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A competition in unsupervised color image segmentation took place in conjunction with the 22nd
International Conference on Pattern Recognition (ICPR 2014). It aimed to promote evaluation of unsu-
pervised color image segmentation algorithms using publicly available data sets, and to allow for any
subsequent methods to be easily evaluated and compared with the results of the contested methods
under identical conditions. Our comparison of different methods is based on the standard methodology
of performance assessment using an on-line verification server. We present in this paper the evaluation
of the top six results submitted to the ICPR 2014 contest in unsupervised color image segmentation and
compare them with 11 other state-of-the-art unsupervised image segmenters.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction and related work

Unsupervised or supervised texture segmentation is a pre-
requisite for numerous applications useful for image under-
standing, such as the content-based image retrieval, scene analy-
sis, automatic acquisition of virtual models, quality control,
security, medical applications, and many others. Although a large
number of more or less different methods have already been
published [1–17], and other novel algorithms are continually
appearing, this ill-defined problem is still far from having been
satisfactorily solved, and cannot even be solved in its full gen-
erality, i.e., to perform optimally for any and all image segmenta-
tion tasks. Visual scenes are highly variable and each method's
performance also depends on a visual scene category and on
image parameters, such as resolution, illumination and viewing
conditions. In addition to that, not much is known about behavior
of the already published segmentation methods, including
appropriate setting of their parameters; their potential user is left
to randomly select one. One of the reasons for this situation is the
lack of sufficient empirical data and, consequently, the absence of
any counseling. This is, among other reasons, due to a lack of a
reliable performance comparison between different techniques
because very limited effort has been spent to develop suitable
quantitative measures of segmentation quality that could be used
for evaluating and comparing segmentation algorithms. Rather
than advancing the most promising image segmentation approa-
ches, novel algorithms are often introduced merely on the basis of
being sufficiently different from those already described in the
aos@utia.cas.cz (S. Mikeš).
literature, even if they have dubious performance and have only
been tested on a few carefully selected favorable examples.

The unsupervised image segmentation contest, which took
place in conjunction with the ICPR 2014 Conference, aimed at
overcoming these problems by suggesting the most promising
approaches to the unsupervised learning and image segmentation
and at unifying the verification methodology used in the image
segmentation research. The contest requirements were to submit
segmentation results on the generated large color texture mosaics
set, a brief description of the unsupervised segmentation method,
and its code or binaries and the required parameters. None of the
methods was allowed to utilize user interaction or knowledge
about the number of regions in the mosaic.

Although, the performance assessment of all submitted contest
algorithms was briefly summarized in the presentation given at
the conference, the contest framework has a much broader
applicability. It can guide and inspire development of new meth-
ods and serve as a reliable and efficient means of progress
checking during such an effort.
2. Contest benchmark

The contest uses the Prague texture segmentation data-
generator and benchmark [18–20], which is a web-based (http://
mosaic.utia.cas.cz) service designed to mutually compare, validate,
and rank different texture or image segmenters – supervised or
unsupervised – and to support development of new segmentation
and classification methods. Although this benchmark has already
been serving the community for ten years, it is being permanently
upgraded while maintaining the backward compatibility of the
accumulated results during its decade in service. The benchmark
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verifies the performance characteristics of the submitted image
segmenters in either supervised or unsupervised mode on
potentially unlimited image/frame sets of mono-spectral, multi-
spectral, bidirectional texture function (BTF), satellite, and
dynamic textures using extensive sets of prevalent numerical cri-
teria. It enables us to test their noise robustness, scale, rotation or
illumination invariance, select several types of region borders, etc.
Table 1
The 80 mosaics' specification for the contest and validation sets.

Number No. of
regions

Texture class Number No. of
regions

Texture class

4 3 Mixture 4 6 Bark
4 4 Mixture 4 6 Flowers
4 5 Mixture 4 6 Glass
4 6 Mixture 4 6 Man-made
3. Contest data

The benchmark contest data sets are computer generated
512�512 pixel mosaics using a Voronoi polygon random gen-
erator filled with randomly selected natural color textures (see
Fig. 1). Visual scenes contain objects from various materials; these
materials are typically represented as visual textures [10,21]
mapped on the corresponding object shapes. A material's
appearance predominantly depends on the viewing, illumination,
and shape properties, among other [21]. The viewing and illumi-
nation conditions vary somewhat for each individual texture in the
test mosaic, the viewing direction follows the surface normal, and
all textures have correct natural illumination. The contest data are
roughly planar and as such they only approximate a real visual
scene with general object shapes. However, they allow us to know
the exact ideal non-subjective segmentation, and to generate test
sets of any size we wish, but, most importantly, the ranking of the
segmentation methods correlates well with the experiments on
real natural scenes, as we have verified on the Berkeley test
database [22]. The unlimited size of the test is crucial to obtain
stable performance ranking. The contest uses the large size (80
textural mosaics) unsupervised Color benchmark without noise
degradation. Piecewise linear region borders are chosen for the
contest, but the benchmark allows various border types. The par-
ticipants received the contest data set (Table 1) to be segmented
by their methods, and they uploaded the corresponding 80 seg-
mentation results. Another validation set with the same structure
(Table 1) was used by the organizers to validate the submitted
results.

