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Abstract. An interior point method for the structural topology optimization is proposed. The
linear systems arising in the method are solved by the conjugate gradient method preconditioned by
geometric multigrid. The resulting method is then compared with the so-called optimality condition
method, an established technique in topology optimization. This method is also equipped with the
multigrid preconditioned conjugate gradient algorithm. We conclude that, for large scale problems,
the interior point method with an inexact iterative linear solver is superior to any other variant
studied in the paper.

Keywords:. topology optimization, multigrid methods, interior point methods,
preconditioners for iterative methods

MSC2010:. 65N55, 35Q93, 90C51, 65F08

1. Introduction. The discipline of topology optimization offers challenging prob-
lems to researchers working in large scale numerical optimization. The results are
essentially colors of pixels in a 2d or 3d “pictures”. Hence, in order to obtain high-
quality results, i.e., fine pictures capturing all details, a very large number of variables
is essential. In this article we only consider the discretized, finite dimensional topol-
ogy optimization problem. For its derivation and for general introduction to topology
optimization, see, e.g., [5].

We will consider the basic problem of topology optimization: minimization of
compliance under equilibrium equation constraints and the most basic linear con-
straints on the design variables:

min
x∈Rm, u∈Rn

1

2
fTu (1.1)

subject to

K(x)u = f
m

∑
i=1
xi = V

xi ≥ 0, i = 1, . . . ,m

xi ≤ x, i = 1, . . . ,m

where K(x) = ∑
m
i=1 xiKi, Ki ∈ Rn×n and f ∈ Rn. We assume that Ki are symmetric

and positive semidefinite and that ∑
m
i=1Ki is sparse and positive definite. We also

assume that the data V ∈ R and x ∈ Rm is chosen such that the problem is strictly
feasible. For further reference, we will call the design variable x the density.

The most established and commonly used optimization methods to solve this
problem are the Optimality Conditions (OC) method ([5, p.308]) and the Method of
Moving Asymptotes (MMA) by Svanberg [24]. In both methods, the computational
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bottleneck consists of the solution of a large scale linear system with a sparse sym-
metric positive definite matrix (the equilibrium equation). This is traditionally used
by a direct solver, such as the Cholesky decomposition. Recently, several authors
proposed the use of iterative solvers, mostly preconditioned Krylov subspace solvers,
such as Conjugate Gradients (CG), MINRES or GMRES. These have one big advan-
tage which is specific for their use within optimization algorithms: in the early (or
even not-so-early) stages of the optimization method, only a very low accuracy of the
linear solver is needed. They also have one big disadvantage: in the late stages of the
optimization method, the linear solvers become very ill-conditioned and thus a vanilla
iterative method can come into extreme difficulties.

It is therefore essential to use a good preconditioner for the Krylov subspace
method. The difficulty lies in the fact that as we approach the optimal solution of
the topology optimization problem, the condition number of the stiffness matrices
increases significantly. In fact, it is only controlled by an artificial lower bound on
the variable—if this bound was zero, the stiffness matrix would be singular. Wang
et al. [26] studied the dependence of the condition number on the variables and con-
cluded that it is a combination of the ratio of maximum and minimum density and
the conditioning of a corresponding problem with constant density. Consequently,
they proposed a rescaling of the stiffness matrix combined with incomplete Cholesky
preconditioner. The rescaling results in constant order of condition number during
the optimization iterations. For large scale example still hundreds of MINRES iter-
ations are needed and hence the authors use recycling of certain Krylov subspaces
from previous iterations of the optimization method. Recently, Amir et al. [2] pro-
posed a multigrid preconditioner for the systems resulting from OC or MMA methods
and demonstrated that the resulting linear system solver keeps its efficiency also for
rapidly varying coefficient of the underlying PDE, i.e., rapidly varying x in (1.1).

While OC and MMA methods are the most popular methods in topology opti-
mization, they may not be the most efficient. The basic problem (1.1) is convex (more
precisely, it is equivalent to a convex problem) and we may thus expect interior point
methods to be highly efficient (see, e.g., [21]). Indeed, Jarre et al. [16] proposed an
interior point method for the truss topology optimization problem that is equivalent
to the discretized problem (1.1), with the exception that the stiffness matrix may be
dense. They reported high efficiency of the method and ability to solve large scale
problems; they also proved convergence of the proposed method. Maar and Schulz
[19] studied interior point methods for problem (1.1) with sparse stiffness matrices
and proposed to use a multigrid preconditioner for the GMRES method to solve the
arising indefinite linear systems.

A new comprehensive numerical study of optimization methods for topology opti-
mization can be found in [22]. The authors compare the efficiency of different methods,
including general purpose optimization solvers such as SNOPT [12].

In this article we follow the path outlined by Jarre et al. [16] and by Maar and
Schulz [19]. We use the same interior point method as in [16] and, unlike in [19],
reduce the linear systems to obtain positive definite matrices. This allows us to use
standard conjugate gradient method preconditioned by standard V-cycle multigrid.
We further use the same linear solver in the OC method (in the same way as suggested
in [2]) to get a comparison with our interior point method. We will see that in
both cases the inexact multigrid preconditioned CG method leads to a very efficient
optimization solver. Most notably, in case of the interior point method we obtain
an approximately constant number of CG iterations needed to solve the full problem
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which is independent of the size of the problem. In case of the OC method, the
total number of OC iterations is increasing with the problem size; however, for a
given problem size, the number of CG steps per one linear systems remains almost
constant, and very low, in all OC iterations, notwithstanding the condition number
of the stiffness matrix.

In this paper, we primarily consider the so-called variable thickness sheet problem
(1.1) and not its more popular cousin, the SIMP problem [5]. The reason is the
(hidden) convexity and existence of solution of (1.1) (see [4] and [5, p.272–274]).
The goal of the paper is to study and compare numerical methods for optimization
problems. This can be done in a fair way if the problem is convex; by introducing
non-convexity, as in the SIMP formulation, any such comparison is further influenced
by many additional factors. To demonstrate these difficulties and the fact that the
iterative solver is still a viable option in this context, we have added a brief section
on the SIMP model.

Finally, the methodology proposed in this paper is fully based on (typically vec-
torizable and/or parallelizable) iterative schemes. It could thus be of benefit to the
(re-)emerging methods of distributed optimization [7] and optimization on vector pro-
cessors, namely GPU [23, 28], not only in the context of topology optimization.

