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Recognition of Images Degraded by Gaussian Blur
Jan Flusser, Senior Member, IEEE, Sajad Farokhi, Cyril Höschl IV, Tomáš Suk,

Barbara Zitová, and Matteo Pedone

Abstract— In this paper, we propose a new theory of invariants
to Gaussian blur. We introduce a notion of a primordial image
as a canonical form of all Gaussian blur-equivalent images.
The primordial image is defined in spectral domain by means
of projection operators. We prove that the moments of the
primordial image are invariant to Gaussian blur and we derive
recursive formulas for their direct computation without actually
constructing the primordial image itself. We show how to extend
their invariance also to image rotation. The application of these
invariants is in blur-invariant image comparison and recognition.
In the experimental part, we perform an exhaustive comparison
with two main competitors: 1) the Zhang distance and 2) the
local phase quantization.

Index Terms— Blurred image, object recognition, blur invari-
ant comparison, Gaussian blur, projection operators, image
moments, moment invariants.

I. INTRODUCTION

IMAGE recognition/classification in general is an extremely
broad area which apparently cannot be resolved by a single,

always-optimal method. This is why numerous specific for-
mulations of the problem have appeared, which consequently
has resulted in many approaches and particular algorithms.
Some of them have already become an established discipline
of image analysis while some others are still undergoing initial
development. One of the representatives of the latter group are
methods for recognition of images which are degraded by a
uniform Gaussian blur.

Few years ago, this task was considered a borderline prob-
lem. Thanks to the rapid development of imaging sensors
and technologies that are nowadays available everywhere, the
challenge of recognizing Gaussian-blurred images has started
to appear more and more often in practice which consequently
has attracted the attention of the researchers.

The mathematical formulation of the problem is well known
in image processing. Capturing an ideal scene f by an imaging
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device with the point-spread function (PSF) h, the observed
image g is a convolution of both

g(x, y) = ( f ∗ h)(x, y). (1)

This linear space-invariant image formation model, even if
it is very simple, is a reasonably accurate approximation of
many imaging devices and acquisition scenarios. In this paper,
we concentrate our attention to the case when the PSF is a
Gaussian function with unknown parameters.

Gaussian blur appears whenever the image was acquired
through a turbulent medium and the acquisition/exposure
time is by far longer than the period of Brownian motion
of the particles in the medium. Ground-based astronomical
imaging through the atmosphere, taking pictures through a
fog, underwater imaging, and fluorescence microscopy are
typical examples of such situation (in some cases, the blur
may be coupled with a contrast decrease). Gaussian blur is
also introduced into the images as the sensor blur which is due
to a finite size of the sampling pulse; this effect is, however,
mostly of low significance. Moreover, Gaussian kernel is often
used as an approximation of some other blurs which are
too complicated to work with them exactly. Gaussian blur
is sometimes even introduced into the image intentionally,
for instance to suppress additive noise, to “soften” the image
or to perform local averaging before the image is down-
scaled (see Fig. 1 for some examples). Numerous examples
of the Gaussian convolution can be found outside the image
processing area – particle transportation, diffusion process,
time-development of a heat distribution in a mass, and photon
scattering in radiation physics are few examples. Most of
them are represented by 2D or 3D functions which can be
visualized, that brings us back to image processing. So, we
can see there is actually a demand for developing the tools
designed particularly for processing Gaussian-blurred images.

When we need to classify a blurred image g against a
database of clear images, we have basically three options.
The most time-expensive one is to generate all possible
blurred versions of all templates (i.e. blurring with Gaussians
the variances of which fill a reasonable, properly sampled
interval) and incorporate them into the database. This brute-
force approach is not practically feasible. Another approach
relies on the solution of the inverse problem, when the blur
is removed from the input image and the deblurred image
is then classified by any standard technique. This process
contains semi-blind image deconvolution (the term “semi-
blind” is used because we know the parametric form of
the kernel but its parameters are unknown) which is in the
case of a Gaussian kernel an unstable, ill-posed problem.
Unlike motion blur and out-of-focus blur, Gaussian blur does
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Fig. 1. Examples of the Gaussian blur: (a) the image of the sunspot blurred by
atmospheric turbulence, (b) the underwater photo blurred by light dispersion,
(c) a picture blurred due to a fog, (d) the image of axon boutons from wide-
field epifluorescence microscopy, (e) the snap of an aquarium and (f) the snap
from the cave. The last two pictures were originally very noisy because of poor
light conditions, the noise was suppressed by applying a computer-generated
Gaussian blur.

not introduce any zero patterns into the spectrum of the
image, which are in the other cases employed for parameter
estimation. Another difficulty is that the Gaussian can be
factorized into an arbitrary (theoretically infinite) number of
convolution terms, each of them being again a Gaussian.
Hence, deconvolution algorithms cannot in principle remove
Gaussian blur if no prior information is available. If the blur
size (i.e. the variance of the Gaussian) was known, then we
could apply a convolution with an inverse kernel (which can be
synthesized by Hermite polynomials) or Wiener deconvolution
in the frequency domain to deblur the image. Unfortunately, in
image processing this scenario is not realistic because the blur
size uses to be unknown, which makes the deblurring difficult.
Only few semi-blind deconvolution methods w.r.t. Gaussian
blur have been published. They first try to estimate the size
(variance) of the blur and perform a non-blind deconvolution.
Honarvar et al. [1] and Honarvar and Flusser [2] proposed
to perform the deconvolution in the moment domain but his
algorithm contains a time-consuming search in the parametric
space and is sensitive to overestimation of the Gaussian
variance. The APEX method [3] estimated the blur variance by
fitting the image spectrum in the Fourier domain. There exist
also several local methods that estimate the blur size by

investigating the response on a point source or on an ideal
edge [4], [5]. A common weakness of these methods is their
sensitivity to noise and the necessity of the prior knowledge
where an ideal point or edge is located. Xue and Blu [6]
proposed to estimate the blur variance by minimizing a proper
functional and then to apply a non-blind Wiener filtering.
As in the previous cases, the method is sensitive to the variance
overestimation and relatively time-consuming.

The third and the most promising approach is based on the
idea that for blur-insensitive recognition we do not need to
restore the query image. We only need to have its represen-
tation (possibly low-dimensional and lossy) which is robust
w.r.t. Gaussian blur. We are looking for a blur-invariant image
descriptor I , which is a functional defined on the space of all
images, such that

I ( f ) = I ( f ∗ h) (2)

for any Gaussian kernel h. The existence of such Gaussian blur
invariants is theoretically possible thanks to the fact that the
Gaussian convolution is closed under the composition.1 The
closure property is an essential necessary condition. Imagine
a set S of functions (convolution kernels) which would not
be closed under convolution. Then I ( f ) = I ( f ∗ h1) =
I ( f ∗ h1 ∗ h2) for arbitrary h1, h2 ∈ S but obviously (h1 ∗ h2)
may lie outside S. So, the functional I must be invariant
to a convolution with a broader set of kernels. Such set is
called convolution closure of S and we denote it as C(S).
If S �= C(S), then looking for the specific blur invariants
w.r.t. S does not make sense. All such invariants must be at
the same time invariant w.r.t. C(S).

