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Republic
3 Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 166 29 Prague, Czech Republic

Received 12 August 2015, revised 13 January 2016, accepted 21 February 2016
Published online 4 April 2016

Key words Polyconvexity, shape memory materials, rate-independent problems.

We show the existence of an energetic solution to a quasistatic evolutionary model of shape memory alloys. Elastic behavior
of each material phase/variant is described by polyconvex energy density. Additionally, to every phase boundary, there
is an interface-polyconvex energy assigned, introduced by M. Šilhavý in [49]. The model considers internal variables
describing the evolving spatial arrangement of the material phases and a deformation mapping with its first-order gradients.
It allows for injectivity and orientation-preservation of deformations. Moreover, the resulting material microstructures
have finite length scales.
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1 Introduction

In elasticity theory, it is assumed that experimentally observed patterns are minimizers or stable states of some energy.
Shape memory alloys in particular have a preferred high-temperature lattice structure called austenite and a preferred
low-temperature lattice structure called martensite. Such shape memory alloys, as e.g. Ni-Ti, Cu-Al-Ni, or In-Th, have
various technological applications, for an overview see e.g. [27]. The austenitic phase has only one phase/variant but the
martensitic phase exists in many symmetry related phases/variants; the mixing of these different phases can lead to the
formation of complex microstructure. In the continuum theory, the total energy of the system is described in terms of a
bulk energy which describes elastic stresses and an interfacial energy, concentrated on the interfaces between the different
phases. We establish existence of quasistationary solutions for a model, where it is assumed that the bulk part of the energy
is polyconvex while the interfacial part of the energy satisfies a corresponding condition of interfacial polyconvexity
introduced by Šilhavý [49, 50]. The model describes the evolving spatial arrangement of the material phases and the
deformation of the sample. It allows for injectivity and orientation-preservation of deformations. Moreover, the resulting
material microstructures have finite length scales.

To investigate the existence of a global minimizer of the energy for static variational problems from elasticity, different
notions of convexity have been considered. For problems with a single material phase, a well justified notion of convexity
which is sufficient to ensure the existence of a minimizer is the notion of polyconvexity due to Ball [3, 4]. One benefit of
this notion is that it is relatively elementary to construct examples of polyconvex functions which makes it attractive for
continuum mechanics of solids. On the other hand, in shape memory alloys, many different phases might coexist.

If interfacial energy is not taken into account, then global minimizers of the energy in general do not exist. A way out is
to use relaxation methods, searching for the so-called quasiconvex envelope of the specific stored energy [19, 47] or using
Gradient Young measures [28, 29, 37, 43]. Let us point out some partial results which have been obtained in this direction:
We refer to [8] for a weak* lower semicontinuity result for sequences of bi-Lipschitz orientation-preserving maps in the
plane and to [7] for an analogous result along sequences of quasiconformal maps. Then [35] found relaxation including
orientation preservation for p < d, where d is a spatial dimension. Finally in [18], a relaxation result was derived for
orientation preserving deformations with an extra assumption on the resulting functional, namely that the quasiconvex
envelope is polyconvex. There also exist various phenomenological models of shape memory alloys which are convenient
for numerical computations; see e.g. [9, 25] and references therein. If the external loading changes slowly in time with
respect to an internal time scale of the material, quasistatic evolutionary models are often used and treated in the framework

∗ Corresponding author, E-mail: kruzik@utia.cas.cz

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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of energetic solutions, introduced by Mielke, Theil, and Levitas [46]. We refer to [24, 40] for a general approach, to [39]
for applications to shape memory materials, or to [41] for models of large-strain elastoplasticity.

