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Figure 1: Reconstructed BRDFs using the proposed method from 80 samples.

Abstract
BRDFs are commonly used for material appearance representation in applications ranging from gaming and the movie indus-
try, to product design and specification. Most applications rely on isotropic BRDFs due to their better availability as a result of
their easier acquisition process. On the other hand, anisotropic BRDF due to their structure-dependent anisotropic highlights,
are more challenging to measure and process. This paper thus leverages the measurement process of anisotropic BRDF by rep-
resenting such BRDF by the collection of isotropic BRDFs. Our method relies on an anisotropic BRDF database decomposition
into training isotropic slices forming a linear basis, where appropriate sparse samples are identified using numerical opti-
mization. When an unknown anisotropic BRDF is measured, these samples are repeatably captured in a small set of azimuthal
directions. All collected samples are then used for an entire measured BRDF reconstruction from a linear isotropic basis. Typ-
ically, below 100 samples are sufficient for the capturing of main visual features of complex anisotropic materials, and we
provide a minimal directional samples to be regularly measured at each sample rotation. We conclude, that even simple setups
relying on five bidirectional samples (maximum of five stationary sensors/lights) in combination with eight rotations (rotation
stage for specimen) can yield a promising reconstruction of anisotropic behavior. Next, we outline extension of the proposed
approach to adaptive sampling of anisotropic BRDF to gain even better performance. Finally, we show that our method allows
using standard geometries, including industrial multi-angle reflectometers, for the fast measurement of anisotropic BRDFs.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture I.4.1 [Computer Graphics]: Digitization and Image Capture—Reflectance

1. Introduction

Real-world appearance of spatially homogeneous materials can
be represented by means of a bidirectional reflectance distri-
bution function (BRDF) as introduced by Nicodemus et al.

† vavra@utia.cas.cz

[NRH∗77]. The BRDF is a four-dimensional vector-valued func-
tion fr(θi,ϕi,θv,ϕv) of illumination direction III = [θi,ϕi] and view
direction VVV = [θv,ϕv] that defines how light is reflected at a mate-
rial’s surface for given color channels (see Fig. 2-a). The general
four-dimensional function can describe anisotropic materials, i.e.,
those having variable reflectance when rotated around a surface
normal. This property is common for many real-world materials
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containing any directional elements such as, e.g., thread in fabric,
or fiber in wood.
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Figure 2: BRDF parameterizations: (a) spherical, (b) half-
difference.

The three-dimensional simplification of the BRDF neglecting
anisotropic appearance is called the isotropic BRDF fr(θi,θv,∆ϕ=
ϕv−ϕi). Despite frequent occurrence of anisotropic materials, lit-
tle attention has been paid to their proper measurement and rep-
resentation in past research especially due to a significantly more
demanding acquisition process. As one of the challenges of com-
puter graphics remains effective and affordable acquisition of ma-
terial appearance, any capturing method of anisotropic BRDFs that
would leverage this process would benefit many applications.

This paper tackles this goal by capturing few sampling direc-
tions for several rotations of the material around its normal, i.e.,
a measurement process is decomposed into several sparse scans
taken at regular azimuthal intervals. Similarly to [NJR15] our data
reconstruction relies on material appearance information precom-
puted from a BRDF database; however, our method is extended
to general anisotropic BRDFs. A key principle is the decomposi-
tion of training anisotropic BRDFs into a set of isotropic slices
in half-difference BRDF parameterization [Rus98], obtained for
constant ϕh. These slices are further used as basis functions de-
scribing arbitrary anisotropic behavior without need of its lengthy
measurement by regular sampling in the four-dimensional space.
Further, we propose a method of significant acceleration of identi-
fication of several sparse sets of predefined bidirectional measure-
ment samples taken for each azimuthal scan. The measured BRDF
is reconstructed from a linear combination of isotropic slices con-
strained by measured samples. While the current methods captur-
ing anisotropic appearance require demanding sampling of many
different incoming and outgoing directions, the proposed method
allows a more practical measurement using a predefined set of fixed
sampling directions in combination with sample rotation. Typically
less than 10 sampling directions in combination with 8 rotations of
the material (80 samples taken together) suffice for reasonable re-
construction of main anisotropic features. The main contributions
of this paper are:

• novel effective method for convenient and fast anisotropic BRDF
measurement and reconstruction,

• extension of the proposed method to adaptive sampling of mate-
rial anisotropy,

• a study analyzing ability of industrial multi-angle reflectometers
for convenient measurement of anisotropic BRDF using the pro-
posed method.

2. Related Work

Our paper relates to BRDF parameterization methods, their mea-
surement and adaptive sampling approaches.

BRDF data parameterization holds a key importance in the
development of efficient acquisition and rendering algorithms. De-
pending on the required priority, the data can be organized in a way
more suited to certain compression [Rus98] or importance sam-
pling [HFM10] methods. Different parameterizations suggested for
several analytic BRDF models are studied in [SAS05]. In this work
we focused on half-difference BRDF parameterization [Rus98]. Al-
though this parametrization is inherently anisotropic, it is typically
used to represent isotropic materials only.

In our work we use Rusinkiewicz [Rus98] parameterization to
decompose anisotropic materials into isotropic slices which are
then used as an extensive set of basis functions applicable to ef-
ficient measurement and representation of anisotropic BRDFs.

Anisotropic BRDF measurement can be split into two groups
based on their ability to record material anisotropy or not. How-
ever, as the dense measurement of an anisotropic BRDF using go-
nioreflectometers (as those as in, e.g., [HLZ10, FVH∗13]) is very
time consuming, setups were developed that reduce the required
number of mechanical degrees-of-freedom (DOF). Many setups
use mirrors, e.g., kaleidoscopically arranged flat mirrors [HP03],
parabolic mirrors [DW04], ellipsoidal mirrors [YSY32], or a com-
bination of concave parabolic and custom-built mirrors [GHAO10].
Another setup used many light sources and sensors [BEWW∗08].
They allowed for the capture of many viewing directions simul-
taneously; however, a limited range of elevation angles resulted.
Another group of acquisition methods reduces the number of DOF
by using a specimen of a known shape (e.g., spherical, cylindri-
cal or flat). These setups capture either isotropic [MPBM03a] or
anisotropic [LL95, NDM05, FVH14] BRDF data. However, accu-
racy of these measurements is often compromised due to speci-
mens’ inhomogeneity and shape imperfections. As a consequence
of extensive measurement time, the complexity of setup data cali-
brations and massive amount of data, there is only a limited number
of anisotropic BRDF datasets available. Four of them have been
published by Ngan et al. [NDM05] and another three by Filip et
al. [FVH14]. Although Ngan’s data have minimal azimuthal step
2o, they sample four dimensional space relatively sparsely, and are
very noisy due to the lower reliability of data captured for higher
grazing angles which cause strong visual artifacts when interpo-
lated. Datasets presented in [FVH14] have angular step 2o too, but
are already provided interpolated. Despite a high measurement ac-
curacy and precise interpolation, there is still perceptible noise in
the data mainly caused by the inhomogeneity of specimens. Re-
cently a database of 150 anisotropic BRDFs was published [FV14]
that captures a 4D dataspace uniformly using a relatively low an-
gular resolution of 7.5o.

