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Near Infrared (NIR) reflectography, coupled to visible (VIS) one, is a spectrophotometric imaging 
technique employed to probe both the inner and the outer layers of artworks. NIR reflectograms may 
partially contain information pertinent to the visible spectrum (due to the poor pigment transparency 
in NIR) and this decreases their comprehensibility. This work presents an innovative digital processing 
methodology for accentuating information contained in the infrared reflectograms. The proposed method 
consists of inducing minor changes in pixel intensity by suppressing VIS information content from 
NIR information content. The method creates such enhanced NIR reflectogram by extrapolating VIS 
reflectogram to a reflectogram recorded in NIR range and by subtracting it from the measured values 
in the near infrared spectral sub-band. As an extrapolator we suggest a feed forward artificial neural 
network (ANN). Significant results of improved visualization are exemplified on reflectograms acquired 
with a VIS-NIR 〈400, 2250〉 nm scanning device on real paintings such as Madonna dei Fusi attributed to 
Leonardo da Vinci. Parameters of the method, artificial neural network and separability of used pigments 
are discussed.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Infrared reflectography (IRR) is a technique established in the 
1960s [1] for investigation of historical paintings. It consists of de-
tecting the radiation scattered back from a painted surface in a 
spectral range starting at around 800 nm, immediately beyond the 
visible one. By means of such utterly non-invasive and non-contact 
examination technique, one can shed light onto the artist’s original 
idea by visualization of either a preliminary sketch made by the 
painter on a preparation ground, prior to painting, or the so-called 
pentimenti, changes to the original project during painting con-
struction made by the artist himself. The analyses of underdrawing 
and hidden layers (presence/absence and type) are essential for a 
historic/stylistic study and for attribution or fake identification of 
the artwork. The contrast between materials, which readily absorb 
light (or are transparent) within the IR range, and other materials 
that reflect it, allows the scientist to produce images that con-
tain information on both details hidden to the naked eye and the 
chemical composition of the compounds constituting the analyzed 
artworks. Generally, increasing transparency of pigment layers as 
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a function of increasing wavelength enables to visualize features 
of the surface and subsurface layers (retouches, mass losses, in-
tegrity of the paint layer, overpaintings) in order to monitor the 
level of degradation or previous interventions. IRR has continued 
to evolve thanks to the technological breakthrough/advance con-
cerning detector improvements (e.g., from Vidicon tubes in the 60s 
to Silicon CCD cameras in the 80s and the InGaAs, PtSi, PbS arrays 
in 90s) and focusing optics. For this reason, not all IR systems that 
are based on different technologies have equal performances: their 
resolution (spatial, tonal or spectral) and spectral sensitivity (up 
to 1 or 2 micron for Silicon CCD and Vidicon, respectively) may 
vary greatly. Data interpretation is then conditional upon the in-
strument used to capture the reflectographic data.

In the late 1990s the method expanded into the non-invasive 
multispectral imaging. This approach consists in collecting the 
backscattered signal in many adjacent spectral windows and of-
fers many advantages with respect to the traditional single spec-
trally wide system. Should the number of the spectral windows be 
greater than approximately hundred, the method can be defined as 
a hyperspectral imaging. In any case, the two-fold character of the 
obtained data, in spectral and spatial domain, allows for chemical 
and spatial characterization of the materials employed to create 
artworks such as the pigments or binders [2–18]. The scope of this 
work is:
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• To demonstrate a new method of digital image processing 
that improves the visibility of concealed features in NIR re-
flectograms and thus improves the comprehensibility of the 
collected multispectral data set.

• To suggest an algorithm following the proposed method.
• To quantitatively describe NIR and VIS separability limitations.

In published papers a similar task has already been addressed, 
for example by means of VIS-NIR multispectral analysis or Ra-
man and XRF imaging, solving the identification of painted layers 
[19,20] and used pigments [21], performing pigment segmentation 
[22,23] and classification [24–26], layer separation [27] by differ-
ence visualization [28] or by image enhancement methods [29], or 
composition change detection [19]. In general digital image pro-
cessing methods (DIP) can produce more comprehensible images 
providing the art investigator with better insight into a painting.

2. Samples and artworks

2.1. Samples

A set of 132 mock-ups, either on wooden or canvas support, 
was used for this research. In specific, series of mock-ups simulat-
ing paintings on wooden desk were prepared in 1994 in the Opi-
ficio delle Pietre Dure and therefore properly naturally aged. The 
pigments, purchased as powders from Zecchi (Italy), were applied 
with egg tempera (50% egg yolk, 25% egg white, 25% vinegar) and 
oil binding medium on wooden panels with a preparation layer 
composed of gypsum and animal glue (rabbit skin glue dissolved 
in water in 1 : 16 ratio). Furthermore, all the mock-ups included 
underdrawings [30].