The idea of designing blur invariant functionals appeared
about 20 years ago in the papers by Flusser et al. [7] and
Flusser and Suk [8]. They proposed a system of blur invariants
which are recursive functions of standard (geometric)
moments of the image and proved their invariance under
a convolution with arbitrary centrosymmetric kernel. These
invariants, along with the centrosymmetry assumption, have
been adopted by numerous researchers. They have become
very popular image descriptors and have found a number of
applications, namely in matching and registration of satellite
and aerial images [8]–[12], in medical imaging [13]–[15],
in normalizing blurred images into canonical forms [16], [17],
in blurred digit and character recognition [18], in robot con-
trol [19], in image forgery detection [20], [21], in traffic sign
recognition [22], [23], in fish shape-based classification [24],
in wood industry [25], [26], and in cell recognition [27].

Several authors have further developed the theory of blur
invariants. Combined invariants to convolution and to rotation
were introduced by Flusser and Zitová [28], who also reported
their successful usage in satellite image registration [29]
and in camera motion estimation [30]. Combined invariants

1The set of all Gaussian functions with the binary operation convolution
is a commutative monoid, i.e. a semigroup with a unit element. The closure
property holds also for point-wise multiplication, so the Gaussians form a
commutative ring. This assertion is valid for the set of normalized as well
as unnormalized Gaussians. The Gaussian family is not the only parametric
family of functions with the closure property to convolution; we recall α-stable
distributions known in statistics.
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both to convolution and affine transform was published by
Zhang et al. [17] and Suk and Flusser [31]. Their use for
aircraft silhouette recognition [32], for sign language recogni-
tion [33], for the classification of winged insect [34] and for
robust digital watermarking [35] was reported.

Some researchers attempted derivation of blur invariants
which are functions of orthogonal moments rather than
of the geometric moments. Legendre moments [36]–[39],
Zernike moments [40]–[42], and Chebyshev moments [43]
were employed for this purpose. Zuo et al. [44] even
combined moment blur invariants and SIFT features [45]
into a single vector with weighted components but with-
out a convincing improvement. However, as was proved by
Kautsky and Flusser [46], moment invariants in any two differ-
ent polynomial bases are mutually dependent and theoretically
equivalent.

Some other authors constructed the blur invariants
in Fourier domain. Ojansivu and Heikkilä [47], [48]
and Tang et al. [49] used blur-invariant properties of
Fourier transform phase for image registration and match-
ing. Their idea was later significantly generalized by
Pedone et al. [50], [51]. Popular method of the Local phase
quantization (LPQ) [52]–[55] also belongs to this group.

In almost all papers mentioned above, the invariance prop-
erty was considered–exactly as in the original paper [8]–only
to centrosymmetric PSF’s. Few authors were apparently aware
of this limitation which decreases the discrimination power
and tried to construct invariants to more specific blurs.
Flusser et al. derived invariants to motion blur [56], to axially
symmetric blur in case of two axes [57], to circularly sym-
metric blur [58], and to arbitrary N-fold symmetric blur [59].

All the above methods do not use the parametric form of
the PSF at all. They can be applied to Gaussian blur as well,
because the Gaussian kernel is a special case of symmetric
kernels. However, these methods cannot in principle reach
the maximum possible discrimination power. To understand
the discrimination power of the blur-invariant methods, we
have to analyze the null-space of the respective invariants. The
null-space is always formed by the functions with the same
symmetry as the kernel symmetry the method is invariant to.
To see that, we may imagine that the object is a blur kernel
applied on the delta function. This means, invariants to cen-
trosymmetric blur cannot discriminate among all centrosym-
metric objects, invariants to circularly symmetric blur are not
able to discriminate the circularly symmetric objects, etc. For
instance the circle and the ring blurred by a Gaussian cannot be
distinguished by invariants to centrosymmetric and circularly
symmetric kernels but can be distinguished by invariants to
Gaussian blur. For an optimal discriminabilty we need specific
invariants exactly w.r.t. the blur which is present in the image.
Unfortunately, the Gaussian blur invariants cannot be easily
obtained as a special case of the earlier methods (even if the
idea of projection operators we employ in this paper is similar
to that one we proposed in [59]).

Only few attempts to derive invariants (2) w.r.t. Gaussian
blur have been reported so far. Most of them are heuristics
lacking a deeper mathematical analysis. Liu and Zhang [60]
realized that the complex moments of the image, one index of

which is zero, are invariant to Gaussian blur. Xiao et al. [61]
seemingly derived invariants to Gaussian blur but he did not
employ the parametric Gaussian form explicitly. He only used
the circular symmetry property which led to an incomplete
invariant system. Gopalan et al. [62] derived another invariant
set without assuming the knowledge of the parametric shape
of the kernel but imposed a limitation of its support size.
Flusser et al. mentioned an idea of Gaussian blur invariants
in [63] without presenting the details and without testing their
applicability.

An interesting approach, one of very few which have
been proposed specifically for Gaussian blur and which
works with a parametric form of the PSF, was proposed by
Zhang et al. [64], [65]. They derived a blur-invariant distance
measure d between two images which fulfills the condition

d( f1, f2) = d( f1 ∗ h, f2) (3)

for any Gaussian kernel h. Although the blur invariants are not
explicitly defined, the invariant distance measure (3) can be
used for object classification in a similar manner. The authors
reported its good performance. The paper [65] published in
this Transactions motivated us to perform a detailed study of
their method, to analyze its pros and cons, and to propose a
different approach based on invariants of the type (2) which
outperforms the Zhang’s method in several aspects.

The paper is organized as follows. Section II recalls the
Zhang’s method [65]. The new invariants based on pro-
jection operators are introduced in Section III. Section IV
presents an experimental comparison of these two competing
approaches along with a comparison to two general-purpose
methods–cross correlation and LPQ.

II. RECALLING THE ZHANG’s METHOD

The main idea of the method proposed in [65] is simple and
elegant, even if some steps are hidden behind relatively com-
plicated mathematical formalism which employs Riemannian
manifolds. Here we briefly summarize the Zhang’s method in
a more transparent way.

The blur model used in [65] is supposed to be as in
Eq. (1), where h is assumed to be a 2D circularly symmetric
centralized Gaussian function Gσ (x, y) which is defined as

Gσ (x, y) = Gσ (x)Gσ (y), (4)

where σ > 0 and Gσ (x), Gσ (y) are 1D Gaussian functions
of a traditional shape2

Gσ (x) = 1√
2πσ

e− x2

2σ2

and of the same variance σ 2.
Let f1, f2 be two images to be compared (their content as

well as their blur level are generally different). First, the blur
level of each of them is estimated by a proper blur measure.
The authors used the integral of the image Laplacian but in
principle any of the popular blur measures reviewed in [66]
can be employed in this step. Both images are then brought

2Let us extend this definition by setting G0(x) = δ(x).



FLUSSER et al.: RECOGNITION OF IMAGES DEGRADED BY GAUSSIAN BLUR 793

to the same level of blurring which is chosen as the blur level
of the more blurred image. This means that the (assumably)
sharper image is blurred by a Gaussian kernel of a proper size
to reach the same level of blur as the other image. This step
should ensure that the distance measure becomes independent
of the image blurring. Then the distance d( f1, f2) is defined
as a geodesic distance on the surface of the ellipsoid which
contains the images of the same blur level. This distance
is calculated by means of an iterative “path straightening”
algorithm. The only difference from a pure L2 norm is that
the distance is measured along a curve on the ellipsoid surface
but still it is based on a pixel-wise comparison of the images.
It should be noted that in the earlier paper by the same
authors [64], a simpler weighted L2 distance was used instead.