On the other hand, models have been considered where interfacial energy in various forms is taken into account [2].
Such models have been e.g. used to estimate the scaling of the minimal energy and to derive typical length scales of
patterns. The minimal scaling of the energy of an austenite-martensite interface has been studied by Kohn & Müller and
Conti in [17, 33, 34] for a 2-dimensional model problem, the three-dimensional case and more realistic models have been
investigated e.g. in [10–12, 30, 31, 53], for similar analysis on related models see e.g. [13, 14, 32]. In these models, either
a BV -penalization of the interfacial has been used or a penalization of some Lp–norm for the Hessian of the deformation
function. In general, the specific form of the energy is, however, not clear from physical considerations. In the literature,
necessary and sufficient conditions for the specific form of the interfacial energy have been investigated recently which
allow for the existence of minimizers [23, 48]. Recently, Šilhavý has introduced a notion of interface polyconvexity and
has proved that this notion is sufficient to ensure existence of minimizers for the corresponding static problem [49, 50].
In this note, we extend this static model to a rate-independent evolutionary model and prove existence of an energetic
solution.

On physical grounds, it is clear that the deformation needs to be injective and orientation preservation for any meaningful
solution in elasticity (both for static and evolutionary problems). However, a proof of these properties is often missing in
the mathematical literature. Indeed, the situation is particularly unclear for models based on quasiconvexification, since
usually there is no closed formula of the envelope at disposal and since physically justified conditions on deformations
as orientation-preservation and injectivity are not included in these models. Also, in the case of models which include
interfacial energy, this issues needs to be addressed. In the theory of rate-independent processes, however, injectivity and
orientation preservation are usually neglected. Nevertheless, we can refer, to [44] for injectivity conditions in problems of
delamination, for instance. In our proof, we pay much attention to injectivity of deformations which is not frequently treated
in the frameworks of rate-independent evolutions. Indeed, we show that our solutions are constructed in a way such that the
obtained time dependent deformations are orientation preserving and injective. Some of the issues, in particularly related
to orientation preservation are already embedded to the formulation of the energy density. In general, the stored energy
density W : R

3×3 → R in shape memory allows is minimized on wells SO(3)Fi , i = 0, . . . ,M , defined by M positive
definite and symmetric matrices F0, . . . , FM , each corresponding to austenite and M variants of martensite, respectively.
By the choice of reference configuration, we may furthermore assume F0 := Id (the identity), i.e. the stress-free strain of
austenite is described just by the special orthogonal group SO(3). In nonlinear elasticity, the energy density W is usually
formulated as a function of the right Cauchy-Green strain tensor F�F . Note that this tensor maps the whole group O(3)
of orthogonal matrices with determinant ±1 onto the same point. Thus, for example, F �→ |F�F − Id | is minimized
on two energy wells, i.e. on SO(3) and also on O(3)\SO(3). However, the latter set is not acceptable in elasticity since
corresponding deformations do not preserve the orientation. Additionally, notice that, for example, considering arbitrary
Q ∈ O(3) \ SO(3) and an arbitrary R ∈ SO(3) such that Q and R are rotations around the same axis of the Cartesian
system then rank(Q − R) = 1, i.e. Q and R are rank-one connected and determinant changes its sign on the line segment
[Q; R]. Convex combinations of rank-one connected matrices play a key role in relaxation approaches of the variational
calculus [5, 6, 19, 36].

Structure of the paper: In Sect. 2, we first describe our model, the stored elastic energy, loading, and dissipation. In
Sect. 3, we state and prove our main result, the existence of an orientation-preserving energetic solution.

Notation: The spaces W 1,p, 1 ≤ p < ∞, denote the standard Sobolev space of Lp-functions with weak derivative in
Lp. Furthermore, BV stands for the space of integrable maps with bounded variations, see e.g. [1,22] for references. For a
(measurable) set E ⊂ R

3, we denote its three-dimensional Lebesgue measure by L3(E) and its two-dimensional Hausdorff
measure by H2(E). The space of vector valued Radon measures on � with values in Y is denoted by M(�,Y ).