Additional mock-up samples were chosen from the M3art 
database [31], prepared to imitate gothic to baroque Italian paint-
ings. The 4 × 4 cm squares of different colors were painted on 
white canvas using animal glue as a binding medium for the gothic 
to renaissance period. The composition of the color layer was con-
stant for all mock-ups: 2 g of pigment for 10 drops of 5% solution 
of animal glue, 5 drops of turpentine, 3 drops of egg yolk and 1
drop of ethanol. The white canvas was prepared by mixing 3 vol-
ume parts of Bologna chalk (calcium sulfate), 2 volume parts of 
7% aqueous solution of gelatin, 1 egg yolk and 1

4 volume parts of 
polymerized linseed oil. The right half of each square color sample 
contained underdrawings.

2.2. Artworks

A brief description of the three case studies, on which the de-
veloped algorithm was tested, is given.

The first one is a non-assigned gothic painting of Golgotha. It is 
a tempera painting on wood. Size of the processed area is about 
6 × 6 cm. The processed image was captured by a standard digi-
tal single lens reflective (DLSR) camera Canon D500 with removed 
infrared filter covering the CCD. Color depth was 8 bits. Range of 
NIR spectral window was 〈720, 1050〉 nm.

The second one is a ‘Still life’ from the Fine Arts Museum of As-
turias, in the north of Spain. It is an early 20th century anonymous 
oil on canvas painting (23.4 × 28.4 cm). It represents a series of 
pottery, in a very centered composition, made with three different 
ceramic techniques: the first with a green tone, the second very 
glossy and the third on the part in the left side, in satinated brown. 
The background is plain to highlight the figures acting as protago-
nists on the canvas. Analysis with IRR reflectography revealed the 
top layer to be painted with red ochre, green earth, and lead white 
pigments. The presence of underpainting and underdrawings was 
discerned as well.
The third example subjected to feed forward ANN testing is the 
‘Madonna dei Fusi’ (Madonna of the Yarnwinder). It is an oil on 
panel painting, realized between the years 1501–1507, attributed 
to Leonardo da Vinci, possibly with the contribution of one of his 
pupils. The painting is privately owned. It was restored at least 
twice, however previous attempts cannot be excluded. IRR revealed 
different pentimenti in the preparatory drawing.

Reflectographic images on the 20th and 16th century paint-
ings, as well as on mock-ups, were recorded by means of the 
VIS-NIR multispectral scanner with a single point measurement 
of reflectance with perfect registration of each pixel as a func-
tion of wavelength. The instrument was described in detail else-
where [5,32]. In brief, the detecting system consists of Si (for 
〈380, 1000〉 nm range) and InGaAs (for 〈1050, 2500〉 nm range) 
detectors equipped with interferential filters yielding 32 channels 
(16 channels in the VIS range 〈380, 780〉 nm and 16 channels in 
the NIR range 〈750, 2500〉 nm). The spectral resolution, determined 
by the filter FWHM, is 20–30 nm and 60–120 nm in the VIS and 
NIR range, respectively. As a result, 32 spatially registered images 
at different wavelengths 〈400, 2500〉 nm were collected completing 
a hypercube of spectral and spatial information.

3. Method

The fundamental idea justifying our method development is 
based on the fact that some information content of the NIR reflec-
togram cannot be estimated from the VIS reflectogram. We assume 
a match of such estimated NIR values and measured NIR values, in-
dicating the absence of any additional layer. Contrarily, when the 
estimation does not match the measured values, the resultant er-
ror is assigned to an extra layer affecting the response in the NIR.

3.1. Definitions

Due to the terminology interference between art and IT experts 
we start with definitions of terms used in this paper.

Definition 1. As a spectral window centered in wavelength λ with 
defined width w we understood a radiometric sub-band where 
density of radiation wavelengths in range 〈λ − w, λ + w〉 is signifi-
cantly higher than density of other wavelengths. Moreover, density 
function is increasing at 〈−∞, λ〉 and decreasing at 〈λ, +∞〉.

For our purpose it is not necessary to define “significantly high-
er” in practice this parameter is defined by screening equipment 
(filter transmittance, sensor sensitivity, light source radiation den-
sity function).

Definition 2. A layer is a continuous volume of paint material 
(color, varnish, support, etc.), homogeneous in the sense of its op-
tical properties.

Such layer does not necessarily correspond to the material used. 
We track the optical homogeneity which can vary in one material 
due to particle size, chemical modification on its volume border, 
cracks or other inhomogeneities.