Table 1 specifies the basic properties of both the contest and
validation data. Both sets contain 80 texture mosaics composed of
measured color textures. Forty (40) mosaics gradually increase the
number of different textures per mosaic from 3 to 12, and the
textural fragments are mixtures of ten thematic texture classes.
The other 40 mosaics include all six different regions but contain
textures from the same thematic class in each mosaic. For any row
in Table 1 there are four mosaics with two different mosaic
topologies, each with two alternative texture sets.
4 7 Mixture 4 6 Nature
4 8 Mixture 4 6 Plants
4 9 Mixture 4 6 Rock
4 10 Mixture 4 6 Stone
4 11 Mixture 4 6 Textile
4 12 Mixture 4 6 Wood
4. Performance evaluation

The benchmark has implemented the 27 most frequently used
evaluation criteria categorized (see the detailed specification in
Fig. 1. Texture mosaic g
the benchmark) into four groups: region-based [23] (5 criteria
with the standard threshold þ 5 performance curves – Figs. 2–7 –

with their performance integrals over all threshold settings), pixel-
wise (12 þ F–measure curve), consistency measures (2) [22], and
clustering comparison criteria (3) [24]. The performance criteria
mutually compare ground-truth image regions with the corre-
sponding machine-segmented regions. All criteria are available on
two levels – averaged over the corresponding benchmark or
computed for every individual test row in Table 1. The contest
criterion is the average rank over 21 benchmark criteria. The top
methods were verified by the organizers using the submitted
codes and the validation data, which were not available to con-
testants. During the contest submission period, all participants
could see only their results and all non-contest results in the
benchmark. They could submit an unlimited number of results,
and only the best one of those submitted before the deadline was
considered.
5. Submitted methods

The following five methods (VRA-PMCFA, FSEG, Deep Brain
Model, CGCHI, texNCUT) were submitted to the contest, and the
sixth one (MW3AR8) was evaluated outside the contest because it
was developed by the organizers. The texNCUT method was
excluded from the finals due to a contest condition violation.

5.1. VRA-PMCFA

The Voting Representativeness–Priority Multi-Class Flooding
Algorithm (based on [25]) is an unsupervised texture image seg-
mentation framework with an unknown number of regions, which
involves feature extraction and classification in the feature space,
followed by flooding and merging in the spatial domain. The
segmented image is divided into overlapping blocks, whose fea-
ture representations are three color Lab components and two
wavelet transform components. The block size and the possible
range for the number of regions are three parameters of the
enerating scheme.



Fig. 2. Benchmark criteria curves (blue line – submitted, red dashed line – validation) for the methods: VRA-PMCFA (a), texNCUT (b), FSEG (c), respectively. (For inter-
pretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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method. The distribution of the features for the different classes is
obtained by a block-wise unsupervised voting framework using
the block's grid graph or its minimum spanning tree and the
Mallows distance. The final clustering is obtained by using the k-
centroids algorithm with the Bhattacharyya distance. The flooding
algorithm used is the Priority Multi-Class Flooding Algorithm [25],
which assigns pixels to labels using the Bayesian dissimilarity
criteria. Finally, a region-merging method, which incorporates
boundary information, is introduced for obtaining the final seg-
mentation map. This scheme is executed for several regions, and
the number of regions is selected to minimize a criterion that
takes into account the average likelihood per pixel of the
classification map and penalizes the complexity of the regions
boundaries.

