 7) 0.572(7, 6) 0.568(4, 5) 0.571(6, 8) 0.575(9, 9) 0.558(1, 2)

CHF

h = 1 1.497(3) 1.459(1) 1.517(6) 1.496(2) 1.591(3) 1.497(4, 1) 1.530(7, 5) 1.538(8, 2) 1.509(5, 4)

h = 5 1.087(5, 5) 1.027(1, 4) 1.095(6) 1.073(2) 1.211(6) 1.077(3, 1) 1.120(7, 7) 1.140(8, 3) 1.087(4, 2)

h = 10 1.155(7, 2) 1.079(1, 1) 1.119(3, 7) 1.125(4, 5) 1.224(9) 1.107(2, 4) 1.136(6, 8) 1.163(8, 6) 1.126(5, 3)

EUR

h = 1 1.280(9) 1.273(6) 1.253(4) 1.230(2, 3) 1.279(8, 5) 1.278(7) 1.264(5, 4) 1.244(3, 2) 1.221(1, 1)

h = 5 0.981 0.970(8) 0.943(4) 0.927(2) 0.960(6) 0.961(7) 0.946(5) 0.930(3, 2) 0.911(1, 1)

h = 10 0.974 0.936 0.894(6) 0.905(3) 0.876(5) 0.870(7) 0.848(3, 4) 0.848(2, 1) 0.848(1, 2)
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use the Model Confidence Set (MCS) with two robust loss functions,

MSE and QLIKE. Models, which are included in the MCS with the use

of both loss functions are highlighted in bold. In addition, we pro-

vide ranking of the models according to the both loss functions within

MCS in the superscript. First number is ranking due to MSE, second

one is ranking of the models due to QLIKE.

Turning to the results in the Table 4, we can see that Realized

GARCH model with multiple investment horizons is never rejected13

from the Model Confidence set by neither of the loss functions. More-

over, for GBP and EUR futures, it ranks as the best forecasting model

with exception of forecasting horizon of 10 days, when it ranks as sec-

ond according to QMLE. The model also delivers lowest RMSE of the

forecasts, and ranks second to fifth with CHF futures outperformed

mainly by GAS estimates.

Another model, which is never rejected by neither of the loss func-

tions from MCS is the Realized Jump GAS model with our JWTSRV.

For all three futures and all forecasting horizons, the model ranks as

second best, to eighth best depending on the loss function. Similar re-

sults are delivered also with the use of MedRV, when the model often

ranks third to fifth best, with one exception of forecasting EUR futures

at horizons of five days. Realized Jump GAS model with BV is the third

best model, as it is rejected from the MCS only for EUR futures with

QLIKE loss function.

Most of the Realized (Jump) GARCH models estimated using QMLE

are rejected from MCS by one of the loss functions. The only exception

is CHF forecasts at 10-day-ahead horizon, when the Realized Jump

GARCH model with BV measure ranks best using both loss functions.

Overall, the log-likelihood gains from QMLE estimates do not

translate to better out-of-sample forecasts, as GAS outperforms the

MLE models. Realized Jump-GARCH largely outperforms benchmark

Realized GARCH with RV, and finally our multiple horizon model

outperforms all the models delivering lowest loss functions most

of the times. Thus jump variation as well as further decomposition

of volatility to different scales bring significant improvement to the

volatility forecasts in all tested forex futures.

5. Conclusion

In this paper, we investigate how the decomposed integrated

volatilities and jumps influence the future volatility using real-

ized GARCH framework. Utilizing a jump wavelet two scale realized
13 Note that we use ht as predictor of volatility in the models. Some researchers report

that restricting parameters φ = 1 may improve the predictive performance in this case.

We, however do not document significant improvement on our dataset, and make the

results with restricted models available upon request.

W

t

m

olatility estimator, which measures foreign exchange volatility in

he time-frequency domain, we study the influence of intra-day in-

estment horizons on daily volatility forecasts.

After the introduction of wavelet-based estimation of quadratic

ariation together with forecasting model, we compare our estima-

ors to several most popular estimators, namely, realized variance,

ipower variation, and median realized volatility in the forecasting

xercise. Using several Realized GARCH specifications estimated by

MLE, GAS, and multiple realized measures, the wavelet-based esti-

ator proves to bring significant improvement in the volatility fore-

asts. Models incorporating jumps improve forecasting ability signif-

cantly. Next, we find that while realized Jump GAS models do not

utperform other models in terms of in-sample fits, they largely out-

erform the MLE-based estimates in the forecasts at all forecasting

orizons.