Let �̃ ⊂ � ⊂ R
3 be Lebesgue measurable sets and let B(x, r) := {a ∈ R

3 : |x − a| < r} . For x ∈ � we denote the the
density of �̃ at x by θ(�̃, x) := limr→0 L3(�̃ ∩ B(x, r))/L3(B(x, r)) whenever this limit exists. A point x ∈ � is called
point of density of �̃ if θ(�̃, x) = 1. If θ(�̃, x) = 0 for some x ∈ �, then x is called point of rarefaction of �̃. The measure-
theoretic boundary ∂∗�̃ of �̃ is the set of all points x ∈ � such that either θ(�̃, x) does not exist or θ(�̃, x) �∈ {0, 1}. We call
�̃ a set of finite perimeter ifH2(∂∗�̃) < +∞. Let n ∈ R

3 be a unit vector and let H (x, n) := {x̃ ∈ � : (x̃ − x) · n < 0}. We
say that n is the (outer) measure-theoretic normal to �̃ at x if θ(�̃ ∩ H (x,−n), x) = 0 and θ((� \ �̃) ∩ H (x, n), x) = 0.
The measure-theoretic normal exists for H2 almost every point in ∂∗�̃, see e.g. [22, 52].

For two matrices A = (aij ), B = (bij ) ∈ R
3×3, we define A : B = aij bij with Einstein’s sum convention. By A × n we

denote the tensor defined by (A × n)b = A(n × b), i.e. (A × n)kj = ε�ij ak�ni , where ε�ij is the Levi-Civita symbol. One can
easily check that the cofactor matrix of A ∈ R

3×3 in terms of the Levi-Civita can be expressed as cof A= 1
2 (εik�εjpqakpa�q)ij .

In particular, we get ∂ak�
(cof A)ij = 1

2∂ak�
(εik�εjpqakpa�q)ij = εikqεj�paqp. We refer e.g. to [26] for a definition of the surface

gradients ∇S . If n ∈ R
3 is an outer unit normal to the surface S , then ∇S := ∇(Id −n ⊗ n), where Id denotes the unit

matrix in R
3×3.
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Fig. 1 The domain is decomposed into subdomains according to the variants of austenite and martensite. At �0, an
elastic Dirichlet-type condition is imposed, while it is assumed that a force s acts on the interface �1. Furthermore, a bulk
force b acts on �.

2 Model description

2.1 Elastic energy

Admissible States: We assume that the specimen in its reference configuration is represented by a bounded Lipschitz domain
� ⊂ R

3. We consider a shape memory alloy which allows for M different variants of martensite. The region occupied
by the i-th variant of martensite is described by the set �i ⊂ � for 1 ≤ i ≤ M , while the region occupied by austenite is
given by �0 ⊂ �. We assume that the sets �i are open and have finite perimeter. Furthermore, the sets �i are pairwise
disjoint for 0 ≤ i ≤ M and N := �\⋃

i �i is a set of zero Lebesgue measure. The case �i = ∅ for some 0 ≤ i ≤ M is
not excluded. The partition of � into {�i}Mi=0 can be then identified with a mapping z : � → R

M+1 such that zi(x) = 1
if x ∈ �i and zi(x) = 0 else. We call z the partition map corresponding to {�i}Mi=0. Clearly, with the sets �i chosen as
before, we have

∑M
i=0 zi(x) = 1 for almost every x ∈ � and the function z is of bounded variation. We hence consider

z ∈ Z , where

Z :=
{
z ∈ BV(�, {0, 1}M+1) : zizj = 0 for i �= j ,

M∑
i=0

zi = 1 a.e. in �
}
.

In order to describe the state of the elastic material, we also need to introduce the deformation function y ∈ W 1,p(�, R
3),

p > 3, which describes the deformation of the elastic body with respect to the reference configuration �. We hence consider
deformations y ∈ Y , where

Y =
{
y ∈ W 1,p(�, R

3) : det ∇y > 0 a.e.,
∫

�

det ∇y(x) dx ≤ L3(y(�))
}
,

where we will always use the assumption p > 3. The integral inequality together with the orientation-preservation is the
so-called Ciarlet-Nečas condition which ensures invertibility of y almost everywhere in � [15, 16]. In the following, we
will assign to each state of the material (y, z) ∈ Y × Z an elastic energy E . In our model, the energy consists of a bulk part
Eb, penalizing deformation within the single phases, an interfacial energy Eint, measuring deformation of the interfaces
between the phases and a contribution L(t, ·) which measures work of external loads, i.e.