5.2. FSEG

This factorization-based texture segmenter [16] uses local
spectral histograms as features. The local histogram is con-
catenated from histograms of filter responses computed through
convolution with a chosen Gabor and Laplacian of Gaussian filter
bank over a square window centered in each pixel's location. The
method constructs an M � N feature matrix using M-dimensional
feature vectors in an N-pixel image. Based on the fact that each



Fig. 3. Benchmark criteria curves (blue line – submitted, red dashed line – validation) for the methods: MW3AR8 (a), Deep Brain Model (b), and CGCHI (c), respectively. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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feature can be approximated by a linear combination of several
representative features, this method factorizes the feature matrix
into two matrices: one consisting of the representative features,
and the other containing weights of the representative features
used for a linear combination at each pixel. The factorization
method is based on a singular-value decomposition and non-
negative matrix factorization. The method uses local spectral his-
tograms to discriminate between region appearances in a com-
putationally efficient way, and at the same time accurately loca-
lizes the region boundaries.
5.3. MW3AR8

This unsupervised multi-spectral, multi-resolution, multiple-
segmenter for textured images with an unknown number of
classes is based on [26]. The segmenter utilizes a weighted com-
bination of several unsupervised segmentation results, each in a
different resolution, using the modified sum rule. Multi-spectral
textured image mosaics are locally represented by eight causal
directional multi-spectral random field models, recursively eval-
uated for each pixel. Each single local texture model is expressed



Fig. 4. Benchmark criteria curves (blue line – submitted, red dashed line – validation) for the methods: VRA-PMCFA (a), texNCUT (b), FSEG (c), respectively. (For inter-
pretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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as a stationary causal uncorrelated noise-driven 3D auto-
regressive process [27]: Yr ¼ γXrþer ; where γ ¼ ½A1;…;Aη� is the
parameter matrix, r¼ ½r1; r2� is the regular lattice multiindex, Irc is
a causal neighborhood index set with η¼ cardðIcr Þ and er is a
Gaussian white noise vector with zero mean and a constant but
unknown covariance, and Xr is the corresponding vector of the
contextual neighbors Yr� s. The single-resolution segmentation
part of the algorithm is based on the underlying Gaussian mixture
model and starts with an over-segmented initial estimation which
is adaptively modified until the optimal number of homogeneous
texture segments is reached. This method did not officially
participate in the contest because it was developed by the orga-
nizers. It was used for comparison only.

5.4. Deep Brain Model

The Deep Brain Model is an unsupervised segmentation fra-
mework with an unknown number of classes simulating the deep
structure of the primate visual cortex. This model is based on a
deep scale space, in which a pool of receptive field models in pre-
cortical processing and early vision is applied in each scale to
produce feature maps. The graph-based image segmentation [28]



Fig. 5. Benchmark criteria curves (blue line – submitted, red dashed line – validation) for the methods: MW3AR8 (a), Deep Brain Model (b), and CGCHI (c), respectively. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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is then employed to select object boundaries among the edges of
super-pixels.

5.5. CGCHI

The Combined Graph Cut [9] segmentation with histogram
information [29] on regions method is a combination of global and
local coherent information. The graph cut method [9] performs the
image partitioning via kernel mapping into data of a higher
dimension so that the piecewise constant model, and the unsu-
pervised graph cut formulation thereof, becomes applicable. It
finds a sufficient number of clusters by using histograms and
probability theory. Subsequently, this method uses metric-space
strategies to model local intensity features of the input image.
Some problems in this method are from two main sources: the
wrong estimation of the number of clusters, and modeling method
failures. This method was excluded from the contest due to a
missing validation code.

5.6. texNCUT

The texNCUT submission is a modification of the normalized
cut method [4], which uses textural features based on super-pixels
[30]. The number of regions for the evaluated partitions was



Fig. 6. Benchmark criteria curves (blue line – submitted, red dashed line – validation) for the methods: VRA-PMCFA (a), texNCUT (b), FSEG (c), respectively. (For inter-
pretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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manually set to the number of regions in the ground-truth parti-
tions, which violated the contest conditions. This method was
therefore excluded from the final set of contestants.
6. Results’ evaluation

The selected (12 of 80) test images for visual comparison of the
top six methods (VRA-PMCFA, texNCUT, FSEG, MW3AR8, Deep
Brain Model, CGCHI) submitted to the contest are shown in
Figs. 8 and 9. Nevertheless, the main benefit of the benchmark is
the numerical performance criteria evaluated for each tested
method. Integrated numerical results of these six methods are
shown in Tables 2 and 3, where ↑�=�↓ denotes the required
criterion direction and numbers in bold face marks the best cri-
terion value achieved among all six compared methods.