In this paper we propose a novel method of measuring
anisotropic BRDFs, based on their decomposition to isotropic
slices and leveraging measurement hardware requirements.

Methods of sparse/adaptive angular measurement are closely
related to our goal as we want to achieve good reconstruction of un-
known function by the optimal placement of novel samples based
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on previously measured values. This optimal placement depends on
a chosen interpolation method. An application of adaptive appear-
ance measurement was investigated in [FBLS07], however, only
in two dimensions and representing optimal sampling of the re-
flectance field. An adaptive approach of image-based BRDF mea-
surement has been proposed in [LLSS03] with planning view and
illumination directions based on uncertainty minimization of pa-
rameters estimated from the already measured BRDF subspace
as represented by the isotropic analytical model. Nauyoks et al.
[NFM14] fitted six isotropic BRDF models to the measured data.
They iteratively add new measurements by including illumina-
tion and view directions where the models differ the most. This
method’s limitation is that if a certain BRDF model cannot fit mea-
sured data reasonably well it has to be excluded from subsequent
computation in order to avoid result distraction. Xu et al. [XSD∗13]
presented anisotropic spherical Gaussians as a closed form repre-
sentation of anisotropic behavior, that can be practically used for
analytical modeling of sparsely sampled BRDF. Recently, Fichet et
al. [FSH16] introduced a method fitting locally anisotropic analytic
model to sparse measurements transformed to Fourier domain.

BRDF representation using linear basis – Matusik et al.
[MPBM03b] represented a database of isotropic BRDFs using
wavelet-basis and the linear combination of BRDFs. Similarly,
Nöll et al. [NKS14] represented the database using basis func-
tions, however, their reconstruction’s deviations from the refer-
ence were approximated by basis of correction functions. Another
approach uses precomputed optimized sampling patterns of all
recorded anisotropic BRDFs in database [FV14]. When new mate-
rial is measured, the closest sampling template is found based only
on a very sparse set of measurements. Such a template is either di-
rectly used for sampling the BRDF, or is dynamically switched over
the course of measurement. Nielsen et al. [NJR15] presented an ap-
proach reconstructing isotropic BRDFs from basis functions using
extremely sparse measurements. This approach can optimize a set
of appropriate directional samples based on the information from
the database; however, it cannot achieve any adaptivity towards the
measured samples.

Our goal is to extend methods based on a linear basis
[MPBM03b], [FV14], [NJR15] to efficient adaptive sampling
solely in an anisotropic domain.

3. Proposed Measurement Method

A key principle of our method is the decomposition of each
anisotropic BRDF into a set of their isotropic BRDFs, so called
slices, independent of material rotation around its normal, i.e., the
slices are independent of azimuthal parameter ϕh. The measured
anisotropic material can then be sampled in a very limited num-
ber of sampling directions for several rotations around its normal
and accurately reconstructed. The reconstruction relies on princi-
pal components formed from the anisotropic BRDF database.

3.1. Linear Basis Formation

As the number of publicly available anisotropic BRDFs is limited,
we resorted to the UTIA BRDF Database http://btf.utia.cas.cz pre-
sented in [FV14] as the only source of a reasonable number of

different types of anisotropic BRDF measurements. This database
contains 150 BRDFs of fabric, wood, leather, plastic and paint ma-
terials; out of which, over 40 exhibit some strong visual aspect of
anisotropy as discussed in [Fil15]. The BRDFs are stored in HDR
format, and their angular resolution is 15o in elevations and 7.5o in
azimuthal angles.

We use BRDF in half-difference (HD) parameterization and
generate linear basis similarly to [NJR15]. This parameteriza-
tion proposes the change of variables from fr(θi,ϕi,θv,ϕv) to
fr(θh,ϕh,θd ,ϕd) as show in Fig. 2-b. The BRDF is represented
by a halfway vector H between the illumination and viewing di-
rections, and by the difference vector D, which is the illumina-
tion direction in a coordinate system related to the halfway vector.
Thus, the halfway vector is parameterized by spherical angles HHH =
[θh,ϕh] with respect to the sample’s normal, and the illumination
direction D is parameterized by spherical angles DDD = [θd ,ϕd ] with
respect to the halfway vector. Therefore, the anisotropic BRDF in
this parameterization is represented by a four-dimensional func-
tion fr(θh,ϕh,θd ,ϕd), where (θh,θd) ∈ [0, π

2 ], ϕh ∈ [0,2π), and
ϕd ∈ [0,π). The isotropic BRDFs can be described by its three-
dimensional variant fr(θh,θd ,ϕd).

As the anisotropic database is provided in a standard parame-
terization, we converted it to HD parameterization with uniform
sampling step 5o in all dimensions. We verified that due to ini-
tial resolution of the database, this sampling step is sufficient to
capture all visual features in original BRDFs. The benefit of non-
linear sampling along θh, proposed by Matusik et al. [MPBM03a],
is negligible in this case as the database does not contain any ex-
tremely specular material. In this step, each anisotropic BRDF was
decomposed into nϕh = 360o/5o = 72 isotropic slices fiso per color
channel. As we treat color channels independently, we obtain 3·72
= 216 isotropic BRDF slices per each material.

Figure 3: Overview of input BRDF data arrangement and precom-
puted data products necessary for BRDF reconstruction.

Values of these isotropic BRDFs fiso depending on parameters
ϕd , θd , and θh are vectorized and stacked together to form a ma-
trix AAA ∈ Rp×m whose structure is depicted in Fig. 3 and where
p = nϕd · nθd · nθh = 36 · 18 · 18 = 11,664 is number of rows and
m = 3 ·nϕh ·150 = 32,400 is number of columns as there are 150
materials in the BRDF database.