2. Newton systems for KKT conditions. Let µ ∈ Rn, λ ∈ R, ϕ ∈ Rm and
ψ ∈ Rm denote the respective Lagrangian multipliers for constraints in (1.1). The
Karusch-Kuhn-Tucker (KKT) first order optimality conditions for (1.1) can be written
as

−Res(1) ∶= K(x)u − f = 0 (2.1)

−Res(2) ∶=
m

∑
i=1
xi − V = 0 (2.2)

−Res(3) ∶= −
1

2
uTKiu − λ − ϕi + ψi = 0, i = 1, . . . ,m (2.3)

ϕixi = 0, i = 1, . . . ,m (2.4)

ψi(x − xi) = 0, i = 1, . . . ,m (2.5)

xi ≥ 0, x − xi ≥ 0, ϕi ≥ 0, ψ ≥ 0 (2.6)

We will perturb the complementarity constraints (2.4) and (2.5) by barrier parameters
s, r > 0:

−Res(4) ∶= ϕixi − s = 0, i = 1, . . . ,m (2.7)

−Res(5) ∶= ψi(x − xi) − r = 0, i = 1, . . . ,m (2.8)

and apply Newton’s method to the system of nonlinear equations (2.1), (2.2), (2.3),
(2.7), (2.8). In every step of the Newton method, we have to solve the linear system

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K(x) 0 B(u) 0 0
0 0 eT 0 0

B(u)T e 0 I −I
0 0 Φ X 0

0 0 −Ψ 0 X̃

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

du
dλ
dx
dϕ
dψ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Res(1)

Res(2)

Res(3)

Res(4)

Res(5)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.9)

Here B(u) = (K1u,K2u, . . . ,Kmu), e is a vector of all ones and

X = diag(x), X̃ = diag(x − x), Φ = diag(ϕ), Ψ = diag(ψ)
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are diagonal matrices with the corresponding vectors on the diagonal.
Because the last two equations only involve diagonal matrices, we can eliminate

dϕ and dψ:

dϕ =X−1
(Res(4) −Φdt) (2.10)

dψ = X̃−1
(Res(5) −Ψdt) . (2.11)

This will reduce the system (2.9) to

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K(x) 0 B(u)
0 0 eT

B(u)T e −(X−1Φ + X̃−1Ψ)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

du
dλ
dx

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Res(1)

Res(2)

R̃es
(3)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.12)

with

R̃es
(3)

= Res(3) −X−1Res(4) + X̃−1Res(5) .

We can now follow two strategies. Firstly, we can solve the system (2.12) as it
is, i.e., an indefinite system of dimension m + n + 1. To simplify things, we can still
eliminate the multipliers ϕ and ψ as

ϕi = s/xi, ψi = r/(x − xi), i = 1, . . . ,m

to get

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K(x) 0 B(u)
0 0 eT

B(u)T e −(sX−2 + rX̃−2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

du
dλ
dx

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Res(1)

Res(2)

R̃es
(3)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.13)

Remark. System (2.13) could be obtained directly as a Newton system for optimality
conditions of the following “penalized” problem:

min
u

1

2
fTu + s

m

∑
i=1

logxi + r
m

∑
i=1

log(x − xi)

s.t. K(x)u = f,
m

∑
i=1
xi = V ;

see, e.g., [21, Ch.19.1].

Secondly, we can further reduce the Newton system (2.12). As the (3,3)-block
matrix in (2.12) is diagonal, we will compute the Schur complement to the leading
block to get

Z [
du
dλ

] = Res(Z) , (2.14)

with

Z = [
K(x) 0

0 0
] + [

B(u)
eT

] (X−1Φ + X̃−1Ψ)
−1 [B(u)T e] (2.15)
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and

Res(Z) = [
Res(1)

Res(2)
] + [

B(u)
eT

] (X−1Φ + X̃−1Ψ)
−1R̃es

(3)
. (2.16)

The remaining part of the solution, dx, is then computed by

dx = (X−1Φ + X̃−1Ψ)
−1

(R̃es
(3)

−BTRes(1) − eRes(2)) . (2.17)

3. Interior point method. Once we have derived the Newton systems, the
interior point algorithm is straightforward (see, e.g., [21, Ch.19]). The details of the
individual steps of the algorithm will be given in subsequent paragraphs.

3.1. The algorithm. Denote z = (u,λ, x,ϕ,ψ)T . Set xi = V /m, i = 1, . . . ,m,
u = K(x)−1f , λ = 1, ϕ = e, ψ = e. Set s = 1, r = 1, σs, σr ∈ (0,1). Do until
convergence:

1. Solve either system (2.12) or (2.14) and compute the remaining components
of vector d from (2.9).

2. Find the step length α.
3. Update the solution

z = z + αd .

4. If the stopping criterium for the Newton method is satisfied, update the
barrier parameters

s = σs ⋅ s, r = σr ⋅ r .

Otherwise, keep current values of s and r.
Return to Step 1.

3.2. Barrier parameter update. We use a fixed update of both parameters s
and r with

σs = σr = 0.2 .

This update leads to long steps and, consequently, small number of interior point
iterations. The value of the update parameter is a result of testing and leads, in
average, to the smallest overall number of Newton steps. A more sophisticated version
of the algorithm, with an adaptive choice of the barrier parameters s and r can be
found in [16].

3.3. Step length. We cannot take the full Newton step

znew = z + d

because some variables could become infeasible with respect to the inequality con-
straints (2.6). We thus need to shorten the step in order to stay strictly feasible with
some “buffer” to the boundary of the feasible domain. A simple step-length procedure
is described below (see also [21, Ch.19.2]).

Find αl such that xi+(dx)i > 0 for i ∈ {j ∶ (dx)j < 0} and αu such that xi+(dx)i < x
for i ∈ {j ∶ (dx)j > 0} using the following formulas:

αl = 0.9 ⋅ min
i∶(dx)i<0

{−
xi

(dx)i
} , αu = 0.9 ⋅ min

i∶(dx)i>0
{
x − xi
(dx)i

} .
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The constant 0.9 guarantees the shortening of the step in the interior of the feasible
domain. Now take the smaller of these numbers and, if applicable, reduce it to 1:

α = min{αl, αu,1} .

A more sophisticated (and complicated) line-search procedure is described in [16].
It is worth noticing that for a properly chosen initial barrier parameter and its

update, the step-length reduction is almost never needed; this was, at least, the case
of our numerical examples and our choice of the parameters.

3.4. Stopping rules. Following [16], we terminate the Newton method when-
ever

∥Res(1)∥
∥f∥

+
∥R̃es

(3)
∥

∥ϕ∥ + ∥ψ∥
≤ τNWT.

The full interior point method is stopped as soon as both parameters s and r are
smaller than a prescribed tolerance:

max{s, r} ≤ τIP . (3.1)

In our numerical experiments, we have used the values τNWT = 10−1 and τIP = 10−8.
Remark 3.1. A more established criterium for terminating the interior point

algorithm would be to stop whenever all (scaled) residua are below some tolerance,
i.e.,

∥Res(1)∥
∥f∥

+
∥R̃es

(3)
∥

∥ϕ∥ + ∥ψ∥
+

ϕTx

∥ϕ∥∥x∥
+
ψT (x − x)

∥ϕ∥∥x∥
≤ τIP.

