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The aim of this paper is to design an efficient multigrid method for constrained convex optimization
problems arising from discretization of some underlying infinite dimensional problems. Due to problem
dependency of this approach, we only consider bound constraints with (possibly) a single equality
constraint. As our aim is to target large-scale problems, we want to avoid computation of second
derivatives of the objective function, thus excluding Newton like methods. We propose a smoothing
operator that only uses first-order information and study the computational efficiency of the resulting
method.
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1. Introduction

Multigrid methods were originally developed for the solution of large systems of linear
algebraic equations arising from discretization of partial differential equations. Their
practical utility and efficiency were demonstrated by Achi Brandt in his pioneering papers
[2, 3]. It has been well-known since the dark ages of multigrid that the methods may
lose their superior efficiency when used for slightly different type of problems, namely
the linear complementarity problems (LCP) [4, 16, 25]. This is caused by the presence of
unilateral obstacles (or box constraints in the optimization formulation of the problem).
The fact that the sets of active constraints may vary for different discretization levels,
and that the constraints may not even be recognized on very coarse meshes, may lead to
poor quality of the coarse level corrections and, in effect, to significant deterioration or
even loss of convergence of the method. Various remedies have been proposed by different
authors [4, 16, 18, 19, 25]; these usually resulted in “conservative” methods that were
often significantly slower than standard methods for linear systems. Finally Kornhuber
[20] proposed a truncated monotone multigrid method for LCP problems. This method
has the property that as soon as the set of active constraints is correctly identified, the
method converges with the same speed as without the presence of the constraints.
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Not many attempts have been done to generalize the multigrid technique to the solu-
tion of optimization problems. From the successful ones, most focused on unconstrained
problems [7, 8, 11, 13, 22, 23, 28]. In this case, the problem can be often identified
with a discretized nonlinear PDE and thus techniques of nonlinear multigrid can be
used. These techniques use almost exclusively a variant of the Newton method or the
Newton-Gauss-Seidel method as a smoother. Hence they require computation and stor-
age of the Hessian of the underlying optimization problem at each iteration. This may
be very costly or even prohibitive for some large-scale problems. Moreover, one step of
the Newton-Gauss-Seidel method has high computational complexity and cannot be di-
rectly parallelized. Therefore, our goal is to use a smoother that only relies on first-order
information of the optimization problem. Used only on the finest grid, it may be very in-
efficient, as compared to the Newton method, but this is where the coarse grid correction
will help, just as in the linear case.

Treating general (equality or inequality) constraints by multigrid may be difficult, if
not impossible, as we may not be able to find the corresponding restriction operators.
If the number of constraints is directly proportional to the number of variables (such as
for the bound constraints), the restriction operator for these constraints may be based
on that for the variables. On the other hand, if the number of constraints is independent
of the discretization (e.g., a single equality constraint) then the prolongation/restriction
is simply the identity. All other situations are difficult, in our opinion. For this reason,
all articles on multigrid for constrained problems either treat the bound-constrained
problems or problems with a single equality constraint (e.g., [9, 12, 13, 30]) or assume
that a restriction operator for the constraints exists [29].

The first, straightforward goal of this paper is to extend Kornhuber’s technique to
nonlinear convex optimization problems with bound constraints. The authors are not
aware of this generalization in the existing literature. The second goal is to propose a
smoothing operator that would only use first-order information, and study the efficiency
of the resulting method. Finally, we extend the developed algorithm to problems with an
additional equality constraint. We study the behaviour of the proposed algorithms on a
number of numerical examples.

The paper is structured as follows. In Section 2 we introduce three multigrid algorithms
for bound-constrained convex optimization problems; first Kornhuber’s truncated correc-
tion scheme multigrid for bound-constrained quadratic problems, then its generalization
to convex problems using the full approximation scheme and finally a version of the
latter algorithm without truncation. This version is a new though minor modification
of an existing method. Section 3 shows that the third algorithm can be easily extended
to problems with an additional linear equality constraint that includes all variables. In
Section 4 we introduce the first-order smoother—the gradient projection method with a
gradient-based line search—and analyse its smoothing properties. Section 5 is devoted
to numerical experiments: we, in particular, focus on the dependence of the convergence
rate on the number of refinement levels and the number of the smoothing steps.
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2. Multigrid for bound-constrained optimization

2.1 The problem

We consider the bound-constrained nonlinear optimization problem

min
x∈Rn

f(x) (1)

subject to

ϕi ≤ xi ≤ ψi, i = 1, . . . , n ,

where f is a convex continuously differentiable nonlinear function and ϕi < ψi for all i.
To guarantee existence of a solution, we assume that either the function f is coercive or
that the feasible set

F = {x ∈ Rn | ϕi ≤ xi ≤ ψi, i = 1, . . . , n}

is bounded.
In order to define and use a multigrid method, we assume that there is a nested sequence

of optimization problems arising from finite element discretizations of some underlying
problem:

min
x(k)∈Rnk

fk(x
(k)) (2)

subject to

ϕ
(k)
i ≤ x

(k)
i ≤ ψ

(k)
i , i ∈ Ik ,

where k = 0, 1, . . . , j. Here j is the finest discretization level corresponding to the original
problem (1) and 0 is the coarsest level. The set Ik contains indices of nk finite element
vertices on discretization level k and fk are the discretizations of the same infinite di-
mensional nonlinear function.

The communication between two consecutive levels k − 1 and k is maintained by the
prolongation and restriction operators Ikk−1 : Rnk−1 → Rnk and Ik−1

k : Rnk → Rnk−1 ,

respectively, whereas Ik−1
k = c(Ikk−1)T . For the specific choice of these operators, see the

last section.
For a feasible vector x(k) we introduce the sets of active indices:

Aϕk (x(k)) :=
{
i ∈ Ik | x

(k)
i = ϕ

(k)
i

}
Aψk (x(k)) :=

{
i ∈ Ik | x

(k)
i = ψ

(k)
i

}
.

We will always assume that

Aϕk (x(k)) ∩ Aψk (x(k)) = ∅ .

Finally, we denote the set of free variables by

A0
k := Ik \ (Aϕk (x(k)) ∪ Aψk (x(k))) .
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Let us now introduce a modified problem

min
x(k)∈Rnk

fk(x
(k))− vTk x(k) (3)

subject to

ϕ
(k)
i ≤ x

(k)
i ≤ ψ

(k)
i , i ∈ Ik ,

where vk ∈ Rnk , together with the operator

x(k)
new = opt(fk, ϕ

(k), ψ(k), vk;x
(k), ε, ν)

that will play a role of the smoother for (3). The input are the problem data and the
initial point x(k), the required precision ε and the maximum number of iterations allowed
ν. We assume that opt is a descent convergent algorithm for the solution of problem (3).
In Section 4 we will discuss the choice of opt in detail.