In the following text we distinguish between VIS and NIR re-
flectogram information content and their difference. Corresponding 
terminology – visible cover of a painting and the information gain – 
was defined as follows:

Definition 3. A visible cover for a given pixel is set of layers which 
contribute to the reflectance measured in visible spectrum.
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Fig. 1. Spectral responses of several green pigments in oil and egg tempera binding media. In the visible spectral range reflectance curves are very similar, whereas they vary 
much more in the near infrared range.
Thus the visible cover can contain for a given pixel more than 
one layer due to semi-transparency of the upper layer(s). This defi-
nition is not very intuitive but well describes reality where (in VIS) 
transparent, semi-transparent and opaque layers can be combined.

Definition 4. The information gain for a certain spectral window and 
a given pixel is the change in captured radiation caused by layers
not included in the visible cover.

The visible cover affects the measured intensity the most be-
cause the level of absorption of upper layers weakens every effect 
of the layers below. In order to obtain information gain we need to 
suppress the visible cover effect in a spectral window reflectogram.

For similar tasks source separation methods are commonly used 
[29,33]. Often mentioned methods are independent component anal-
ysis from the group of blind source separation (BSS) [34–38], prin-
cipal component analysis or other orthogonalizations. Application of 
source separation algorithms for the described problem is also pos-
sible here but has two limitations:

1. Optical model of a behavior of multilayer system is not lin-
ear [31]. Mixing model must take this into account. Most of 
BSS methods expects linear combination represented by mix-
ing matrix, therefore results will not correspond with reality.

2. BSS methods expect that intensities measured in each subband 
are mixtures of sources. This presumption is too general. In 
our definition of the problem we refine this presumption into 
terms visible cover and information gain which we understood 
in BSS terminology as sources.

To conclude, a separation method should reflect the complexity 
of optical behavior of multilayer system that represent the typi-
cal painting structure [39]. For better comparison of our proposed 
method and BSS see section A.2.

The complexity of the addressed problem is demonstrated in 
Fig. 1, where the spectral reflectance factors measured in the range 
〈400, 2250〉 nm for several green colors is presented. The graph 
illustrates the typical behavior of paint materials: all measured 
spectral responses are very smooth. In spite of curves similarity 
in VIS range, in NIR range curves differ much more. Variances are:

max
λ∈〈400,700〉(σ (Iλ)) = 0.1312, (1)

max
λ∈〈700,2550〉(σ (Iλ)) = 0.2203, (2)

where λ is a spectral window central wavelength, Iλ denotes in-
tensity measured in appropriate spectral window and σ(Iλ) de-
notes standard deviation of intensities measured over all green 
colors (standard deviation per channel of constructed green phan-
tom shows Fig. 6). VIS and NIR reflectance factors of one paint 
material correlate but do not relate on each other (both depend 
on paint material composition). Therefore an intensity relation 
f : I(λ) → I(κ) from spectral window λ to spectral window κ can be 
ambiguous if used paint material is impossible to be determined 
from the acquired dataset.

3.2. Proposed approach

A relevant estimation of the visible cover contribution in NIR 
reflectogram based on the visible spectral response is possible if 
and only if the set of materials is separable. Therefore existence 
of a transfer function f : I(V I S) → I(N I R), where I denotes the 
reflectance intensity is assumed.1 To construct the best approx-
imation f T of this function f according to the collected pixels 
and their spectral responses, the pixels containing only the visi-
ble cover with no information gain were employed. Only this way 
extrapolated values containing minimum of information gain and 
maximum information pertinent to visible cover are obtained. Such 
set of pixels T belonging to K classes (according to layer content, 
i.e. optical properties) was used for the development of a f T ro-
bust to noise:

T = {C1 ∪ C2 ∪ · · · ∪ C K } , (3)

Ci = {
pi,1, · · · , pi,|Ci |

}
, (4)

I(pi,k, N I R) = I(ci, N I R) + n(ci, N I R,k), (5)

f : I
(

pi,k, V I S
) + n (ci, V I S,k)

→ I
(

pi,k, N I R
) + n (ci, N I R,k) , (6)

where Ci is a set of pixels representing a material i. pi,k represents 
a pixel of the class Ci . ci is a mean representation of the class 
Ci and n(Ci, N I R, k) is a deviation of a pixel pi,k from this mean. 
Finally I(pi,k, N I R) is a reflectance intensity measured for a pixel 
pi,k in N I R range and n is a noise of C .