This criterium, however, leads to almost the same results as (3.1), hence we opted for
the simpler and more predictable one.

Remark 3.2. The parameter τNWT is kept constant in our implementation, unlike
in classic path-following methods. We will return to this point later in Section 8.1.

4. Optimality Conditions method. One of the goals of this paper is to com-
pare the interior point method with the established and commonly used Optimality
Condition (OC) method. We will therefore briefly introduce the basic algorithm and
its new variant. For more details, see ([5, p.308]) and the references therein.

4.1. OC algorithm. Assume for the moment that the bound constraints in
(1.1) are not present. Then the KKT condition (2.3) would read as

−uTKiu + λ = 0 , i = 1, . . . ,m .

(For convenience, we multiplied λ from (2.3) by − 1
2
.) Multiplying both sides by xi,

we get

xiλ = xiu
TKiu , i = 1, . . . ,m

which leads to the following iterative scheme:

xNEW
i =

1

λ
xiu

TKiu , i = 1, . . . ,m .

The new value of x is then projected on the feasible set given by the bound constraints.
The value of λ should be chosen such that ∑

m
i=1 x

NEW
i = V and is obtained by a simple

bisection algorithm. Hence we obtain the following algorithm called the OC method:
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Algorithm OC. Let x ∈ Rm be given such that ∑
m
i=1 xi = V , x ≥ 0. Repeat until

convergence:
1. u = (K(x))−1f
2. λ = 10000, λ = 0
3. While λ − λ > τλ

(a) λ = (λ + λ)/2

(b) xNEW
i = min{xi

uTKiu

λ
,x} , i = 1, . . . ,m

(c) x = xNEW

(d) if ∑
m
i=1 xi > V then set λ = λ; else if ∑

m
i=1 xi ≤ V then set λ = λ

The value of the bisection stopping criterium τλ has been set to 10−11.
Notice that, due to positive semidefiniteness of Ki, the update in step 3(b) is

always non-negative and thus the lower-bound constraint in the original problem
(1.1) is automatically satisfied.

The basic version of the OC method converges (there are no known counter exam-
ples) but is extremely slow. The reason for this is that, from the very first iterations,
the method is zig-zagging between two clusters of points. However, the following two
modifications lead to a substantial improvement. To the best of our knowledge, the
second modification called Averaged OC is new.

4.2. Damped OC.

Algorithm DOC. Let x ∈ Rm be given such that ∑xi = V , x ≥ 0. Repeat:
1. u = (K(x))−1f

2. xNEW
i = min{xi

(uTKiu)
q

λ
,x} , i = 1, . . . ,m

3. x = xNEW

Here q is called the damping parameter; the typical choice is q = 1/2. This version
of the method is widely used among the structural engineers.

4.3. Averaged OC. Let us define an operator OC(⋅) as a result of one step of
the standard OC algorithm.

Algorithm AOC. Let x ∈ Rm be given such that ∑xi = V , x ≥ 0. Repeat:
1. x(1) = OC(x)
2. x(2) = OC(x(1))
3. x = 1

2
(x(1) + x(2))

Numerical experiments suggest that Algorithm AOC is slightly faster than Algorithm
DOC. This modification seems to be new, at least we did not find it in the existing
literature.

5. Multigrid conjugate gradient method. In both optimization algorithms
introduced above, we repeatedly need to solve systems of linear equations. In this
section, we will introduce an efficient iterative method that seems to be most suitable
for these problems. Throughout this section, we assume that we want to solve the
problem

Az = b (5.1)

where b ∈ Rn and A is a n × n symmetric positive definite matrix.

5.1. Multigrid method for linear systems. Recall first the Correction Scheme
(CS) version of the multigrid algorithm (see, e.g., [15]). Let opt denote a (typically

7



but not necessarily) convergent iterative algorithm for (5.1):

znew = opt(A, b; z, ε, ν) ,

where, on input, z is the initial approximation of the solution, ε is the required
precision and ν the maximum number of iterations allowed. This will be called the
smoother. A typical example is the Gauss-Seidel iterative method.

Assume that there exist ` linear operators Ik−1k ∶ Rnk → Rnk−1 , k = 2, . . . , `, with
n ∶= n` > n`−1 > ⋯ > n2 > n1 and let Ikk−1 ∶= (Ik−1k )T . These are either constructed from
finite element or finite difference refinements of some original coarse grid (geometric
multigrid) or from the matrix A (algebraic multigrid); see [8] for details.

Define the “coarse level” problems

Akzk = bk, k = 1, . . . , ` − 1

with

Ak−1 = Ik−1k (Ak)I
k
k−1, bk−1 = Ik−1k (bk), k = 2, . . . , ` .

Algorithm MG. (V-cycle correction scheme multigrid)
Set ε, ε0. Initialize z(`).
for i = 1 ∶ niter

z(`) ∶=mgm(`, z(`), b`)
test convergence

end
function z(k) =mgm(k, z(k), rk)

if k = 0
z(k) ∶= opt(A1, b1; z(k), ε0, ν0) (coarsest grid solution)

else
z(k) ∶= opt(Ak, bk; z(k), ε, ν1) (pre-smoothing)
rk−1 = Ik−1k (rk −Akz

(k)) (restricted residuum)
v(k−1) =mgm(k − 1,0nk−1 , rk−1) (coarse grid correction)
z(k) ∶= z(k) + Ikk−1v

(k−1) (solution update)
z(k) ∶= opt(Ak, bk; z(k), ε, ν2) (post-smoothing)

end

5.2. Multigrid preconditioned conjugate gradient method. Although the
multigrid method described above is very efficient, an even more efficient tool for
solving (5.1) may be the preconditioned conjugate gradient (CG) method, whereas
the preconditioner consist of one step of the V-cycle multigrid method. The algorithm
is described below (see, e.g., [13]).

Algorithm PCG.
Given initial z, set r ∶= Az − b
y ∶=mgm(`,0n, r)
Set p ∶= −y
for i = 1 ∶ niter

α ∶=
rT y

pTAp
z ∶= z + αp
r̃ ∶= r + αAp
ỹ ∶=mgm(`,0n, r̃)

8



β ∶=
r̃T ỹ

rT y
p ∶= −y + βp
r ∶= r̃, y ∶= ỹ
test convergence

end

6. Multigrid conjugate gradients for IP and OC methods. The main
goal of this section (and of the whole article) is to study the effect of the multigrid
preconditioned CG method in the IP and OC algorithms. We will also compare them
to their counterparts, IP and OC with direct solvers.

The details on discretization and the choice of prolongation and restriction oper-
ators will be given in Section 7.

6.1. Multigrid conjugate gradients for IP. Our goal is to solve the linear
systems arising in the Newton method, by the conjugate gradient method precon-
ditioned by one V-type multigrid step. We can choose one of the three equivalent
systems to solve, namely the full system (2.9), the reduced saddle-point system (2.12)
and the so-called augmented system (2.14). We prefer the last one for the following
reasons.