Now, we can remap the data intensities as suggested in [NJR15].
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First, we compute a median isotropic BRDF fmed across all m
columns of AAA and a cosine-weight factor compensating for low
grazing-angle values www = max{cosθi cosθv,ε}, where ε = 0.001
is a constant guaranteeing numerical stability. Then, we remap the
data forming matrix XXX ∈ Rp×m, whose each element is computed
as:

Xa,b = ln
(

Aa,b ·wa + ε

fmed,a ·wa + ε

)
,∀a ∈ {1, . . . , p},∀b ∈ {1, . . . ,m}.

(1)
Next, we subtract the mean µµµ over columns of matrix XXX introducing
matrix

YYY = XXX−µµµ · JJJ1,m , (2)

where JJJa,b is matrix of ones of size a×b, replicating column vector
µµµ m-times.

Finally, linear basis is derived by applying singular value decom-
position (SVD) to matrix Y:

YYY =UUUΣΣΣVVV T ,

where columns of matrix UUU are principal components of the data.
Note that the decomposition can be performed based on eigenvec-
tors of YYY TYYY or YYYYYY T to save computational time. We keep here the
same notation as [NJR15] and define matrix QQQ∈Rp×k of principal
components weighted by the variance they cover as

QQQ =UUUΣ ,

where k ≤ m is number of applied principal components.

3.2. Data Reconstruction

Our goal is to reconstruct the missing elements of the measured
BRDF, given the small number of samples n for each of r rotations.
For simplicity, assume r = nϕh = 72, e.i., we are given values for
the same number of rotations as in the database. Later, we describe
how to manage situations where r < nϕh .

Let ÃAA ∈ Rn×r be the matrix of known values of a reconstructed
BRDF, let f̃med ∈ Rn be the vector of corresponding median val-
ues, let w̃ww ∈ Rn be the vector of corresponding weights, and let
µ̃µµ∈Rn be the vector of corresponding mean values. Applying those
as in Equation 1 and 2 respectively, we obtain matrix ỸYY ∈Rn×r. Let
Q̃QQ ∈ Rn×k be the corresponding rows of the principal components
in QQQ. Then, matrix CCC ∈ Rk×r of coefficients of the linear combina-
tion of principal components that best models the observed data is
obtained by:

ỸYY = Q̃QQCCC

CCC = argmin
CCC

E(CCC)

E(CCC) = ‖ỸYY − Q̃QQCCC‖2
F

CCC = (Q̃QQ
T

Q̃QQ)−1Q̃QQỸYY .

Notice that in this case individual columns of C can be computed
separately. The full remapped BRDF, X̄XX ∈ Rp×r, is then recon-
structed by using the full principal components:

X̄XX = QQQ ·CCC+µµµ · JJJ1,r, (3)

where JJJa,b is matrix of ones of size a×b. Then, we obtain the full

reconstructed BRDF, ĀAA ∈Rp×r, by application of inverse mapping
of Equation 1 to each element:

Āa,b =
eX̄a,b( fmed,a ·wa + ε)− ε

wa
,∀a ∈ {1, . . . , p},∀b ∈ {1, . . . ,r}.

Nielsen et al. [NJR15] noticed, that the least squares solution
above usually results in over-fitted results, deviating significantly
from ground truth. Therefore, they proposed a biased solution
based on the work of Blanz et al. [BMVS04], who claimed that
‖C‖2

F is proportional to the unlikelihood of a reconstruction. By
means of introduction of the Lagrange multiplier η in conjunction
with the Frobenius norm of CCC, it is possible to favor reconstructions
closer to the observed distribution of BRDFs:

E(CCC) = ‖ỸYY − Q̃QQCCC‖2
F +η‖CCC‖2

F

CCC = (Q̃QQ
T

Q̃QQ+ηIII)−1Q̃QQỸYY , (4)

where III is the identity matrix.

When this method is applied for reconstruction of anisotropic
data, we have to keep in mind, that a value of the BRDF in spec-
ular reflection (θh = 0) does not change when only ϕh change as
it is undefined there, but the function values must meet in spec-
ular reflections. Therefore, if θh,a = θh,b = 0, θd,a = θd,b, and
ϕd,a = ϕd,b then fr(θh,a,ϕh,a,θd,a,ϕd,a) = fr(θh,b,ϕh,b,θd,b,ϕd,b)
must hold ∀a,b ∈ {1, . . . , p}. In other words, all isotropic slices
f̄iso of the reconstructed material belonging to the same color chan-
nel must have the same value on the rows where θh = 0, i.e.,
Āc,a = Āc,b,∀c ∈ {1, . . . , p} where θh = 0,∀a,b ∈ {1, . . . ,r}. This
condition is key in our model as data are tabulated and modeled
independently of ϕh or else there are perceptible artifacts around
specular reflections in reconstructed BRDFs.

Let ˜̃QQQ ∈ Rs×k be a matrix of the rows of the principal compo-
nents in QQQ satisfying condition above, i.e., the rows where θh = 0,
where s is number of the rows satisfying the condition (in our case
s = nϕd ·nθd = 36 ·18 = 648). To satisfy the condition we introduce
another Lagrange multiplier λ in conjunction with the Frobenius
norm of residual after subtracting its mean from reconstruction of
the involved rows:

E(CCC) = ‖ỸYY − Q̃QQCCC‖2
F +η‖CCC‖2

F +λ‖ ˜̃QQQCCC−ννν · JJJ1,r‖2
F

= ‖ỸYY − Q̃QQCCC‖2
F +η‖CCC‖2

F +λ‖ ˜̃QQQCCC− 1
r
· ˜̃QQQCCCJJJr,r‖2

F

= ‖ỸYY − Q̃QQCCC‖2
F +η‖CCC‖2

F +λ‖ ˜̃QQQCCCMMM‖2
F , (5)

where ννν is a column vector of mean values of rows of a matrix ˜̃QQQCCC,
and MMM = III− 1

r ·JJJr,r. Equation 5 has no close form solution and must
be optimized numerically. During optimization, we can at least use
its gradient, whose detailed derivation is in Appendix A:

∇E(CCC) = −2Q̃QQ
T

YYY +2Q̃QQ
T

Q̃QQCCC+2ηCCC+2λ
˜̃QQQT ˜̃QQQCCCMMMMMM.

