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Abstract: The paper deals with a problem of modeling discrete variables depend-
ing on continuous variables. This problem is known as the logistic regression esti-
mated by numerical methods. The paper approaches the problem via the recursive
Bayesian estimation of mixture models with the purpose of exploring a possibility
of constructing the continuous data dependent switching model that should be es-
timated on-line. Here the model of the discrete variable dependent on continuous
data is represented as the model of the mixture pointer dependent on data from
mixture components via their parameters, which switch according to the activity
of the components. On-line estimation of the data dependent pointer model has a
great potential for tasks of clustering and classification. The specific subproblems
include (i) the model parameter estimation both of the pointer and of the compo-
nents obtained during the learning phase, and (ii) prediction of the pointer value
during the testing phase. These two phases can be joined together in the case
of necessity. A real-data experimental comparison with theoretical counterparts
shows a competitiveness of the approach in the discussed field.
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1. Introduction

The presented paper deals with a problem of modeling discrete variables depending
on continuous variables. This problem is generally known as the logistic regression
[16]. Classification based on the logistic regression is widely applied in various
fields. Only to enumerate, in medicine applications data observed on a patient
(e.g., weight, blood pressure, cholesterol level, sex, age, results of various blood
tests, etc.) can be analyzed by the logistic regression to obtain a probability of
the certain disease and subsequently to classify the patient’s state [2, 8, 9, 20]. In
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marketing, the logistic regression is applied to predict a customer acceptance before
introducing a new product [37], to classify the customer satisfaction by services [24],
etc. In social sciences it is used for prediction of the election results, see e.g., [32].
These are only several examples. The application of the logistic regression is not
limited by the mentioned areas.

Parameters of the logistic regression are usually estimated by the maximum
likelihood estimation [27]. The closed-form solution for maximizing the likelihood
function in the case of the logistic regression parameter estimation cannot be found.
This causes necessity to use numerical optimization methods, see e.g., [21, 28, 39].
It leads to a series of limitations concerned with the convergence of the algorithms,
which means that if the numerical optimizer cannot find the appropriate solution,
the convergence fails. Various reasons can lead to nonconvergence, for instance,
multicollinearity [27], sparseness [27], complete and quasi-complete separation [1],
etc. The computation time of numerical methods depends on the speed of conver-
gence of the algorithm and on the initial conditions, which means it is not fixed.
Therefore, it is not guaranteed in advance whether the computations will be ready
in time or not. In practical applications, this question may be crucial, especially
in the case of working with a very short sampling period.

This paper approaches the problem from a different point of view. The aim
of the presented research is to find a possibility to model on-line a switching of
working modes of a multimodal stochastic system in dependence on measured con-
tinuous data. The system is described by a mixture model, which is estimated
under Bayesian framework. Mixture based approaches are intensively developed
and applied in various fields [33,41–44,46]. In the context of the paper, the mixture
model consists of components describing the working modes of the observed system
and the discrete random variable called the pointer, which indicates the currently
active component [18]. Thus the model of switching expresses the dependence of
the discrete pointer on measurements produced by the components. In the case
of continuous measurements the switching model (either constant or the Markov
model) takes a form of the logistic regression. As it should be estimated on-line,
this is a motivation to search for an alternative solution avoiding the numerical
off-line computations and being oriented at analytical solutions.

Bayesian inference offers a series of Markov Chain Monte Carlo (MCMC) meth-
ods based on various approximation schemes using e.g., the Student’s t-distribution
[4, 13, 22]. Other possibilities are given by using the Laplace approximation [25],
the probit regression instead of the logistic [22,23], a latent variable model [10,35],
the Metropolis–Hastings algorithm [6], etc.

However, the aim of the paper is not to approximate the posterior distribution
by sampling methods. The purpose is to explore a possibility of construction of
the continuous data dependent switching model that should be recursively (on-line)
estimated. This might be a significant contribution for situations, when the model
of the discrete variable should be periodically learned from the newly arriving data.
Moreover, the considered on-line modeling is also expected to be essential in the
case of missing data, i.e., when the discrete variable is measured with some longer
period, but should be estimated between them.