● The matrix Z in (2.14) is positive definite and we can thus readily apply
the standard conjugate gradient method together with the standard V-cycle
as a preconditioner. We could, of course, use GMRES or MINRES for the
indefinite systems in (2.9) and (2.12), however, the multigrid preconditioner,
in particular the smoother, would become more complicated in this case; see
[19], who used so-called transforming smoothers introduced by Wittum [27].

● In order to use the multigrid preconditioner, we have to define prolonga-
tion/restriction operators for the involved variables. This can be easily done
in case of the system (2.14) that only involves the displacement variable u ∈ Rn
plus one additional variable λ, the Lagrangian multiplier associated with the
volume constraint; see the next Section 7 for details.
If, on the other hand, we decided to solve (2.9) or (2.12), we would have to
select an additional restriction operator for the variables associated with the
finite elements; this operator should then be “compatible” with the nodal-
based restriction operator. This is a rather non-trivial task and can be simply
avoided by choosing system (2.14).

The matrix Z from (2.14) is positive definite, sparse and typically has an arrow-
type sparsity structure: it is banded apart from the last full row and column; see
Figure 6.1-left. The bandwidth grows, approximately, with the square root of the
problem size. At the same time, the number of non-zeros in each row is always the
same, notwithstanding the problem size.

Stopping rule. It is a big advantage of iterative methods, over direct solvers, that
they allow us to control the precision of the approximate solution and stop whenever
even a low required precision is reached. In our implementation, the PCG method is
stopped whenever

∥ρ∥ ∥b∥ ≤ 10−2 (6.1)

where ρ is residuum and b the right-hand side of the linear system, respectively. In
this way we only compute an approximate Newton direction; it is shown, e.g., in [11]
that the resulting method converges once the approximate Newton direction is “close

9
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Fig. 6.1. Typical sparsity structure of matrix Z from the augmented system (2.14) (left) and
of the stiffness matrix K (right)

enough” (though not infinitesimally close in the limit) to the exact solution of the
Newton system. Furthermore, for convex quadratic programming problems, Gondzio
[14] has shown that when the PCG method is stopped as soon as ∥ρ∥ ≤ 0.05s (s being
the barrier parameter), the theoretical complexity of the interior point method is the
same as with the exact linear solver. Inexact iterative solvers in the context of other
optimization problems and algorithms were further studied, e.g., in [10, 17, 20, 25].

In our case, the value of 10−2 proved to be a good compromise between the
overall number of Newton steps and the overall number of PCG iterations within the
IP method. With this stopping criterium, the IP methods requires, typically, 2–4
PCG iterations in the initial and in many subsequent IP steps. Only when we get
close to the required accuracy, in the last 2–3 IP steps, the conditioning of the matrix
Z increases significantly and so does the number of PCG steps, typically to 10–30;
see the next section for detailed numerical results.

6.2. Multigrid conjugate gradients for OC. Within the OC algorithm, the
multigrid CG method will be used to solve the discretized equilibrium equation Ku =
f . Recall that K is assumed to be a positive definite matrix. Moreover K is very
sparse and, if a reasonably good numbering of the nodes is used, banded. A typical
non-zero structure of K is shown in Figure 6.1-right: it is exactly the same as for the
matrix in (2.14) in the IP method, apart from the additional last column and row in
the augmented matrix in (2.14).

The only degrees of freedom in the resulting algorithm are the stopping criteria
for the OC method and for the multigrid CG method.

The overall stopping criterium. As the dual information (Lagrangian multipliers
associated with the bound constraints) is not readily available, so far the only practical
(and widely used) stopping criterium for the OC method is the difference in the
objective function value in two subsequent iterations. Needless to say that, unless we
have an estimate for the rate of convergence, this criterium can be misleading and
may terminate the iteration process long before some expected approximation of the
optimum has been reached. Nevertheless, many numerical experiments suggest that
this criterium is not as bad as it seems and serves its purpose for the OC method.
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Hence the OC method is typically stopped as soon as

∣fTuk − f
Tuk−1∣ ≤ τOC (6.2)

where k is the iteration index. In our numerical experiments we have used τOC = 10−5;
this value has been chosen such that the OC results are comparable to the IP results,
in the number of valid digits both in the objective function and in the variables; see
Section 8 for more details.

Stopping criterium for the multigrid CG method. As already mentioned above,
one of the advantages of an iterative method is the fact that an exact solution to
the linear system is not always needed. In such a case, we can stop the iterative
method after reaching a relatively low accuracy solution. The required accuracy of
these solutions (such that the overall convergence is maintained) is well documented
and theoretically supported in case of the IP method; it is, however an unknown in
case of the OC method; see [2] for detailed discussion. Clearly, if the linear systems
in the OC method are solved too inaccurately, the whole method may diverge or just
oscillate around a point away from the solution.

We have opted for the following heuristics that guarantees the (assumed) overall
convergence of the OC method. Notice that the OC method is a feasible descent
algorithm. That means that every iteration is feasible and the objective function
value in the k-th iteration is smaller than that in the (k − 1)-st iteration. Hence

● we start with τ = 10−4 ;
● if fTuk > f

Tuk−1, we update τ ∶= 0.1 τ .
In our numerical tests, the update had to be done only in few cases and the smallest
value of τ needed was τ = 10−6. Recall that this is due to our relatively mild overall
stopping criterium (6.2). In the next section, we will see that this heuristics serves its
purpose, as the number of OC iterations is almost always the same, whether we use
an iterative or a direct solver for the linear systems.

7. Numerical experiments. This section contains detailed results of three nu-
merical examples. All codes were written entirely in MATLAB. Notice, however, that
when we refer to a direct solver for the solution of linear system, we mean the back-
slash operation in MATLAB which, for our symmetric positive definite systems, calls
the CHOLMOD implementation of the Cholesky method [9]. This implementation is
highly tuned, very efficient and written in the C language. So whenever we compare
CPU times of the iterative solver with the direct solver, we should keep this in mind.
These comparisons are given solely to show the tendency in the CPU time when in-
creasing the problem size. All problems were solved on an Intel Core i5-3570 CPU
at 3.4GHz with 8GB RAM, using MATLAB version 8.0.0 (2012b) running in 64 bit
Windows 7.

In all examples, we use square finite elements with bilinear basis functions for the
displacement variable u and constant basis functions for the thickness variable x, as it
is standard in topology optimization. The prolongation operators Ikk−1 for the variable

u are based on the nine-point interpolation scheme defined by the stencil
⎛
⎜
⎝

1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

1
4

⎞
⎟
⎠

;

see, e.g., [15]. When solving the linear system (2.14) in the interior point method, we
also need to prolong and restrict the single additional variable λ; here we simply use
the identity.