Being f T ∼ f , by using f T spectral responses in the NIR spec-
tral windows for all the pixels in the image can be extrapolated, 
creating a hypothetical image in the NIR spectral window, Î N I R , 
containing only visible cover, which can be subtracted2 from the 
measured data:

f T (I V I S) = Î N I R , (7)

� =
∣∣∣IN I R − Î N I R

∣
∣∣ . (8)

With suitable scaling of information gain �, an enhancement of 
hidden details is obtained.

3.3. f T construction by feed forward ANN

For purpose of method demonstration, feed forward artificial 
neural network (ANN) for f T construction was selected. An ANN 

1 This assumption is not valid but will be discussed in section 4.3.
2 Subtraction is one possibility. We plan to focus on this problem in future.
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Fig. 2. Example of virtual phantom. A simulation of image in spectral window with central wavelength λ = 1750 nm. Left: a phantom with additive noise; middle: phantom 
without noise – mean values for each paint material or paint material with underdrawing (right border); right: generated noise (variance used according to variance of real 
samples). Each horizontal line represents one paint material. On the right border is a simulated underdrawing. Noise image shows that the variance of each paint material 
differs and also that variance of combination of paint material with underdrawing is higher than that of poor paint material.
provides sufficient performance and ability to show the limitations 
of the method. Moreover:

1. No classification is needed. We do not want to work directly 
with C .

2. Produced f T will be robust with respect to noise and to out-
liers, and has sufficient performance for separable sets of ma-
terial.

There are several alternatives for f T construction such as: As-
sociative Memories Networks with various architectures [40,41], 
Support Vector Machines [42], Regression tools [43]. More can be 
found in [39].

Proposed feed forward ANN is based on the model of associa-
tive memory returning ci(N I R) for ci(V I S). The used associative 
memory divides space into polygons, where each polygon repre-
sents one pattern. This memory type is especially suitable for a 
high number of outliers included in data set and an a priori un-
known number of classes K (number of used pigments and their 
mixtures).

A standard feed–forward ANN working with sum square error3

was used. The proposed ANN has an input layer with 16 neurons 
accepting the reflectance in 16 sub-bands of the visible part of the 
spectrum and output layer has also 16 neurons corresponding to 
16 sub-bands of near infrared spectrum. Various numbers of layers 
(from 1 up to 10) with various width (from 5 up to 1000 percep-
trons) were examined in the testing phase. Each layer has sigmoid 
transfer function except for the last one where each neuron pro-
duces only linear combination of its inputs. For training the scaled 
conjugate gradient algorithm included in Matlab™ train function 
trainscg was employed, where 70% of samples were used for train-
ing, 15% for testing and 15% for validation of learning progress. 
Learning process was stopped when number of iterations exceeds 
10000 or when 6 validations failed or the performance of ANN de-
creased4 under 10−8.

4. Calculations and method limitations

For testing the limits of proposed method several parameters 
were considered:

1. The size of scanned artwork

3 Improvements here are possible – sub-bands near to VIS spectral band should 
be estimated better than further sub-bands moreover another metric can be used 
or architecture can be changed to recurrent network.

4 Performance stop case never happened.
2. The number of used materials
3. VIS based separability of used materials
4. Pixel with non-zero Information gain coverage ratio

For each variable, several ANNs (20–25) were trained to result 
in the best performance; the training being performed on fully 
controlled virtual phantoms (Fig. 2). They were created in com-
pliance with measured paint materials mean reflectance μ and 
variance σ 2 that were acquired from samples simulating a real 
painting (mentioned in section 2.1), used in the previous research 
[30,31].

μ(λ,m) ∼ avg (I(λ,m)) (9)

σ(λ,m)2 ∼ var (I(λ,m)) . (10)

The virtual phantom was then created as follows:

1. A width S in pixels, a number of materials used N < ‖M‖ and 
an underdrawings coverage q ∈ 〈0; 1〉 were defined.

2. A height of the phantom was set as �S/N� · N , where each 
�S/N� line corresponds to one material

3. Finally, pixels were set as follows:
(a) From the spectral database specified number of materials 

were randomly selected and both versions, without and 
with underdrawings (mC , mD ∈ M) were used.

(b) Pixels in a row were set with the normal distribution cor-
responding to the material database records. Last �S · q�
columns have distribution ∼ N (μ(λ, mD), σ(λ, mD)2) and 
first S · (1 − q)� columns ∼ N (μ(λ, mC ), σ(λ, mC )2)

The created phantom a has matrix size (�S/N� ∗ N, S, 32). Con-
structed virtual phantoms, reflecting the parameters of multispec-
tral dataset of a real painting, had the following properties: N =
12, size 10k − 4M , q = 0.02.

