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Abstract

Surface reflectance of real-world materials is now widely represented by the bidirectional reflectance distribution function
(BRDF) and also by spatially varying representations such as SVBRDF and the bidirectional texture function (BTF). The
raw surface reflectance measurements are typically compressed or fitted by analytical models, that always introduce a certain
loss of accuracy. For its evaluation we need a distance function between a reference surface reflectance and its approximate
version. Although some of the past techniques tried to reflect the perceptual sensitivity of human vision, they have neither
optimized illumination and viewing conditions nor surface shape. In this paper, we suggest a new image-based methodology
for comparing different anisotropic BRDFs. We use optimization techniques to generate a novel surface which has extensive
coverage of incoming and outgoing light directions, while preserving its features and frequencies that are important for material
appearance judgments. A single rendered image of such a surface along with simultaneously optimized lighting and viewing
directions leads to the computation of a meaningful BRDF difference, by means of standard image difference predictors. A
psychophysical experiments revealed that our surface provides richer information on material properties than the standard
surfaces often used in computer graphics, e.g., sphere or blob.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—Line and

curve generation

1. Introduction

Modeling light reflectance from surfaces in a scene is an important
component of realistic and predictive rendering. Bidirectional re-
flectance distribution functions (BRDF) capture the angular depen-
dence for each incoming and each reflected light direction, which
gives rise to complex 4D functions. The most convincing results
are typically obtained using measured BRDFs, which might be cap-
tured with different angular resolutions and accuracy to accommo-
date the storage requirements and capturing costs. Moreover, such
measured BRDFs are often further pre-filtered to reduce aliasing,
lossy-compressed, or projected into rendering-efficient representa-
tions such as analytic functions [NDMOS5], precomputed polyno-
mial [BAOR06, BAEDRO0S], tensor [SZC*07] and PCA [NJR15]
bases. While all those steps are desirable, they might affect the ac-
curacy of light reflection computation, which calls for a meaningful
distance function between two BRDFs that accounts for such accu-
racy losses after the compression is applied.

In this work we propose a perceptually-motivated approach for
the effective and meaningful difference computation between a pair
of BRDFs. Our method just requires a single image to be rendered
for the BRDF being tested; this is compared to the corresponding
image for the reference BRDF using any of the existing quality
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comparison methods. The key idea behind our method is the shape
design of the rendered surface, which is optimized for the coverage
in BRDF parameterization i.e. in terms of incoming and outgoing
light directions. At the same time the shape of the surface needs
to conform to our perceptual sensitivity to differences in mate-
rial appearance (Fig. 1). The surface design is optimized altogether
with the viewer and lighting positions to maintain the visibility of
such BRDF samples by keeping shadowed and occluded surface
parts under control. Our approach works well both for isotropic
and anisotropic BRDFs, while a simple analytic surface formu-
lation enables its efficient rendering. We conduct a series of psy-
chophysical experiments that favorably compare the sensitivity of
the human visual system (HVS) to the differences in the material
appearance for our surface with respect to commonly used spheres
and blobs [VLDO7]. Furthermore, we demonstrate that the BRDF
difference computation is far more reliable and discriminative for
our surface when any of the state-of-the-art image quality metrics
are used.

2. Related Work

In this section we discuss existing approaches for comparing
BRDFs, which is the central issue addressed in this work. Since

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org



http://www.eg.org
http://diglib.eg.org

2 V. Havran & J. Filip & K. Myszkowski / Perceptually Motivated BRDF Comparison using Single Image

reference

-
- -~
e
dE]

Figure 1: Comparison of BRDF's using a single rendered image for
different surfaces. We show that commonly used surfaces (spheres,
blobs) struggle to achieve both: (1) a good visibility of differences
(shown as psychometric measures in green) and (2) computational
metric sensitivity (shown for AE in blue). The optimized surface on
the right performs considerably better.
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BTFs and SVBRDFs are not the main focus of this paper, we re-
call only those methods related spatially varying surface reflectance
which encomprise some perceptual components, or which have
similar goals to ours in terms of optimizing for a wide coverage of
incoming and outgoing light directions. Furthermore, we discuss
surface design solutions which are driven by material appearance
studies or by light reflection/refraction optimization. Finally, we
briefly summarize perceptual findings which link material percep-
tion and shape.

BRDF distance computation — While analytical measures of
BRDF similarity using Euclidean formulations are appealing due
to their simplicity [PLO7, FFGZ12], their predictions may not cor-
relate well with actual perceived differences between rendered im-
ages for such BRDFs [NDMOS5]. For this reason image based met-
rics are typically employed, where often a simple object like a
sphere is rendered under natural lighting [NDMO5], as captured
in high dynamic range (HDR) environment maps [Deb98]. While
such natural lighting improves the discriminability between differ-
ent materials [FDAO3], it involves costly integration of incoming
lighting over the hemisphere, and so in order to keep the computa-
tion efficient, a point light source [MAG*09] or a synthetically gen-
erated environment map [PR12] are often used. In the latter case the
map characteristics are statistically consistent with natural lighting,
but due to its radial symmetry and the isotropic BRDF assumption
the integration can be efficiently performed. The final difference
prediction in these approaches is computed using perceptual color
metrics such as CIELAB [NDMO5, PR12].