E(t, y, z) := Eb(y, z) + Eint(y, z) − L(t, y). (1)

Here t denotes time to indicate that we will deal with time-dependent problems. We will specify these three parts of the
energy in the following.

Bulk energy: The total bulk energy of the specimen has the form

Eb(y, z) :=
∫

�

W (z(x),∇y(x)) dx, (2)

where we assume that the specific energy W : R
M+1 × R

3×3 → R ∪ {+∞} of the specimen can be written as

W (z, F ) :=
M∑
i=0

ziŴi(F ) =: z · Ŵ (F ), (3)

where Ŵi , 0 ≤ i ≤ M , is the specific energy related to the i-th phase of the material and Ŵ := (Ŵ0, . . . , , ŴM). We will
work in the framework of hyperelasticity, where the first Piola-Kirchhoff stress tensors of austenite and martensite have
polyconvex potentials denoted by Ŵ0 (austenite) and Ŵi , i = 1, . . . ,M for each variant of martensite, see e.g. [49] and the
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references therein. For 0 ≤ i ≤ M , we therefore assume

Ŵi(F ) :=
{

hi(F, cof F, det F ) if det F > 0,

+∞ otherwise
(4)

for some convex functions hi : R
19 → R. We use the following additional standard assumptions on the specific bulk

energies Ŵi . For 0 ≤ i ≤ M and F ∈ R
3×3, we assume that for some C > 0 and p > 3

Ŵi(F ) ≥ C(−1 + |F |p) ∀F ∈ R
3×3, (5)

Ŵi(RF ) = Ŵi(F ) ∀R ∈ SO(3), F ∈ R
3×3, (6)

lim
det F→0+

Ŵi(F ) = +∞ . (7)

Interfacial energy: We consider the interfacial energy in the form introduced by Šilhavý in [49, 50]: We hence assume
that the specific interfacial energy fij between the two different phases i, j ∈ {0, . . . , M} can be written in the form

1

2
fij (F, n) = gi(F, n) + gj (F, n), (8)

where F ∈ R
3×3 and n ∈ R

3 is a unit vector such that Fn = 0. This form of the specific energy is taken from [49, 50],
more general interfacial energy density can be found in [39, Ch. 3]. We assume

gi(F, n) := �i(n, F × n, cof F n), (9)

where the functions �i : R
15 → R are nonnegative convex and positively one-homogeneous for i = 0, . . . , M . Here,

F × n : R
3 → R

3 is for any F ∈ R
3×3 and any n, a ∈ R

3 defined as (F × n)a := F (n × a). As in [49], we assume for
0 ≤ i ≤ M , ∀F ∈ R

3×3, ∀n ∈ S2

gi(RF, n) = gi(F, n) ∀R ∈ SO(3), (10)

gi(F, n) = gi(F,−n), (11)

As in [49], we assume that there is some c > 0 such that

�i(A) ≥ c|A| . (12)

for all 0 ≤ i ≤ M and all A ∈ R
15. In the next definition, we introduce the interfacial energy. It penalizes the area between

the phases of the deformed configuration (related to ai in (13)), stretching of lines within the interface with respect to the
reference configuration (related to Hi), stretching of the deformed interface with respect to the reference configuration
(related to ci). We first introduce a subspace Q ⊂ Y × Z of functions with “finite interfacial energy”, using a slightly
modified version of [49, Def. 3.1]. Our definition is now given as follows.