At the end of this section, let us briefly recall the main idea of multigrid meth-
ods. For simplicity, we restrict ourselves to quadratic objective functions fk(x

(k)) =
1
2(x(k))TQkx

(k) − qTk x(k), i.e., equivalently, to systems of linear equations Qkx
(k) = qk.

We start at the finest level k = j and apply some steps of the smoother opt to get an
update x(k). We then compute the residuum rk = Qkx

(k)−qk for the current iteration. If
we now solved the correction equation Qke

(k) = rk, we would obtain the exact solution

in one step as x
(k)
∗ = x(k) − e(k). This would, however, be as costly as the solution of

the original problem. So instead we solve the correction equation on the coarser level,
Qk−1e

(k−1) = rk−1 with rk−1 = Ik−1
k rk, either exactly or approximately by repeating the

same procedure on this level. The correction is then interpolated back to level k and a
new iteration is computed as x(k) := x(k) − Ikk−1e

(k−1). Finally, we again apply a few
steps of the smoother. This is the so-called Correction Scheme (CS) multigrid algorithm.
It splits the approximation error into two components, smooth and coarse (relative to
the current level); the smooth component is reduced by the smoothing operator, while
the coarse component by the coarse grid correction.

2.2 Truncation

We now recall the idea of truncation introduced by Kornhuber [20]; see also [10]. Consider
the sequence of problems (2) obtained by standard finite element discretization of some

infinite dimensional problem. Denote by λ
(k)
i the finite element basis function associated

with the i-th node on discretization level k.
Let x(j) be an approximate solution of (2) on the finest discretization level and Aj =

(Aϕj (x(j)) ∪ Aψj (x(j))) the corresponding set of active constraints. We will truncate the

basis functions λ
(j)
i by putting them equal to zero at the active nodes α ∈ Aj :

λ̃
(j)
i (x(j)

α ) = 0 if α ∈ Aj for all i .

The idea is to perform the coarse grid correction in the next iteration of the multigrid
method with the truncated basic functions, instead of the original ones. The basis func-
tions for coarse levels are derived from the truncated basis functions on the finest level.
Roughly speaking, we consider the active nodes on the finest level to be fixed by ho-
mogeneous Dirichlet boundary condition for the next coarse grid correction. After that,
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we perform the smoothing with the original basis functions; this may change the set of
active nodes, so we update the truncated basis and repeat the procedure. Clearly, once
the exact active set is detected, the truncated basis does not change any more and the
“truncated” problem reduces to an unconstrained problem, just as in the classic active
set strategy.

The way to implement the truncation depends on the function fj . For instance, if fj
is a quadratic function fj(x

(j)) = 1
2(x(j))TQjx

(j) + qTj x
(j) then the truncation of the

“stiffness” matrix Qj amounts to putting all rows and columns with indices from Aj
equal to zero, and analogously for qj . If fj can still be expressed as a function of Qj and
qj , such as in the problems in Examples 5.2 and 5.4, the truncation is analogous. If fj is
a function defined by means of local stiffness matrices (Aj)i, as in the minimal surface
problem in Example 5.4, the truncation is performed for all these matrices (again by
putting respective rows and columns equal to zero), and the function is evaluated using
these truncated matrices.

Let us stress that the truncation is performed explicitly only on the highest discretiza-
tion level; on coarser grids it is inherited by means of prolongation/restriction operators.
This process is again problem dependent. If fk is defined by means of the global stiffness
matrix Qk, then Qk−1 = Ik−1

k QkI
k
k−1, k = 1, . . . , j. If fk is defined using local stiffness

matrices (Aj)i, then (Ak−1)i = Ik−1
k (Ak)iI

k
k−1, k = 1, . . . , j, for all i, etc.

In the following, we denote the truncation operator by trun and will use notation such
as trunQj and trun fj .

2.3 Correction scheme for the truncated multigrid for quadratic problems

In this section we recall the Correction Scheme (CS) version of the truncated monotone
multigrid algorithm introduced by Kornhuber [10, 20]; see also [21, 24, 25]. We assume
that the objective function f is quadratic, so that

fk(x
(k)) =

1

2
(x(k))TQkx

(k) + qTk x
(k) (4)

where Qk are positive definite matrices of size nk and qk ∈ Rnk . Accordingly, in this
section we use the following notation for the smoother:

x(k)
new = opt(Qk, qk, ϕ

(k), ψ(k), vk;x
(k), ε, ν) .

We introduce two additional restriction operators for the bound constraints:

Rϕk : (Rϕk y)i = max{yj | j ∈ Ik ∩ int suppλ
(k−1)
i }, i ∈ Ik−1 (5)

Rψk : (Rψk y)i = min{yj | j ∈ Ik ∩ int suppλ
(k−1)
i }, i ∈ Ik−1 . (6)

The following is a reformulation of Algorithm 5.10 from [10] in our notation.

Algorithm 1 (truncated CS, V-cycle for quadratic problems)

Set ε, ε0. Initialize x(j).
for i = 1 : niter

x(j) := mgm(j, x(j), qj , ϕ
(j), ψ(j))

test convergence
end

5
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function x(k) = mgm(k, x(k), rk, ϕ
(k), ψ(k))

if k = 0
x(k) := opt(Qk, qk, ϕ

(k), ψ(k), 0;x(k), ε0, ν0) (coarsest grid solution)
else

x(k) := opt(Qk, qk, ϕ
(k), ψ(k), 0;x(k), ε, ν1) (pre-smoothing)

rk = qk −Qkx(k) (residuum)
ϕ̂(k) = ϕ(k) − x(k)

ψ̂(k) = ψ(k) − x(k)

if k = j
Qk := trunQk (matrix truncation)
rk := trun rk (residual truncation)
ϕ̂(k)(i) = −∞ if ϕ(k)(i) = x(k)(i) (bounds truncation)

ψ̂(k)(i) =∞ if ψ(k)(i) = x(k)(i) (bounds truncation)
end
Qk−1 = Ik−1

k QkI
k
k−1 (coarse grid matrix definition)

rk−1 = Ik−1
k rk (residal restriction)

ϕ(k−1) = Rϕk (ϕ̂(k)) (coarse grid bounds)

ψ(k−1) = Rψk (ψ̂(k)) (coarse grid bounds)

v(k−1) = mgm(k − 1, 0nk−1
, rk−1, ϕ

(k−1), ψ(k−1)) (coarse grid corr.)

x(k) := x(k) + Ikk−1v
(k−1) (solution update)

x(k) := opt(Qk, qk, ϕ
(k), ψ(k), 0;x(k), ε, ν2) (post-smoothing)

end

It is shown in [10] that the above algorithm converges for any initial iterate.