Concluding the empirical findings, we show that our wavelet-

ased estimators bring a significant improvement to the volatility

stimation and forecasting. It also offers a new method of time-

requency modeling of realized volatility which helps us to better un-

erstand the dynamics of stock market behavior. Specifically, it un-

overs that most of the volatility is created on higher frequencies.

ppendix A. Wavelet transform

In this Appendix we briefly introduce basic ideas of wavelet trans-

orm. Let us begin with the continuous wavelet transform which is

cornerstone of the wavelet analysis. Further we introduce a special

orm of discrete wavelet transform called the “maximal overlap dis-

rete wavelet transform” (MODWT) that we use in empirical part. Fol-

owing Daubechies (1992) and Chui (1992), we define doubly-indexed

avelet function – a wavelet14 as:

j,k(t) = 1√
j
ψ

(
t − k

j

)
∈ L2(R), (A.1)

here index k determines the exact position of the wavelet in time,

hereas the scaling index j controls how the wavelet is stretched

r dilated, i.e., frequency resolution of the wavelet. The continuous

avelet transform, Wj, k, is a projection of a wavelet function ψ j, k

nto the time series y(t) ∈ L2(R):

j,k =
∫ ∞

∞
y(t)ψ j,k(t)dt. (A.2)
14 An important conditions a wavelet function must fulfill is the admissibility condi-

ion: Cψ = ∫ ∞
0

|�( f )|2

f
df<∞, where �(f) is the Fourier transform of a wavelet ψ(.). For

ore details about wavelet filer conditions see Daubechies (1992)
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ence, Eq. (A.2) tranforms y(t), time-domain process, into Wj, k which

s time-frequency (or time-scale) space, where k is the position in

ime and j corresponds to a specific frequency. Using the wavelet co-

fficients Wj, k we can subsequently recover the time series y(t) as

ollows:

(t) = 1

Cψ

∫ ∞

0

[∫ ∞

−∞
Wj,kψ j,k(t)dk

]
dj

j2
, k>0. (A.3)

he continuous wavelet transform preserves variance of the analyzed

ime series. It is an important property that allows us to work with

he decomposed wavelet variance. Thus we can write:

2 = 1

Cψ

∫ ∞

0

[∫ ∞

−∞

∣∣Wj,k

∣∣2
dk

]
dj

j2
. (A.4)

or a more detailed introduction to continuous wavelet transform

nd wavelets, see Daubechies (1992); Chui (1992); and Percival and

alden (2000).

In empirical applications we work with discrete time series, thus

ome form of discretization is needed. The discrete wavelet transform

DWT),15 which is a parsimonious form of the continuous wavelet

ransform allows for an analysis of discrete time series where only a

ounded number of scales is required. The discrete version of wavelet

ransform has, however, some serious limitation that make its appli-

ation to real time series rather difficult. These are mainly the sample

ize restriction to the power of two and the starting point sensitivity

f the wavelet transform.

1. Maximal overlap discrete wavelet transform

The MODWT is in some cases superior to the DWT for empirical

ata analysis. For example, the problem of sample length restriction is

onnected with downsampling procedure of the DWT. However, the

onstruction of MODWT does not use downsampling, thus vectors of

he wavelet coefficients at all scales have equal length, correspond-

ng to the length of transformed time series. As a consequence, the

ODWT is not restricted to any sample size. In addition, the MODWT

s a translation-invariant; therefore, it is not sensitive to the choice of

he starting point of the examined time series. Similarly as the CWT,

he MODWT wavelet and scaling coefficients can be used for analysis

f variance of a time series in the time-frequency domain. Statistical

roperties of the MODWT variance estimators for non-stationary and

on-Gaussian processes are discussed in detail by Serroukh, Walden,

nd Percival (2000). For additional details on the MODWT, see Mallat

1998) and Percival and Walden (2000).

For computation of the MODWT coefficients we apply the pyra-

id algorithm of Mallat (1998). The procedure is based on filtering

ime series with MODWT wavelet filters; the filtered time series is

hen filtered again in a subsequent stages to obtain other wavelet

cales. These scales contain information localized at corresponding

requency bands of analyzed time series.

Let us briefly introduce the pyramid algorithm. In the first stage,

he wavelet coefficients are obtained via circular filtering of time

eries yt using the MODWT wavelet and scaling filters h1, l and g1, l

Percival & Walden, 2000):

1,k ≡
L−1∑
l=0

h1,l yk−l modN, V1,k ≡
L−1∑
l=0

g1,l yk−l modN, (A.5)

here L j = 2 j−1(L − 1) + 1 defines a width of the wavelet and scal-

ng filters.16 After the first stage we obtain the wavelet and scaling

oefficients at the first scale ( j = 1). The algorithm continues with
15 For a definition and detailed discussion of the discrete wavelet transform, see

allat (1998); Percival and Walden (2000); and Gençay et al. (2002).
16 For more information about wavelet filters see for example Percival and Walden

2000).

D

F

F

he second stage where instead of yt we filter the sequence of scaling

oefficients from the first stage V1,k, using the MODWT wavelet and

caling filters h2, l and g2, l for the second scale, i.e.,

2,k ≡
L−1∑
l=0

h2,lV1,k−l modN, V2,k ≡
L−1∑
l=0

g2,lV1,k−l modN. (A.6)

e may continue with more stages until the level of decomposition

s j ≤ log2(N). For example, in case we need two levels of decomposi-

ion, i.e, we apply two stages, we obtain two vectors of wavelet coeffi-

ients; W1,k, W2,k and a vector of the scaling coefficients at scale two

2,k, where k = 0, 1, . . . , N − 1. Vectors of wavelet and scaling coef-

cients reflect variations at specific frequency bands. Generally, W j,.

epresents a frequency band f [1/2 j+1, 1/2 j], whereas V j,. represents

frequency band f [0, 1/2 j+1].
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