Recently, Filip [Fill5] has found that for anisotropic BRDFs a
better discriminability of perceived differences between materials
can be obtained when a point light source is used, which leads
to less blurred light reflection patterns. In this work we also as-

sume an image-based approach, and since we consider fully 4D
BRDF measurements we optimize for the reflective surface shape
and a point light position to maximize the sample coverage in the
incoming and outgoing light direction space. This naturally leads
to the efficient computation of underlying images. With regard to
the problem of isotropic BRDF discriminability, we attempt to im-
prove it by imposing structure in the reflecting surface, which at
least partially compensates for the desirable structure in natural il-
lumination [FDAO3].

BTF difference computation — Meseth et al. [MMK*06] evalu-
ated the quality of images rendered using BTFs and compared them
to corresponding photographs using objective image metrics and
by performing a user study. Guthe et al. [GMSKO09] developed an
objective BTF difference metric, which employs a spatio-temporal
contrast sensitivity function (ST-CSF) to prefilter BTF textures in
spatial and angular domains prior to applying the standard CIE
AE( color difference equation. The proposed method proved use-
ful in guiding the BTF compression. While in [MMK™06] the range
of incoming and outgoing light directions is limited, Guthe et al. ac-
count for the complete BTF dataset under the assumption that the
range of viewing conditions is plausible. In this work we have sim-
ilar goals but with respect to BRDFs, which we achieve through a
single image rendering under optimized lighting and viewing di-
rections.

Filip et al. [FCGHOS8] run a psychophysical study and demon-
strate that significant reduction of input BTF images is possible,
while still providing the same visual quality. Jarabo et al. [JWD™* 14]
run perceptual experiments to investigate the visual equivalence
[RFWBO07] of rendered images for different levels of BTF filter-
ing, and find that blur in spatial domain is less tolerable than its
angular counterpart. In this work, we investigate BRDF process-
ing in angular domain, including filtering, but we emphasize on an
objective BRDF difference computation.

Material design interfaces — In production software packages the
so called material pickers are used for fine tuning the material ap-
pearance. Pellacini et al. [PFG00] advocate a perceptual lineariza-
tion of physical parameters in reflectance models for their more in-
tuitive usage, and through a multi-dimensional scaling (MDS) ex-
periment they derive such a perceptual scaling for the Ward model
parametrization. In the follow-up work, Kerr and Pellacini [KP10]
show that in terms of efficiency in material tuning both physical
parameters and their perceptually scaled counterpart are compa-
rable. Ngan et al. [NDMO06] propose an image-driven navigation
over the space with embedded analytical BRDF models, in which
the distance between the models is determined by one of the pre-
viously discussed BRDF difference methods [NDMO05]. Wills et
al. [WAKBO9] extend this concept for measured BRDFs and pro-
pose a low-dimensional perceptual space for gloss, which enables
an intuitive navigation and construction of new materials.

Spheres are commonly used in material pickers to provide vi-
sual feedback on the material appearance. Vangorp et al. [VLDO07]
show that discriminability thresholds for perceived differences be-
tween materials are lower for more complex shapes such as the
bunny, buddha, or teapot than for the sphere, where the most con-
sistent results across investigated materials and lighting have been
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obtained for blobs. In the automobile industry a small-scale car-
like reference shape (called the frog) is used to test paint finishes,
as it features different curvatures similar to real cars. Ferwerda et
al. [FWSP04] demonstrates that the frog is useful to render the car
paint appearance as well. Nevertheless, neither the frog nor any of
the shapes discussed here are optimized to systematically cover a
wide range of incoming and outgoing light directions, which, as
we show in this work, is crucial for image-based objective BRDF
difference methods.

Reflective/refractive surface design — Precise guide of reflected
illumination is required in many applications such as the design of
automotive headlights, lamp fixtures, and backlight devices in dis-
plays [EIm80]. Optimization methods are typically applied in the
modern design of reflective surfaces, which in case of free-form
surfaces, e.g., defined by means of NURBS, might lead to com-
plex optimizations due to a large number of control points that are
required for precise guidance of such surface changes. To avoid
this problem, suitable surface parameterizations that involve a lim-
ited number of parameters are often used [FoulO]. In our appli-
cation such parametrization should provide sufficient control over
the incoming and outgoing light directions coverage. The goals of
our optimization are quite different than those in modern illumi-
nation applications, which typically concern maximization of light
reflected in certain directions or its uniform distribution over the
illuminated surface. We do not select faceted (tessellated) surface
design [CDJ*10], which could give a more explicit control of the
directions coverage, as it reduces the intuitiveness of surface shape
for human observers and makes the material judgment more diffi-
cult [VLDO7].