In our implementation, we first estimate CCC using Equation 4 and
then we perform unconstrained minimization (Matlab function fmi-
nunc) to find the local optimum of Equation 5. We found the
method best works on our dataset for parameter values η = 40 and
λ = 0.1. As we remove color information from the data during the
formation of matrix AAA (see Section 3.1 and Figure 3), coefficients
CCC for each color channel must be computed separately.
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Now, we describe how to handle situations where the number of
rotations r of the measured material around its normal is smaller
than that of original data nϕh . There are three possible solutions.
The first relies on interpolation of the measured data to the required
resolution by Piecewise Cubic Hermite Interpolating Polynomials
(PCHIP) producing periodic interpolated functions. The second ap-
proach is based on the similar interpolation of the linear coefficients
CCC. Although the second approach is faster, as it evaluates signifi-
cantly lower number of variables in Equation 5, it produces slightly
worse results. Moreover, the second approach cannot be used when
we do not measure all sampling directions in each of the material’s
rotations. We used the second approach as it is much faster, unless
for adaptive sampling (Section 6) where the first one was used. The
third approach is a simple interpolation of reconstructed BRDF ĀAA.

3.3. Optimization of Sampling Directions

To identify optimal sampling directions we follow an approach of
Matusik et al. [MPBM03b] improved by Nielsen et al. [NJR15].
Let us recall that a measured BRDF is reconstructed by Equation 3
using matrix CCC of coefficients of the linear combination of principal
components QQQ. Computation of coefficients CCC by means of Equa-
tion 5 is highly dependent on subset of rows of principal compo-
nents Q̃QQ that corresponds to selected sampling directions. To mini-
mize sensitivity to errors in the modeling we need to select the sub-
set with minimal condition number κ for given count of samples
n. Condition number κ is defined as a ratio of maximal singular
value of Q̃QQ and minimal singular value of Q̃QQ. Similarly to Nielsen
et al. [NJR15] we exploit the fact that we are dealing with three
dimensional BRDF volume (ϕd ,θd ,θh) whose each location corre-
sponds to one row in QQQ. We slightly modified approach of Nielsen
et al. [NJR15] and propose the following algorithm:

1. Pick n random sampling locations in (ϕd ,θd ,θh), i.e. pick n ran-
dom rows of QQQ forming Q̃QQ. Based on our experience, even ran-
dom selection with extremely high κ(Q̃QQ) might lead to a good
solution. Save Q̃QQ for a later usage in step 4.

2. Randomly choose one of the n rows and exclude it from ma-
trix Q̃QQ forming matrix Q̄QQ. For each location in (ϕd ,θd ,θh) in ex-
cluded location’s neighborhood of size h×h×h evaluate condi-
tion numbers efficiently using method described in Appendix B
based on eigenvectors and eigenvalues of Q̄QQT Q̄QQ. Accept location
with the lowest κ if it is lower than the current κ.

3. Repeat from 2. until convergence.
4. Restore the original Q̃QQ and repeat from 2. 10-times.
5. Repeat from 1. 10-times.

We use neighborhood of size h = 7. Thanks to the method of a
fast updating of singular values when adding one row to a matrix
described in Appendix B, we can search the neighborhood of a cur-
rent location very quickly; we can find better solution in a given
amount of time. When compared to standard approach to condi-
tional numbers computation, the proposed method’s speed gain is
2× for n = 5, 4× for n = 20, and 15× for n = 50.

Optionally, we can even search the whole space and place the
excluded sampling location to an optimal position with respect to
the other sampling locations. Unfortunately, this approach does not
lead to better solutions than the algorithm described above and is
rather slower.

4. Results

This section presents results of the proposed sparse measurement
and reconstruction method on database of 150 anisotropic BRDFs.
We used this dataset as our reference data, and any errors intro-
duced by our methods were evaluated using logarithmic PSNR (log
PSNR) HDR measure presented by Tunc et al. [AMS08]. To avoid
sharing the same training and testing data, we applied leave-one-out
validation, i.e., excluding each tested BRDF’s data from the linear
base.

Fig. 4 shows the error averaged across all materials from
database as a function of total number of samples. The outlines
in the graph (a) depict different number of samples per rotations
n = 2,5,10,20,50,100, while in graph (b) it shows variable num-
ber of rotations r = 4,8,12,24,36,72. From the graphs we can draw
a conclusion that in general, n has greater impact on reconstruc-
tion error than r, where minimal improvement is achieved for more
that r = 12 rotations. One can observe rapid decrease of error when

(a)

(b)

Figure 4: The reconstruction error (log PSNR) as a function of
total number of samples for individual tested samples per rotation
n and number of rotations r (higher is better).

eight or more rotations were used. Similarly, the error drops for five
to ten samples per rotation; whereas, for more the improvement is
approximately linear to the number of samples. Therefore, an ideal
measurement method should decompose measurement into 8 ro-
tations and number of samples taken for each rotation should be
selected up on accuracy requirements starting from n = 5. Visual
results for selected materials for configurations n = 5/r = 8 (40
samples) and n = 10/r = 8 (80 samples) are shown for point-light
illumination in Fig. 9 and for environment illumination in Fig. 1.
The remaining ones are shown in a supplementary material.

Fig. 5 presents the reconstruction errors across all 150 tested ma-
terials from the database for (a) 10 samples per rotation and vari-
ous number of rotations, and (b) 8 rotations and various numbers
of samples per rotation. Here again one can clearly observe that the
impact of the number of samples per rotation is more significant.

For visual comparison we used a surface optimized to high cov-
erage of illumination and viewing angles proposed by Havran et
al. [HFM16]. We rendered such a surface for the defined optimized
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(a)

(b)

Figure 5: BRDF reconstruction error (log PSNR) for 150 tested materials: (a) for fixed number of samples per rotation n = 10, (b) for fixed
number of rotations r = 8.

5 samples 10 samples
θh θd ϕd θh θd ϕd θh θd ϕd
30 0 130 35 50 55 15 60 35

0 30 40 25 70 95 0 0 0
35 60 75 0 75 15 0 30 165

0 75 0 15 40 80 75 0 0
65 0 0 35 10 65 30 50 140

Figure 6: Optimized sampling directions for n= 5 and n= 10 sam-
ples per rotation. All values are in degrees.

positions of light and camera for different combinations of param-
eters n = 5,10,20 and r = 4,8,12. Fig. 8 shows, accordingly to the
previous results, the significant performance gain when more than
four rotations and 10 samples per rotation are used. For more ma-
terials and settings combinations please refer to the supplementary
material. Visualization of eight materials under environment illu-
mination is shown in Fig. 1. The optimized directions for n = 5,10
are shown in Fig. 6.