4.1. Effect of phantom size

Tests of the algorithm on real paintings revealed that size of 
the region on which ANN is trained influence the output qual-
ity demanded. The quality of extrapolation decreases as a function 
of the increasing size and hidden information disappears from an 
output image. Thus the first experiment is testing the hypothe-
sis.

Hypothesis 1. The size of the processed area (used for the training 
and the estimation) affects the quality of an approximation.
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Fig. 3. Error in extrapolation as a function of the phantom size. Green upper mesh shows the error in the case of underdrawing present, blue bottom mesh is error between 
estimated and real reflectance values. Both graphs have similar shape (z-axis is logarithmic) with local minima for phantom size of 400 × 400 pixels due to the limitation of 
training samples to 50k. The error behavior along the layer width axis shows that ANN performance does not increase as a function of growing network. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Extrapolation error according to number of used pigments and ANN width. Mean error of the extrapolation “from VIS to NIR” per material and NIR sub-band. Error 
is computed according to the number of materials used (y axis) and ANN layer width (x axis). Graph shows that separability of materials used is limited – more materials 
cause cross-talks in the network and the overall performance decreases. More neurons in the layers cannot fix this problem.
We developed phantoms with size S = k · 100, where k ∈
1,2, · · · ,20, coverage q = 0.02 and number of used materials 
N = 12. Fig. 3 shows resulting graphs, which disapproves the Hy-
pothesis 1. The performance of ANN does not decrease as a func-
tion of the growing processed area, however the minimal network 
size (> 250 neurons for 12 materials) should be kept.

4.2. Effect of used materials

The second experiment (S = 500, q = 0.02 and N = 10k, where 
k ∈ 1, · · ·11)5 was performed to clarify whether or not the ANN 
efficiency decrease is caused by greater variability of reflectance 
intensity values (due to increasing number of materials in analysis) 
in the processed area.

5 Materials was randomly selected for each training.
Hypothesis 2. The number of materials present in the processed 
area affects the performance of ANN.

Results of this experiment (Fig. 4) show that performance of 
ANN with two inner layers (four in total) is negatively affected 
by increasing number of materials. Performance improvement by 
using ANN architecture with more layers was tested as well (see 
Fig. 5) (with S = 500, q = 0.02, N = 10k for k ∈ 1, · · ·12 and the 
number of layers goes from 1 to 10, each layer has 20 neurons). 
Increasing the layers amount shows a partial improvement of ANN 
performance, however is not applicable in practice. The curve rep-
resenting the performance dependence on ANN depth and the 
number of materials is hyperbolic like (see Fig. 5) thus the same 
performance for more materials requires extra hundreds of layers 
which are hardly trainable in real-time.

The presented graphs show that the paint material variability 
in the processed area is the most limiting factor for the method 
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Fig. 5. Error in extrapolation according to pigments used and ANN depth. Error in extrapolation VIS to NIR, mean per material and NIR sub-band, according to the number 
of materials and the number of ANN layers. Graph shows that separability of materials used can be improved by more layers in ANN on the other hand the number of layers 
and neurons grows much faster than the number of separable materials.

Fig. 6. Standard deviation of pixels on the whole phantom, all pigments together. Green dashed line correspond to inseparable green phantom and red solid line to rainbow 
phantom. Bands from 1 to 16 represent VIS part of spectra, 17–32 NIR part of spectra. Difference between phantoms is clearly visible. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
performance. If the difference of the estimated values and mea-
sured intensities is similar for pixels used for training as well as 
for analyzed pixels with pentimenti the increase of the painting 
comprehensibility is negligible. On the other hand, as long as the 
variability of area does not affect separability (Fig. 4, 5), useful re-
sults can be achieved with relatively small number of neurons in 
ANN. Training of such small ANN is fast and easily applicable in 
practice.

4.3. Separability

It was demonstrated that the increasing number of used ma-
terials negatively affects the performance of ANN in spite of the 
growing size of ANN. One possible explanation is the separability 
of materials in VIS. When two materials have the same spectral 
response in the VIS (same color), ANN is not able to distinguish 
between them and a prediction for NIR will be the same for both 
materials. During the learning phase, the estimation of ANN can ei-
ther converge to some weighted mean value or completely diverge. 
In both cases (convergence or divergence) the final estimation will 
not be correct. Following hypothesis should be verified:

Hypothesis 3. When materials in VIS behave similarly, they will be 
inseparable for ANN. The growing size of ANN does not increase 
the performance.
For testing Hypothesis 3, two phantoms were prepared, both 
with fixed number of colors N = 12. Green colors from Fig. 1 and 
rainbow colors with varying VIS spectral response were used for 
the first and second phantom, respectively. Standard deviation of 
green and rainbow phantom intensity values is depicted in equa-
tions (1), (2). (The variations of intensity values per spectral sub-
band for both phantoms are in Fig. 6.) The coverage was set to 
q = 0.02 and ANN layers width spans from [16 → 5 → 1 → 16]
neurons to [16 → 100 → 20 → 16] neurons in individual ANN lay-
ers. An approximation for the rainbow phantom improves with an 
increase of ANN size, whereas for the green one the best approxi-
mation is reached with [16 → 25 → 5 → 16] neurons (see Fig. 7).