In graphics the design of surface shape to control the reflected
and refracted lighting is an important research direction in ma-
terial fabrication. Alexa and Matusik [AM10] fabricate a diffuse
relief surface which represents two different images by changing
the view direction, while Bermano et al. [BBAM12] employ re-
lief self-shadowing to achieve similar effects. In goal-based caus-
tics lens arrays are fabricated to reveal hidden image content
but while looking through the lens a scrambled image version is
seen [PHN™12] or desirable high contrast image projection can be
achieved [STTP14]. While all those techniques involve the opti-
mization of surface shape, the specific goals that guide such surface
design are quite different than ours.

Material perception: Test surface design implications — Visual
perception of materials is an active research field with extensive
summaries presented in the recent survey paper [Flel4], where
changes in the material perception due to interactions between
lighting and object geometry are discussed. Olkkonen and Brainard
[OB11] investigated gloss perception and found that an indepen-
dent analysis of lighting and geometry does not lead to any solid
prediction of their joint interactions. Nishida and Shinya [NS98]
demonstrated that changes of the amplitude and spatial frequency
in a bumpy surface limit the performance in the matching experi-
ment where parameters in the Phong model are adjusted.

Nevertheless, surface curvature, which may vary greatly such
as in the case of blobs, improves performance in material dis-
crimination tasks [VLDO7]. Such varying curvature reveals differ-
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ent appearances of highlights, including compression in the high-
est curvature direction and stretching along the minimal curva-
ture [NTOO4]. The orientation structure of such specular patterns
appears to be a powerful material characteristic information source
in visual perception [FTA04]. For anisotropic BRDFs the direction
of such stretches can be arbitrary and might depend on the ma-
terial finishing structure, but perception of such materials has not
been investigated so far. Since in this work we objectively compare
anisotropic BRDFs our goal is essentially to best expose such pat-
terns, and for this reason our test surface is composed of a number
of differently oriented bumps with various curvatures, amplitudes,
and scales. Also, bumpy surfaces receive more fixations than flat
ones or regular gratings [FVH11], which might facilitate the per-
ception of BRDF differences.

3. Overview

In this work we propose a BRDF distance function computing dif-
ference between two BRDFs. The proposed method fully relies on
the comparison of a single rendered image against a reference im-
age. Due to the single image requirement the design of the rendered
scene should provide information on the material appearance which
is as rich as possible both for the human observer as well as the
objective image quality metrics. To this end, we apply optimiza-
tion tools to derive the shape of the reflective surface, as well as
the scene illumination and viewer position (Section 4). The surface
covers all image pixels to maximize the number of independent
BRDF samples, and the surface shape is optimized to achieve more
uniform coverage of such samples in the BRDF parameter space,
i.e. incoming and reflected light directions. We employ the opti-
mized surface to investigate the HVS sensitivity for the detection
of near-threshold BRDF differences as well as the magnitude es-
timation of larger BRDF differences. For this purpose we conduct
a series of perceptual experiments, where additionally we consider
other commonly used surfaces for the representation of material
appearance such as spheres and blobs (Section 5). Based on the
experiment outcome, we introduce further extensions in our sur-
face design (Section 6), so that not only is the coverage of BRDF
sampling optimized, but also the HVS sensitivity is improved; this
is confirmed in another series of similar experiments (Section 7).
Finally, we demonstrate a better performance of such optimized
surfaces in BRDF difference detection and magnitude estimation
using modern objective image quality metrics (Section 8).

4. Shape Optimization

Parametric surface — To optimize the coverage of incoming and
reflected light directions one needs an analytic surface that allows
its shape to be modified by using a limited number of parame-
ters [EIm80]. Such a surface should account for convex, concave,
and saddle curvatures of variable frequencies that are important for
material appearance judgments [FWSP04] and provides meaning-
ful input to the spatial vision in the HVS [MKRH11]. We tested
a number of parametric surfaces and finally selected one shown in
Eq. 1 defining surface 1. It is expressed in a polar space with axes
re (0,1) and ¢ € (0,2m).

S1z] = s[sin(ng - @)(r+ 1) cos(nr-m-r)]+ VR2—r2—R , (1)
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where s denotes the amplitude scale, R is the radius of the sphere
that protrudes the test surface from below, n, and n, are the num-
ber of cycles along R and azimuth directions. In our optimization
we assume the following ranges for the parameters s: [0.02-0.12],
R: [1-12] meters, n,: [2-9] and n4: [3-15] cycles. The impact of
parameter selection (within the specified ranges) on the surface ap-
pearance is demonstrated in Fig. 2. Note that impact of the param-
eter R is faint yet visible.

K nr na R
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@ 1
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e
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Figure 2: Effects of surface parameter selection in an orthographic
projection: s — the amplitude scale, ny — the number of cycles along
radius, nq — the number of cycles along the azimuth direction, and
R — the radius of protruding sphere. The first three rows correspond
to the minimal, average, and maximal parameter values in their re-
spective ranges, while the last row shows extreme cases of param-
eter combinations.