Finally, we compared our method with another recent ap-
proaches to adaptive sampling of anisotropic BRDFs presented
in [FV14]. Fig. 7 illustrates that the proposed method performs sig-
nificantly better then template-based approaches (method 1, method
2) when total number of samples drops under 500. One can ob-
serve that method based on linear basis, however, selecting the
samples globally (lin.comb.) [MPBM03b] achieves slightly higher

PSNR values. Note that our method uses the regularization con-
straint [NJR15] that avoids data over-fitting at the cost of slightly
lower PSNR values. Thus, PSNR values of lin.comb. might not al-
ways correspond to visual performance.

5. Discussion and Limitations

Contribution of the proposed optimization constraint – the
original optimization approach produces disruptive anisotropic ar-
tifacts running from the singularity point (θh = 0) and interfering
with the anisotropic highlight. Figure 10 compares the contribu-
tion of the proposed constrained optimization according Equation
5 when compared to the original approach (Equation 4) on a sphere.
While the original approach achieves overall higher PSNR than the
constrained approach, it introduces the aforementioned anisotropic
artifacts.

Linear basis formed by isotropic slices vs. full BRDFs – alter-
natively to our approach one can optimize sampling directions si-
multaneously over full four-dimensional BRDF space. We com-

Figure 7: The reconstruction error (PSNR) as a function of total
number of samples for variants of the proposed method and meth-
ods presented in [FV14].
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n = 5 n = 10 n = 20

r
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12
r
=

8
r
=

4
r
=

12
r
=

8
r
=

4
r
=

12
r
=

8
r
=
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Figure 8: Rendering of reconstructed BRDF for three anisotropic
BRDFs as a function of number of samples per rotation n
(columns), and number of rotations r (rows). Included are values
of Log PSNR error and total number of samples taken.

Figure 9: Results of the proposed method on selected anisotropic
materials from the database for configurations using: 40 samples,
i.e. n = 5/r = 8 (middle), and 80 samples, i.e. n = 10/r = 8 (right).
Included are values of Log PSNR against the reference (left).
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(a) original optimization [NJR15]

(b) optimization using the proposed regularization constraint

Figure 10: Comparison of parameters optimization approaches:
(a) original optimization according Eq. 4, (b) proposed constrained
optimization according Eq. 5. Parameters used n = 10 / r = 36, 360
samples.

pared to this approach in Fig. 7. Although the idea seems ap-
pealing it has several drawbacks. First, our method, in compari-
son with other anisotropic sampling approaches [FV14], does not
require any azimuthal alignment of the material during the mea-
surement process. This saves up to 48 samples that were previously
needed for an anisotropic axes identification. Second, this approach
would require much bigger database of anisotropic BRDFs as the
datavectors would have one order of magnitude higher dimension-
ality. The insufficient number of datasets results in various color
artifacts present in the reconstructed BRDFs [FV14]. Third, using
the full BRDFs would not allow the proposed fast measurement of
anisotropic BRDF by a simple rotation of the precomputed sam-
pling directions.

Training datasets limits – As any machine learning method
our approach is limited mainly by descriptiveness of the training
dataset. Therefore, a collection of anisotropic materials of various
appearance behavior is necessary. An example of insufficient train-
ing data is highly retro-reflective material 3M_Scotchlite, where
performance of our method is not ideal (the first material in Fig. 1)
as it is the only material of this kind in the database. We tested sen-
sitivity of the reconstruction quality to filtering of BRDFs used for
formation of the linear basis, i.e., selection of the subset of the most
similar isotropic BRDFs. We used a technique based on similarity
between the captured sparse samples of the query material, and the
isotropic slices stored in the basis. Although there was a notice-
able effect of this filtering the final performance gain was negligi-
ble when considered increased computational costs related to such
customized linear basis formation. One may consider also adding
MERL isotropic BRDFs [MPBM03a] to expand our basis. Our ex-
perience shows that using isotropic data as the only basis is insuf-
ficient as such data miss unique features occurring in anisotropic
BRDFs only. On the other hand, their addition to the basis might
improve the performance, although one have to carefully resample
any added BRDF into resolution of BRDF basis.

Reconstruction accuracy – our experiments revealed that typi-
cally the highest BRDF reconstruction errors occur for grazing an-
gles, i.e. around object contours (see rendering difference images in
the supplementary). This corresponds to the angles where a BRDF
has the highest energy.

In the applied context of the measurement process, one may re-

quire information how well the available linear base represents the
material being measured. To this end, we evaluated the mean re-
construction error only in the samples measured and compared its
correlation with the error evaluated across entire BRDF. The corre-
lation value depend on combination n and r, however, above n≥10
and r ≥8 the Pearson correlation coefficient was over 0.9. Thus,
relation of the errors over the 150 tested materials can be approx-
imately represented by a single scaling factor 0.8, i.e., one should
multiply the mean error obtained in sampling locations to estimate
a reconstruction error of entire BRDF, providing an approximate
level of certainty whether the material is properly represented by
the limited linear base.

Timings – our method was implemented in MATLAB and all pro-
cessing was done on a CPU Intel Xeon E5-2643. The computa-
tion of linear basis consisting of 32,400 isotropic BRDF slices took
approximately four minutes. Identification of 20 optimized direc-
tions took three minutes. Note that these two steps have to be per-
formed only once while the anisotropic reconstruction from mea-
sured sparse samples for configuration n=20 / r=12 takes≈1.5 sec-
onds and for n=20 / r=72 takes 14 seconds.

6. Adaptive Measurement of Anisotropy

Our technique captures anisotropic appearance by a set of reg-
ularly spaced rotations of the measured sample. Another perfor-
mance gain can be achieved by coarse regular sampling combined
with further refinement using adaptive placement of another rota-
tions in an arbitrary step. This method can be easily applied once
the remotely controlled rotation stage is used. The method enables
increasing measurement quality while preserving or even decreas-
ing measurement time. The process of adaptive measurement is as
follows:

1. Capture BRDF with sparse azimuthal sampling (e.g. 8 rota-
tions).

2. For each captured sample respectively evaluate BRDF recon-
struction error by interpolating its value based on captured sam-
ples in its neighborhood using piecewise cubic hermite interpo-
lating polynomial (Matlab function pchip).