It is apparent that a key parameter, determining the size of the 
area to be processed by our algorithm, is the separability of ma-
terials in VIS. (However, this parameter is difficult to define or to 
estimate.)

For real paintings, the problem of the material separability is 
of minor issue. In fact, limited number of separable materials, of 
different visible spectral response, is usually used. The separabil-
ity can decrease for the mixtures of materials that may have the 
spectral characteristics different from those of the pure colorants. 
A proposed workaround for such situation consists in processing 
areas not larger than 15 × 15 cm. It follows that small ANN, fast in 
the learning process, can provide satisfactory output. The optimal 
size of the processed area should depend then on the separability 
of used materials and on their mixtures.
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Fig. 7. ANN performance for 12 materials. Performance of ANN on rainbow phantom representing well separable set of materials (red dashed line) and green phantom 
representing inseparable set of green materials (green solid line) 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 8. Error in extrapolation when the coverage grows. Bottom mesh describes the mean error per coverage and ANN size for pixels without underdrawings – this should 
be minimized. Upper mesh describes mean error for pixels with pentimenti – this should be maximized. When the coverage grows, both errors are closer and as a result, 
pentimenti are less distinguishable.
4.4. Coverage effect

This work is focused on sparse areas like pentimenti, retouches, 
etc. which cover no more than 2% of a scanned area. Our last 
experiment describes what happen if all the pixels of the reflec-
togram (with non-trivial information gain included) are used for the 
training of ANN. By using of all the pixels necessary expert user in-
teraction for sample selection is eliminated and the processing will 
be fully automatic.

A set of phantoms (S = 500, N = 12, and q = 0.02k + 0.01, 
where k ∈ 0, · · · ,19) were created and all the pixels of the phan-
tom were used for training of ANN. The ability of the extrapolator 
to distinguish between pixels with and without information gain
is presented in Fig. 8. This ability corresponds to the distance be-
tween the node of the top and the bottom mesh in the figure. 
Indeed, the growing coverage q increases the necessity of pur-
posefully selected training samples. In Fig. 8 pixels with non-zero 
information gain are represented by upper the surface and pixels 
containing only visible cover by the bottom surface. When coverage 
grows ANN recognition decreases, as both surfaces are closer. The 
growing size of the neural network does not compensate the ANN 
recognition ability.
5. The results obtained on artworks

This section presents three illustrative examples of real paint-
ings on which our method was tested.

In the first experiment, a standard DLSR camera without in-
frared filter was used to capture RGB and 〈700, 1050〉 nm NIR 
images of a Gothic painting. The estimator was a feed forward 
ANN with 3 → 50 → 10 → 1 neurons. The processed image had 
800 × 800 pixels and all the pixels were used for training. The 
results (Fig. 9) show that the most emphasized areas (black and 
white parts) are caused by spatial registration misalignment of RGB 
and NIR images. On the other hand, required demanded informa-
tion gain enhancement was achieved: a contour on the top of the 
head (highlighted in the blue square) is not apparent either in VIS 
or in NIR image.

In the second experiment, a 32 band multispectral data set of a 
modern canvas painting measured by VIS-NIR scanner [5,32] was 
analyzed. The selected input had 16 bands in VIS 〈400, 700〉 nm
with a 25 nm step. Estimating ANN has four layers with 16 →
25 → 25 → 1 neurons, the chosen processed area had 312 × 394
pixels size that were also used for training. The extrapolated and 
enhanced output band was a NIR spectral window centered at 
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Fig. 9. A Gothic painting as captured by DLSR camera. Left: RGB image, middle: NIR image, right: output of our algorithm. The images were processed all at once (original 
size 800 × 800px). In the blue squares are details scaled for better visibility. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 10. Experiment with an early 20th century anonymous canvas painting. Left: RGB image, middle left: reflectogram measured at central wavelength λ = 1200 nm, 
middle right: output of ANN extrapolation, right: a difference between middle left and right images (information gain). Blue areas highlights uncovered areas with significant 
information gain. Note: Contrast of the second and the fourth images was expanded for better visibility and comparison. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 11. Experiment with the 16th century wooden desk painting attributed to Leonardo da Vinci. Left: RGB image, middle left: a reflectogram centered at wavelength 
λ = 1050 nm, middle right: output of ANN extrapolation, right: difference between the measured and the extrapolated outputs; the information gain. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
1200 nm as shown in Fig. 10. Information uncovered by the al-
gorithm is evidenced with blue color. The unveiled contours are 
invisible in the NIR reflectograms because concealed by an NIR low 
transparent visible cover.