2.4 Full approximation scheme truncated multigrid for general problems

In the above CS algorithm, the coarse grid correction is used to correct the error in the
current solution. That is, the solution on the coarse level is just a correction of the fine-
level error, not an approximate solution of the original problem. For nonlinear problem,
it is useful to solve on every level an approximation of the original problem. This is
readily obtained by replacing the restricted residuum Ik−1

k (qk −Qkx(k)) in Algorithm 1
by the “true” coarse-level right-hand side corrected by the approximation error, i.e., by
qk−1 + (Qk−1I

k−1
k x(k) − Ik−1

k Qkx
(k)). The solution update is then changed accordingly.

This gives rise to the so-called Full Approximation Scheme (FAS) algorithm. The FAS
version of Algorithm 1 for general nonlinear problems of type (2) is given below.

Algorithm 2 (truncated FAS, V-cycle for nonlinear problems)

Set ε, ε0. Initialize x(j).
for i = 1 : niter

vj = 0nj×1

x(j) := mgm(fj , x
(j), vj , ϕ

(j), ψ(j))
test convergence

end
function x(k) = mgm(fk, x

(k), vk, ϕ
(k), ψ(k))

if k = 0
x(k) := opt(fk, ϕ

(k), ψ(k), vk;x
(k), ε0, ν0) (coarsest grid solution)

else
x(k) := opt(fk, ϕ

(k), ψ(k), vk;x
(k), ε, ν1) (pre-smoothing)

6
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x(k−1) = Ik−1
k x(k) (solution restriction)

gk = ∇fk(x(k))
ϕ̂(k) = ϕ(k) − x(k)

ψ̂(k) = ψ(k) − x(k)

if k = j
fk := trun fk (function truncation)
gk := trun gk (gradient truncation)
ϕ̂(k)(i) = −∞ if ϕ(k)(i) = x(k)(i) (bounds truncation)

ψ̂(k)(i) =∞ if ψ(k)(i) = x(k)(i) (bounds truncation)
end
vk−1 = Ik−1

k vk + (∇fk−1(x(k−1))− Ik−1
k gk) (correction r.h.s.)

fk−1 = Ik−1
k fkI

k
k−1 (symbolic coarse grid function definition)

ϕ(k−1) = Rϕk (ϕ̂(k)) + x(k−1) (coarse grid bounds)

ψ(k−1) = Rψk (ψ̂(k)) + x(k−1) (coarse grid bounds)

v(k−1) = mgm(fk−1, x
(k−1), vk−1, ϕ

(k−1), ψ(k−1)) (coarse grid corr.)
x(k) := x(k) + Ikk−1(v(k−1) − x(k−1)) (solution update)

x(k) := opt(Qk, qk, ϕ
(k), ψ(k), vk;x

(k), ε, ν2) (post-smoothing)
end

Note that the coarse grid function definition fk−1 = Ik−1
k fk is only symbolic. As

explained in the previous section, it must be defined specifically for each function f .
Also, the restriction of the solution using operator Ik−1

k may not always lead to the best
results and one may prefer, for instance, L2 projection; see, e.g., [14].

It has been observed in [10, Ex. 7.3.1] that the truncated multigrid algorithm may, in
the first iterations, be slower than other algorithms (see also Section 5.5). This difference
may be significant if we are only interested in a low-accuracy solution of the problem.
Therefore, in the next section we propose a “non-truncated” FAS algorithm for nonlinear
problems of type (2). This algorithm is a minor generalization of the method proposed
in the pioneering paper by Hackbusch and Mittelmann [16].

2.5 Full approximation scheme multigrid without truncation

We now present a Full Approximation Scheme (FAS) version of Algorithm 2 without
truncation of the finite element basis. In order to guarantee convergence of the algorithm,
we need to modify the definition of coarse grid constraints. As mentioned above, a similar
algorithm has been introduced by Hackbusch and Mittelmann [16]. The difference is in
the treatment of the constraints on the coarse levels; while Hackbusch and Mittelmann
used active sets, we use the restriction operators defined below.

Let us modify the restriction operators Rϕk , R
ψ
k introduced in the previous section. The

motivation for this is two-fold: the exact solution of the initial problem should be a fixed
point of the algorithm and a feasible point should remain feasible after the correction
step. For given x(k), ϕ, ψ and some y ∈ Rnk and i ∈ Ik−1 the operators are defined as

7
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follows

(R̃ϕk y)i =

〈
0 if max{(ϕj − x(k)

j ) | j ∈ Ik ∩ int suppλ
(k−1)
i } = 0

max{yj | j ∈ Ik ∩ int suppλ
(k−1)
i } otherwise

(7)

(R̃ψk y)i =

〈
0 if min{(ψj − x(k)

j ) | j ∈ Ik ∩ int suppλ
(k−1)
i } = 0

min{yj | j ∈ Ik ∩ int suppλ
(k−1)
i } otherwise .

(8)

Figure 1 illustrates how operator (R̃ϕk y)i works. It depicts a segment of a one-

2 3 4 51 76

ϕ

x

Figure 1. A segment of an obstacle and an approximate solution.

dimensional mesh with three coarse nodes (circles indexed 2, 4, 6) and seven fine nodes
(crosses indexed 1, . . . , 7). The constraints are active at nodes 3, 4. For the coarse nodes
2 and 4, the first condition applies, as at least one of its neighbours is active. Hence
(R̃ϕk y)2 = 0, (R̃ϕk y)4 = 0. For node 6 the second condition in the definition of (R̃ϕk y)i ap-

plies, so (R̃ϕk y)6 = max{y5, y6, y7}. Notice that the operators will not be applied directly
to functions ϕ,ψ, rather to their modifications; see the details of the FAS algorithm
below.

This strategy of handling the coarse-level constraints is a combination of that of Ko-
rnhuber (as in Algorithm 1) and the active-set strategy by Hackbush and Mittelmann
[16]. We are, however, slightly less conservative than [16]. In their algorithm, both nodes
2 and 4 would be considered active in the coarse-level problem and the corresponding
value of x would not be allowed to change, unlike in the FAS algorithm below.