3. If interpolated and actual value of the sample differs more than
e percent, plan to measure two sampling directions: the middle
point between the sample and its left neighbor, and the middle
point between the sample and its right neighbor.

4. Capture all planed sampling directions and repeat from 2. until
all errors are lower than e percent.

Fig. 11 shows dependency of a total number of samples and
BRDF reconstruction error on adaptive threshold e for fixed num-
ber of initial rotations r = 8. The horizontal dashed lines depict
results of non-adaptive regular sampling of anisotropy using r = 8
rotations. The best trade-off between number of samples and recon-
struction quality is achieved when threshold e = 0.1 is used.

Fig. 12 illustrates visual fidelity gain achieved by adaptive place-
ment of rotations. One can observe significant improvement while
only 70 samples placed adaptively is used instead of the 80 sam-
ples placed over uniformly distributed rotations. Rendered results
illustrating performance of adaptive sampling as a function of n
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Figure 11: A total number of samples and reconstruction error av-
eraged over six highly anisotropic materials (see Fig. 1) as a func-
tion of adaptive threshold e for fixed number of initial rotations
r = 8.

(a) (b) non-adaptive (c) adaptive

Figure 12: An example of contribution gained by adaptive mea-
surement of highly anisotropic material fabric111: (a) reference,
(b) non-adaptive measurement using 80 samples (r = 8 / n = 10),
(c) adaptive measurement using 70 samples (n = 5, e = 1.0, initial
number of rotations r = 8).

and e are shown in the supplementary material. Although adaptive
sampling of ϕh is more technically demanding, but when remotely
controlled rotation stage is used one can achieve better results using
a more simple and thus less expensive setup (as shown in Fig. 12).

7. Measurement by Multi-Angle Reflectometers

The proposed method allows capturing anisotropic appearance by
very low number of bidirectional pairs of lights and sensors. As
these pairs are taken identically for each rotation of the measure-
ment geometry, one can develop a relatively simple setup for mea-
surement of material appearance.

Before building any new setup, one can validate current indus-
trial standards used for the measurement of appearance [WM01]
and test current devices used in industry for multi-angle reflectance
measurement. To this end, we tested bidirectional pairs configura-
tions corresponding to four common industrial devices: MA68 and
MA98 by X-rite, BYK-mac by Gardner, and MultiFX10 by Dat-
acolor as described more in detail in [PCVMV13]. These devices
typically take between 5-11 in-the-plane measurements to identify
unique reflectance properties of materials as shown in Tab 1. Only
MA98 use eight additional out-of-plane bidirectional pairs. Note
that the first five in-plane samples, stemming from ASTM and DIN
standards [WM01], are captured by all evaluated devices.

In the context of our work, one can directly use only the pairs
specified by the device for BRDF reconstruction instead of opti-
mized bidirectional pairs. Capturing anisotropy can be achieved ei-
ther by the repositioning of the device above material or by mate-

Table 1: The geometries sampled by the industrial devices in the
standard BRDF parametrization. All values are in degrees.

MA68 MA98 BYK-mac Multi FX10
θi ϕi θv ϕv θi ϕi θv ϕv θi ϕi θv ϕv θi ϕi θv ϕv

in-plane samples
45 0 0 0 45 0 0 0 45 0 0 0 45 0 0 0
45 0 30 0 45 0 30 0 45 0 30 0 45 0 30 0
45 0 65 0 45 0 65 0 45 0 65 0 45 0 65 0
45 0 20 180 45 0 20 180 45 0 20 180 45 0 20 180
45 0 30 180 45 0 30 180 45 0 30 180 45 0 30 180

45 0 60 180 45 0 60 180 45 0 60 180
15 0 30 0 15 0 0 180
15 0 65 0 15 0 30 180
15 0 20 180 65 0 50 180
15 0 30 180 65 0 80 180
15 0 60 180

out-of-plane samples
15 0 50 33
15 0 50 327
15 0 45 90
15 0 45 270
45 0 50 33
45 0 50 327
45 0 45 90
45 0 45 270

5 samples 19 samples 6 samples 10 samples

rial rotation below the device. Fig. 13 shows the results averaged
across 150 BRDFs, obtained when compared with various num-
bers of optimized directions (n = 5,10,20) as a function of mate-
rial’s rotation number. The graph shows comparable performance
of the setups with the proposed sampling for low samples numbers
(MA68, BYK-mac); however, with the increasing number of sam-
ples the best reconstruction quality is obtained by means of using
optimized directions. The best trade-off between reconstruction er-
ror and number of rotations is obtained at eight rotations.

Figure 13: A comparison of average BRDF reconstruction quality
from 5 and 10 optimized samples with reconstruction from samples
taken by industrial appearance capturing devices, as a function of
number of surface rotations.

However, when we focus on highly anisotropic materials, repre-
senting main measurement challenges of this paper, it is apparent
that the optimized directions give better results both visually and
in terms of reconstruction error as shown in Fig. 14. Results for
more materials and different numbers of rotations are shown in the
supplementary material.
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MA68 MA98 BYC-mac MultiFX10 proposed n=5 proposed n=10 reference

Figure 14: BRDF reconstruction from r = 8 rotations using bidirectional geometries of four industrial devices when compared to the
proposed optimized sampling using n = 5,10 samples per rotation. Included are values of Log PSNR error and total number of samples.

These results demonstrate that although current available multi-
angle reflectance measurement devices are designed primarily to
discriminate materials and their visual properties, they can be,
when combined with a rotation stage for material positioning, read-
ily used for the capturing of main features of anisotropic BRDFs.
However, whenever a higher accuracy is needed, one should resort
to a custom build apparatus with ten or more bidirectional pairs op-
timized to anisotropic behavior. Still such a device could capture
and reconstruct anisotropic BRDF in several minutes.