III. GAUSSIAN BLUR INVARIANTS BASED

ON PROJECTION OPERATORS

In this section we present an approach based on the invariant
descriptors of the type (2). The basic conceptual difference
from the Zhang’s method is that these invariants are defined
for a single image, while the Zhang’s distance always requires
a pair of images. So, we can calculate the invariant repre-
sentations of the database objects/templates only once and
store them in the database along with the object images.
It leads to much faster recognition, as will be demonstrated
practically in Section IV, and also yields a possibility of
broader generalization.

The invariants are derived by means of projection operators
in Fourier domain, as we will see in Theorem 1. For prac-
tical application, these complete invariants are replaced with
equivalent image domain invariants, which are based on image
moments. Derivation of both is the subject of the rest of this
section.

A. Projection Operator in 1D

The new invariants are based on the projection of the
image onto a space of unnormalized Gaussian functions, which
preserves the image moments of the zeroth, the first, and the
second orders. The separability of a 2D Gaussian function
allows us to create a 1D theory (which is more transparent
and easy to explain) first and then to generalize it to the 2D
(or even N-D) case.

Let us consider a 1D “image” f , f (x) ≥ 0, with a finite
non-zero integral and finite central moments of all orders.
The projection operator PG is defined as

PG ( f )(x) = m0Gs(x) ≡ m0√
2πs

e
− x2

2s2 , (5)

where

s2 = m2/m0

and

m p =
∫

(x − c)p f (x)dx (6)

is the p-th central moment of f (with c being the centroid
of f ). Hence, PG assigns each f to a centralized Gaussian

multiplied by m0 such that the central moments up to the
second order of f and PG ( f ) are equal. In other words,
PG( f ) is the “closest” unnormalized Gaussian to f in terms
of the first three moment values. In this sense, PG can be
considered a projector onto the set of unnormalized Gaussian
functions.3

The operator PG exhibits several interesting properties.
• Operator PG is idempotent, i.e. PG(PG ( f )) = PG ( f ).
• Operator PG is multiplicative, i.e. PG(a f ) = a PG( f ) for

any constant a > 0.
• If f is an (unnormalized) Gaussian, then PG( f ) = f and

vice versa.
• Any function f can be expressed as f = PG( f ) + fn ,

where fn can be considered a “non-Gaussian” part of f .
• The equality PG( f1) = PG( f2) defines an equivalence

relation on the image space. The classes of equivalence
are formed by the functions of the same zeroth and second
central moments.

An important property of PG , which will be later used
for construction of the invariants, is its relationship to a
convolution with a Gaussian kernel. It holds, for any f and σ ,

PG( f ∗ Gσ ) = PG( f ) ∗ Gσ . (7)

To see this, we have to establish the relation between the
second-order moments m(g)

2 on one hand and m( f )
2 , m(h)

2 on
the other hand. We recall (see [63] for details) that in general,
for arbitrary f, h, and p, the moments are transformed under
a convolution as

m(g)
p =

p∑
k=0

(
p

k

)
m(h)

k m( f )
p−k . (8)

If h(x) = Gσ (x), its moments are

m(h)
k = σ k(k − 1)!! (9)

for any even k. The symbol k!! means a double factorial,
k!! = 1·3·5 · · · k for odd k, and by definition (−1)!! = 0!! = 1.
For any odd k the moment m(h)

k = 0 due to the symmetry of
the Gaussian function. Hence, (8) obtains the form

m(g)
p =

p∑
k=0

k even

(
p

k

)
σ k(k − 1)!! · m( f )

p−k . (10)

In particular,

m(g)
0 = m( f )

0

and

m(g)
2 = m( f )

2 + σ 2m( f )
0 .

Now we can see that

PG( f ∗ Gσ )(x) = m0G√
(s2+σ 2)

(x) = (PG( f ) ∗ Gσ )(x)

(11)

(the latter equality follows from the fact that the convolution
of two Gaussians is again a Gaussian with the variance being
the sum of the input variances).

3However, it is not a projector in the common meaning, since it is not a
linear operator and the Gaussians do not form a vector space.
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B. 1D Gaussian Blur Invariants in the Fourier Domain

Now we can formulate the central Theorem of this paper.
Theorem 1: Let f be an image function. Then

IG( f )(u) = F( f )(u)

F(PG ( f ))(u)

is an invariant to Gaussian blur, i.e. IG ( f ) = IG( f ∗ Gσ ) for
any blur parameter σ .

The proof follows immediately from Eq (7). Note that IG is
invariant also to the contrast stretching, IG( f ) = IG(a f ).

What is the meaning of these invariants? The frequency
domain provides us with a good insight. IG( f ) is a ratio
of two Fourier transforms which may be interpreted as a
deconvolution. Having an image f , we seemingly “decon-
volve” it by the kernel PG ( f ), which is the largest pos-
sible Gaussian kernel (larger kernels cannot exist because
de-blurring always monotonically decreases m2, reaching the

limit at m(F−1(IG ( f )))
2 = 0). We call the result of this seeming

deconvolution the primordial image

fr = F−1(IG ( f )).

Hence, IG ( f ) can be viewed as its Fourier transform, although
fr is not an image in a common sense because the existence of
F−1(IG( f )) is not generally guaranteed and even if fr exists,
it may contain negative values.

IG( f ) can be viewed as a kind of normalization of f
w.r.t. Gaussian blurring of unknown extent. The primordial
image plays the role of a canonical form of f , which actually
is its “maximally deconvolved” non-Gaussian part. We can
see a conceptual difference from the Zhang’s approach [65].
To make two images comparable, Zhang blurs them to the
same level of blur, which is given by the more blurred image in
the pair. We (seemingly) deblur each image separately because
the canonical form is independent of the other images.

The equality IG ( f1) = IG( f2) decomposes the image space
into classes of equivalence. Fortunately, this decomposition is
exactly the same as that one induced by the following relation:
two functions f1 and f2 are equivalent if and only if there exist
a > 0 and σ ≥ 0 such that f1 = f2 ∗ aGσ or f2 = f1 ∗ aGσ .
To prove this, let us first realize that if IG( f1) = IG ( f2) then
obviously

F( f1)(u)F(PG( f2))(u) = F( f2)(u)F(PG( f1))(u),

which in the image domain means

f1 ∗ PG( f2) = f2 ∗ PG ( f1).

Both PG ( fi ) are (unnormalized) Gaussians. Let us denote
their standard deviations as σ1 and σ2, respectively, so we
have PG( fi ) = ai Gσi . Let σ1 ≥ σ2. We define σ 2 = σ 2

1 − σ 2
2

and a = a1/a2. Since the convolution of any two Gaussians
is again a Gaussian the variance of which is the sum of two
input variances, we have

aGσ ∗ a2Gσ2 = a1Gσ1 .