The examples are solved with isotropic material with Young’s modulus equal to
1 and Poisson’s ratio 0.3. The physical dimensions of the computational domain are
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given by the coarsest mesh, whereas the coarse level element has dimension 1×1. The
upper bound on the variable x is set to x = 2. The load is always defined on the
finest discretization level on edges of two elements sharing a node on the boundary
specified in each example. The load always acts in vertical direction. Thus the non-
zero elements of the discretized load vector will be (− 1

2
,−1,− 1

2
), associated with the

vertical components of the specified boundary nodes its two immediate neighbours on
this boundary.

The meaning of the captions in the following tables:
problem. . . the first two numbers describe the dimension of the computational do-

main, the last number is the number of mesh refinements
variables. . . number of variables in the linear systems
feval. . . total number of function evaluations (equal to the number of linear systems

solved)
total CG iters. . . total number of CG iterations in the optimization process
solver CPU time. . . total CPU time spent in the solution of linear systems
average CG iters. . . average number of CG iterations per one linear system

7.1. Example 1. We consider a square computational domain with the coarsest
mesh consisting of 2× 2 elements. All nodes on the left-hand side are fixed, the right-
hand middle node is subject to a vertical load; see Figure 7.1. We use up to nine
refinements levels with the finest mesh having 262 144 elements and 525 312 nodal
variables (after elimination of the fixed nodes).

Fig. 7.1. Example 1, initial setting with coarsest mesh and optimal solution.

Table 7.1 presents the results of the interior point method. We can see that,
with increasing size of the problem, the total number of CG iterations is actually
decreasing. This is due to our specific stopping criterium explained in the previous
section. We also observe that the average number of CG iterations per linear system
is very low and, in particular, is not increasing with the problem size, the result of the
multigrid preconditioner.

Let us now compare these results with those for the OC method where the linear
system is just the equilibrium equation; see Table 7.2. As expected, the number of
OC iterations (and thus the number of linear systems and the total number of CG
iterations) grows with the size of the problem. Also in this case the average number
of CG iterations is almost constant, notwithstanding the size of the problem.

The comparison of the interior point method with the OC method is graphically
presented in Figure 7.2 (left). Here we can see, in the log-log scale, the total CPU time

12



Table 7.1
Example 1, interior point method with iterative solver

total solver average
problem variables feval CG iters CPU time CG iters

223 145 31 253 0.18 8.16
224 545 30 281 0.44 9.37
225 2 113 29 197 0.91 6.79
226 8 321 28 139 2.79 4.96
227 33 025 27 119 12.7 4.41
228 131 585 25 104 45.8 4.16
229 525 313 27 85 156.0 3.15

Table 7.2
Example 1, OC method with iterative solver

total solver average
problem variables feval CG iters CPU time CG iters

223 144 19 56 0.04 2.95
224 544 33 100 0.14 3.03
225 2 112 55 164 0.65 2.98
226 8 320 85 254 4.84 2.99
227 33 024 111 332 30.8 2.99
228 131 584 119 362 133.0 3.04
229 525 312 123 368 636.0 2.99

spent in the linear solver, growing with the size of the problem. While initially worse
than the OC method, the interior point method grows slower and soon catches up
and overtakes the OC method. For both methods, the growth is almost linear for the
larger problems, so that we can estimate the growth in the CPU time as a polynomial
function cnd of the problem dimension n. For the interior point method, the degree
d = 0.907 while for the OC method d = 1.09. This means that the overall computational
complexity of the IP method with inexact Newton and inexact multigrid CG methods
is slightly sublinear. For the OC method, it is just a bit worse than linear.
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Fig. 7.2. Example 1, left: total CPU time spent in the iterative linear solver for the interior
point and the OC method; right: interior point method, total CPU time spent in the iterative linear
solver and in the direct solver.
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In Figure 7.2 (right) we compare the iterative solver used in the interior point
method with a direct Cholesky solver (see the warning at beginning of this section!).
We can clearly see that the time for the (C coded) direct solver grows quicker than
for the (MATLAB coded) iterative solver.

7.2. Example 2. The next example is similar to the previous one, only the com-
putational domain is “longer” in the horizontal direction; the coarsest mesh consists of
4 × 2 elements. It is well known that the conditioning of this kind of examples grows
with the slenderness of the domain. As before, all nodes on the left-hand side are
fixed, the right-hand middle node is subject to a vertical load; see Figure 7.3. Again,
we use up to nine refinements levels with the finest mesh having 524 288 elements and
1 050 624 nodal variables (after elimination of the fixed nodes).

Fig. 7.3. Example 2, initial setting with coarsest mesh and optimal solution.

We first show the results of the interior point method in Table 7.3. Just as in the
previous example, the total number of CG iterations is decreasing with the increasing
size of the problem. Again, the average number of CG iterations per linear system is
very low and not increasing. Compare this with the OC solver results in Table 7.4.

Table 7.3
Example 2, IP method with iterative solver

total solver average
problem variables feval CG iters CPU time CG iters

423 288 33 265 0.24 8.03
424 1 088 32 342 0.87 10.69
425 4 224 31 207 1.89 6.68
426 16 640 30 160 7.77 5.33
427 66 048 29 139 31.1 4.79
428 263 168 27 123 119.0 4.56
429 1 050 624 27 101 385.0 3.74

In this case, we only consider eight refinement levels, as the largest problem would
take too much time on our computer. Contrary to the previous example, the average
number of CG iterations is slightly increasing due to the worse conditioning.

Figure 7.4 (left) gives the comparison of the interior point with the OC method.
We can see even more clearly than in the previous example the faster growth of the
OC method. When we calculate the degree of the assumed polynomial function cnd

of the problem dimension n from the larger examples, we will obtain d = 0.944 for the
interior point method (so a linear growth) and d = 1.28 for the OC method.
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Table 7.4
Example 2, OC method with iterative solver

total solver average
problem variables feval CG iters CPU time CG iters

423 288 39 117 0.13 3.00
424 1 088 45 144 0.34 3.20
425 4 224 77 262 2.10 3.40
426 16 640 123 423 16.2 3.44
427 66 048 157 542 97.1 3.45
428 263 168 165 739 552 4.48
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Fig. 7.4. Example 2, left: total CPU time spent in the iterative linear solver for the interior
point and the OC method; right: interior point method, total CPU time spent in the iterative linear
solver and in the direct solver.

Figure 7.4 (right) compares the iterative solver used in the interior point method
with the Cholesky solver (see the beginning of this section), giving the same picture
as in the previous example.