Viewing and lighting conditions — The scene illumination should
emphasize the differences in the material appearance so that any
perceptible distortion in BRDF representation can be readily de-
tected. This favors simple illumination with a single point light
source, which best exposes high frequency features in reflected
lighting including anisotropic patterns [Fill15]. Note that our task
of BRDF difference detection is different than material recogni-
tion, in which case environment map lighting gives the most natu-
ral appearance [FDAO3]. A single light point might lead to shadow
regions, which do not provide any useful information on the BRDF
characteristics and should be minimized.

Therefore, apart from four surface parameters, we also optimized
the distances ry,r; and the directions 6;,@;, 0., @, to the light and
camera, when we give their position in spherical coordinate system
and the surface is located at the center of the coordinate system.
We employ the perspective camera with the viewing angle of 50°
and assume that the viewer distance to the center of an object falls
into the range (0.3,0.8) meters. Fig. 3 shows the effect of changes
in the viewing distance r, and light source distance »; within the
ranges that are used in the optimization.

(d) ri=12m

(a) n=0.3m

(b) n=0.8m

(c) ri=lm

Figure 3: Effects of changes in the viewing distance: (a) ry =
0.3m, (b) rv = 0.8m, and the light source distance: (c) rj = 1m,
(d) ri = 12.0m in a correct perspective projection.

Optimization procedure — Four surface parameters and six illu-
mination/viewing parameters gives us a ten-dimensional optimiza-
tion problem. We optimize these ten parameters to maximize the
coverage of histogram of illumination and viewing angles, i.e.,
proportion of non-empty histogram bins. The histogram is a one-
dimensional array that covers all illumination and viewing angles
0;,9;,0,,9,, which are converted to the angles o, B;, oy, By in the
onion-sliced parameterization [HFM10] to avoid (0, 27) azimuthal
discontinuity. These angles, all having the range of (—m/2,7/2)
were discretized to 13 bins in each dimension resulting in the his-
togram size of (180/15+ 1)* = 13* = 28,561 bins (each bin has
the same surface area on a 4D hemisphere). In addition to maxi-
mizing coverage of histogram bins we also tested other statistical
measures over the histogram. We have tried to optimize our para-
metric surface using the variance, total variation minimization of
histogram bin values, and we tested also the Hellinger distance be-
tween the histogram bin values and a constant function. As the re-
sulting surface shapes of these optimizations were similar for all
those statistics, in this work we report the results for the histogram
coverage in terms of incoming and reflected light directions, which
we find quite intuitive (the ratio of histogram bins occupied).

The optimization was based on a simulated annealing algorithm
implemented, for verification purposes, both in MATLAB and C++.
The 4D histogram coverage was computed for rendering the surface
shape for all lit pixels of an image 1,280x960 pixels. To suppress
optimization results with excessive numbers of non-illuminated re-
gions in the image, we set a threshold on the maximal percentage
of such dark faces to 10% of all visible pixels. A typical running
time of such optimization with 30,000 evaluations was 10 hours on
an Intel Core 17-3610QM2.3GHz processor.

5. Experiment 1: Sensitivity to BRDF Distortions

Once the surface shape is optimized, its properties with respect to
the discrimination of visible BRDF differences have to be com-
pared with the baseline sphere and blob surfaces. To this end, we
use BRDF filters that gradually degraded the original material ap-
pearance. We can then evaluate all tested surfaces by a direct com-
parison of original and degraded BRDFs.

5.1. BRDF Distortion Selection

We use three degradation filters, which represent typical inaccura-
cies in BRDF modeling and compression:

1. smoothing — filtering of azimuthal directions in BRDF using a
box filter,
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fabric002 fabric005 wood42

Figure 6: Materials used in our perceptual experiments: The first three are isotropic, while the remaining three are anisotropic.

Smoothing parameter: box-filter width
reference 4 8 12

|
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Anisotropy flattening parameter: scale 0-1
reference 0.2 0.4 0.6

Sampling parameter: azimuthal sample-step in degrees
reference 15°¢ 307 45°

Figure 4: Three distortion types as applied to the anisotropic fab-
ric002 material. For each distortion type, the first row directly vi-
sualizes the BRDF data (the data presentation convention as in
[FV14]) for five progressively increasing distortion levels, while
the second row shows the distortion impact on the material ap-
pearance on a curved part of surface 1 (Fig. 5-right).

2. anisotropic flattening — a gradual transition between the original
anisotropic appearance and its isotropic variant [Fil15],

3. resampling — down-sampling of the measured azimuthal direc-
tions.

Fig. 4 shows the effects of applying each of those filters on the
entire BRDF and rendered surface. Note that for low distortion lev-
els the effects are very faint, which might be challenging for exist-
ing difference image quality metrics. All of these filters were ap-
plied to all of the tested materials, except for anisotropic flattening
which was only applied to the anisotropic materials.

(© 2016 The Author(s)
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sphere blob surface 1

Figure 5: Test surfaces used in Experiment 1. All scenes are the
result of optimization, although for the sphere and blob only the
viewing and light directions 0;,¢;,0., 9, as well as the distances
v, I were optimized.