In the third experiment, another multispectral dataset of a 
painting on wood with date inscripted on the 15th century was 
addressed. In agreement with the previous experiment, a se-
lected input for ANN consisted of 16 VIS bands and all 16 IR 
〈750, 2550〉 nm bands were extrapolated and information gain com-
puted and enhanced.

Estimating ANN had four layers with 16 → 25 → 25 → 16 neu-
rons. The processed area had a size of 300 × 300 pixels and all of 
them were involved in training. This experiment (Fig. 11) shows 
that the highest efficiency of extrapolation is achieved with the 
highest variability in reflectance intensity values in VIS. The struc-
tures masked by visible cover in right part of the image were suc-
cessfully uncovered.

Recommendations for the data processing based on the experi-
mental evidence can be summarized as follows:

• The visible cover of the painting should not be homogeneous. 
Higher variance of the visible cover increases the separability 
of the classes (see Fig. 11).

• Studied infrared reflectogram should contain at least some vis-
ible structures. The method cannot achieve results behind the 
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scope of reality, it can only accentuate present information and 
improves its comprehension.

• Analyzed images must be spatially registered. On the misalign-
ment, black and white lines appear on edges in the painting 
(see Fig. 9).

6. Discussion

In general, the proposed algorithm is well suited for the en-
hancement of individual detail of painting (from 100k pixels up 
to 1 Mpx). However, it is not meant for processing full size im-
ages. Using smaller size of processed area leads to emphasizing 
the noise, due to the worse ANN generalization; larger patches ap-
proach is not time-effective. Therefore, the selected size of the area 
to be processed (as well as ANN number of layers and their width) 
defined by user should reflect the material separability. For sim-
ilar colors in VIS smaller areas should be processed whereas for 
the well separable colors larger areas can be used (code for testing 
[44]).

Possible improvement can be achieved by other choice than 
subtraction for the construction of the visible cover estimation 
(equation (8)). The more complex model should be based on the 
optical behavior of individual layers, better reflecting properties of 
the used materials. This approach will be subject of our future re-
search.

There exist possible generalization of the method for other 
spectral ranges combining visible cover and non-trivial information 
gain acquired in modalities like X-ray, ultra-violet fluorescence or 
terahertz imaging. The method workflow remains the same and 
quality of results will be related to the correlation of target modal-
ity and VIS modality. Higher correlation means worse visibility of 
hidden features on a modal image but with good ANN based esti-
mation more distinct visualization will be achieved. ANN estima-
tion performance depends mostly on coverage factor q in training 
set of pixels.

7. Conclusion

We have presented a new algorithm for information enhance-
ment on multispectral data sets. Spectral imaging technology has 
recently gained importance in the analysis of ancient paintings. In 
particular, multispectral imaging in the near-infrared (NIR) and vis-
ible (VIS) region has proved useful for studying underlying features 
and for pigment identification, respectively. Because of the trans-
parency of most pigments to IR radiation, NIR reflectograms can 
shed light onto the artist’s original idea by the visualization of ei-
ther the underdrawing or the so-called pentimenti. Depending on 
pigment transparency in the NIR spectral range, the acquired in-
frared images may partially contain information pertinent to the 
visible spectrum, decreasing, thus, their readability.

The new methodology consisted in suppressing VIS from NIR 
information content by extrapolating the reflectograms in the VIS 
to those recorded in NIR range and subtracting the extrapolated 
image from the measured IR one. As a result, separated informa-
tion of the NIR is achieved.

The feed forward artificial neural network (ANN) algorithm for 
extrapolation was successfully tested on real paintings and a few 
examples were reported. The results of fully controlled experi-
ments with virtual phantoms were also described to demonstrate 
the methodology limitations. In the ANN design, the effect of the 
number and width of the network layers was analyzed, as well as 
its effectiveness with respect to the number of neurons. The op-
timum was reached for two inner layers, which outperformed the 
three layers setting.