8. Conclusion

This paper outlines a method for the convenient acquisition of
anisotropic BRDFs while relying on an extremely low number of
samples. The method allows measurement decomposition into sev-
eral independent azimuthal slices sharing the same bidirectional
geometry. Such geometry consists of between five to ten bidirec-
tional pairs, either repositioned around measured material or the
material rotating below. The total number of samples is given by
a product of geometric complexity (i.e., number of bidirectional
pairs) and number of rotations. We show that below one hun-
dred samples are sufficient to capture main features of even highly
anisotropic materials. To further improve the performance of our
method, we extended it to adaptive sampling of anisotropy. Finally,
we have shown that our method can directly utilize current indus-
trial multi-angle reflectometers for the convenient measurement of
approximate anisotropic BRDFs. Our method relies on a linear ba-
sis consisting of a training database of anisotropic materials. As a
part of this paper are provided codes for linear basis construction,
optimization of sampling directions, and BRDF reconstruction at
http://staff.utia.cas.cz/filip/projects/16PG/.

In a future work we plan to improve descriptiveness of our lin-
ear basis and thus further reduce reconstruction error by collecting
additional isotropic and anisotropic BRDFs from various sources.

Acknowledgments

This research has been supported by the Czech Science Foundation
grant 14-02652S.

References
[AMS08] AYDIN T. O., MANTIUK R., SEIDEL H.-P.: Extending quality

metrics to full luminance range images, 2008. 5

[BEWW∗08] BEN-EZRA M., WANG J., WILBURN B., LI X., MA L.:
An LED-only BRDF measurement device. Computer Vision and Pattern
Recognition, IEEE Computer Society Conference on 0 (2008), 1–8. 2

[BMVS04] BLANZ V., MEHL A., VETTER T., SEIDEL H. P.: A statis-
tical method for robust 3D surface reconstruction from sparse data. In
Proceedings of 2nd International Symposium on 3D Data Processing,
Visualization and Transmission (2004), pp. 293–300. 4

[BNS78] BUNCH J. R., NIELSEN C. P., SORENSEN D. C.: Rank-one
modification of the symmetric eigenproblem. Numerische Mathematik
31, 1 (1978), 31–48. 11

[DW04] DANA K., WANG J.: Device for convenient measurement of
spatially varying bidirectional reflectance. Journal of Optical Society of
America 21, 1 (2004), 1–12. 2

[FBLS07] FUCHS M., BLANZ V., LENSCH H. P., SEIDEL H.-P.: Adap-
tive sampling of reflectance fields. ACM Trans. Graph. 26 (June 2007),
1–18. 3

[Fil15] FILIP J.: Analyzing and predicting anisotropic effects of BRDFs.
In Proceedings of the ACM SIGGRAPH Symposium on Applied Percep-
tion (2015), SAP ’15, pp. 25–32. 3

[FSH16] FICHET A., SATO I., HOLZSCHUCH N.: Capturing spatially
varying anisotropic reflectance parameters using fourier analysis. In
Graphics Interface 2016 (2016). 3

[FV14] FILIP J., VAVRA R.: Template-based sampling of anisotropic
BRDFs. Computer Graphics Forum (PG 2014) 33, 7 (2014), 91–99. 2,
3, 6, 8

[FVH∗13] FILIP J., VAVRA R., HAINDL M., ZID P., KRUPICKA M.,
HAVRAN V.: BRDF slices: Accurate adaptive anisotropic appearance
acquisition. In CVPR (2013), pp. 4321–4326. 2

[FVH14] FILIP J., VÁVRA R., HAVLICEK M.: Effective acquisition of
dense anisotropic BRDF. In Proceedings of the 22th International Con-
ference on Pattern Recognition, ICPR 2014 (August 2014), pp. 2047–
2052. 2

[GHAO10] GHOSH A., HEIDRICH W., ACHUTHA S., OÏ£¡TOOLE M.:
A basis illumination approach to BRDF measurement. International
Journal of Computer Vision 90, 2 (2010), 183–197. 2

[Gol73] GOLUB G. H.: Some modified matrix eigenvalue problems.
Siam Review 15, 2 (1973), 318–334. 11

[HFM10] HAVRAN V., FILIP J., MYSZKOWSKI K.: Bidirectional tex-
ture function compression based on the multilevel vector quantization.
Computer Graphics Forum 29, 1 (2010), 175–190. 2

[HFM16] HAVRAN V., FILIP J., MYSZKOWSKI K.: Perceptually moti-
vated BRDF comparison using single image. Computer Graphics Forum
(Proceedings of EGSR) 35 (2016), 1–12. 5

[HLZ10] HOLROYD M., LAWRENCE J., ZICKLER T.: A coaxial op-
tical scanner for synchronous acquisition of 3D geometry and surface
reflectance. ACM Trans. Graph. 29 (2010), 99:1–99:12. 2

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

308



R. Vávra & J. Filip / Minimal Sampling for Effective Acquisition of Anisotropic BRDFs

[HP03] HAN J., PERLIN K.: Measuring bidirectional texture reflectance
with a kaleidoscope. ACM SIGGRAPH 2003 22, 3 (2003), 741–748. 2

[LL95] LU J., LITTLE J.: Reflectance function estimation and shape re-
covery from image sequence of a rotating object. In Proceedings of the
Fifth International Conference on Computer Vision (Washington, DC,
USA, 1995), ICCV ’95, IEEE Computer Society, pp. 80–. 2

[LLSS03] LENSCH H. P., LANG J., SÁ A. M., SEIDEL H.-P.: Planned
sampling of spatially varying BRDFs. Computer Graphics Forum 22, 3
(2003), 473–482. 3

[MPBM03a] MATUSIK W., PFISTER H., BRAND M., MCMILLAN L.:
A data-driven reflectance model. ACM Transactions on Graphics 22, 3
(2003), 759–769. 2, 3, 8

[MPBM03b] MATUSIK W., PFISTER H., BRAND M., MCMILLAN L.:
Efficient isotropic BRDF measurement. In Proceedings of the 14th Eu-
rographics Workshop on Rendering (2003), pp. 241–247. 3, 5, 6

[NDM05] NGAN A., DURAND F., MATUSIK W.: Experimental analy-
sis of BRDF models. Eurographics Symposium on Rendering 2005 2
(2005), 117–126. 2

[NFM14] NAUYOKS S. E., FREDA S., MARCINIAK M. A.: Dynamic
data driven bidirectional reflectance distribution function measurement
system, 2014. 3

[NJR15] NIELSEN J. B., JENSEN H. W., RAMAMOORTHI R.: On Opti-
mal, Minimal BRDF Sampling for Reflectance Acquisition. ACM Trans.
Graph. 34, 6 (2015), 186:1–186:11. 2, 3, 4, 5, 6, 8