The area of the mixture estimation (not concerned with the logistic regression)
provides a great amount of published solutions. Papers dealing with this issue are
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mostly based on (i) the iterative expectation-maximization (EM) algorithm [15],
see, e.g., [3, 7, 31, 40, 45]; (ii) the Variational Bayes (VB) approach [14, 26, 36]; (iii)
MCMC techniques, e.g., [5, 11].

Unlike them, recursive algorithms of Bayesian identification of linear regression
models [34], categorical models [17] and mixtures [18] are directed at using ana-
lytical solutions as far as possible and on-line computing, i.e., avoiding numerical
computations. They create a basis for the approach presented in this paper.

Here the model of the discrete variable dependent on continuous data is rep-
resented as the model of the mixture pointer dependent on data from mixture
components via their parameters, which switch according to the activity of the
components. To focus on this the most problematic part of the on-line model-
ing, normal components are demonstrated. Extension up to mixed continuous and
discrete data leads in this case to addition of a categorical component with the
reproducible Dirichlet statistics, see [17], and will not cause a computational com-
plexity. Moreover, different components (e.g., state-space, exponential) can be also
covered, which is planned to be published elsewhere (this will enable fitting differ-
ent types of data too). On-line estimation of the data dependent pointer model has
a great potential for tasks of clustering and classification. This paper indicates a
chance of modeling the continuous data dependent pointer. The main contribution
of the paper is an alternative to the logistic regression task based on the recursive
mixture estimation.

The approach is presented so that to have the separate learning and the testing
phases. Within the considered context, the specific subproblems include (i) the
model parameter estimation both of the pointer and of the components obtained
during the learning phase (based on [17, 18, 34]), and (ii) prediction of the pointer
value during the testing phase. These two phases can be joined together in the case
of necessity. A real-data experimental comparison with theoretical counterparts
shows a competitiveness of the approach in the discussed field.

The remainder of the paper is organized in the following way. Section 2 formu-
lates the problem. Section 3 introduces the used models and provides a theoretical
background necessary for understanding the text. Section 4 is the main emphasis of
the paper. It presents two alternatives to the multinomial logistic regression based
on the recursive mixture estimation. One of them includes the off-line learning
phase and the on-line testing phase, which enable to use the accumulated statistics
for classifying the data. The second one joins these phases and has them both
on-line with updating the statistics based on the newly arriving data. The section
explains the approach in details and provides two structural algorithms. Section 5
demonstrates a simple example with simulated data and results of experiments
with real data measured on a driven vehicle, where the gear selection is modeled as
the discrete variable depending on several driving-related variables. Conclusions
and plans of a future work can be found in Section 6.

2. Problem formulation

Let us consider a system which generates values of the discrete random variable
yt ∈ {1, 2, . . . ,K} with K possible values at discrete time instants t = 1, 2, . . . , T .
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The system also produces the data vector xt of the dimension N , whose entries are
continuous random variables observed at time t = 1, 2, . . ..

The problem is formulated as follows:

• based on the available data up to the time T (i.e., when values of yt are
measured) describe the relationships between the dependent variable yt and
the explanatory variable xt by a suitable model and estimate its parameters
(this is called the learning phase of the algorithm), and

• estimate the value of yt for the newly measured explanatory variable xt for
the time t > T , i.e., classify the data xt, when values of yt are no longer
measured (the testing phase of the algorithm).

In this paper, a mixture of static models – components is chosen to describe the
relationships between yt and xt. The discrete variable yt plays a role of the pointer,
which at time t indicates the active component. The data vector xt is modeled by
each of the involved components. Thus, the logistic regression problem is going to
be solved using the recursive estimation of a mixture model.