It shows a qualitative gap between the VRA-PMCFA method
and the remaining ones on the submission set. It has the average
rank difference of 18% compared with the second texNCUT
method. The VRA-PMCFA method scores best in all except five
criteria (OS, US, C, RM, dVI). This method is very robust and
excellent in the correct segmentation criterion (both in its average
CS and integral CS forms), which is demonstrated by the flat curve
(Fig. 2) of this criterion. However, the method is sensitive to
optimal parameter setting. It was obviously carefully tuned for the
submission where it received 20 winning contest criteria, but it



Fig. 7. Benchmark criteria curves (blue line – submitted, red dashed line – validation) for the methods: MW3AR8 (a), Deep Brain Model (b), and CGCHI (c), respectively. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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decreases to ten on the validation set and also the average rank
difference from the texNCUT method drops to only 3%. The under-
segmentation error worsens by 3%, and similarly the precision and
omission errors, which take over the former commission error
pixels. The segmentation error of VRA-PMCFA increases as the
number of regions and their size variability become higher.
Naturally, the second method, texNCUT, thus gets improved from
11% to 48%. Both methods accumulate nearly all winning criteria,
as can be seen in Tables 2 and 3. VRA-PMCFA performs worse on
the over- and under-segmentation (OS, US) criteria but these
erroneous tendencies are mutually balanced and uniform over the
whole threshold range (Fig. 4). The precision measure (CC) drop-
ped to the third rank on the validation set, which suggests some
loss of region details. The performance decrease between both sets
is between 1% and 3% for single measures.

The second method, texNCUT, performs well except for its
region border localization, which is rather poor, as can be seen in
Figs. 8d–11d. It is also indicated by numerical results of the global
and local consistency error criteria (see LCE and GCE rows in
Tables 2 and 3). The lowest ranking criteria for texNCUT are the ME
and NE error measures. This fact suggests possible improvement
using a connected component approach to eliminate small area
outliers.

The third method, FSEG, performs solidly on all criteria (ranked
between 2 and 4) but does not win in any specific criterion. It has
the worst validation performance for the local consistency error



Table 2
Color benchmark results (submitted) for VRA-PMCFA, texNCUT, FSEG, MW3AR8,
Deep Brain Model, and CGCHI methods.

criterion VRA-
PMCFA
(1.33)

texNCUT
(2.38)

FSEG
(3.05)

MW3AR8
(3.90)

Deep
Brain
Model
(5.10)

CGCHI
(5.24)