Algorithm 3 (FAS, V-cycle for nonlinear problems)

Set ε, ε0. Initialize x(j).
for i = 1 : niter

qj = 0nj×1

x(j) := mgm(j, x(j), qj , ϕ
(j), ψ(j))

test convergence
end
function x(k) = mgm(k, x(k), qk, ϕ

(k), ψ(k))
if k = 0

x(k) := opt(fk, ϕ
(k), ψ(k), qk;x

(k), ε0, ν0)
else

x(k) := opt(fk, ϕ
(k), ψ(k), qk;x

(k), ε, ν1) (pre-smoothing)
x(k−1) = Ik−1

k x(k)

qk−1 = Ik−1
k (qk −∇fk(x(k))) +∇fk−1(x(k−1))

ϕ̂(k) = ϕ(k) − x(k)

ψ̂(k) = ψ(k) − x(k)

8
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if k = j
ϕ̂(k)(i) = −∞ if ϕ(k)(i) = x(k)(i)

ψ̂(k)(i) =∞ if ψ(k)(i) = x(k)(i)
end
ϕ(k−1) = R̃ϕk (ϕ̂(k)) + x(k−1) (coarse grid bounds)

ψ(k−1) = R̃ψk (ψ̂(k)) + x(k−1) (coarse grid bounds)

v(k−1) = mgm(k − 1, x(k−1), qk−1, ϕ
(k−1), ψ(k−1))

x(k) := x(k) + Ikk−1(v(k−1) − x(k−1))

x(k) := opt(fk, ϕ
(k), ψ(k), qk;x

(k), ε, ν2) (post-smoothing)
end

3. Equality constraints

As explained in the introduction, treating general (equality or inequality) constraints by
multigrid may be difficult, if not impossible, as we may not be able to find the corre-
sponding restriction operators. This, however, becomes easy in case of a single equality
constraint involving all variables, such as

n∑
i=1

xi = γ . (9)

Clearly, this constraint will be present in all discretization levels. We only have to guar-
antee that, having a feasible point with respect to (9) before the coarse-grid correction
step, it will stay feasible after the correction. Let γj = γ and assume that we are on the
discretization level k > 0 and that

nk∑
i=1

x
(k)
i = γk , (10)

where nk is the number of variables on the k-th level. Then we define the coarser right-
hand side for (9) as

γk−1 =

nk−1∑
i=1

(Ik−1
k x(k))i .

If v(k−1) is a solution of the (k − 1)-level problem, then after the correction step x(k) :=
x(k) + Ikk−1(v(k−1) − Ik−1

k x(k)), we obviously get again the equality (10).
Notice, however, that when we want to combine the equality constraint with the box

constraints, we will have to use Algorithm 3 with the untruncated restriction operators

(R̃ϕk y)i and (R̃ψk y)i. The truncated multigrid in Algorithm 2 is not compatible with the
equality constraint handled as above.

4. Smoothing by the steepest descent method

The choice of the smoothing method is vitally important for any multigrid algorithm. As
our main aim is to avoid second derivatives of the function to be minimized, we have to

9
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resort to a first-order optimization method. Moreover, our choice of constrained convex
minimization further narrows the choice of available algorithms. We have opted for the
gradient projection method. Let us try to justify this choice in the next paragraphs.

4.1 Steepest descent smoother for unconstrained quadratic problems

Let us start with an unconstrained convex quadratic problem

min
x

1

2
xTQx− qTx (11)

or, in other words, with a linear system

Qx = q (12)

and the classic V-cycle multigrid algorithm. If things wouldn’t work here, we can hardly
expect them to work in the more general setting. One of the most popular smoothers in
this case is the Gauss-Seidel (GS) iterative method. Rightly so, its very definition shows
that it solves the equations locally, one by one, performing thus the local smoothing of
the approximate solution of (12).

Looking at the optimization formulation (11) of the problem, we can also consider the
“most basic” optimization algorithm, the steepest descent (SD) method with line search.
Can this be a good smoother? This question was analyzed, e.g., by McCormick [26] who
showed that the steepest descent method with exact or “slightly inexact” line search has
indeed smoothing properties, as required for the convergence of the standard V-cycle. In
case of exact line search, McCormick also gives an explicit bound on the convergence of
the V-cycle using the steepest descent method as a smoother. This bound is, however, as
many such theoretical bounds, overly pessimistic and far away from the real behaviour
of the method (giving estimates of convergence speed such as 0.9995).

We have therefore performed a small experiment with the goal of testing the smoothing
property of the steepest descent method and comparing it to the Gauss-Seidel method.
Let us introduce some notation. Denote the exact solution on level h by (x∗)h. Consider
two discretizations of the underlying differential equation, one on the fine level parame-
terized by h and one on the coarse level 2h. Let P be a prolongation operator from the
coarse to the fine level. It is well known (see, e.g., [26]) that the Q-orthogonal projector
on the range of P can be written as

Sh = P (P TQhP )−1P TQ

while

T h = I − Sh

is the projector onto the Q-orthogonal complement of the range of P . With these two
projectors, the energy norm of the error eh = (x∗)h − xh of an approximate solution xh

to (12) satisfies

‖eh‖2Qh = ‖Sheh‖2Qh + ‖T heh‖2Qh

whereas Sheh and T heh are the “low-frequency” and the “high-frequency” components of

10
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the error. It is the goal of the smoother to reduce T heh quickly in a few initial (possibly
just 1–2) iterations.

In our experiment, the underlying problem was the Poisson problem on a unit square
discretized by standard quadrilateral bilinear finite elements. We consider a 32 by 32 fine
grid and 16 by 16 coarse grid; the condition number of the fine-grid matrix was 400. The
restriction operator is the standard full weighting operator, see, e.g., [5]. We consider
the steepest descent method xhk+1 = xhk − sk(Qhxhk − qh) with exact step length sk and
a method with inexact line search, the details of which are given in the next section.
We start the process with a randomly generated vector xh0 using the MATLAB function
randn. Assuming that the right-hand side, and thus the solution, is smooth, we will get
significant components in both Sheh0 and T heh0 .