[NKS14] NÖLL T., KÖHLER J., STRICKER D.: Robust and accurate
non-parametric estimation of reflectance using basis decomposition and
correction functions. In ECCV (LNCS 8690) (2014), pp. 376–391. 3

[NRH∗77] NICODEMUS F., RICHMOND J., HSIA J., GINSBURG I.,
LIMPERIS T.: Geometrical considerations and nomenclature for re-
flectance. NBS Monograph 160 (1977), 1–52. 1

[PCVMV13] PERALES E., CHORRO E., VIQUEIRA V., MARTÍNEZ-
VERDÚ F. M.: Reproducibility comparison among multiangle spec-
trophotometers. Color Research & Applic. 38, 3 (2013), 160–167. 9

[Rus98] RUSINKIEWICZ S.: A new change of variables for efficient
BRDF representation. In Rendering techniques’ 98 (1998), pp. 11–22. 2

[SAS05] STARK M., ARVO J., SMITS B.: Barycentric parameterizations
for isotropic BRDFs. IEEE TVCG 11, 2 (2005), 126 –138. 2

[WM01] WESTLUND H. B., MEYER G. W.: Applying appearance stan-
dards to light reflection models. In Proceedings of the 28th Annual Con-
ference on Computer Graphics and Interactive Techniques (2001), SIG-
GRAPH ’01, pp. 501–51. 9

[XSD∗13] XU K., SUN W.-L., DONG Z., ZHAO D.-Y., WU R.-D.,
HU S.-M.: Anisotropic spherical gaussians. ACM Trans. Graph. 32,
6 (2013), 209:1–209:11. 3

[YSY32] YASUHIRO M., SUMINO K., YASUSHI Y.: Rapid BRDF mea-
surement using an ellipsoidal mirror and a projector. IPSJ Trans. on
Computer Vision and Appl. 1 (21–32). 2

Appendix A: Gradient of the Objective Function

E(CCC) = ‖ỸYY − Q̃QQCCC‖2
F +η‖CCC‖2

F +λ‖ ˜̃QQQCCCMMM‖2
F

∇E(CCC) = ∇‖ỸYY − Q̃QQCCC‖2
F +η∇‖CCC‖2

F +λ∇‖ ˜̃QQQCCCMMM‖2
F

= ∇Tr[(ỸYY − Q̃QQCCC)T (ỸYY − Q̃QQCCC)]+η∇Tr(CCCTCCC)+

λ∇Tr[( ˜̃QQQCCCMMM)T ( ˜̃QQQCCCMMM)]

= ∇Tr(ỸYY TỸYY )−∇Tr(CCCT Q̃QQ
T

ỸYY )−∇Tr(ỸYY T Q̃QQCCC)+

∇Tr(CCCT Q̃QQ
T

Q̃QQCCC)+η∇Tr(CCCTCCC)+

λ∇Tr(MMMCCCT ˜̃QQQT ˜̃QQQCCCMMM)

= −2Q̃QQ
T

YYY +2Q̃QQ
T

Q̃QQCCC+2ηCCC+2λ
˜̃QQQT ˜̃QQQCCCMMMMMM.

Appendix B: Fast Update of the Condition Number

Let Q̃QQ ∈ Rn×k be the selected rows of the principal components
in QQQ, whose condition number we are seeking for. Condition num-

ber is defined as κ(Q̃QQ) =
σmax(Q̃QQ)

σmin(Q̃QQ)
, i.e., the ratio between the maxi-

mum and minimum singular values of Q̃QQ. Note that singular values
of Q̃QQ are equal to the square roots of the eigenvalues of the ma-
trix Q̃QQ

T
Q̃QQ. Therefore, we can exploit methods for fast update of

eigenvalues when rank-one modification of the matrix were per-
formed [BNS78]. Let Q̄QQ ∈ Rn−1×k be the desired matrix Q̃QQ with
one row removed. Specifically, without loss of generality, we can
write

Q̃QQ =

[
Q̄QQ
qqqT

]
, Q̃QQ

T
Q̃QQ =

[
Q̄QQT qqq

][ Q̄QQ
qqqT

]
= Q̄QQT Q̄QQ+qqqqqqT ,

where qqqT ∈ R1×k is a row of QQQ, which we are adding to current
matrix Q̄QQ. Obviously, we want to select such a qqqT , that κ(Q̃QQ) is
minimum.

Let ρ = ‖qqq‖2
2 and bbb = 1√

ρ
qqq. Then Q̃QQ

T
Q̃QQ = Q̄QQT Q̄QQ + ρbbbbbbT and

we can once solve the symmetric eigenproblem of Q̄QQT Q̄QQ =VVV DDDVVV T ,
where DDD∈Rk×k is diagonal matrix of eigenvalues and VVV ∈Rk×k is
matrix of corresponding eigenvectors. Now, we can write Q̄QQT Q̄QQ+
ρbbbbbbT = VVV (DDD+ ρzzzzzzT )VVV T , where zzz = VVV T bbb. Let CCC = DDD+ ρzzzzzzT =

XXXD̃DDXXXT . Then Q̃QQ
T

Q̃QQ = ṼVV D̃DDṼVV T , where ṼVV = VVV XXX , but we are only
interested in maximum and minimum eigenvalue of D̃DD to compute
κ(Q̃QQ).

Let d1 ≤ d2 ≤ ·· · ≤ dk be the eigenvalues of DDD and let d̃1 =≤
d̃2 ≤ ·· · ≤ d̃k be the eigenvalues of CCC (and therefore also of D̃DD).
Then holds d1 ≤ d̃1 ≤ d2 and dk ≤ d̃k ≤ dk +ρ. Golub [Gol73] has
shown that this eigenvalues can be computed by finding zeros of
the secular equation

w(d̃i) = 1+ρ

k

∑
j=1

z2
j

d j− d̃i
,

where zzz = [z1, . . . ,zk]
T . The equation can be solved numerically by

bisection method. First, we set lover bound of an interval to d1 and
upper bound to d2 and we find d̃1 in the interval where w(d̃1) ≤ ε

for sufficiently small ε. Second, we set lover bound to dk and upper
bound to dk+ρ and perform the bisection method once again to find
d̃k in the interval where w(d̃k) ≤ ε. In praxis, we perform interval
subdivision 30-times achieving very precise results.

Condition number of the updated matrix Q̃QQ is finally computed

as κ(Q̃QQ) =

√
d̃k√
d̃1

.
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