↑CS 75:14 1 72:54 2 69:18 3 53:66 4 36:54 5 10:95 6

↓OS 12:13 3 10:92 2 14:69 4 51.40 6 41:63 5 2:19 1

↓US 9:85 3 9:61 2 13:64 4 14:21 5 55:02 6 3:96 1

↓ME 4:38 1 10:25 5 5:13 2 5:54 3 6:71 4 81:91 6

↓NE 4:37 1 9:83 5 4:62 2 6:33 3 7:87 4 81.39 6

↓O 4:51 1 7:33 2 9:18 3 19:86 4 47:36 5 59.33 6

↓C 8:89 2 8:17 1 12:54 3 84:27 5 99.63 6 51:77 4

↑CA 83:45 1 80:58 2 78:23 3 70:15 4 49:82 5 35.62 6

↑CO 88:12 1 86:89 2 84:45 3 75:41 4 62:63 5 50.50 6

↑CC 90:73 1 88:28 3 87:38 4 89:36 2 70:34 5 49.27 6

↓I: 11:88 1 13:11 2 15:55 3 24:59 4 37:37 5 49.50 6

↓II: 1:48 1 2:36 2 2:52 3 2:63 4 12.39 6 10:69 5

↑EA 88:07 1 86:39 2 84:25 3 77:82 4 56:56 5 47.04 6

↑MS 83:92 1 80:33 2 78:83 3 70:25 4 46:01 5 26.89 6

↓RM 3:75 2 3:69 1 4:73 4 3:77 3 5:38 5 10.28 6

↑CI 88:72 1 86:97 2 85:04 3 79:67 4 59:27 5 48.39 6

↓GCE 6:55 1 11:92 4 9:34 2 9:58 3 13:03 5 42.35 6

↓LCE 3:90 1 6:85 4 6:08 3 5:07 2 7:56 5 38.59 6

↓dD 7:59 1 9:18 2 10:01 3 14:15 4 21:44 5 40.15 6

↓dM 4:76 1 6:03 2 6:99 3 10:00 4 25.35 6 25:32 5

↓dVI 14:22 2 14:19 1 14:33 3 15:90 6 15:49 5 14:47 4

↑CS 71.77 66.14 63.58 50.71 33.18 11.96

↓OS 11.27 10.35 12.99 46.22 40.10 3.13

↓US 8.56 9.01 11.39 12.45 46.45 6.53

↓ME 11.51 18.89 15.65 14.56 19.29 77.10

↓NE 11.50 18.71 15.36 14.94 20.51 76.17

↑F 88.54 86.81 84.82 79.15 60.90 48.01

Benchmark criteria: CS ¼ correct segmentation; OS ¼ over-segmentation; US ¼
under-segmentation; ME ¼ missed error; NE ¼ noise error; O ¼ omission error; C
¼ commission error; CA ¼ class accuracy; CO ¼ recall – correct assignment; CC ¼
precision – object accuracy; I ¼ type I error; II ¼ type II error; EA ¼ mean class
accuracy estimate; MS ¼ mapping score; RM ¼ root mean square proportion
estimation error; CI ¼ comparison index; GCE ¼ Global Consistency Error; LCE ¼
Local Consistency Error; dD ¼ Van Dongen metric; dM ¼ Mirkin metric; dVI ¼
variation of information; f are the performance curve integrals; F ¼ F-measure
curve; small numbers are the corresponding measure rank values over the listed
methods; numbers in the method's panel are the average ranks.

Table 3
Alternative benchmark results (validation) for VRA-PMCFA, texNCUT, FSEG,
MW3AR8, and Deep Brain Model methods.

criterion VRA-PMCFA
(1.86)

texNCUT
(2.05)

FSEG
(3.33)

MW3AR8
(3.43)

Deep Brain
Model (4.33)

↑CS 74:13 1 73:90 2 67:44 3 55:01 4 32.54 5

↓OS 12:24 3 7:89 1 8:01 2 47.19 5 35:33 4

↓US 12:83 3 9:15 1 15:52 4 12:03 2 56.97 5

↓ME 4:69 2 10.11 5 9:36 4 7:78 3 4:07 1

↓NE 4:60 1 9.61 5 8:75 4 7:72 3 6:14 2

↓O 7:59 2 6:68 1 9:71 3 16:18 4 53.19 5

↓C 5:70 1 6:35 2 10:75 3 81:02 4 96.98 5

↑CA 82:21 1 82:19 2 76:46 3 72:44 4 44.69 5

↑CO 87:29 2 88:08 1 83:90 3 77:53 4 58.13 5

↑CC 88:50 3 89:46 2 84:83 4 90:34 1 68.25 5

↓I: 12:71 2 11:92 1 16:10 3 22:47 4 41.87 5

↓II: 2:03 2 1:95 1 2:75 4 2:55 3 11:08 5

↑EA 86:43 2 87:44 1 82:23 3 79:93 4 51.26 5

↑MS 82:10 2 82:12 1 76:92 3 72:65 4 39.50 5

↓RM 4:35 3 3:33 1 5:07 4 3:63 2 5.53 5

↑CI 87:10 2 88:05 1 83:18 3 81:49 4 54.60 5

↓GCE 6:09 1 10:92 4 10.20 3 8:60 2 11.38 5

↓LCE 3:45 1 6:38 4 6:55 5 5:05 2 5:42 3

↓dD 7:79 1 8:47 2 10:51 3 13:10 4 22.51 5

↓dM 5:51 2 5:03 1 6:96 3 8:48 4 29.21 5

↓dVI 14:32 2 14:49 4 14:36 3 16.06 5 13:39 1

↑CS 71.78 69.77 62.69 53.06 28.78

↓OS 11.57 7.51 7.29 43.66 33.12

↓US 11.55 8.40 13.74 10.52 48.21

↓ME 10.09 16.61 17.71 14.40 17.07

↓NE 10.06 16.37 17.39 14.48 18.86

↓F 86.91 87.88 82.91 81.06 53.67

Benchmark criteria: CS ¼ correct segmentation; OS ¼ over-segmentation; US ¼
under-segmentation; ME ¼ missed error; NE ¼ noise error; O ¼ omission error; C
¼ commission error; CA ¼ class accuracy; CO ¼ recall – correct assignment; CC ¼
precision – object accuracy; I ¼ type I error; II ¼ type II error; EA ¼ mean class
accuracy estimate; MS ¼ mapping score; RM ¼ root mean square proportion
estimation error; CI ¼ comparison index; GCE ¼ Global Consistency Error; LCE ¼
Local Consistency Error; dD ¼ Van Dongen metric; dM ¼ Mirkin metric; dVI ¼
variation of information; f are the performance curve integrals; F ¼ F-measure
curve; small numbers are the corresponding measure rank values over the listed
methods; numbers in the method's panel are the average ranks.
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(LCE) out of all compared methods, which suggests poor local
refinement of the reference ground truth.