We first performed 10 iterations of SD and monitored the energy norm of both com-
ponents of the error, ‖Sheh‖2Qh and ‖T heh‖2Qh . In Figure 2, these are depicted by the full

line, the low frequency ‖Sheh‖2Qh in blue and the high-frequency ‖T heh‖2Qh in red. Both
values are given in logarithmic scale. The left-hand figure is for SD with exact line search
while the right-hand side one is for the inexact line search. Also in Figure 2, we plot
these values for the Gauss-Seidel method; these are denoted by the dashed lines. We can
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Figure 2. First 10 iterations of SD (full line) and GS (dashed line) methods. Blue line depicts low frequency error
‖Sheh‖2

Ah , red line the high frequency error ‖Theh‖2
Ah . SD with exact line search is on the left, with inexact line

search on the right.

clearly see the smoothing effect of both methods in the first iterations when the red lines
quickly drop by orders of magnitude. Although the steepest descent method is not as
efficient a smoother as Gauss-Seidel, it still does a good job. After the initial iterations,
the smoothing effect slows down and both errors descent proportionally. This can be
better seen in Figure 3 where we show the error after 100 and after 1000 iterations of
both methods. In this figure, we can clearly see the typical zig-zagging of the SD method
with exact line search present in the high frequency error. We can also see that inexact
line search with its random element breaks this regular zig-zagging and, in effect, makes
the method significantly faster.

We could certainly consider other first-order method, for instance the nonlinear con-
jugate gradients. However, as we will see in the next section and later in the numerical
experiments, only a very few (1–5) iterations of the steepest descent method suffice to
guarantee a good behaviour of the multigrid algorithm, and there is thus no need for any
more sophisticated first-order algorithms.
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Figure 3. First 100 (top) and 1000 (bottom) iterations of SD (full line) and GS (dashed line) methods. Blue line

depicts low frequency error ‖Sheh‖2
Ah , red line the high frequency error ‖Theh‖2

Ah . SD with exact line search is

on the left, with inexact line search on the right.

4.2 Line search

We have seen in the previous section that exact line search does not bring any significant
benefit to the steepest descent method. Moreover, our ultimate goal is to use the projected
gradient version of the method for bound-constrained nonlinear convex problems.

A popular—and efficient—choice of the step length is the Barzilai-Borwein method [6].
This, however, leads to a possibly non-monotonic progress of the error. Since we would
like to use a very small fixed number of SD steps, this method is not suitable. Moreover,
its projected gradient version is not fully understood and may lead to a standard Armijo
step [6].

Because our problem is convex, the line search can be based solely on the gradient
information. For an unconstrained problem

min
x
f(x)

with f smooth and convex, we have opted for the following simplified version of Wolfe’s
method.

Algorithm 4 (Steepest descent method with gradient-based line search)
Given an approximate solution x, do until convergence:

xnew = x− s∇f(x) with s computed by Algorithm 5.

Algorithm 5 (Gradient-based line search for unconstrained problems)

12
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Given an approximate solution x. Choose s > 0 and c > 1.

1. γ = −(∇f(x))T ∇f(x− s∇f(x))
2. if γ < 0

2.1 do until γ+ > 0
2.1.1 s := cs
2.1.2. γ+ = −(∇f(x))T ∇f(x− s∇f(x))

2.2. s := 1
cs

else
2.3. do until γ+ < 0

2.3.1. s := 1
cs

2.3.2. γ+ = −(∇f(x))T ∇f(x− s∇f(x))
end

3. return current s

Clearly, γ (or γ+) is the directional derivative of f in the steepest descent direction
−∇f(x) at the trial point x− s∇f(x).

Lemma 4.1 Algorithm 5 is well-defined and finishes in a finite number of steps. At the
new point, we have f(xnew) < f(x) and γ+ < −(∇f(x))T ∇f(xnew) < 0.

Proof. The claim follows immediately from the convexity of f . The algorithm stops with
the value of s for which γ+ < 0 and such that for the step length cs, the derivative would
change sign to γ+ > 0. The loop in 2.1 stops when we encounter a positive γ+, so we
have to return one step back in 2.2. �

Let us now move to a generalization of Algorithm 4 for convex bound-constrained
problem (1). For a given feasible x, let us recall the definition of the set of active indices
by

A(x) = {i | xi = ϕi or xi = ψi} .

For this x, we further introduce an operator [ · ]A(x) : Rn → Rn defined component-wise
by

([h ]A(x))i =

〈
0 if i ∈ A(x)

hi otherwise.

Finally, let [ · ]Ω denote the (in this case trivial) projection on the feasible set.

Algorithm 6 (Gradient projection method with gradient-based line search)
Given a feasible approximate solution x ∈ Ω, do until convergence

xnew = [x− s∇f(x)]Ω with s computed by Algorithm 7.

Algorithm 7 (Gradient-based line search for constrained problems)
Given a feasible approximate solution x ∈ Ω. Choose s > 0 and c > 1.

1. x+ = [x− s∇f(x)]Ω, γ = −(∇f(x))T [∇f(x+)]A(x+)

2. if γ < 0
2.1 do until γ+ > 0

2.1.1 s := cs
2.1.2. x+ = [x− s∇f(x)]Ω

13
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2.1.3. γ+ = −(∇f(x))T [∇f(x+)]A(x+)

2.2. s := 1
cs

else
2.3. do until γ+ < 0

2.3.1. s := 1
cs

2.3.2. x+ = [x− s∇f(x)]Ω
2.3.3. γ+ = −(∇f(x))T [∇f(x+)]A(x+)

end
3. return current s

Lemma 4.2 Algorithm 7 is well-defined and finishes in a finite number of steps. At the
new point, we have f(xnew) < f(x) and γ+ < −(∇f(x))T ∇f(xnew) < 0.

Proof. For simplicity, we assume that γ < 0, so we are in the 2.1.–2.2. branch of the
algorithm. The other case would be handled analogously. Assume first that no constraints
are active at the initial point x, i.e., A(x) = ∅. Once we have computed a new point x+

and found the active set A(x+), we can split the search direction −∇f(x) into two
vectors:

−∇f(x) = gA(x) + gN (x)

where

(gA(x))i =

〈
0 if i ∈ A(x+)

−(∇f(x))i otherwise

and complementary for gN (x). Both gA(x) and gN (x) are still descent directions, in
particular

−(∇f(x))T gA(x) < 0 .

Let

x̂ := x− ŝ∇f(x)

with ŝ chosen such that A(x̂) = A(x+) (see Figure 4, left). If −(∇f(x̂))T gA(x) < 0 then
the function is still descending at x̂ in direction gA(x) and we do a line search in this
direction, i.e., along the manifold defined by active indices. Due to convexity of f , we
either have to reach a (finite) point at which the directional derivative changes its sign or
when we hit a new constraint and the active set changes; in the latter case we repeat the
above argument with the new active set. If −(∇f(x̂))T gA(x) ≥ 0 then we know that we
went too far, the algorithm stops and returns the previous trial point. The rest follows
from Lemma 4.1.