From this we immediately obtain

f1 = f2 ∗ aGσ

which completes the proof.

This is an important observation, saying that IG( f ) is a
complete description of f up to a convolution with a Gaussian
and a multiplicative contrast change. In other words, IG( f )
defines an orbit – a set of images equivalent with f . Thanks
to the completeness, IG discriminates between the images
from different orbits but obviously cannot discriminate inside
an orbit. In particular, IG cannot discriminate between two
Gaussians since all Gaussians lie on the orbit the root of which
is the delta function.

C. 1D Gaussian Blur Invariants in the Image Domain

In principle, we can use directly IG( f ) as the invariant
feature vector of the same size as f but working in the Fourier
domain brings two practical difficulties. Since IG( f ) is a ratio,
we possibly divide by very small numbers which requires an
appropriate numerical treatment. Moreover, high frequencies
of IG ( f ) use to be sensitive to noise. This can be overcome
by suppressing them by a low-pass filter, but this procedure
introduces a user-defined parameter (the cut-off frequency)
which should be set up with respect to the particular noise
level. That is why in most cases we prefer to work directly in
the image domain, where invariants equivalent to IG( f ) can
be constructed.

To get the link between the Fourier and image domains,
we use a Taylor expansion of the harmonic functions and its
term-wise integration

F( f )(u) ≡
∫ ∞

−∞
f (x) · e−2π iux dx =

∞∑
k=0

(−2π i)k

k! mkuk .

(12)

The above formula tells us that the moments of the image
are Taylor coefficients (up to a constant factor) of its Fourier
transform. Taylor expansion of F(PG( f )) yields

F(PG( f ))(u) = m0

∞∑
k=0

(2k − 1)!! (−2π i)2k

(2k)!
(

m2

m0

)k

u2k (13)

(we recall F(PG( f )) is a Gaussian).
We can see IG( f ) is a ratio of two absolutely convergent

power series, so IG ( f ) itself can be expressed as an absolutely
convergent power series of the form

IG ( f )(u) =
∞∑

k=0

(−2π i)k

k! akuk

where ak are the moments of the primordial image. Substitut-
ing the above three power series into the definition of IG( f )
and considering that

(2k − 1)!! = (2k)!
2k · k!

we have
∞∑

k=0

(−2π i)k

k! mkuk = m0

∞∑
k=0

(−2π2)k

k!
(

m2

m0

)k

u2k

·
∞∑

k=0

(−2π i)k

k! akuk .
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Comparing the terms with the same power of u we obtain,
after some algebraic manipulation, the recursive expression
for each ap

ap = m p

m0
−

p∑
k=2

k even

(k − 1)!! ·
(

p

k

) (
m2

m0

)k/2

ap−k . (14)

Since the primordial image itself (more precisely, its Fourier
transform) was proven to be blur invariant, each its moment
must be also a blur invariant. If we restrict ourselves to a
brightness-preserving blurring, then m0 itself is an invariant
and we obtain from (14) the simplified final form of Gaussian
blur invariants

B(p) ≡ m0ap = m p −
p∑

k=2
k even

(k − 1)!!

·
(

p

k

) (
m2

m0

)k/2

B(p − k), (15)

which can be equivalently expressed in a non-recursive form

B(p) =
p∑

k=0
k even

(k − 1)!! ·
(

p

k

) (
−m2

m0

)k/2

m p−k . (16)

For the proof of the equivalence of (15) and (16)
see Appendix A.

As we already said, B(p) is actually a p-th moment of the
primordial image of f . Regardless of f , B(1) = 0 because
we work with central moments4 m p . It always holds B(2) = 0
because the second-order moment was used to eliminate the
unknown blur parameter σ . Hence, B(1) and B(2) should not
be used in the feature vector since they do not carry any
information.

Using the image-domain invariants (15) instead of the
Fourier domain ones provides higher robustness to noise and
is also faster. In practice, we do not need a complete repre-
sentation of the images in question. Usually a few invariants
provide a sufficient discrimination power, so we use the B(p)’s
up to the certain order Q only. This Q is a user-defined
parameter the determination of which should be based on a
discrimination analysis of the database images. The choice
of Q is always a compromise between the discriminative
power and the complexity of the method.

D. Gaussian Blur Invariants in N Dimensions

Let us assume the image domain is a subset of RN . The
centralized N-D Gaussian function has the form

G�(x) = 1√
(2π)N |�| exp

(
−1

2
xT �−1x

)
, (17)

where x ≡ (x1, . . . , xN )T and � is the covariance matrix
which determines the shape of the Gaussian. Provided that

4This theory is valid also when using standard non-centralized moments.
Then generally B(1) �= 0 but working with central moments is advantageous
since it assures the shift invariance.

Fig. 2. The original image f (a) and its projection PG( f ) (b).

N = 2 and that the covariance matrix of the blur kernel is
diagonal, we define the projection operator as

PG ( f )(x) = m00GS(x), (18)

where

S = diag(m20/m00, m02/m00).

The definition of the central geometric moments m pq in
two dimensions is analogous to that in one dimension

m pq =
∫ ∫

(x1 − c1)
p(x2 − c2)

q f (x1, x2)dx1dx2. (19)

A visual example of the projection operator is shown in Fig. 2.
Similarly to the 1D case (see Theorem 1), the ratio

IG ( f )(u) = F( f )(u)

F(PG( f ))(u)

is a Gaussian blur invariant. After applying the Taylor
expansion, we end up with the following moment invariants
analogous to (15)

B(p, q) = m pq −
p,q∑

k+ j=2
k, j even

(k − 1)!! · ( j − 1)!! ·
(

p

k

)(
q

j

)

×
(

m20

m00

)k/2 (
m02

m00

) j/2

B(p − k, q − j) (20)

which can be rewritten into a non-recursive form analogous
to (16) as

B(p, q) =
p,q∑

k, j=0
k, j even

(k − 1)!! · ( j − 1)!! ·
(

p

k

)(
q

j

)

×
(

−m20

m00

)k/2 (
−m02

m00

) j/2

m p−k,q− j . (21)

For the general case of N > 2 see Appendix B.
Note that unlike the Zhang’s method, we are not limited

to circularly symmetric Gaussian blur kernels but we allow
different extent of blur in x1 and x2 directions.5 This may
be useful when the horizontal and vertical resolutions of the
sensor differ one another. Again, certain invariants are trivial:
B(1, 0) = B(0, 1) = 0 due to the centralization, B(2, 0) =
B(0, 2) = 0 due to the parameter elimination.6

5The Zhang’s method could very likely be also generalized to non-isotropic
blurs but on the expense of additional time.

6If the blur kernel is circularly symmetric, there is only one parameter to
be eliminated and we obtain an additional independent invariant m20 − m02.
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E. Translational, Scaling, and Rotational Invariance

Invariance w.r.t. to image translation, scaling and rota-
tion (TSR) is one of the basic requirements we impose on
almost any features. If the images are not captured in a fully
controlled environment, we always face certain unavoidable
unwanted translation/scaling/rotation of the scene.

The Zhang’s method is not invariant to translation, scaling,
and rotation. This issue was not discussed at all in [65] and
the experiments were presented on perfectly registered images
only. We believe the Zhang’s method could be adapted to be
translational invariant but we cannot see any possible extension
to scaling and rotation invariance except a time-expensive
brute force search.