The fourth method, MW3AR8, is slightly worser than the third
one but has very good precision capability (CC). Its current version
has a large commission error and strong over-segmentation ten-
dency (OS), which is also demonstrated in Fig. 5, and suggests the
direction for its possible improvement. Both properties also hold
for its simplified version MW3AR in comparison with alternative
segmenters (Table 4). The MW3AR8 method slightly improve
all benchmark criteria on the validation set except for ME, NE,
and dVI.

The Deep Brain Model performs steadily worser than all four
validated methods except the variation of information (dVI) mea-
sure, which improves from the worst to the best position between
both data sets.

The CGCHI method has the worst performance among all of the
submitted methods; it stands as the worst method in 19 criteria.
CGCHI suffers from poor correct segmentation (CS), as well as huge
missed and noise errors. The localized segment borders are mostly
distinctively wrong; thus the global and local consistency error
criteria (LCE and GCE) are also very high.
The evaluated methods can be clustered into three qualitative
performance groups – the best (VRA-PMCFA, texNCUT), medium
(FSEG, MW3AR8), and the worst (Deep Brain Model, CGCHI).

A more detailed insight into the behavior of single methods can
be obtained by consulting the corresponding criteria description
[19] and their achieved values shown in Tables 2 and 3.

6.1. Alternative segmenters

Table 4 shows numerical results of other well-known, pub-
lished unsupervised segmenters, sorted from left to right accord-
ing to the average rank results. This table contains the following 11
methods:

MW3AR is an unsupervised multi-spectral, multi-resolution,
multiple-segmenter [26] for textured images with an unknown
number of classes. The segmenter is based on a weighted combi-
nation of several unsupervised segmentation results, each in a
different resolution, using the modified sum rule.

The TEX-ROI-SEG [31] segmenter combines Bhattacharyya
distances and a modified version of the maximally stable extremal
region detector.

GSRM [32] is a region-merging technique based on a size-
weighted/-unweighted direct statistical measure of the empirical
distributions of the regions, using the Kullback–Leibler divergence
or Bhattacharyya coefficient.



Fig. 8. Selected color benchmark mosaics (a), ground-truth (b), VRA-PMCFA (c), texNCUT (d), FSEG (e), MW3AR8 (f), Deep Brain Model (g), and CGCHI (h) submitted
segmentation results, respectively.
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Fig. 9. Selected color benchmark mosaics (a), ground-truth (b), VRA-PMCFA (c), texNCUT (d), FSEG (e), MW3AR8 (f), Deep Brain Model (g), and CGCHI (h) submitted
segmentation results, respectively.
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Fig. 10. Selected validation benchmark mosaics (a), ground-truth (b), VRA-PMCFA (c), texNCUT (d), FSEG (e), MW3AR8 (f), and Deep Brain Model (g) segmentation results,
respectively.
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Fig. 11. Selected validation benchmark mosaics (a), ground-truth (b), VRA-PMCFA (c), texNCUT (d), FSEG (e), MW3AR8 (f), and Deep Brain Model (g) segmentation results,
respectively.
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Table 4
Color benchmark results for MW3AR, TEX-ROI-SEG, GSRM unsup. (KL sw), TBES, TFR/KLD, SWA, EDISON, JSEG, EGBIS, HGS (E), and Blobworld methods.

criterion MW3AR
(2.90)

TEX-ROI-SEG
(3.48)

GSRM unsup.
(4.43)

TBES
(4.57)

TFR/KLD
(5.10)

SWA
(6.90)

EDISON
(7.10)

JSEG
(7.33)

EGBIS
(7.38)

HGS
(7.86)

Blobworld
(8.95)