Now if A(x) 6= ∅ then either A(x+) = A(x) and the above argument applies or some
constraints from A(x) are released at x+ (Figure 4, right). But this would mean that the
search direction goes away from these constraints, they can be ignored and, again, the
above arguments apply.

In the (unlikely) case A(x+) = {1, 2, . . . , n} when all components of the trial point x+

are active, we have γ+ = 0 and the algorithm stops and returns the previous trial point.
�
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Figure 4. Gradient-based line search.

Our preferred choice of the parameters is c = 2 and s = 1 in the first iteration. In the
following iterations of the multigrid V-cycle, the parameter s is chosen as the final one
from the previous call of gradient Algorithms 5 or 7.

5. Numerical experiments

In this section we presents results of our numerical experiments using examples collected
from the literature. We will start with a quadratic problem, in order to see the influence
of non-linearity on the behaviour of the multigrid method.

For each example we will present the computed asymptotic rate of convergence for
different numbers of the smoothing steps, namely for 2,4,6,8,10 smoothing steps (half of
them in the pre-smoothing phase, half in the post-smoothing). In the same table, we will
give the number of function and gradient calls on the finest level. We will also present a
comparison (in terms of function/gradient calls) with one of the most efficient codes for
these problems, the L-BFGS-B by Morales and Nocedal [27].

All examples are defined on the square Ω = (0, 1)2 in the infinite dimensional setting.
We then use regular meshes of square finite elements with bilinear basis functions for their
discretization. The initial coarsest mesh (refinement level 0) consists of four elements.
We apply j = 8 uniform refinement steps to get 9 embedded finite element meshes.
That means that, on refinement level k, k = 0, 1, 2, . . ., we have 4k+1 finite elements and
(2k+1−1)2 interior nodes, with the finest mesh having 262 144 finite elements and 261 121
interior nodes. The prolongation operators Ih2h are based on the nine-point interpolation

scheme defined by the stencil

1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

. We use the full weighting restriction operators

defined by I2h
h = 1

4(Ih2h)T ; see, e.g., [17]. The initial point in all experiments was set to a
zero vector, even if this was infeasible. The problems on the coarsest level were solved by
the same iterative method used as a smoother, however, with high accuracy. In particular,
the parameters ε0 and ν0 in Algorithms 1–3 were set to ε0 = 10−9 and ν0 = 10000. Recall
that ε0 controls the norm of the scaled gradient or the KKT conditions for constrained
problems and ν0 is a bound on the number of iterations; because our coarsest problems
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have very low dimensions, this iteration bound was never reached.

The approximate asymptotic convergence rate is computed as

(
ek
e2

) 1

k−1

, where ek =

‖x∗ − xk‖, xk is the last iteration before the algorithm stops and x∗ is the “exact”
solution as computed either by L-BFGS-B or by the gradient projection method with
high accuracy. Every norm in the examples is the Euclidean norm.

As a measure of efficiency of the algorithms we present the number of function and
gradient evaluations on the finest level. Of course the work on the lower levels is not
free, even though the fine level is dominant, in particular for the nonlinear problems. For
instance, in our implementation of the minimum surface problem (which can certainly
be improved), the function and gradient evaluation on a fine level was 16 times more
expensive than on the coarser level. In most examples, the number of function/gradient
evaluations on a a single coarser level is about the same as on the finest level. In the
most favourable case when the computational complexity of one function and gradient
evaluation is linear in the number of variables, we would expect the effort to compute
the function on the coarser level to be about one-quarter the effort on the finer level.
This claim is confirmed by a remark concluding Example 5.2 presenting exact timings
on all levels.

All algorithms were implemented in MATLAB. The interface to the L-BFGS-B code
was provided by Stephen Becker1. For all experiments we used a laptop with Intel Core
i7-3570 CPU M 620 at 2.67GHz with 4GB RAM, and MATLAB version 8.0.0 (2012b)
running in 64 bit Windows 7.

5.1 Example: quadratic obstacle problem

Let us start with the “Spiral problem” from [10]. This is a quadratic optimization problem
resulting from the Laplace equation in Ω ⊂ R2:

min
u∈H1

0 (Ω)
J (u) :=

1

2

∫
Ω
‖∇u‖2 dx−

∫
Ω
Fu dx

subject to

ϕ ≤ u ≤ ψ, a.e. in Ω ,

with F ∈ L2(Ω). We will use the spiral obstacle, as proposed in [10, §7.1.1]:

ϕ(x(r, φ)) = sin(2π/r + π/2− φ) +
r(r + 1)

r − 2
− 3r + 3.6, r 6= 0 ,

and ϕ(0) = 3.6 with polar coordinates x(r, φ) = reiφ. The upper bound function ψ is set
to infinity and the right-hand side function F to zero. The obstacle function is illustrated
in Figure 5 (left), together with the solution of the problem for 8 refinement levels.

Table 1 presents the results of the numerical experiments. It shows the asymptotic rate
of convergence (an average from the last 3–5 iterations) and the number of evaluations of
the objective function and its gradient on the finest level only. The results are presented
for 4–8 refinement levels and refer to Algorithm 1 with ν pre-smoothing and ν post-
smoothing steps (GP-ν). For comparison, we also show the convergence rate for the

1http://www.mathworks.co.uk/matlabcentral/fileexchange/35104-lbfgsb–l-bfgs-b–mex-wrapper
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Figure 5. Example 5.1, eight refinement levels, obstacle (left) and solution (right).

algorithm with the projected Gauss-Seidel (GSP) smoother (one pre- and one post-
smoothing step). The last row of the table presents the numbers of function evaluations
when we solved the finest level problem directly by the gradient projection method. The
Gauss-Seidel smoother is clearly superior to GP-1 but its convergence rate can be reached
by several GP smoothing steps. This increased number of GP steps is size-dependent, as
indicated by the examples. However, the results also suggest that the increased number
of GP steps is not needed, as the smallest number of function/gradient evaluations is
obtained with 1 or 2 smoothing steps. Notice also that one GSP step is much more CPU
expensive than one GP step, at least in MATLAB implementation which allows for the
vectorization of the GP step. The reason for this is that in GSP the projection must
be performed for each variable separately, after its update by the Gauss-Seidel inner
iteration, while in the GP the whole vector is projected at once.