Definition 2.1 (Interfacial energy). For any pair (y, z) ∈ Y × Z let Si = ∂∗�i ∩ � where �i := supp zi and ∂∗�i is
the measure-theoretic boundary of �i with outer (measure-theoretic) normal ni . We denote by Q ⊂ Y × Z the set of all
pairs (y, z) ∈ Y × Z such that for every 0 ≤ i ≤ M there exists a measure Ji := (ai,Hi, ci) ∈ M(�; R

15) with

ai := niH2
|Si

, Hi := ∇Si
y × niH2

|Si
and ci := (cof ∇Si

y)n|Si
. (13)

The interfacial energy is then defined as

Eint(y, z) :=

⎧⎪⎪⎨
⎪⎪⎩

M∑
i=0

∫
�

�i

(
dJi

d|Ji |
)

d|Ji | for (y, z) ∈ Q,

∞ else.

(14)

Here |Ji | denotes the total variation of the measure Ji .

We recall that the function fij is called interface quasiconvex if∫
S

f (∇Sy, n)dH2 ≥ H2(T )f (G,m) (15)
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for every surface deformation gradient G, every unit vector m with Gm = 0, every planar two-dimensional region T with
normal m, every (curved) surface S with normal n and every smooth map y : S → R

3 with bd = bdT (where bdS and
bdT denote the relative boundaries of the two two-dimensional surfaces) and such that y = Gx for x ∈ bdT , see [49,50].
A surface energy is called Null-Lagrangian if (15) is satisfied with equality. Furthermore, it has been shown in [51] that f

is an interface Null-Lagrangian if and only if f is a linear function of n, F × n, and cof Fn. This motivates the definition
of interface polyconvexity (8)–(9), in the analogy to the definition of the standard notion of polyconvexity. The set of
configurations Q in Definition 2.1 is the natural space where an energy of type (8)–(9) can be defined. Let us remark that
the measures Hi and ci can be expressed as∫

�

v dHi =
∫

�i

∇y (∇ × v) dx,

∫
�

v · dci =
∫

�i

(cof ∇y) : ∇v dx (16)

for all v ∈ C∞
0 (�; R

3). Indeed, for k ∈ {1, 2, 3} and 0 ≤ i ≤ M , we have∫
�i

[∇y(∇ × v)]k =
∫

�i

[∂jykεj�m∂�vm] dx =
∫

∂�i

[n�∂jykεj�mvm] dx

=
∫

∂�i

[∇y]kj [n × v]j dx =
∫

∂�i

[(∇y × n)v]k dx,

since ∇ × ∇y = 0. With the notation (cof ∇y)ij = bij , we also have∫
�i

(cof ∇y) : (∇v) dx =
∫

�i

[bkj ∂j vk] dx = −
∫

�i

[∂jbkj vk] dx

+
∫

∂�i

[njbkj vk] dx =
∫

∂�i

[(cof ∇y)n]kvk dx =
∫

∂�i

(cof ∇y)n · v dx,

where we used the Piola identity ∇ · (cof ∇y) = 0.
We also note that by the assumption (12), we have the bound

‖Dz‖M(�;R(M+1)×3) ≤ CEint(y, z). (17)

for some constant C < ∞. Consequently, the norm ‖z‖BV(�;RM+1) is controlled in terms of the interfacial energy in our
setting. On the other hand, the norm ‖Dz‖M(�;R(M+1)×3) satisfies the conditions in Definition 2.1. Indeed, this follows
from the choice gi(F, n) = α|F | = α|F × n| for α > 0. Another example of an interfacial energy which is included in
the Definition (2.1) is given by the choice gi(F, n) = α| cof Fn|, see [50] for more details. Notice that the first example
penalizes surface gradients which are nonconstant along interfaces while the latter one increases with the area of the
interface.