↑CS 53:04 3 56:37 1 54:05 2 37:72 5 51:25 4 27:06 9 12.68 11 27:47 8 28:78 7 29:81 6 21.01 10

↓OS 59:53 9 11:93 4 15:88 5 59:77 10 5:84 1 50:21 8 86.91 11 38:62 7 19:69 6 10:69 3 7:33 2

↓US 3:20 3 19:79 9 14:45 8 1:25 2 7:16 6 4:53 4 0:00 1 5:04 5 39.15 11 33:76 10 9:30 7

↓ME 5:63 2 11:55 4 13:62 5 7:24 3 31:64 9 25:76 7 2:48 1 35:00 10 20:42 6 26:89 8 59.55 11

↓NE 6:96 2 10:29 4 14:03 5 8:22 3 31:38 9 27:50 8 4:68 1 35:50 10 21:54 6 25:04 7 61.68 11

↓O 19:32 2 18:21 1 23:44 4 27:55 5 19:65 3 33:01 6 73.17 11 37:94 7 44:35 9 48:94 10 41:45 8

↓C 86:19 8 9:63 1 26:47 3 95:08 10 9:67 2 85:19 7 100.00 11 92:77 9 82:87 6 32:39 4 58:94 5

↑CA 71:89 1 69:45 2 66:75 4 63:30 5 67:45 3 54:84 7 31.19 11 55:29 6 51:10 8 49:60 9 46:23 10

↑CO 74:66 3 78:26 1 73:67 4 65:66 5 76:40 2 60:67 9 31.55 11 61:81 8 64:12 6 63:37 7 56:04 10

↑CC 95:04 3 81:24 7 81:41 6 96:20 2 81:12 8 88:17 4 98:09 1 87:70 5 72:73 10 66.09 11 73:62 9

↓I: 25:34 3 21:74 1 26:33 4 34:34 5 23:60 2 39:33 9 68.45 11 38:19 8 35:88 6 36:63 7 43:96 10

↓II: 0:74 3 4:16 8 3:35 5 0:60 2 4:09 7 2:11 4 0:24 1 3:66 6 7:59 10 13.51 11 6:72 9

↑EA 80:43 1 76:31 2 73:14 5 74:19 4 75:80 3 66:94 6 41.29 11 66:74 7 59:88 8 58:74 9 58:37 10

↑MS 71:78 1 68:88 2 65:75 3 63:73 5 65:19 4 53:71 7 31.13 11 55:14 6 49:03 8 46:63 9 40:36 10

↓RM 3:09 1 7:37 8 6:76 6 5:27 4 7:21 7 6:11 5 3:21 2 4:96 3 8:38 10 13.31 11 7:96 9

↑CI 82:43 1 77:86 2 75:09 5 77:29 3 77:21 4 70:32 6 50.29 11 70:27 7 63:11 8 61:17 10 61:31 9

↓GCE 8:17 3 11:98 5 8:87 4 7:57 2 20:35 10 17:27 8 3:55 1 18:45 9 16:64 6 16:75 7 31:16 11

↓LCE 5:78 2 6:71 5 5:98 3 6:02 4 14:36 10 11:49 8 3:44 1 11:64 9 8:97 6 10:46 7 23.19 11

↓dD 14:78 2 13:66 1 15:95 3 19:40 5 18:01 4 24:20 9 35.37 11 23:38 8 21:29 6 22:90 7 31:11 10

↓dM 8:97 1 11:74 3 12:36 4 10:93 2 12:64 5 13:68 6 16:84 8 15:19 7 19:72 9 27.95 11 20:03 10

↓dVI 16:67 7 13:74 2 14:87 5 17:76 10 14:06 4 17:16 8 25:65 11 17:37 9 13:79 3 12:83 1 15:84 6

↑CS 49.60 52.98 51.95 36.49 47.58 26.42 12.95 29.13 30.69 27.82 19.10

↓OS 51.08 11.54 14.66 51.90 5.27 44.49 76.33 37.70 19.86 9.70 10.81

↓US 2.93 17.94 14.06 0.85 7.11 5.26 0.00 6.38 33.66 31.62 8.35

↓ME 16.05 19.19 18.19 17.54 37.14 33.36 13.92 34.72 28.07 32.86 58.54

↓NE 16.87 18.68 18.36 18.02 37.29 33.72 15.30 35.38 28.74 32.47 61.24

↓F 81.85 77.41 74.52 76.41 76.81 69.35 47.42 69.23 62.12 60.51 60.46

Benchmark criteria: CS ¼ correct segmentation; OS ¼ over-segmentation; US ¼ under-segmentation; ME ¼ missed error; NE ¼ noise error; O ¼ omission error; C ¼
commission error; CA ¼ class accuracy; CO ¼ recall – correct assignment; CC ¼ precision – object accuracy; I ¼ type I error; II ¼ type II error; EA ¼ mean class accuracy
estimate; MS ¼ mapping score; RM ¼ root mean square proportion estimation error; CI ¼ comparison index; GCE ¼ Global Consistency Error; LCE ¼ Local Consistency
Error; dD ¼ Van Dongen metric; dM ¼ Mirkin metric; dVI ¼ variation of information; f are the performance curve integrals; F ¼ F-measure curve; small numbers are the
corresponding measure rank values over the listed methods; numbers in the method's panel are the average ranks.
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TBES [12] is an agglomerative clustering process applied to a
hierarchy of decreasing window sizes as multi-scale texture fea-
tures, where the region boundary is coded by an adaptive chain
code. The segmentation is performed by minimizing the coding
length.