Table 1. Example 5.1, asymptotic rate of convergence and number of top-level function evaluations for 4–8

refinement levels. Here “vars” stands for the number of variables, GSP for the (1,1) V-cycle with Gauss-Seidel
method with projection; GP-ν for a (ν, ν) V-cycle with the GP smoother; “GP only” for gradient projection

method solving the full problem on the finest mesh.

level (vars) 4 (961) 5 (3969) 6 (16129) 7 (65025) 8 (261121)

smoother rate feval rate feval rate feval rate feval rate feval

GSP 0.07 0.14 0.22 0.32 0.37

GP-1 0.18 71 0.33 107 0.50 180 0.80 410 0.86 711
GP-2 0.07 93 0.14 111 0.26 206 0.57 384 0.70 677
GP-3 0.03 92 0.08 142 0.17 239 0.35 387 0.55 806
GP-4 0.02 122 0.05 176 0.12 285 0.31 459 0.53 887
GP-5 0.01 160 0.03 211 0.08 306 0.23 488 0.34 912

GP only 685 2361 9320 34133 127289

The numbers from Table 1 are graphically presented in Figure 6: it shows the rate of
convergence for the different smoothing steps, as it increases with the number of levels
(left-hand figure). The right-hand figure presents the logarithm of function evaluations
as a function of the number of levels. We can observe a rapid increase for the “pure”
gradient projection method and a much smaller increase for the multigrid algorithm,
almost independent of the number of smoothing steps.
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Figure 6. Example 5.1, rate of convergence (left) and function evaluations (right) for various smoothers as a

function of the number of levels.

5.2 Example: non-quadratic obstacle problem

Consider the following optimization problem in Ω ⊂ R2:

min
u∈H1

0 (Ω)
J (u) :=

1

2

∫
Ω
‖∇u‖2 − (ueu − eu) dx−

∫
Ω
Fu dx

subject to

ϕ ≤ u ≤ ψ, a.e. in Ω ,

with

ϕ(x1, x2) = −8(x1 − 7/16)2 − 8(x2 − 7/16)2 + 0.2, ψ = 0.5

and

F (x1, x2) =
(

9π2 + e(x2
1−x3

1) sin(3πx2)(x2
1 − x3

1) + 6x1 − 2
)

sin(3πx1) .

The unconstrained version of the problem is a nonlinear PDE studied in [5, p.105].
Figure 7 shows the solution of the unconstrained (top) and the constrained problem
(bottom), both in two different views.

Just as in Example 5.1, Table 2 together with Figure 8 present the results of the
numerical experiments using Algorithm 2. We do not show a comparison of the GP
smoother with the projected nonlinear Gauss-Seidel smoother, used, e.g., in [16]. This is
because the nonlinear GS algorithm needs the Hessian of the objective function and turns
the algorithm into a second-order method. We can use a finite difference approximation of
the Hessian but then the resulting code is extremely slow. We do, however, compare the
multigrid algorithm with one of the most efficient codes for bound-constrained nonlinear
optimization, the L-BFGS-B code by Morales and Nocedal [27]. We can see that, with
increasing size of the problem, the number of function evaluations grows faster in L-
BFGS-B (though we should keep in mind that additional work needs to be done on
coarse levels of the multigrid algorithm; see Remark 1 below). And we should also keep
in mind that, unlike in the multigrid algorithm, the function and gradient evaluation is
not the only computationally expensive part of the L-BFGS-B code. We do not compare
the CPU times, as L-BFGS-B is coded in Fortran.

Remark 1 To have a better idea about the amount of work required on the coarser levels
we present CPU times for the largest problem (` = 9) with GP-1. Using MATLAB’s tic-
toc commands, we measured the cumulative times spent in the iterative method (the
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Figure 7. Example 5.2, solution of the unconstrained problem (top) and the constrained problem (bottom).

Table 2. Example 5.2, asymptotic rate of convergence and number of top-level function evaluations for 4–8

refinement levels. GP-ν stands for a (ν, ν) V-cycle; “GP only” and “L-BFGS-B” for gradient projection method
and the L-BFGS-B method, respectively, solving the full problem on the finest level.

level (vars) 4 (961) 5 (3969) 6 (16129) 7 (65025) 8 (261121)

smoother rate feval rate feval rate feval rate feval rate feval

GP-1 0.17 62 0.27 81 0.35 93 0.52 127 0.55 166
GP-2 0.12 131 0.21 193 0.29 192 0.42 282 0.50 321
GP-3 0.05 127 0.08 159 0.11 175 0.14 179 0.22 258
GP-4 0.05 171 0.07 205 0.09 249 0.14 284 0.29 384
GP-5 0.03 178 0.04 192 0.08 259 0.08 288 0.15 360

GP only 485 656 2128 5746 12197

L-BFGS-B 59 101 151 257 405

smoother) on every level; the times are given in seconds. The time spent on the finest
mesh was 6.240, while the time spent on all other meshes was 1.824. The latter number is a
sum of (0.231, 0.036, 0.029, 0.031, 0.043, 0.108, 0.250, 1.097) corresponding to the coarsest
up to the second finest mesh, respectively. Recall that the problem on the coarsest mesh
is solved to high accuracy.
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Figure 8. Example 5.2, rate of convergence (left) and function evaluations (right) for various smoothers as a

function of the number of levels.

5.3 Example: minimal surface problem

Our next example is the minimal surface problem

min
u∈H1(Ω)

J (u) :=

∫
Ω

√
1 + ‖∇u‖2 dx

subject to

u(x1, x2) = uΓ(x1, x2) for (x1, x2) ∈ ∂Ω

ϕ ≤ u ≤ ψ, a.e. in Ω ,

with the boundary function (see [13])

uΓ(x1, 0) = ω, uΓ(1, x2) = −ω, uΓ(x1, 1) = −ω, uΓ(0, x2) = ω, ω = − sin(2πξ)

and the parabolic lower bound

ϕ(x1, x2) = −8(x1 − 0.5)2 − 8(x2 − 0.5)2 + 0.55 .

The upper bound function ψ is set to infinity. The solution is shown in two different
views in Figure 9.

Figure 9. Example 5.3, solution.

As before, Table 3 together with Figure 10 present the results of the numerical ex-
periments using Algorithm 2. Notice that the function and gradient evaluation for this
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problem is much more expensive than in the other examples and we were not able to
obtain the exact solution to the finest problems in a reasonable time by L-BFGS-B. That
is why we only present results for levels 3–7.