The invariants B(p, q), introduced in the previous section,
are inherently invariant to translation, because they are com-
posed of the central moments of the image. Scaling invariance
can be achieved by using the scale-normalized moments
instead of the standard moments. This is a commonly used
approach in the moment theory (see [63] for details), which is

in this case equivalent to dividing each B(p, q) by m(p+q+2)/2
00 .

Since the standard moments change under rotation in a
complicated way, the rotation invariance of B(p, q) cannot be
achieved readily (let us speak about the 2D case only because
handling the rotation in higher dimensions requires special
mathematical tools and it is of less practical importance).
We will adopt the trick discovered by Flusser [67], who used
it for construction of rotation moment invariants (with no
relationship to blurring).

First of all, we have to use other moments than the geomet-
ric ones, which change under rotation in a simple way. There
exist a class of such moments (see [63] for a survey) called
radial moments. Their common feature is that their 2D basis
functions are products of 1D radial polynomials and angular
harmonic functions. They use to be complex valued and under
the image rotation only their phase is changed (the reader can
recognize a clear analogy with the Fourier Shift Theorem).
Here we employ so-called complex moments

cpq =
∞∫

−∞

∞∫

−∞
(x + iy)p(x − iy)q f (x, y)dxdy (22)

that are linked to the previously used geometric moments as

cpq =
p∑

k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)q− j · i p+q−k− j · mk+ j,p+q−k− j

(23)

and inversely as

m pq = 1

2p+qi q

p∑
k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)q− j · ck+ j,p+q−k− j .

(24)

Note that cpq = c∗
qp , so only the moments with p ≥ q are

independent and meaningful to consider. After a transforma-
tion into polar coordinates (r, θ), the complex moments obtain

the form

cpq =
∞∫

0

2π∫

0

r p+q+1ei(p−q)θ f (r, θ)dθdr. (25)

From the last equation we can see that after a coordinate
rotation by angle α the complex moment is changed as

c′
pq = e−i(p−q)α · cpq . (26)

The complex moments of the blurred image (1) are in general

c(g)
pq =

p∑
k=0

q∑
j=0

(
p

k

)(
q

j

)
c(h)

kj c( f )
p−k,q− j . (27)

If the blur kernel h is a circularly symmetric Gaussian (4) then
we have for its moments

c(h)
pq =

{
(2σ 2)

p
p! p = q

0 p �= q

and Eq. (27) becomes

c(g)
pq =

q∑
j=0

(
p

j

)(
q

j

)
j !(2σ 2) j c( f )

p− j,q− j , (28)

assuming that p ≥ q .
Now we use the complex moments to derive invariants w.r.t.

Gaussian blur in a similar way as the geometric moments were
used earlier. Similarly to Eq. (5), we define the projection
operator as

PG( f )(x, y) = c00Gs(x, y) ≡ c00

2πs2 e
− x2+y2

2s2 , (29)

where

s2 = c11/(2c00).

PG( f ) has the same c00 and c11 as f (and of course
c10 = 0 when working in the centralized coordinates). The
other moments of PG ( f ) and f are generally different from
one another. The following relation shows that the complex
moments are “almost” the Taylor coefficients of the Fourier
transform of f . Let us make a substitution U = u + v and
V = i(u − v). Then

F( f )(U, V ) ≡
∞∫

−∞

∞∫

−∞
e−2π i(U x+V y) f (x, y)dxdy

=
∞∑
j=0

∞∑
k=0

(−2π i) j+k

j !k! c jku jvk . (30)

Using the same substitution, we define the blur invariant in
Fourier domain analogously to Theorem 1 as

IG ( f )(U, V ) = F( f )(U, V )

F(PG( f ))(U, V )
.

Taylor expansion of the denominator is

F(PG( f ))(U, V ) = c00

∞∑
k=0

(−4π2)k

k!
(

c11

c00

)k

ukvk .
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Using the Taylor expansion of all three factors by means
of their complex moments and comparing the coefficients of
the same powers, we obtain the blur invariants in the image
domain

K (p, q) = cpq −
q∑

k=1

k!
(

p

k

)(
q

k

) (
c11

c00

)k

K (p − k, q − k)

=
q∑

k=0

k!
(

p

k

)(
q

k

) (
−c11

c00

)k

cp−k,q−k . (31)

Note that K (q, p) = K (p, q)∗, K (1, 0) = 0 when working
in the centralized coordinates, and K (1, 1) = 0 due to the
parameter elimination.

The invariants K (p, q) are formally similar to the B(p, q)’s
(only the moment type was changed). They are actually differ-
ent but thanks to the link between the geometric and complex
moments (23, 24) they generate the same invariant subspace.
The principle difference between them (and the reason why
we employed the complex moments in this section) is that the
K (p, q)’s are easy to handle under an image rotation. They
change in the same way as the complex moments themselves,
i.e.

K ′(p, q) = e−i(p−q)α · K (p, q). (32)

The simplest way to achieve the rotation invariance is to take
the magnitudes |K (p, q)| which provide combined invariants
but create only an incomplete system. A more sophisticated
method is based on the phase cancellation by multiplication of
proper invariants, which leads for instance to the invariants7

K (p, q)K (1, 2)p−q .

Scale invariance of K (p, q)’s can be achieved by the same
normalization as in the case of B(p, q)’s.

IV. EXPERIMENTS AND A COMPARISON

TO THE ZHANG’s METHOD

The aim of this section is not only to demonstrate the
performance of the proposed method but also to compare
it to the method by Zhang et al. [65]. Comparison to the
Zhang’s method is highly relevant because both methods have
been designed specifically for Gaussian-blurred images, both
are theoretically invariant to blur and both should provide
good recognition power. There have been proposed no other
competitors of these properties in the literature. To make
the comparison as fair as possible, we asked the authors
of [65] for providing all necessary original codes. Then we
implemented our method using the same version of Matlab
(R2013a) and always run both on the same computer (Dell
Notebook, VOSTRO 1510, Intel, Core2 Duo CPU, 4GB RAM,
Windows 8, 32-bit) and on the same test images. Since the
Zhang’s method can compare only images of the same size,
we kept this condition in all experiments.

In some experiments we included also two other method
into the comparison – image cross-correlation and Local phase
quantization (LPQ) [52]–[55]. The cross-correlation is of

7This set can be proven to be complete and independent provided that
K (1, 2) �= 0. Other choices are also possible and lead to equivalent invariants.

TABLE I

THE VALUES OF ZD AND ID IN THE CASE OF SIMULATED GAUSSIAN BLUR

course not blur invariant, so the comparison with it shows what
is the actual benefit of the blur invariance property. LPQ is a
representative of methods acting in the Fourier domain. LPQ is
invariant to general centrosymmetric blur, it does not employ
the parametric form of the PSF at all. The main idea is that a
centrosymmetric PSF does not change the phase of the Fourier
transform in certain neighborhood of the origin. The Fourier
transform is windowed and its phase in a close neighborhood
of the origin is quantized and taken as a local descriptor.
We originally used the LPQ code provided by the authors
which we later improved to reach better performance. Some
other method had been compared to the Zhang’s distance (ZD)
already in [65]. The reader can find there a comparison to
standard Euclidean distance, the Gopalan method [62], and
centrosymmetric blur invariants [8]. Since the ZD had been
evaluated as the best performing method among these, we did
not incorporate these comparative methods into our current
tests.