5.2. Test Materials

We used six BRDFs from the UTIA BRDF Database
(http://btf.utia.cas.cz) corresponding to different materials
such as paint, leather, plastic, fabric, and wood. Three of them
are isotropic (carpaintOl, leather0O3, plasticO5) and three are
anisotropic (fabric002, fabric005, wood42) as shown in Fig. 6.

5.3. Psychophysical Study: Procedure

To evaluate the perceptual discriminability of BRDFs on the base-
line and our optimized surface we conduct a psychophysical study.
In this regard we prepared two types of experiments:

Threshold experiment — As experimental stimuli we have used
pairs of static images of size 1920 x 1080 pixels, representing a
material BRDF rendered on a surface. The experiment arrangement
on the display was so that each pair consisted of the reference and
degraded BRDFs as shown in Fig. 7-a (The images in Fig. 7 show
the surface shape for experiment 2 described in the section 7). We
used five levels of degradation for all distortion types (see Fig. 4).
Pairs of images were displayed simultaneously, side-by-side in a
random order. Three different surfaces were used; sphere, blob,
and surfacel. For each combination of material and distortion type
there were 6 stimuli giving in total 6x (3 anisotropicx2 filters + 3
isotropic x 3 filters) = 90 stimuli (note that anisotropic flattening ap-
plies to anisotropic materials only). Subjects were asked to identify
whether there is a visible difference between the two images.

The pairwise psychophysical data averaged across all subjects
can be represented by the psychometric function y(x) [WHOI1],
which specifies the relationship between the underlying probability
v of positive response and the stimulus intensity x: W(x; ., B,Y,A) =
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Y+ (1 —y—A)F(x;0,B), where F is the data fitting function with
parameters o and f3; v specifies the guess rate (i.e., response to the
zero stimulus), and A is the miss rate (i.e., a difference between in-

correct and ideal responses for a large stimulus). We used Weibull

function F(x,0,B) = 1 —exp [f (é)ﬁ], where in our experiment
configuration the correct response at the level of 50% probability

determines the just-noticeable difference (JND) [VLDO7].

Thurstonian scaling — As the threshold experiment does not pro-
vide us with a precise scaling of larger distortion magnitudes, in an-
other experiment we employed Thurstonian scaling, i.e., measure-
ment of the psychological scale separation between any two stimuli
derived from Thurstone’s Law of comparative judgment [Thu27].
In our case, the scaling provides JND units of perceived differ-
ence [VMB™*14]. We used a two-alternative forced choice (2AFC)
experiment design with the reference BRDF shown on the display
top (see Fig. 7-b). Subjects were asked to indicate which of the two
bottom images was visually closer to the reference. As the bottom
images can represent any combination of five degradation levels or
the reference image, the final number of stimuli would be 5x5=25
per material and filter. This would expand to 25 x (3 x2+3x3)=375
stimuli. To make the experiment feasible we turned to an incom-
plete paired comparison design [SFO1], and we restrict the compar-
ison to two closest degradation levels, which reduces the number of
stimuli to 255 images. To avoid a pixel-wise comparison, the up-
per reference image is always rendered for slightly rotated viewing
angles (2°) [RFWBO07].

(b)

Figure 7: Experiment 2: Stimuli examples (surface 3) for the
threshold (a) and Thurstonian scaling (b) experiments.

Both experiments have been performed by 11 subjects; all had
normal or corrected to normal vision, and were naive about the pur-
poses of the experiment. Each subject used remote Nintendo Wii
controllers to answer the questions, so that they could fully focus
on the task. All stimuli were presented on a calibrated 24" LCD dis-
play (60 Hz, resolution 1920 x 1200, peak luminance 120cd /mz,
6500K, gamma 2.2). The experiment has been performed under
dim lighting conditions. Participants viewed the screen at a distance
of 0.6 m.

5.4. Results

First, we analyzed the results of the psychophysical studies. The
first row of Fig. 8 shows psychometric functions fitted to the results
of pairwise comparisons averaged across all subjects and degrada-
tions. The error-bars represent the variance across all subjects. Here
we can observe that subjects were on average more sensitive to the
spherical surface while the optimized surface scored the least. Sim-
ilar results were obtained also from the Thurstonian scaling in the
second row of Fig. 8. Note that the derived JND scale is not abso-
lute. By including a common point of reference (a reference image)
we are able to link different scales for different distortions types,
but strictly speaking we cannot compare scales between different
surfaces. For such absolute comparisons psychometric functions
can be considered as shown in the first row of Fig. 8.

We have also measured an average stimuli observation time,
which generally decreases with the extent of BRDF degradation,
i.e., the higher BRDF modifications were easier to spot. Also
the comparison of psychometric functions for individual BRDF
degradations revealed that effects introduced by the sampling fil-
ter were the most difficult to spot, while the subjects sensitivity
to other filters was similar. The fastest response was achieved for
the fabric002 material that features significant anisotropic high-
lights, while the slowest response was measured for mostly diffuse
leather03. Please refer to the supplemental materials for a more
complete coverage of the response time measurements.