Body and surface loads: We assume that the body is exposed to possible body and surface loads, and that it is
elastically supported on a part �0 of its boundary. The part of the energy related to this loading is given by a functional
L ∈ C1([0, T ]; W 1,p(�; R

3)) in the form

L(t, y) :=
∫

�

b(t) · y dx +
∫

�1

s(t) · y dH2(x) + K

2

∫
�0

|y − yD(t)|2 dH2(x). (18)

Here, b(t, ·) : � → R
3 represents the volume density of some given external body forces and s(t, ·) : �1 ⊂ ∂� → R

3

describes the density of surface forces applied on a part �1 of the boundary. The last term in (18) with yD(t, ·) ∈ W 1,p(�; R
3)

represents energy of a spring with a spring stiffness constant K > 0. Thus our specimen is elastically supported on �0

in such a way, that for K → ∞ y is forced to be close to yD on �0 in the sense of the L2(�0; R
3) norm. A term of

this type already appeared in [38] and its static version also in [43]. Namely, prescribing a boundary condition from
W 1−1/p,p(∂�; R

3) [42], it is generally not known whether it can be extended to the whole � in such a way that the
extension lives in Y . It is, to our best knowledge, an unsolved problem in three dimensions and therefore it is generically
assumed in nonlinear elasticity that such an extension exists; cf. [15], for instance. The last term in (18) overcomes this
drawback. Namely, if yD cannot be extended from the boundary as an orientation-preserving map the term in question will
never be zero regardless values of K > 0. Assuming the existence of such an extension, Dirichlet boundary conditions can
be incorporated into the model as already done in [24], see also [20, 41].

2.2 Dissipation

Evolution is typically connected with dissipation of energy. Experimental evidence shows that it is a reasonable approx-
imation in a wide range of rates of external loads to anticipate a rate-independent dissipation mechanism. In order to set
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up such a process, we need to define a suitable dissipation function. Since we consider rate-independent processes, this
dissipation will be positively one-homogeneous. We associate the dissipation to the magnitude of the time derivative of z,
i.e., to |ż|M+1, where | · |M+1 is a norm on R

M+1. Therefore, the specific dissipated energy associated to a change of the
variant distribution from z1 to z2 is postulated as in [46], see also [21]

D(z1, z2) := |z1 − z2|M+1 . (19)

Then the total dissipation reads

D(z1, z2) :=
∫

�

D(z1(x), z2(x)) dx .

The D-dissipation of a curve z : [0, T ] → BV (�, {0, 1}) with [s, t ] ⊂ [0, T ] is correspondingly given by (see e.g. [24])

DissD(z, [s, t ]) := sup
{ N∑

j=1

D(z(ti−1), z(ti)) : N ∈ N, s = t0 ≤ . . . ≤ tN = t
}
.

2.3 Energetic solution

Suppose, that we look for the time evolution of t �→ y(t) ∈ Y and t �→ z(t) ∈ Z during a process time interval [0, T ]
where T > 0 is the time horizon. We use the following notion of solution from [24], see also [45,46]: For every admissible
configuration, we ask the following conditions to be satisfied for all t ∈ [0, T ].

Definition 2.2 (Energetic solution). We say that (y, z) ∈ Y × Z is an energetic solution to (E,D) on the time interval
[0, T ] if t �→ ∂tE(y(t), z(t)) ∈ L1((0, T )) and if for all t ∈ [0, T ], the stability condition

E(t, y(t), z(t)) ≤ E(t, ỹ, z̃) + D(z(t), z̃) ∀(ỹ, z̃) ∈ Q. (20)

and the condition of energy balance

E(t, y(t), z(t)) + DissD(z; [0, t ]) = E0 + ∫ t

0
∂E
∂t

(s, y(s), z(s)) ds (21)

where E0 = E(0, y(0), z(0)), are satisfied.

An important role in the theory of rate-independent solutions is played by the so-called stable states defined for each
t ∈ [0; T ]. We set

S(t) := {(y, z) ∈ Y × Z : E(t, y, z) ≤ E(t, ỹ, z̃) + D(z, z̃)∀(ỹ, z̃) ∈ Q}.
Note that by (20), any energetic solution (y, z) is stable for any fixed time.