Finally in Figure 7.5 we compare the average number of CG steps per linear
system in the interior point and the OC solver. We can see that while the graph is
decreasing for the IP method, it is slowly increasing in case of the OC method. The
reason for that is that, in this example, we had to decrease the stopping criterium for
the CG solver in the OC method, in order to guarantee its convergence (see Section 6.2
for explanation).
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Fig. 7.5. Example 2, average number of CG iterations per linear system for the interior point
and the OC method.
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7.3. Example 3. The computational domain for our final example is a rectangle,
initially discretized by 8 × 2 finite elements. The two corner points on the lower edge
are fixed and a vertical load is applied in the middle point of this edge; see Figure 7.6.
We use up to eight refinement levels with the finest mesh having 262 144 elements and
568 850 nodal variables (after elimination of the fixed nodes).

Fig. 7.6. Example 3, initial setting with coarsest mesh and optimal solution.

The results of the interior point method are shown in Table 7.5. Yet again, the
total number of CG iterations is decreasing with the increasing size of the problem and
the average number of CG iterations per linear system is very low and not increasing.
The negative complexity factor is caused by the exceptional difficulties of the CG
method in the last interior point step in problem 823.

Table 7.5
Example 3, IP method with iterative solver

total solver average
problem variables feval CG iters CPU time CG iters

822 170 33 284 0.21 8.61
823 594 31 383 0.78 12.35
824 2210 32 121 0.60 3.78
825 8514 31 166 3.41 5.35
826 33410 26 140 14.8 5.38
827 132354 26 133 78.8 5.12
828 526850 25 121 217.0 4.84

Table 7.3 presents the results of the OC method. As in Example 2, the average
number of CG iterations is increasing due to the worse conditioning.

Figure 7.7 (left) compares of the interior point with the OC method. Yet again,
the interior point method is a clear winner, both in the absolute timing as in the
growth tendency. Calculating the degree of the assumed polynomial function cnd of
the problem dimension n from the larger examples, we get d = 1.09 for the interior
point method and d = 1.24 for the OC method.
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Table 7.6
Example 3, OC method with iterative solver

total solver average
problem variables feval CG iters CPU time CG iters

822 170 23 69 0.04 3.00
823 594 37 147 0.21 3.97
824 2210 57 267 1.16 4.68
825 8514 75 374 7.40 4.99
826 33410 99 495 51.8 5.00
827 132354 111 665 290.0 5.99
828 526850 113 677 1250.0 5.99
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Fig. 7.7. Example 3, left: total CPU time spent in the iterative linear solver for the interior
point and the OC method; right: interior point method, total CPU time spent in the iterative linear
solver and in the direct solver.

In Figure 7.7 (right) we compare the iterative solver used in the interior point
method with the Cholesky solver (see the beginning of this section). Finally in Fig-
ure 7.8 we compare the average number of CG steps per linear system in the interior
point and the OC solver. We can see that while the graph for the IP method has a
decreasing tendency, it is increasing in case of the OC method. As before, the reason
for that is that we had to decrease the stopping criterium for the CG solver, in order
to guarantee its convergence (see Section 6.2).
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Fig. 7.8. Example 3, average number of CG iterations per linear system for the interior point
and the OC method.
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8. How exact is ‘exact’?.

8.1. Interior point method. In this article we are using slightly nonstandard
stopping criteria within the interior point method. In particular, with the decreasing
barrier parameters r, s we do not decrease the stopping tolerances τNWT and τCG for
the Newton method and for the conjugate gradients, respectively, although both is
required for the theoretical convergence proof. In Figure 8.1 we try to give a schematic
explanation. Here we depict the feasible region and three points x1, x2, x3 on the
central path, corresponding to three values of the barrier parameter r1 > r2 > r3. The
exact solution lies in the corner of the feasible region. The circle around each of these
points depict the region of stopping tolerance of the Newton method, once we get
within, the Newton method will stop. The radius of these circles is decreasing, even
though τNWT is kept constant. The idea is now obvious: it is “better” to stay within

1

3

2

Fig. 8.1. Illustration of interior-point method.

the tolerance circle of x3 rather than to get very close to x2.
In the lemma below, x∗ is a point on the central path corresponding to a barrier

parameter s and x an approximation of x∗ resulting from inexact Newton method.
We will show that, even with a fixed stopping criterium for the Newton method, x
must converge to x∗ with s going to zero. For simplicity of notation, we will just

verify it for the lower bound complementarity part of R̃es
(3)

.
Lemma 8.1. Let x∗ > 0 satisfies the perturbed scaled complementary condition

ϕix
∗
i − s

xi
= 0, i = 1, . . . ,m (8.1)

and let x > 0 be an approximation of x∗ satisfying

∥z∥ ≤ τ, zi =
ϕixi − s

xi
(8.2)

with some τ > 0. Then there is an ε > 0 depending on s and τ such that ∥x∗ − x∥ ≤ ε.
Moreover, if s tends to zero then also ε tends to zero.
Proof. From (8.1) we have that ϕi =

s
x∗i

and thus (8.2) can be written as

m

∑
i=1

(
s

x∗i
−
s

xi
)

2

≤ τ2
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which is, in particular, means that

∣
s

x∗i
−
s

xi
∣ ≤ τ, i = 1, . . . ,m ,

i.e.,

∣x∗i − xi∣
x∗i xi

≤ sτ, i = 1, . . . ,m .

Clearly, when s tends to zero, x must tend to x∗. ◻
How good solution can we get when replacing the (“exact”) direct solver by an

inexact iterative method for the solution of the Newton systems? We may expect
that, with the ever decreasing barrier parameter, the inexact version will get into
numerical difficulties sooner than the exact one. Table 8.1 answers this question. In
topology optimization, the important variable is x, the “density”. With lower bound
equal to zero, the quality of the solution may be characterized by the closeness of
components of x to this lower bound (that is, in examples where the lower bound is
expected to be reached, such as in Example 1 with sufficiently fine discretization). In
Table 8.1 we display the smallest component of x, denoted by xmin for Example 1
with 6 refinements levels, i.e., example 226 from Table 7.2. The meaning of other
columns in Table 8.1 is the following:
barrier. . . the smallest value of the barrier parameters s, r before the interior point

algorithm was terminated;
IP,NWT,CG. . . the total number of iterations of the interior point method, the

Newton method and conjugate gradients, respectively;
Cholesky. . . the linear system was solved by the CHOLMOD implementation of the

Cholesky method;
CG tol fixed. . . the linear system was solved by the multigrid preconditioned

conjugate gradient method with a fixed stopping criterium ∥r∥ ∥b∥ ≤ 10−2; see
(6.1);

CG tol decreasing. . . as above but with a variable stopping criterium ∥r∥ ∥b∥ ≤ τCG,
where τCG is initially equal to 10−2 and is then multiplied by 0.5 after each
major iteration of the interior point method.

Table 8.1
Number of iterations and error in the IP solution for different values of τIP and three different

linear solvers.