Fig. 10 shows the histogram coverage along with related statis-
tics for the optimized scenes with the sphere, blob, and surface 1.
The histograms are transformed into 2D images and show the bin
coverage for the onion-sliced parameterization. Each small square
block features histogram values dependent on f,/o.,. The figure
shows a significantly higher coverage of incoming and outgoing
angles for our parameterized surface. Note that the sphere and blob
were optimized only for illumination and viewing conditions, i.e.,
distances ry, r; and directions 0;,¢;, 0y, @, to the light and viewer.
One can observe a three-fold increase of the coverage for the opti-
mized surface when compared to the baseline surfaces.

6. Perception-motivated Shape Optimization

In the first experiment we learned that we can generate a surface
with good histogram coverage but that if it is perceptually nonin-
tuitive and relatively complex, it may distract observers and thus
result in worse performance than baseline surfaces. Therefore, we
decided to take the best of both worlds and combine our optimized
surface function S; (Eq. 1) defining surface 1 with a hemisphere in
the center, the size of which is comparable to the baseline sphere.

(© 2016 The Author(s)
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Figure 8: Experiment 1 for sphere, blob, and optimized surface 1. (a) psychometric
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Figure 10: Experiment 1: Comparison of histogram coverage for the sphere, blob, Figure 11: Experiment 2: Comparison of histograms

and the optimized surface 1.

Details of the derivation of our new function S, defining surface
2 are given in the Appendix section. We use this combination of
hemisphere and our analytic surface throughout the optimization
procedure as described in Section 4, however we keep the hemi-
sphere radius fixed. The outcome of such optimization is shown in
Fig. 12-a-right.

Although this surface seems to be intuitively better than surface

1, the spiky bumps might be nonintuitive for some subjects. A sur-

face which is even more familiar in appearance is to be preferred.

To this end, we were considering a surface resembling a sphere

with drapery lying over it. The folds of drapery can be approxi-
mated with the following function

£ =s[10.0(? - sin(na® + sin(n, 7)) VR2 — 2] |, )

where the meaning of parameters and the range of their values, as

(© 2016 The Author(s)
Computer Graphics Forum (© 2016 The Eurographics Association and John Wiley & Sons Ltd.

coverage of surfaces in the second experiment: opti-
mized surfaces 2 and 3.

used in the optimization, is the same as in Eq. 1, except that n, de-
notes the number of zig-zag folds around the hemisphere. Fig. 12-
b-left demonstrates the surface appearance as a function of the pa-
rameter selection that always remains within the ranges used in the
optimization.

When we optimized this surface parameters for the coverage and
combined it with a spherical surface we obtained the function S3
defining surface 3 (see Appendix for details), which is visualized
in Fig. 12-b-right. Final optimized parameters of all three custom
surfaces are given in Appendix.

7. Experiment 2 — Combined Sphere and Optimized Surface

To understand the human performance in the discrimination of
BRDF differences for the two optimized surfaces shown in Fig. 12-
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(a) surface 2 optimized

(b) surface 3

L

Figure 12: Examples of (a) surface 2 and (b) surface 3 and their
optimized versions on the right.

optimized

Figure 13: Experiment 2, eye tracking visualization: subjects gaze
fixation hotspot-maps for both optimized surfaces.

right we repeated the threshold and Thurstonian scaling experi-
ments as described in Section 5. A total of 13 subjects performed
the experiments. Other settings and conditions remained the same.
However, to learn what kind of visual information subjects use to
perform their task, we have recorded eye movements for all of the
subjects using the GazePoint GP3 eye-tracker. The device was cal-
ibrated for each subject individually and provided the locations and
durations of fixations at a rate of 50 samples/s. The shortest fixation
duration to be recorded was set to 10 ms.

7.1. Results

Fig. 9 shows the experiment outcome for the new surfaces. As can
be seen the subject sensitivity is comparable to the baseline sphere
surface (see Fig. 8), which was expected as the central hemisphere
is now a part of the stimuli image.

The gaze fixation hotspots maps in Fig. 13, accumulated across
13 subjects, 6 materials, and 3 degradations, reveal that subjects
used mainly the central spherical part for making their decision.
The location of white peak correlates with the specular highlight
and anisotropic singularity point at the pole of the hemisphere.
Therefore, we assume that these visual features were the most im-
portant for subjects decisions. We can also observe that subjects did
fixate surrounding geometry, especially for surface 2; this strategy
was used for diffuse isotropic materials where the appearance of
the hemisphere was not discriminative enough.

Fig. 11 shows that the histogram coverage for surface 2 is signit-

icantly higher than surface I (see Fig. 10) as well as surface 3. The
improvement of coverage for surface 2 is mainly due to its high
frequency and gradient of peaks. While surface 3 has the lower
coverage, we assume that it is more intuitive for the observer.