3 Existence of the energetic solution

A standard way how to prove the existence of an energetic solution is to construct time-discrete minimization problems
and then to pass to the limit. Before we give the existence proof we need some auxiliary results. For given N ∈ N

and for 0 ≤ k ≤ N , we define the time increments tk := kT /N . Furthermore, we use the abbreviation q := (y, z) ∈ Q.
Assume that at t = 0 there is given an initial distribution of phases z0 ∈ Z and y0 ∈ Y such that q0 = (y0, z0) ∈ S(0). For
k = 1, . . . , N , we define a sequence of minimization problems

minimize E(tk, y, z) + D(z, zk−1), for (y, z) ∈ Q . (22)

We denote a minimizer of (22) for a given k as (yk, zk) ∈ Q. The following proposition shows that a minimizer always
exists if the elastic energy is not identically infinite on Q.

Lemma 3.1. Assume that p > 3, (4)-(7), (9), (11)-(12) hold and let L ∈ C1([0, T ]; W 1,p(�; R
3)). Let qN

0 := (y0, z0) ∈
Q satisfy E(0, y, z) < +∞. Then there exists a solution qN

k := (yk, zk) to (22) for each 1 ≤ k ≤ N . Moreover, qN
k ∈ S(tk)

for all 1 ≤ k ≤ N .

P r o o f . The proof follows the same lines as the proof of [49, Thm. 3.3]. We apply the direct method of the calculus
of variations. We denote the elements of the minimizing sequence by a lower index in brackets in order to distinguish it
from the components of z = (z0, . . . , zM). Fix k, so that zk−1 ∈ Z is given. Let {(y(j), z(j))}j∈N ⊂ Q be a minimizing
sequence for E(tk, ·, ·) + D(·, zk−1). Using the growth conditions (5), (10), and in view of the form of L, it follows that
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there is C > 0 such that ‖y(j)‖W 1,p(�;R3) + ‖z(j)‖BV(�;RM+1) ≤ C for all j ∈ N. Furthermore,

sup
j

(‖ cof ∇y(j)‖Lp/2(�;R3×3) + ‖ det ∇y(j)‖Lp/3(�)) < +∞,

where p/3 > 1 by our assumption p > 3. Consequently, after taking a subsequence, we may assume that y(j) ⇀ y in

W 1,p(�; R
3), det ∇y(j) ⇀ det ∇y in Lp/3(�), cof ∇y(j) ⇀ cof ∇y in Lp/2(�; R

3×3), and z(j)
∗

⇀ z in BV(�; R
M+1).

In particular, we have z(j) → z in L1(�; {0, 1}M+1) and z ∈ Z . Moreover, in view of (16), (Ji)(j) converges
weakly* in measures to Ji as j → ∞ for all 0 ≤ i ≤ M . Standard results for polyconvex materials [3, 15, 49]
show lim infj→∞ Eb(y(j), z(j)) ≥ Eb(y, z). Similarly, lim infj→∞ L(tk, y(j)) ≥ L(tk, y) and limj→∞ D(z(j), z

k−1) =
D(z, zk−1) due to the strong convergence of z(j) → z in L1(�; R

M+1). Finally,

lim inf
j→∞

Eint(y(j), z(j)) ≥ Eint(y, z)

due to [1, Thm. 2.38]. Thus, (y, z) ∈ Y × Z . Using weak sequential continuity of y �→ cof ∇y and y �→ ∇y we see that
the limiting measures Ji have the form of (13). This together with a limit passage in the Ciarlet-Nečas condition (see [16,
Thm. 5]) shows that (y, z) ∈ Q. Namely, y is injective almost everywhere in � and det ∇y > 0 almost everywhere in �.
From (22), one furthermore easily sees that qN

k ∈ S(tk) for all 1 ≤ k ≤ N . �
Denoting by B([0, T ];Y) the set of bounded maps t �→ y(t) ∈ Y for all t ∈ [0, T ], we have the following result showing

the existence of an energetic solution.

Theorem 3.2. Let T > 0, p > 3, yD ∈ C1([0, T ]; W 1,p(�; R
3)), (4)-(7), (9), (11)-(12). Let (y(0), z(0)) ∈ S(0) and

Let there be (y, z) ∈ Q such that E(0, y, z) < +∞. Then there is an energetic solution to the problem (E,D) such that
y ∈ B([0, T ];Y), z ∈ BV([0, T ]; L1(�; R

M+1) ∩ L∞(0, T ;Z).