3. Preliminaries

3.1 Models

In this paper, a mixture model describing the considered system consists of K
static components and a model of switching their activities. The components have
the form of the following probability density function (pdf)

f (xt|Θi) , (1)

where i ∈ {1, 2, . . . ,K}, and Θi are parameters of the i-th component. Here each
i-th component is represented by the static regression model with the normal noise,
i.e.,

Nxt(i) (θi,Ri) , (2)

where Nxt(i) denotes the normal distribution of the i-th component generating the
data xt, and θi is the vector of regression coefficients (the expectation corresponding
to the center of the i-th component). The normally distributed noise of the i-th
component has the zero mean vector and the covariance matrix Ri. In this way,
each component is a Gaussian “hill” positioned in its center (the expectation) and
formed by its covariance matrix, all in the multivariate data space of all realizations
of the modeled variable. Parameters θi and Ri compose Θi, and Θ ≡ {Θi}Ki=1 is a
collection of all parameters of all components.

Switching the active components generating the data xt is described by the
following pdf (both the probability density function and the probability function
are replaced by the abbreviation pdf in the text):

f (yt = i|α) (3)

given by the static transition table
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yt yt = 1 yt = 2 · · · yt = K
f (yt = i|α) α1 α2 · · · αK

where a value of the discrete variable yt points to the component, which generates
the data xt at time t, and α is the parameter of the pointer model. It is the vector
of the dimension K, which contains stationary probabilities αi of the activity of
individual components.

Within the context of the above mixture model, the relationships between the
discrete dependent variable yt and the explanatory variable xt are assumed as
follows. For each possible value of yt there exist different (or partially overlapped)
data areas in the whole data space of measurements xt. The data areas are modeled
by the mixture components (1) changing their activity according to (3), which both
have unknown parameters Θ and α respectively. This covers the first part of the
problem formulated in Section 2.

As regards its second part, it requires to estimate the value of yt using the data
item xt measured at time t and produced from a certain (but unknown) component.
Thus, for each data item at time t it is necessary to determine a probability that
it belongs to the i-th component. This gives the classification of the data.

Thus, it can be seen that the formulated subproblems are specified to the es-
timation of the parameters Θ and α and the pointer yt in the testing phase. For
better understanding the subsequent text, existing Bayesian recursive algorithms
of estimating the parameters of individual models (1), or precisely (2), and (3) are
recalled below. Both of them are based on the Bayes rule, see e.g., [12, 19].

3.2 Recursive estimation of individual models

In the case of the recursive estimation of the individual model (1) the posterior
pdf of the parameter Θ (omitting here the subscript i for the sake of simplicity) is
evolved in time in the following way:

f(Θ|x(t)) ∝ f (xt|Θ) f(Θ|x(t− 1)), (4)

where x(t) denotes a collection of all available data xt up to the time instant t, i.e.,
x(t) = {x0,x1, . . . ,xt}, including the prior data x0, and where f(Θ|x(t−1)) denotes
the prior pdf. The estimation approach recalled below can be found in [18, 34].
According to them, the model (2) is rewritten in the form

f (xt|Θ) = (2π)−N/2|R|−1/2 exp

{
−1

2
tr

(
R−1

[
−1
θ

]′
Dt

[
−1
θ

])}
, (5)

where tr is a trace of the matrix and

Dt =

[
xt
1

] [
xt
1

]′
(6)

is the data matrix at time t. The posterior pdf f(Θ|x(t)) in (4) has the conju-
gate prior Gauss-inverse-Wishart pdf with two recomputable statistics, which are
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respectively the information matrix Vt−1 of the dimension ((N +1)× (N +1)) and
the counter of the used data items κt−1, i.e.,

f(Θ|x(t− 1)) ∝ |R|−0.5κt−1 exp

{
−1

2
tr

(
R−1

[
−1
θ

]′
Vt−1

[
−1
θ

])}
. (7)

After substituting (5) and (7) into (4), the statistics are recursively recomputed as
follows:

the information matrix Vt = Vt−1 +

[
xt
1

] [
xt
1

]′
, (8)

counter κt = κt−1 + 1, (9)

where the initial statistics V0 and κ0 start the recursion. They can be either (i)
chosen with the zero or small values or (ii) computed from the available prior data
or (iii) chosen by experts.