The first set of the experiments only illustrates the properties
of both methods, which already were proved theoretically.
The core experiments can be found in the second set, where
statistically significant comparison of the success rate and the
time complexity is presented.

A. Blur Invariance Property

As we expected, both methods actually exhibit high invari-
ance w.r.t. a “perfect” (i.e. computer-generated) Gaussian blur
(see Table I). We changed the blur parameter σ from 0 to 7
and calculated both the Zhang’s distance ZD and the Euclidean
distance in the space of the invariants (31) between the
blurred image and the original. We refer to the distance in
the space of the invariants as the invariant distance ID. Both
distances in this experiment are reasonably small although
not zero. The non-zero values appear because the sampled
Gaussian does not fulfil exactly the assumption. Since larger
sampled Gaussians are more accurate, we observe that the
error sometimes decreases as the blur size increases, although
one might expect an opposite relation. For comparison, we also
calculated the distances between several different originals,
which is by two orders higher. The test images were of the
size 160 × 160 pixels (see Fig. 3 for an example).

B. Shift, Rotation, and Scaling Invariance

Here we experimentally verified the theoretical knowledge
that our method provides the invariance w.r.t. these three ele-
mentary geometric transformations while the Zhang’s method
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Fig. 3. One of the original images (160 × 160 pixels) used in the tests.

TABLE II

THE DISTANCE BETWEEN THE ORIGINAL AND ITS SHIFTED COPY

TABLE III

THE DISTANCE BETWEEN THE ORIGINAL AND ITS ROTATED COPY

TABLE IV

THE DISTANCE BETWEEN THE ORIGINAL AND ITS SCALED COPY

is sensitive to the particular image position, orientation and
size. It is worth mentioning how sensitive the ZD is to the
shift. As the shift approaches 5 pixels, the Zhang distance
between the shifted images is comparable to the distance
between two completely different images (see Table II). The
same is true for the scaling and rotation, too. Even a small
rotation/scaling harms the ZD substantially (see Table III and
Table IV). The sensitivity to a shift is also a weakness of the
LPQ method. The Fourier phase is changed when the image
has been shifted, so the LPQ feature is changed as well. There
exist rotation and scale invariant modifications of LPQ but no
shift invariant version has been reported.

TABLE V

THE DISTANCE BETWEEN THE ORIGINAL AND
ITS CONTRAST-CHANGED COPY

C. Invariance to Contrast Stretching

This easy test verified that the invariants, when normalized
by m00, are invariant also to a contrast stretching of the form
g(x, y) = a f (x, y), a > 0. The Zhang’s method interprets
low contrast as a blur due to lower values of the Laplacian
and blurs the more contrast image before the distance is calcu-
lated. This leads to an inaccuracy of computation of the ZD,
which of course depends on the parameter a (see Table V
for illustration). However, this problem of the ZD can easily
by resolved by normalizing the images to the same graylevel
variance (which, on the other hand, would increase the time
complexity).

D. Robustness to Noise

Robustness to additive noise is an important requirement
imposed on any features since in reality the noise is unavoid-
able. When taking a picture in low light, we use high ISO
and/or long exposure. Both amplifies the background noise,
which is present in any electronic system, such that the noise
energy may be even higher than that of the signal. Particularly
compact cameras and cell-phone cameras with small-size chips
suffer from this kind of noise, along with an omnipresent
thermal noise. Although the camera noise contains also a
Poisson component, it is commonly modelled as a white
Gaussian noise.

First, we added the noise of SNR from 50 dB to −5 dB
into the image (see Fig. 4 for some examples), and calculated
both ID and ZD from the original. On each noise level, we run
the experiment 10 times and the mean values are presented in
Table VI. The invariant method is more robust because the
moments are defined as integrals, which basically “averages”
the noise and decreases its impact on the feature values.
On the other hand, the Zhang distance is very sensitive. This
is due to its first stage when the image blur level is estimated
by measuring the energy in the high-pass band. The noise
dominates the image on high frequencies and contributes a lot
to this measure. Hence, the blurred image with heavy noise
may often be considered “sharper” than the clear image and
the method blurs it again to bring it (seemingly) to the same
blur level.

We measured the robustness also on real noise. We took a
series of photographs in low-light conditions to introduce an
observable camera noise. Each of four scenes used here was
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Fig. 4. Examples of the images with simulated noise used in the test.
SNR = 10 dB (a), SNR = 5 dB (b), SNR = 0 dB (c), and
SNR = −5 dB (d).

TABLE VI

THE DISTANCE BETWEEN THE ORIGINAL AND
ITS NOISY VERSION – SIMULATED NOISE

TABLE VII

THE DISTANCE BETWEEN THE ORIGINAL AND

ITS NOISY VERSION – REAL NOISE

taken by a multi-shot sequence of 20 frames. The estimated
SNR in each frame is about 30 dB. The “clear” image was
obtained by a time-averaging of the noisy frames, since it
was not possible to take it directly. Such an image is not
actually noise-free but the noise is suppressed significantly.
For each scene, we calculated both ID and ZD between the
“clear” image and each noisy frame. The mean values for
each scene are presented in Table VII. Considering that the
ideal distance value should be always zero, these results are
consistent with those obtained on simulated noise and confirm
the better robustness of the ID.

Fig. 5. Sample “clear” images of the challenging database. The database
consists of very similar faces. Downloaded from the CASIA HFB dataset.

E. Image Recognition Against Public Databases

The main purpose of ZD and ID is to use them in
recognition of Gaussian-blurred images w.r.t. a given database
of clear images. As soon as the query image is provided,
both ZD and ID look for exactly the same image (up to the
blurring and the contrast change) in the database. This recog-
nition should be reliable and fast enough. These methods do
not tolerate other differences such as nonlinear deformations,
object pose, facial expression, etc. They are inappropriate in
the cases where such situation may occur. Since the “image
classes” are defined by single representatives, the classification
by minimum distance is applied most often.8

First of all, we used LIVE and CSIQ databases [68], [69],
which were used already in [65]. To our best knowledge,
these two databases are the only public datasets containing
Gaussian-blurred images. The CSIQ database contains 30 clear
images of common urban, animal and landscape scenes and
five blurred instances of various extent of each of them.
The LIVE database contains similar data but only some of
the images are available along with their blurred versions.
To reach higher statistical significance, we mixed both data-
bases together. We resampled all images to 128 × 128 pixels,
used 59 clear images as training samples and classify all
324 blurred images by ID, ZD and LPQ. The success rate of all
three methods was 100%. This is because the training images

8This is, however, not a restriction imposed by ZD/ID themselves. If the
training set contained more samples, we could apply k-NN or SVM classifiers.



800 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 2, FEBRUARY 2016

Fig. 6. Sample test images degraded by heavy blur and noise
(σ = 5 and SNR = 0 dB).

are visually clearly different and therefore the blur introduced
into the query image does not cause serious problems. Con-
cerning the time, ID was the fastest, LPQ was about ten times
slower and ZD was more than 1000 times slower than ID.