The Texture Fragmentation and Reconstruction segmentation
algorithm TFR/KLD [33] is based on a texture modeling where a
texture is, for each fixed spatial direction, regarded as a finite-state
Markov chain whose states are quantized colors. A simple seg-
mentation algorithm independently processes color and spatial
information, by first performing a color-based clustering, which
provides the quantized colors, and then by means of a further
spatial-based clustering, which separates regions according to
their transition probability profiles. Finally, a region-merging
algorithm allows us to recover the different textures, that is, to
recompose their internal Markov chains.

The SWA [34] algorithm segmentation by weighted aggrega-
tion, is derived from algebraic multigrid solvers for physical sys-
tems, and consists of fine-to-coarse pixel aggregation. The SWA
algorithm starts with a weighted graph representing image pixels,
and subsequently creates a hierarchy of coarser and smaller
graphs. The edge weights are determined by inheritance from
previous levels and regional properties’ modification.

Edison [35] is a low-level feature extraction tool that integrates
confidence based edge detection and the mean shift based image
segmentation.

The EGBIS [28] is a graph-based segmenter using a predicate
for measuring the evidence for a boundary between two regions.

The JSEG method [36] consists of two independent steps: color
quantization, sampled by a reduced set of significant colors, and
region growing spatial segmentation on multi-scale thematic
maps from the first step. Finally, a post-processing technique is
applied to merge the adjacent regions based on color similarity
and the Euclidean distance.

The HGS segmenter [37] combines the K-means clustering with
a region-merging step. It uses a Gabor-Gaussian spatial-color
texture representation, and its illumination-invariant C version
uses features derived from the Gabor filters applied to log-
transformed images and reduced by the principal component
analysis.

The Blobworld [38] scheme aims to transform images into a
small set of regions coherent in color and texture. This goal is
achieved by clustering pixels in a joint color-texture-position
eight-dimensional feature space using the EM algorithm. The
feature vector containing anisotropy, polarity, and contrast fea-
tures is represented by a Gaussian mixture model.

Although these results in Table 4 cannot be directly compared
with Tables 2 and 3 because they were computed on a smaller
evaluation set of 20 mosaics with parameters corresponding to
Table 1, i.e., the contest submission set also includes these 20
mosaics, they still significantly indicate the contesting algorithms'
standing among the state-of-the-art unsupervised image seg-
menters. The ranks and average ranks are relative to Table 4 but
the numerical values of single criteria can be approximately
compared. For example, the contest winner achieved a 20%
improvement of the correct segmentation result over the best
result in (TEX-ROI-SEG) in this group, and the Mirkin metric,
omission error, mapping score, or class accuracy are better for the
first four methods in Table 3 than the best alternative methods'
results (MW3AR/TEX-ROI-SEG), etc.
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These methods can also be roughly clustered into three quali-
tative performance groups–the best (MW3AR, TEX-ROI-SEG),
medium (GSRM, TBES, TFR/KLD), and the worst (SWA, Edison,
EGBIS, JSEG, HGS, Blobworld).

All details for these summary results, such as individual
mosaics performance, single criteria sensitivity curves, or visual
inspection of all results, can be studied in the Prague texture
segmentation data-generator and benchmark [18–20] web (http://
mosaic.utia.cas.cz).
7. Conclusions

Unusually extensive benchmarking of the contest methods,
evaluated on 160ð80þ80Þ different textural mosaics, allows us to
get a deep and reliable insight into their properties, advantages,
and drawbacks. Half of these test images were available to the
competing authors to tune up their methods during their devel-
opment, but the contest ranking was based on another large set of
images, run by the organizers using the submitted segmenters.
The contest winner, the VRA-PMCFA method, is a high quality
unsupervised segmenter, which performs reliably on both test
sets. The texNCUT method requires the knowledge of the number
of regions in each scene, which is an unjust advantage with
respect to all remaining methods, thus preventing this method
from participating in their fair ranking. The contest segmenters
can also be indirectly compared with 11 alternative, previously
published segmenters listed in Table 4, as well as additional seg-
menters presented in the benchmark (http://mosaic.utia.cas.cz).
These segmenters were evaluated on a smaller test set of only 20
images. Although their criteria values and mutual ranking of
neighboring methods might slightly change if run on a larger
contest set, it is obvious that none of these method would beat the
winning VRA-PMCFA method.

The contest results advice the importance of descriptive, multi-
spectral, spatial underlying models and sophisticated post-
processing for advanced future unsupervised image segmenters.
Such segmenters should avoid artificial color and texture separa-
tion, and learn their parameters, as well as the number of region
classes, directly from the segmented data.
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