Finally, we projected all incoming and outgoing directions
present in the tested surfaces to half-angle parameterization
[Rus98] and shown coverage histograms within characteristic slices
of 0, vs. 0, that are often used for evaluation of isotropic BRDFs
properties [NJR15]. Even, the projections in Fig. 14 clearly show
that our optimized surfaces have higher coverage than the baseline
surfaces.

sphere blob

HEE

20 40 60 80 20 40 60 80 20 40 60 80

surface 2 surface 3

20 40
ed

60 80

Figure 14: Surfaces coverage histograms projected to elevation
angles ©;,/0, representing characteristic BRDF slice of half-
difference directional representation.

8. Objective Image Quality Metrics

The promising perceptual results of our optimized surfaces encour-
aged us to test the performance of various computational metrics
on renderings of all of the tested surfaces. We considered AE, C-
SSIM [LPU*13], and VDP2 [MKRH11] pixel-wise metrics (other
metrics: RMSE, PSNR, SSIM are shown in the supplemental ma-
terials). Results in Fig. 15 show significantly higher sensitivity of
the optimized surfaces compared to the baseline surfaces. We can
observe similar sensitivity of the new surfaces (surface 2, surface
3) to the original surface 1. Behavior for individual materials is
comparable for all optimized surfaces.

While AE and VDP2 had comparably high sensitivity to
anisotropic materials (especially fabric002 shown as red), C-SSIM
has shown low sensitivity to material fabricOO5. This may be due
to its dark color, which makes differences less visible. In contrast,
while the isotropic materials leather03, plasticO5 exhibited very
low sensitivity, the isotropic carpaintOl material has shown sen-
sitivity levels comparable to anisotropic ones. We expect that this
is the result of its high dynamic range and the intensity of the spec-
ular peaks mean that these highlights are the most important visual
feature regardless of the off-specular directions.

Our new surfaces are 2 to 3 times more sensitive than a sphere
to pixel-wise computational metrics while still retaining a psy-
chophysical response comparable to the baseline surfaces often
used for comparison of material visualization fidelity in computer
graphics. The subjects sensitivity for BRDF differences is compa-
rable for both surfaces, while such difference discriminability by
objective metrics is much better for surface 2. Please refer to the
supplemental materials for for individual surface/material combi-
nations.

(© 2016 The Author(s)
Computer Graphics Forum (© 2016 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 15: Results of computational metrics for 6 BRDFs and all 5 tested surface shapes. AE (lower is more similar), C-SSIM (lower is more

similar), and VDP2 (higher is more similar).

While our primary goal is not concerned with evaluating the per-
formance of particular image quality metrics in predicting BRDF
differences (which might depend on the metric itself as well as on
the type of filter and magnitude of distortions, e.g., near threshold
vs. supra-threshold distortions), we were interested in the correla-
tion between subject responses and metric predictions as a function
of the surface type. To this end, we investigated the Pearson and
Spearman correlation between such responses as shown in Fig. 16.
Overall, such correlation is slightly higher for our surfaces 2 and 3
than for the sphere, while the blob and surface 1 exhibit the low-
est correlations. Remarkably, when the correlation is considered
separately for anisotropic surfaces, it is higher than for isotropic
surfaces. In particular, the correlation for anisotropic flattening is
of the order of 0.9 and it is significantly higher than for other fil-
ter types, where it oscillates around 0.7 depending on the metric
type. This might indicate that distortions of a clearly spatial nature,
such as gradually filtered anisotropic patterns, are easier to detect
by the existing quality metrics, which are often specifically trained
for spatial distortions. The smoothing and resampling filtering is in
fact performed in the angular domain of the BRDF, and while this
translates into spatial patterns for smooth surfaces as considered
in our experiments, the quality metrics are not explicitly designed
to respond to such angular domain BRDF changes. Note that per
pixel metrics such as RMSE and PSNR perform better in detect-
ing such distortions (the resampling filter) than metrics with ex-
plicit spatial components such as VDP2 and SSIM. The specifics
of the spatial component resulting from angular domain BRDF fil-
tering do not involve significant contrast or structure changes that
are captured by VDP2 and SSIM. This might indicate that special-
ized metrics need to be developed that somehow directly account
for signal changes in the angular domain. Please refer to the sup-
plemental materials for the complete set of correlation data.

(© 2016 The Author(s)
Computer Graphics Forum (© 2016 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 16: Correlation between Thurstonian scaling data and ob-
Jective metrics for all degradation filters and all materials: (a)
Pearson and (b) Spearman correlation.

9. Discussions, Limitations and Extensions

In this paper we propose two optimized surfaces. One may wonder
which one should be used in particular comparison applications.
We recommend the use of surface 2 for computational compar-
isons, due to its higher coverage that makes the pixel-wise com-
parison metrics more sensitive. On the other hand, the usage of
surface 3 is recommended, due to its better intuitiveness to visual
applications, e.g., as BRDF selection/preview widget.

The main limitation of our method is that we cannot guarantee
that the globally optimal surface has been found. One can possibly
suggest other functions which could have even better coverage in
the directional histogram. Moreover, for the sake of continuity and
thus visual intuitiveness of the rendered surfaces, we restricted the
variety of surfaces to those having less than 10% of pixels non-
illuminated.