For the second experiment we deliberately used a database
which is composed of similar images, which are even difficult
to distinguish visually. In such a case even a mild blur and
noise might result in a number of misclassifications. Although
the tested methods have not been developed as specialized face
recognition methods, we used facial database for two reasons–
it contains very similar images and blur is often present in
face recognition applications. We selected 100 face images
of 100 persons from the CASIA heterogeneous face biomet-
rics (HFB) database [70], [71]. They are all frontal views with
a neutral expression, without a head pose, and with the face
being cropped (see Fig. 5). We successively took each image
of the dataset, blurred it by a Gaussian blur, added a noise,
and classified the image by the minimum distance rule against
the database of the “clear” images (see Fig. 6 for the samples
of the most degraded images). We did this for various amount
of blur and noise and measured the success rate. For each blur
and noise level we generated ten instances of the query image.
Hence, we classified 36,000 images altogether.

The results of all three methods are summarized in a form
of the “blur size – SNR” matrices in Table VIII. While for
low amount of blur and noise all methods work very well, the
performance of ZD drops as the image degradations increase
(check the lower right part of the matrix). The performance

TABLE VIII

RECOGNITION RATE (IN %) OF BLURRED AND NOISY
FACES BY ZD, LPQ AND ID

of the LPQ is comparable to that of the ID except the last
column corresponding to the largest blur (σ = 5), where the
ID performs much better.

The success rate of the ID is almost 100% in all cases
except SNR = 0 dB, which is mainly due to the guaranteed
invariance of the ID w.r.t. blur and good robustness to additive
noise.

We also measured the time needed for recognition of one
image (this time does not depend on the particular configu-
ration of the blur and noise). The Zhang’s method requires
1500 seconds, the LPQ 0.22 second and the proposed method
works in 0.05 second only. This difference in complexity is
mainly caused by the fact that the invariant values as well
as the LPQ descriptors of the database images are calculated
only once and used repeatedly, while the Zhang’s distance
is calculated “from scratch” for each pair. The LPQ feature
is of a high dimension comparing to the invariants. When
calculating ID, only the invariants up to the order 8 were used,
while the LPQ feature in the basic version has the same size as
the image itself. Since the features are supposed to be stored
in the database for a repeated usage, this high dimensionality
makes the LPQ method inefficient in terms of the memory
usage. The LPQ features can be quantized and compressed
into a histogram only which speeds up the recognition and
improves the memory usage (we actually used this trick in
our experiment), but the dimensionality is still at least by one
order higher than the dimensionality of the blur invariants.
On the other hand, thanks to its redundancy, the LPQ achieves
relatively good recognition rates.

F. Matching of Blurred Templates - Simulated Blur

In this experiment we tested the performance in the template
matching, which is a particular classification problem we often
face in practice. Assuming that we have a large clear image
of a scene and a blurred template, the task is to localize this
template in the clear image. We again tested both ID and ZD.
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Fig. 7. Explanation of the boundary effect. The inside pixels near the template
boundary (white square) are affected by the pixels from the outside of the
template if the scene is blurred. The extent of this effect depends on the
blur size (black square).

For a comparison we included also the cross-correlation (CC)
as a “gold standard” method which has been traditionally used
in matching of non-blurred templates. Since the testing of each
possible template location is very time consuming, we used all
three methods in a hierarchical coarse-to-fine implementation.
On the coarse level, we shifted the template by the step of
4 pixels in each direction. On the fine level, we searched
a 9×9 neighborhood of the “best” location found on the coarse
level. Provided that the horizontal and vertical localization
errors are independent and both have the same normal distribu-
tion, the absolute localization error has a Rayleigh distribution.
We estimated the mean values and standard deviations of the
localization error of all three methods, which illustrates the
accuracy. Since these parameters might be influenced by few
big errors, we also calculated the number of “correct hits”,
which may serve as another (and probably more relevant)
accuracy measure. We marked the position of the template
found by the algorithm as a hit, if its localization error was
less or equal to one pixel in each direction.

Note that in template matching, when the blurred templates
have been extracted from a large scene, we always face a
boundary effect. This means there is a strip along the template
boundary where the convolution model is not valid (even if the
blur has been introduced artificially) because the pixels laying
outside the template also contribute to the intensity values
inside this strip due to the blurring kernel (see Fig. 7). The
boundary effect is the main source of errors in a noise-free
case.

We took a clear image of the size 256 × 256, blurred it
by a 13 × 13 Gaussian of σ = 2 and randomly selected
30 templates of the size 32 × 32. These templates were
searched in the clear image. We used the invariants up to
the order six. The results of the matching in terms of the
accuracy and computational time are summarized in Table IX.
We can see that the accuracy of both ID and ZD are excellent,
so both methods are stable w.r.t. the boundary effect. The ZD
yields even better localization error than ID because it uses a
complete information about the template while the invariants
work with highly compressed information. On the other hand,
ID is more than 20 times faster than ZD. The CC was much
faster than ID but its accuracy was very low because of the
blurring. The time measurement for one template includes a
complete “scan” of the scene including invariant and distance
calculation for each tested position and search for the min-
imum distance. Overheads (reading of the images, generat-
ing blur kernel, blurring the image, template selection, etc.)

TABLE IX

MATCHING OF BLURRED NOISE-FREE TEMPLATES

TABLE X

MATCHING OF BLURRED AND NOISY TEMPLATES

Fig. 8. The test image “Fox”: (a) original, (b) blurred image, (c) blurred
and noisy image, SNR = 10 dB.

are common for all methods and were not included into the
measurement.

Then we repeated the same experiment with the same setting
and with the same templates but we added a Gaussian white
noise of SNR = 10 dB into the blurred image (see Fig. 8).
As can be seen from Table X, the results changed dramatically.
The ID still provides 28 correct hits and the mean error less
than one, while the ZD was even worse than the CC. The
explanation of the difference in robustness is the same as that
given in Section IV.D. The time complexity is basically the
same as in the first experiment.

We also studied the behavior of the invariants under variable
blur and template size and on various noise levels. In all
following experiments we used the invariants up to the order 6.
First, we fixed the template size to 32×32 while the Gaussian
σ increased from 1 to 5 by a sampling step 0.5. In each
parameter setting we matched 30 randomly chosen templates.
This experiment was run five times and the means of the
correct hits are shown in a graph in Fig. 9. Then we run the
whole experiment again with the same templates corrupted by
a noise of SNR = 0 dB. As one may expect, the results are
much worse namely in case of small blur (see Fig. 9). In case
of heavy blur, the main source of errors is a boundary effect
and the influence of noise is not so significant.

In a complementary experiment, we fixed σ = 2 and
changed the SNR only. The means of the correct hits over
30 runs are shown in Fig. 10. All templates were matched
correctly for SNR > 25 dB. As the SNR decreases, the number
of errors increases, reaching 53% if SNR = 0 dB.

In the last experiment, we investigated the influence of the
template size on the success rate and the computation time
of the ID. We fixed σ = 2 while the template size changed
from 64 × 64 to 8 × 8 pixels. To make the comparison fair,
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Fig. 9. The number of correctly located templates as a function of
the blur size in the noise-free case (blue curve) and in the noisy case
(SNR = 0 dB, red curve).