P r o o f . Let qN
k := (yk, zk) be the solution of (22) which exists by Lemma 3.1 and let qN : [0, T ] → Q be given by

qN (t) :=
{

qN
k if t ∈ [tk, tk+1) if k = 0, . . . , N − 1,

qN
N if t = T .

(23)

Following [24], we get for some C > 0 and for all N ∈ N the estimates

‖zN‖BV (0,T ;L1(�;RM+1)) ≤ C, ‖zN‖L∞(0,T ;BV (�;RM+1)) ≤ C, (24a)

‖yN‖L∞(0,T ;W 1,p(�;R3)) ≤ C, (24b)

as well as the following two-sided energy inequality∫ tk

tk−1

∂tE(θ, qN
k ) dθ ≤ E(tk, qN

k ) + D(zk, zk−1) − E(tk−1, q
N
k−1)

≤
∫ tk

tk−1

∂tE(θ, qN
k−1) dθ . (25)

The second inequality in (25) follows since qN
k is a minimizer of (22) and by comparison of its energy with q := qN

k−1.
The lower estimate is implied by the stability of qN

k−1 ∈ S(tk−1) when compared with q̃ := qN
k . Having this inequality,

the a-priori estimates and a generalized Helly’s selection principle [46, Cor. 2.8] we get that there is indeed an energetic
solution obtained as a limit for N → ∞. In particular, the fact that det ∇y > 0 a.e. in � follows from the fact that if tj → t ,
(y(j), z(j)) ∈ S(tj ) and (y(j), z(j)) ⇀ (y, z) in W 1,p(�; R

3) × BV (�; R
M+1), then (y, z) ∈ S(t). Indeed, in particular we

have z(j) → z in L1(�; R
M+1) and hence for all (ỹ, z̃) ∈ Q, we get

E(t, y, z) ≤ lim inf
j→∞

E(tj , y(j), z(j)) ≤ lim inf
j→∞

E(tj , ỹ, z̃) + lim inf
j→∞

D(z(j), z̃)

= E(t, ỹ, z̃) + D(z, z̃) .

In particular, as E(tj , ỹ, z̃) is finite for some (ỹ, z̃) ∈ Q we get E(t, y, z) < +∞ and thus det ∇y > 0 a.e. in � in view of
(4). �

Remark 3.3. Taking p > 3, prescribing suitable Dirichlet conditions, and adding a term of the form F �→
| cof F |p/(det F )p−1, which is polyconvex, to the bulk stored energy density we can even show injectivity of deformations
everywhere in � for all time instants. We refer to [4] where such a term already appeared.
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[21] A. DeSimone and M. Kružı́k, Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations

of a sharp interface dissipative model via phase-field approximation, Networks Heterog. Media 8(2), 481–499 (2013).
[22] L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions (CRC, Boca Raton, 1992).
[23] I. Fonseca, Interfacial energy and the Maxwell rule, Arch. Rational Mech. Anal. 106(1), 63–95 (1989).
[24] G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J.

Reine Angew. Math. 595, 55–91 (2006).
[25] D. Grandi and U. Stefanelli, A phenomenological model for microstructure-dependent inelasticity in shape-memory alloys,

Meccanica 49(1), 2265–2283 (2014).
[26] M. Gurtin and A. Struthers, Multiphase thermomechanics with interfacial structure, 3. Evolving phase boundaries in the presence

of bulk deformation, Arch. Ration. Mech. Anal. 112, 97–160 (1990).
[27] J. Jani, M. Leary, A. Subic, and M. Gibson, A review of shape memory alloy research, applications and opportunities, Materials

& Design 56, 1078–1113 (2014).
[28] D. Kinderlehrer and P. Pedregal, Characterization of Young measures generated by gradients, Arch. Rat. Mech. Anal. 115, 329–365

(1991).
[29] D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. 4, 59–90

(1994).
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