To support the usage of our results we provide code for visualiz-
ing our surfaces and for computing MSSIM differences of BRDFs
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in C++. A list of pixel-wise angular illumination and viewing direc-
tions for each of the optimized surfaces is available for comparison
and rendering of material appearance models (supplementary ma-
terial). Unoptimized C++ code (single threaded, no SSE), as per
the attachment to this publication, achieves 450 ms for computa-
tion of the BRDF distance using our method for image resolution
640480 pixels. This could be further optimized both on a CPU
and GPU as the SSIM computation can be highly parallelized. This
approach considerably leverages the comparison process as it al-
lows visualization of any material appearance model on our sur-
faces (for point light illumination) without the need to use any ren-
dering tools.

The approach as presented is suitable for anisotropic BRDFs,
however, it can easily be extended from a single image, as suffi-
cient for anisotropic BRDFs, to a sequence of images for spatially
varying BRDF and BTF data. By comparing a sequence of images
we can draw a conclusion on the overall BTF dataset quality. The
basic idea of this extension is that the BTF is moving on the pro-
posed surface as piece of cloth over the shape. The average value
of C-SSIM scores is computed for the sequence of image pairs to
determine the difference between the reference and distorted BTFs
(see the supplemental materials for more details). Fig. 17 shows
an example of PCA compressed BTF data, when rendered for the
sphere and Surface 2 and 3 scenes. The bottom row shows the cor-
responding difference maps.

Finally, although our surfaces were optimized for point-light il-
lumination, they can be applied for more complex lighting scenar-
ios such as environment maps (refer to the supplemental materials).
In Fig. 18 we show an example of such complex lighting, and we
demonstrate that for our surfaces the C-SSIM metric gains in the
sensitivity to the fitting errors compared to the sphere when mea-
sured BRDFs are represented as analytic BRDF models [KSKK10].

10. Conclusions

This paper proposes a distance function between two BRDFs where
the first BRDF is the reference and the second one is a distorted
version of the reference which resulted from some kind of process-
ing such as data compression. We show that the baseline surfaces
usually employed for such comparisons (sphere, blob) are ineffi-
cient because their coverage of incoming and outgoing directions
is very limited. Therefore we proposed the use of a number of al-
ternative parametric surfaces and optimized their parameters using
simulated annealing to achieve higher coverage of lighting direc-
tions. We show that such optimized surfaces achieve much higher
sensitivity scores from pixel-wise computational metrics. Further-
more, we conducted psychophysical studies which proved that our
surface allows the visibility of differences at least on a par with, if
not better than, the standard baseline surfaces.

We assume that our optimized surface shapes will be helpful
wherever a comparison of different models of surface reflectance is
needed. We optimized our method on anisotropic BRDFs; however,
our approach is easily extensible to comparing spatially-variable
appearance (SVBRDEF, BTF). We provide precomputed list of di-
rections for each pixel of our surfaces, to allow fast material com-
parison without need of any rendering tools.

In future work we would like to investigate the use of arbitrary
NURBS surfaces to achieve even higher flexibility of the optimized
surface.
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Appendix

Analytical functions combining hemisphere and the optimized sur-
faces as used in the second experiment.
Surface 2:

S$2[2]

S[TX(r,t1,12) - sin(nq29) - cos(my (r,ry,t1,nr)) +
HS(r,0.4)(1.0 — TX(r,11,1)) ] + VRZ—r2 =R,  (3)

where t; = 1.0k, t; = 1.5k, and k = 0.09 is the radius of hemi-
sphere included by function HS(.) shown below. Functions TX(.)
and m (.) take care for smooth transition between hemisphere and
the optimized surface. Surface parameters are s amplitude scale,
ny cycles per radius, n, cycles per azimuth, and R is radius of the
sphere protruding the test surface from below.

Surface 3:
S3[z] = s[10my(r, s)2 sin(na@ + sin(n,wmy (r,s))) + 4)
RZ —my(r,s)2] +Hs(r,0.25) ,

where parameters are the same as above except n, representing
number of zig-zag moves of the folds across surface diameter (2-9)
and the function my () just clamps the radius.

function r, = HS(r, ¢)

1:  k=0.09 // sphere radius - fixed size

2. if(r<k)ry=Vk*—r?

30 else if (r < 2k) ry = —/k* — (2k—r)?
4: else ry =—k

function v = TX(x, #1, 1)

I: v=(x—11)/(t —t) llsmooth transition between
2. if(v<0)v=0 /Ity and ty

3 ifv>DHv=1

4 v=v ((6v—15)+10) // output is 0 to 1
function r = m (r, r1, t1, nr)

. if@r>n)r=((r—t)n+025mn

2:  else r=0

function r = m;(r, s)

1. if(r<s)r=0

Parameters of the optimized surfaces S

s n na R norp 0, @ 0 o
(1 [ [ [mlmlm] [°T [°T [°1 [1]

0.060 8.0 5.0 43 08 6.7 29.4 1485 285 277.1
0.091 145 6.0 52 0.7 46 462 2492 3.7 51.7
0.047 15.0 9.0 19 0.7 2.5 363 209.7 194 14.3
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