The implemented method in Matlab for processing of registered 
multimodal data sets is open access [44].
In the future we plan to focus on more profound analysis of the 
ANN setting and on a more accurate model of the optical behavior 
of multilayer systems.
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Appendix A

A.1. Noise enhancement

One not yet mentioned problem of the proposed method is 
noise. The noise in the multispectral dataset can be independent 
for each spectral window (according to scanning technique). In 
such case the estimator f could not suppress it. When a feed for-
ward ANN is used the noise is propagated through the network:

f T (n(xi)) = n̂(yi). (11)

This give us in output image:

� = (
n(yi) − n̂(yi)

)
. (12)

If the noise contains regular patterns (is dependent on a signal or 
correlates through different spectral windows), these patterns will 
be learned and suppressed. But in most cases the noise will be 
independent and e.g. randomly distributed according to a normal 
distribution:

n(y) ∼ N(0,σ 2
ny

), n̂(y) ∼ N(0,σ 2
nx

). (13)

In such case we obtain the noise level in the output image equal 
to

n(yi) − n̂(y) ∼ N(0,σ 2
ny

+ σ 2
nx

). (14)

It means that in the output image the noise will be enhanced too. 
The variance of the noise in the enhanced image will be the sum of 
variances of input data sets. The choice of suitable noise reduction 
algorithm is out of the scope of our article. The development of 
such algorithm should start with the noise distribution measure-
ment. There are big problems in collection of measured samples 
and their connection with real paintings (aging effect, pigment 
mixtures, etc.). Moreover the normal distribution assumption can 
be violated.

A.2. Blind source separation

Common practice for information enhancement from IRR is us-
age of blind source separation (BSS) algorithms: PCA, ICA, orthog-
onalization [29,33], morphological component analysis (MCA) [38], 
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Fig. 12. Visual comparison of various source separation algorithms. First row presents reduced dataset to red, green and blue channel and spectral subband λ = 1050 nm. 
Second row shows PCA decomposition according to eigenvectors (Matlab function pca with Algorithm set to eig). Third row is orthogonalization by Matlab function qr and for 
the fourth row EFICA algorithm [45] was used. In the last row the same dataset was processed by our proposed method – left image shows extrapolation of RGB channels 
into NIR spectral subband, right image shows information gain i.e. difference between measured intensities of pixels and extrapolated values.
non-negative matrix factorization (NMF). Therefore we feel a ne-
cessity to put our method into this existing context. Following 
paragraphs describe how the proposed method and BSS relate and 
their pros and cons.

In the case of estimation of information gain in BSS terminol-
ogy we have one known source signal I(V I S) and one mixture 
I(N I R) = Î(N I R) + �. Therefore there is no source separation just 
fitting of Î(N I R), see equation (7). If we would like to use BSS 
algorithm for information enhancement we can state the prob-
lem as having two mixed signals I(V I S) and I(N I R) and set of 
unknown sources (typically number of sources is the same as 
input mixtures). Separation algorithm then creates, according to 
contrast function (for the definition see [37]), independent compo-
nents.
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Proposed algorithm has therefore these advantages:

• Interpretability. The resulting output image contains just the 
information gain of the specified modality and a noise. This 
minimizes possible misinterpretation. In the case of BSS meth-
ods the content range of a particular output image is set based 
on the statistical characteristic of the input data, not taking 
into account their physical interpretability.

• Enhancement. The information gain from selected modality is 
enhanced.

• Stability. Our proposed method converges to visually similar 
results through multiple runs and independently on the in-
put content variation. The BSS methods generate a lot of noisy 
images (which are useless and can be dropped), often not or-
dered (for some methods orthogonal vectors can be produced 
in different order) and with badly set sign of the result (which 
is caused by the undefined orthogonal vector orientation). The 
stability of the BSS depends on selected contrast function [37].

There are the disadvantages of our proposed method:

• Noise enhancement. In BSS methods, noise and information 
are concentrated in different channels, whereas our proposed 
method do not remove noise into any specific channel, more-
over its level can increase (see section A.1).

From these qualities we derive following guidelines for choos-
ing the correct tool:

• BSS methods can be useful when:
– The covered layer is partially visible in VIS. In such case 

measured I(V I S) is also a mixture of unknown sources.
– Input signals are relatively noisy. Noise can be separated as 

a source.
• The computation of information gain by our proposed method 

is useful when:
– Studied layer content is invisible in VIS reflectogram. VIS can 

be classified as a source.
– Misinterpretation is critical. BSS methods generates sources 

blindly and information from various modalities can be 
mixed, e.g. an edge split into VIS and NIR can be joined in 
one of BSS output source but not in information gain image.

– Input signals have low level of noise.

Finally Fig. 12 contains an example of output of orthogonaliza-
tion, PCA and ICA for comparison (as in [29] on reduced dataset 
from Fig. 11). We present, according to our decision, the best ex-
ample where these methods generates comparable results as our 
proposed method.
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