Cholesky CG tol fixed CG tol decreasing

τIP IP NWT xmin NWT CG xmin NWT CG xmin

10−8 12 28 1.6 ⋅ 10−5 28 139 1.8 ⋅ 10−5 28 587 1.6 ⋅ 10−5

10−10 15 34 1.0 ⋅ 10−7 35 291 2.7 ⋅ 10−7 34 4285 1.0 ⋅ 10−7

10−12 18 40 1.0 ⋅ 10−9 72 2832 2.4 ⋅ 10−9 40 10042 1.5 ⋅ 10−9

10−14 21 46 6.4 ⋅ 10−12 296 63674 1.9 ⋅ 10−11 53 23042 1.9 ⋅ 10−11

10−16 24 52 6.2 ⋅ 10−14 489 88684 1.4 ⋅ 10−13 82 52042 1.4 ⋅ 10−13

We can see that all three algorithms were able to solve the problem to very high
accuracy. However, both versions of the CG method had problems with very low
values of the barrier parameter. The “CG tol fixed” version needed very high number
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of the Newton steps, while the “CG tol decreasing” version needed very high number
of the CG steps to reach the increased accuracy. (Notice that the maximum number
of CG iterations for one system was limited to 1000.) On the other hand, for barrier
parameter equal to 10−8 (our choice in the numerical examples above), both inexact
solvers were on par with the exact one and, due to the lower accuracy required and
thus lower number of CG steps, the “CG tol fixed” version is the method of choice.

8.2. OC method. In the OC method, we have to solve the equilibrium problem
with the stiffness matrix K(x); that means, K(x) must not be singular. A common
way how to approach this is to assume that x is strictly positive, though very small.
Typically, one would modify the lower bound constraint to 0 < x ≤ xi, i = 1, . . . ,m with
x = 10−6, for instance. Once the OC method is terminated, all values of x with xi = x
are set to zero. This is usually considered a weakness of the OC method, because we
do not exactly solve the original problem, only its approximation (see [1]). Somewhat
surprisingly, in the examples we solved using our MATLAB code, the value of x could
be actually very low, such as x = 10−30. The stiffness matrix K(x) will, consequently,
become extremely ill-conditioned (in the above case the condition number will be of
order 1030), nevertheless, CHOLMOD does not seem to have a problem with that
and the OC method converges in about the same number of iterations as if we set
x = 10−6.

The main question is how does the quality of the solution depends on the heuristic
stopping criterium (6.2). Our next Table 8.2 sheds some light on this. We solve the
example 226 from Table 7.2 for various values of the stopping criterium τOC and two
different values of the lower bound x. We then compute, pair-wise, the norm of the
difference of these solution. The notation τOC = 10− inf is used for the case when the
stopping criterion (6.2) is ignored and the OC method is terminated after a very high
number of iterations, in this case 5000 (i.e., 10000 solutions of the linear system). The
resulting solution serves as the best approximation of the exact solution that can be
obtained within the computational framework. So looking at Table 8.2, we can see
that, for instance, the maximum norm of the difference between the solutions with
τOC = 10−5 and τOC = 10− inf is ∥x−5 − x− inf∥∞ = 0.126, while ∥x−9 − x− inf∥∞ = 0.016.
Notice that the norm is not scaled, e.g., by the dimension of x, hence the numbers are
relatively large. Also, to get a clearer picture, we used a direct linear system solver.

Table 8.2
The norm of difference of two OC solutions x for various values of the stopping criterium

τOC = 10−5,10−7,10−9,10− inf , and for two values of the lower bound x = 10−7 and x = 10−17. Upper
triangle shows the 2-norm, lower triangle the infinity norm.

lower bound 10−7 10−17

τOC -5 -7 -9 − inf -5 -7 -9 − inf

10−7
-5 0 1.09 1.19 1.26 2 ⋅ 10−6 1.10 1.18 1.26
-7 0.114 0 0.116 0.281 1.09 0.013 0.110 0.281
-9 0.123 0.01 0 0.190 1.19 0.103 0.009 0.190
− inf 0.126 0.025 0.016 0 1.26 0.271 0.198 4 ⋅ 10−6

10−17
-5 2e-7 0.114 0.123 0.126 0 1.10 1.19 1.26
-7 0.116 0.001 0.009 0.024 0.116 0 0.094 0.271
-9 0.123 0.009 8 ⋅ 10−4 0.017 0.123 0.008 0 0.198
− inf 0.126 0.025 0.016 3 ⋅ 10−7 0.126 0.024 0.017 0
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8.3. Interior point versus OC method. We again solve example 226 from
Table 7.2, this time by the interior point method with an exact linear solver and
various stopping parameters τIP. In Table 8.3, these solutions are compared (in two
different norms), to the ‘exact’ solution obtained in the previous section by 5000
iterations of the OC method with x = 10−17. Comparing these numbers to those in
Table 8.2, we can see that the IP method delivers very good solution already for
our standard value τIP = 10−8; this is comparable to OC solution with τOC = 10−7.
Moreover, decrease of τIP leads to a rapid decrease of the error, unlike in the OC
method.

Table 8.3
Two different norms of the error of the IP method in variable x for different values of the

stopping parameter τIP. As an ‘exact’ solution x∗ we take the OC solution after 5000 iterations
with lower bound x = 10−17.

τIP ∥x − x∗∥2 ∥x − x∗∥∞

10−8 2.47 ⋅ 10−1 2.49 ⋅ 10−2

10−10 9.60 ⋅ 10−3 1.50 ⋅ 10−3

10−12 2.07 ⋅ 10−4 4.95 ⋅ 10−5

10−14 1.70 ⋅ 10−6 4.66 ⋅ 10−7

9. The SIMP model of topology optimization. A natural question arises
about the applicability of the presented approach to a more popular model of topol-
ogy optimization, namely, the Solid Isotropic Material with Penalisation (SIMP) [5].
When used with a suitable filtering, one can guarantee at least the existence of a
solution of the infinite-dimensional problem and convergence of the finite element
discretization to this solution [6]. However, the problem is non-convex and exhibits
many local minima, as demonstrated in Figure 9.1. There we show solutions obtained
by the code top88 [3] from various initial points (with a load vector modified to the
original code). The calling sequence of the code was top88(512,64,1,3,1.5,2).

The ordering of the plots in Figure 9.1 is [
(a) (b)
(c) (d)] and the respective values of the

computed optimal compliance are (a) 128.402 (from the default starting point), (b)
126.773, (c) 134.359, (d) 129.002. Notice that we strengthened the stopping criterion
of top88 from 10−2 to 10−3.

Fig. 9.1. Optimal result SIMP of code top88 starting from the default initial point and from
three other initial points.

It is thus difficult to compare the efficiency of various algorithms, as each may
converge to a different local solution (see also [22]). Moreover, starting from two
different initial points, an algorithm may converge to two different solutions and the
number of iterations needed to find the respective solutions can differ substantially.
For these reasons, we only give a brief comparison of the IP method with an exact
solver and with an iterative solver, demonstrating that the iterative method is still a
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viable and efficient option. (A similar comparison for the OC method can be found
in [2].)