Table 3. Example 5.3, asymptotic rate of convergence and number of top-level function evaluations for 2–6

refinement levels. GP-ν stands for a (ν, ν) V-cycle; “GP only” and “L-BFGS-B” for gradient projection method
and the L-BFGS-B method, respectively, solving the full problem on the finest level.

level (vars) 2 (81) 3 (289) 4 (1089) 5 (4225) 6 (16641)

smoother rate feval rate feval rate feval rate feval rate feval

GP-1 0.118 46 0.115 47 0.22 62 0.21 72 0.60 141
GP-2 0.079 125 0.055 157 0.13 176 0.18 111 0.43 171
GP-3 0.029 234 0.028 188 0.07 234 0.14 223 0.21 249
GP-4 0.011 156 0.021 205 0.05 165 0.06 170 0.19 276
GP-5 0.004 223 0.010 241 0.04 332 0.09 284 0.13 374

GP only 75 216 685 2361 9320

L-BFGS-B 14 30 126 156 242

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 4 5 6

GP-1

GP-3

GP-5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6

GP-1

GP-3

GP-5

GP only

L-BFGS

Figure 10. Example 5.3, rate of convergence (left) and function evaluations (right) for various smoothers as a
function of the number of levels.

5.4 Example: obstacle problem with an equality constraint

Finally, let us consider an example with an obstacle and an additional equality constraint.
The problem stems from the nonlinear PDE

−4u− u2 = f(x) in Ω

u = 0 on ∂Ω

and can be formulated as the following optimization problem

min
u∈H1

0 (Ω)
J (u) :=

1

2

∫
Ω

(
‖∇u‖2 − 1

3
u3

)
dx−

∫
Ω
Fu dx

subject to

ϕ ≤ u a.e. in Ω∫
Ω
u dx = 1 ,
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with F ≡ 0 and

ϕ(x1, x2) = −32(x1 − 0.5)2 − 32(x2 − 0.5)2 + 2.5 .

Figure 11 (left) shows the solution and a comparison with the solution of the same
problem without the equality constraint (right). In the unconstrained case, the opti-
mal solution gives

∫
Ω u dx = 0.62. So, in order to satisfy the equality constraint, the

unconstrained solution has been “inflated”.

Figure 11. Example 5.4, solution with (left) and without (right) the equality constraint.

Table 4 together with Figure 12 present the results of the numerical experiments using
Algorithm 3 with the additional handling of the equality constraint (Section 3). The
explanation is the same as in the previous examples.

Table 4. Example 5.4, asymptotic rate of convergence and number of top-level function evaluations for 4–8

refinement levels. GP-ν stands for a (ν, ν) V-cycle; “GP only” for gradient projection method solving the full
problem on the finest level.

level (vars) 4 (961) 5 (3969) 6 (16129) 7 (65025) 8 (261121)

smoother rate feval rate feval rate feval rate feval rate feval

GP-1 0.32 93 0.33 113 0.44 163 0.59 244 0.61 350
GP-2 0.11 88 0.25 120 0.29 129 0.51 183 0.54 182
GP-3 0.09 107 0.14 148 0.25 147 0.4 178 0.44 176
GP-4 0.07 153 0.14 182 0.23 186 0.36 224 0.44 191
GP-5 0.06 137 0.11 185 0.19 202 0.33 204 0.36 223

GP only 388 1586 5907 21372 75258

Remark 2 Notice that, in the presence of the equality constraint, we can no longer
use Algorithm 5 as a smoother, as the gradient-based line search would not lead to
a convergent algorithm. Instead, we use a standard projected gradient method with
backtracking Armijo line search. To find the projection on the feasible set, we now have
to solve a convex quadratic programming problem. Moreover, this problem has to be
solved to a high precision, because we need to identify the active constraints in (7)–(8).
In our implementation, we have used the Gurobi solver for this purpose [15].
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Figure 12. Example 5.4, rate of convergence (left) and function evaluations (right) for various smoothers as a

function of the number of levels.

5.5 To truncate or not to truncate

The tables in [10] (and partly in the previous section) show the clear advantage of trun-
cation: the higher asymptotic rate of convergence as compared to Algorithm 3 without
truncation. However, a typical user may not be interested in asymptotic rate but in fast
convergence in the first iterations. And here Algorithm 3 can be the winner. Figure 13
presents the convergence curves for Example 5.1 with 8 refinement levels and ν = 5.
The dashed line is for Algorithm 3 (no truncation) while the full line for Algorithm 2
(truncation). We can see a typical behaviour of the truncated algorithm: it starts slowly,
tries to find the exact active set and, once this is found, the algorithm speeds up (for
more details, see [10]). However, the total amount of work (represented in this case by
the integral of the convergence curve) to reach the required accuracy is actually lower
for the asymptotically slower algorithm without truncation.
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Figure 13. Example 5.1, eight refinement levels. Convergence curves (iterations vs logarithm of the error) for

Algorithm 2 with truncation (full line) and Algorithm 3 without truncation (dashed line).

6. Conclusions

We have presented a version of the multigrid method for convex optimization problems
with bound constraints and a possible single linear equality constraint. The method only
needs gradient information, unlike similar published algorithms. We have shown that
the projected gradient method can serve well as a smoother and that only a very small
number of pre- and post-smoothing iterations is needed to obtain an efficient algorithm.
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The main advantage of the proposed method is thus in its low computational complexity
and low memory requirements.

As an interesting by-product for unconstrained problems, we obtained a first-order
method able to solve large scale problems efficiently and to high accuracy, which is rather
untypical in today’s realm of first-order methods designed to solve very large scale convex
problems though only to some 2–3 digits of accuracy.

The natural question arises about more general constraints. The authors devoted sig-
nificant effort to the generalization of this method to the topology optimization problem
[1], a convex problem with bound constraints and a single linear equality constraint.
This problem, however, works with two kinds of variables that need to be discretized
and prolonged/restricted on different refinement levels. It turns out that the interplay of
these two kinds of discretization brings major technical difficulties. Also, it seems that
more general constraints may increase the complexity of the formulas for constraint re-
striction. So at the time of writing this article, we think that more complex constraints
could be better handled by traditional optimization methods (SQP or interior point) and
multigrid could then be used for the solution of resulting linear systems.

Nevertheless, the class of unconstrained and bound-constrained convex optimization
problems is very large and we believe that the presented method, whenever applicable,
is one of the most efficient approaches to their solution.
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