Fig. 10. The number of correctly located blurred templates (σ = 2) as a
function of SNR.

only the positions of the 64 × 64 templates were selected
randomly. The smaller templates were obtained by cropping
of the largest ones. As one can expect, both the success rate
and the computation time decrease along with the decreas-
ing template size (see Table XI, the numbers are means
over 5 runs of experiment with 30 templates). The main
source of the errors is the boundary effect (which is more
significant in small templates since the blur size has been
fixed). The time complexity is given by the complexity of
moment computation; the calculation of the invariants and the
matching itself do not depend on the template size. However,
the decrease of the computation time is mild comparing to the
rapid increase of the success rate. Taking these two criteria
into account simultaneously, one may conclude that in practice
large templates should be preferred since they provide better
success/speed gain than the small ones.

G. Matching of Blurred Templates - Real Blur

Finally, we performed a template matching experiment on
astronomical images degraded by real atmospheric turbulence
blur. We employed four images of the spot in the solar
photosphere taken by a telescope with a CCD camera in
a visible spectral band (the venue: Observatory Ondrejov,

TABLE XI

MATCHING OF BLURRED AND NOISY TEMPLATES BY ID

TABLE XII

TEMPLATE MATCHING IN ASTRONOMICAL IMAGES

Czech Republic; wavelength: λ
.= 590 nm). Since the time

interval between the two consecutive acquisitions was only
few seconds, the scene can be considered still and the images
are almost perfectly registered. As the atmospheric condi-
tions changed between the acquisitions, the amount of blur
in individual images vary from one another. We sorted the
images according to their blur level by means of the algorithm
which compares the energy in low-pass and high-pass wavelet
transform bands [66]. The ordered sequence can be seen
(and visually checked) in Fig. 11. The size of each image is
256 × 256 pixels. The first image is relatively sharp while the
other three images, particularly the last one, are noticeably
blurred. The blur kernel is believed to be approximately
Gaussian (an experimental validation of this assumption can be
found for instance in [72]). Mild additive noise is also present
in all images, its estimated SNR is about 30 dB.

By the the four methods used in the previous experiments
(CC, ZD, LPQ, and ID), we matched 30 randomly chosen
32×32 templates extracted from the first “clear” image against
each of the other three images. The maximum order of the
invariants used was six. The coarse-to-fine matching algorithm
was used with the coarse step 8 pixels and with a 16 × 16
search area on the fine level. For each template, we consider
any possible position, we did not apply any restricted search
area. This is equivalent to the classification of 30 query images
against a database of 3(256 − 32)2 = 150528 images.

As one can see from Table XII, the results are consis-
tent with those we achieved on simulated blurring. The CC
localization accuracy is the worst one because of the blur.
The Zhang’s distance provides slightly worse accuracy than
the invariants. The reason is the presence of noise. Even if the
noise is very mild, ZD is highly sensitive to it for the reasons
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Fig. 11. Four images of the sunspot blurred by atmospheric turbulence blur
of various extent. The images are ordered from the less to the most blurred
one. One template is depicted in the first image to illustrate its size.

which we already explained in Section IV.D. Both ID and LPQ
provides a perfect localization accuracy in this experiment.
This is admirable when considering that each template was
tested against 150,528 possible positions and that many of
them have a very similar visual appearance.

V. CONCLUSION

We proposed new invariants w.r.t. Gaussian blur, both in
frequency and image domains. We showed the performance
of the new method in object recognition and in matching
of blurred and noisy templates. Comparing to the Zhang’s
method [65], which has been the only Gaussian-blur invariant
metric so far, the proposed method is significantly faster and
more robust to additive noise while its recognition rate in
noise-free cases is fully comparable to the Zhang’s distance.
An additional benefit of the new method is that it can be easily
made invariant to translation, rotation, scale, and contrast of
the image, which is very important in many applications and
which is not the case of the Zhang’s method. Last but not
least, our method handles also an anisotropic Gaussian blur
and is even able to compare images of different sizes.

APPENDIX A

The proof of the equivalence of Eqs. (15) and (16) is due
to induction on p. For p = 0, 1, 2 the equivalence holds well.
Now we show the induction step. To avoid the necessity of
discrimination between even and odd p’s, we use a re-indexing
in the sums. Introducing K = [p/2] and, for simplicity,

m = m2/m0 we have for Eq. (15)

B(p) = m p −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
mk B(p − 2k)

= m p −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
mk

K−k∑
j=0

(2 j − 1)!!

×
(

p − 2k

2 j

)
(−m) j m p−2k−2 j

= m p −
K∑

k=1

K−k∑
j=0

(−1) j p!
2k+ j k! j !(p − 2k − 2 j)!m

k+ j

× m p−2k−2 j

= m p −
K∑

k=1

K∑
j=k

(−1) j−k p!
2 j k!( j − k)!(p − 2 j)!m

j

× m p−2 j

= m p −
K∑

j=1

j∑
k=1

(−1) j−k p!
2 j k!( j − k)!(p − 2 j)!m

j

× m p−2 j

= m p −
K∑

j=1

(−1) j p!
2 j (p − 2 j)!m

j m p−2 j

j∑
k=1

(−1)k

k!( j − k)! .

Since
j∑

k=1

(−1)k ·
(

j

k

)
= −1

for any j , we obtain

B(p) = m p +
K∑

j=1

(2 j − 1)!!
(

p

2 j

)
(−m) j m p−2 j

=
K∑

j=0

(2 j − 1)!!
(

p

2 j

)
(−m) j m p−2 j ,

which exactly matches Eq. (16).

APPENDIX B

Let us introduce a vector notation

|p| ≡
N∑

i=1

pi ,

(
p
k

)
≡

N∏
i=1

(
pi

ki

)
,

pk ≡
N∏

i=1

pki
i , p!! ≡

N∏
i=1

pi !!,

0 ≡ (0, 0, . . . , 0), 1 ≡ (1, 1, . . . , 1).

The moment of function f (x) is given as

mp =
∫

(x − c)p f (x)dx. (33)

The moment of a Gaussian kernel with a diagonal covariance
matric � = diag(σ 2

1 , σ 2
2 , . . . , σ 2

N ) is, in the case that all
elements of p are even, given as

mp = σ p(p − 1)!! (34)
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where σ ≡ (σ1, σ2, . . . , σN ). All other moments are zero.
Then we can define an N-dimensional projection operator

PG ( f )(x) = m0GS(x),

where

S = diag(m2/m0)

and

m2 ≡ (m20...0, m02...0, . . . , m00...2).

The N-D versions of the invariants (15) and (16) are

B(p) = mp −
p∑

k=0
0<|k|

(k − 1)!! ·
(

p
k

)
(m2/m0)

k B(p − k)

=
p∑

k=0

(k − 1)!! ·
(

p
k

)
(−1)|k|(m2/m0)

kmp−2k, (35)

where the summation goes over those multi-indices k all
elements of which are even.

We can do the same even if � is not diagonal but the
directions of its eigenvectors must be known. The formula for
the invariants would, however, look much more complicated.
If the eigenvectors of � are not known, we cannot properly
“rotate” the image, the projection operators cannot be defined
and the derivation of the invariants fails.
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