The SIMP model with the so-called density filter consists in a modification of our
original problem (1.1) where we replace the equilibrium equation K(x)u = f by

K̂(x̃)u = f with K̂(x̃) =
m

∑
i=1
x̃piKi ,

where x̃i is computed as a weighted average of the values of x in a close neighborhood
of the i-th element. More precisely,

x̃ =Wx with W∶i =
1

∑
m
j=1 Ŵij

Ŵ∶i and Ŵij = max(0, rmin − dist(i, j)) ,

where Wij is the (i, j)-th element of matrix W and W∶i denotes the i-th column of
W . Here dist(i, j) is a function measuring the distance between the i-th and j-th
element (e.g. Manhattan distance or Euclidean distance of element centers), and rmin

is a given radius of the density filter. The typical choice of p is p = 3.
The interior point method from Sections 2 and 3 has to be adapted to the SIMP

model. In particular, the KKT condition (2.3) will change to

−
1

2
uT

⎡
⎢
⎢
⎢
⎣
p
m

∑
j=1

Wji(Wx)p−1j Kj

⎤
⎥
⎥
⎥
⎦
u − λ − ϕi + ψi = 0, i = 1, . . . ,m

which means that the matrix B(u) in the linear system (2.12) (and thus (2.14)) will
be replaced by

B̂(u) =
⎛

⎝
p
m

∑
j=1

Wj1(Wx)p−1j Kju, . . . , p
m

∑
j=1

Wjm(Wx)p−1j Kju
⎞

⎠
.

The consequence of using the density filter is that the matrix B̂(u)B̂(u)T (and thus
the matrix Z in (2.14)) will have bigger band-width and thus the Cholesky factors
will have more non-zero elements.

The purpose of the next example is merely to show that the iterative solver is still
a viable alternative to the direct one, even for the non-convex problem. The reader
should not be too concerned with the behaviour of the interior point method, as it
still uses the vanilla algorithm and explicit choice of step length that were suitable for
the convex problem but should be upgraded for the non-convex one. However, this
was not the goal of this paper.

9.1. Example 4. Consider again the problem from Example 2 with an upper
bound x = 3, this time solved using the SIMP model with density filter. The filter
uses Manhattan distance with rmin = 2. Figure 9.2 shows the optimal results for 8
refinement levels (problem 428) when using the iterative solver (left) and the Cholesky
method (right). We can see that also in this example the two versions of the code
converge to different local minima with almost identical objective function values (see
Table 9.1).

The numbers presented in Table 9.1 for problems 427 and 428 show the total
number of Newton steps (feval), the CPU time only needed by the linear solver and
the optimal objective function value (obj). The number of Newton steps needed by
the IP method is not significantly influenced by the choice of the solver. Also the

22



Fig. 9.2. Example 4, optimal solution x̃∗ using the iterative (left) and the Cholesky (right) solver.

Table 9.1
Example 4, IP method with iterative and Cholesky solver

CG Cholesky
problem variables feval CG iters time obj feval time obj

427 66 048 151 514 316 3.5659 128 146 3.5681
428 263 168 262 934 2410 3.4709 231 1500 3.4762

number of CG iterations is still kept very low with average 3.5 per linear system. To
demonstrate that was the purpose of this example.

Finally, in Table 9.2 we present the number of Newton steps needed in every
major IP iteration. The first row shows the value of the barrier parameter s (reduced
in every iteration by factor 0.2). The next two rows refer to problem 427 and show the
number of Newton steps first when using Cholesky method and then for the iterative
solver. The final two rows are for problem 428. As we can see, most effort is spent in
the last iterations, unlike in the convex case, where the number of Newton steps was
almost constant. As mentioned before, a more sophisticated version of the IP method
would be needed for the non-convex case to avoid this behaviour.

Table 9.2
Example 4, the barrier parameter s and the corresponding number of Newton steps needed at

every major IP iteration with the Cholesky and the CG solver, respectively.

s 50 5−1 5−2 5−3 5−4 5−5 5−6 5−7 5−8 5−9 5−10 5−11

427
Chol 2 2 2 4 4 6 9 11 24 22 21 21
CG 2 2 3 3 4 6 9 12 24 23 25 38

428
Chol 2 2 2 3 3 4 7 11 21 44 65 67
CG 2 2 2 3 3 4 7 11 21 53 68 86

10. Conclusions. Based on the results of our numerical experiments, we make
the following conclusions. These conclusions only concern the convex problem.

● The interior point method clearly outperforms the OC method on large-scale
problems. The larger the problem, the bigger the difference. This is inde-
pendent of the fact whether direct or iterative solver is used for the linear
system. It is also independent of the fact whether the linear systems (in both
methods) are solve exactly or inexactly.

● The inexact multigrid preconditioned CG method outperforms even a very
sophisticated direct solver, at least for large to very-large scale problems.
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This holds for both, the interior point and the OC method.
● The behaviour of the interior point method is very predictable. More sur-

prisingly, also the behaviour of the chosen iterative method, the multigrid
preconditioned conjugate gradients, is also very predictable and independent
on the size of the problem.

● Also in the OC method, the multigrid preconditioned CG algorithm is pre-
dictable and very stable, both with respect to the size of the problem and of
the OC iteration (and thus of the condition number of the stiffness matrix).
Perhaps rather surprisingly, not more than 10 CG iterations are needed, even
when high precision of the OC method is required. This is the effect of the
multigrid preconditioner: notice that in [26] the authors report about 100–
200 CG steps needed (with a different preconditioner) and thus propose to
use so-called recycling of the Krylov subspaces, in order to accelerate CG
convergence speed. This is just not needed here, given the very low number
of CG steps.

● The OC method has one noticeable advantage over the interior point method.
It can quickly identify the “very strongly” active constraints, those with large
Lagrangian multiplier. Due to the projection of variables on the feasible
set, the active variables are then exactly equal to the bounds. Contrary to
that, the interior point method only approaches the boundary. This may be
particularly significant in case of lower bounds, when the user has to decide
which values are cut off and considered zero (and thus interpreted as void).
Clearly, the lower bound for the OC method has to be positive but it can be
set very low (e.g., 10−17) and is then exactly reached.

From the above, it seems to be obvious to recommend the interior point method
with multigrid preconditioned CG solver as the method of choice for large scale topol-
ogy optimization problem. However, we should keep in mind that the use of multi-
grid is rather restricted by the assumed existence of regularly refined finite element
meshes. This is easily accomplished when using “academic” examples with regular
computational domains such as squares, rectangles, prisms and unions of these. For
geometrically complex domains appearing in practical examples, multigrid may not be
so suitable or may even be unusable. In these cases, we can resort to domain decom-
position preconditioners. In [18] it was shown that, in connection with the interior
point method, they also lead to very efficient techniques for topology optimization
problems.
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