To obtain the point estimates of the parameters θ and R (not forgetting that
Θ ≡ {θ,R}), the updated information matrix is partitioned

Vt =

[
Vxx V

′

x

Vx V1

]
, (10)

where Vxx is square matrix of dimension (N×N), V ′x is the N -dimensional column
vector and V1 is scalar. The point estimates at time t are computed as follows:

θ̂t = V −1
1 Vx, R̂t =

Vxx − V
′

xV
−1
1 Vx

κt
. (11)

Further details can be found in [18,34].
The approach for the estimation of the individual model (3) recalled below is

available in [17], which proposes to use the conjugate prior Dirichlet pdf with the
recursively updated statistics. The posterior pdf of the parameter α is evolved
similarly to (4) with the corresponding data in the condition, i.e.,

f(α|y(t)) ∝ f (yt = i|α) f(α|y(t− 1)). (12)

The recomputable statistics denoted by γt has a dimension of the transition table
(3). It means that here it is a vector of the dimension K. Using a similar scheme,
i.e., substituting the model (3) and the prior Dirichlet pdf into (12), the update of
the statistics is done for the current value yt = i with i ∈ {1, 2, . . . ,K} as follows:

γi;t = γi;t−1 + 1, (13)

where γi;t are the entries of the statistics γt, and the initial statistics γ0 (that can
be either chosen as zero or computed from prior data or set by experts) starts the
recursion. In practice it means that the statistics counts occurrences of values of
yt (notice that yt should be measured for such an update). The point estimate of
the parameter α is obtained by normalizing the statistics γt

α̂i;t =
γi;t∑K
k=1 γk;t

, i ∈ {1, 2, . . . ,K} . (14)
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4. Multinomial mixture-based logistic regression

Formulating the problem of the multinomial logistic regression as the estimation
of the pointer of the mixture model, it is necessary to take into account that in
reality the straightforward update (13) is often not possible because of unavailable
measurements of yt. Two different situations can occur in the considered context.
The first one is when values of yt were measured during a limited period of time or
are available in the form of prior (or simulated) data, however they are no longer
observed. In the case of the informative data, they can be enough for estimating
the pointer model (3) and subsequently for classifying the data xt. The solution
to this situation can be strictly divided into the learning and the testing phases as
stated in Section 2.

The second situation occurs when the pointer model should be periodically
learned from the newly arriving data also during the testing phase. This can
happen, for instance, when the values of yt are measured with a longer period than
xt, or they are suddenly missing due to measuring failures. In this case the learning
and the testing phases are joined together. Solutions to both the situations via the
mixture estimation based on [18,38] are presented below.

4.1 On-line/Off-line mixture-based logistic regression

The combination of the on-line and off-line logistic regression via the mixture es-
timation takes the following form. The idea is that firstly the models (1) and (3)
are learned using the measured values of yt and xt. Then the learned models are
used for predicting the value of yt and classifying the new data xt.

4.1.1 The learning phase

The derivation is based on construction of the joint pdf of all variables to be
estimated and application of the Bayes rule and the chain rule [12,19,34]. The idea
of estimating the mixture with the known active component [17,18,38] is used.

During the learning phase until the time t = T the parameters Θ and α have
to be estimated based on the available data collection up to the time t = T . The
data collection is represented by {y(t), x(t)} denoted by ∆(t), see notations in
Section 3.2. The joint pdf is constructed as follows:

f(Θ, α|∆(t)) ∝ f(xt, yt = i,Θ, α|∆(t− 1))︸ ︷︷ ︸
joint pdf via Bayes rule

= f(xt|yt = i,Θ, α,∆ (t−1)) f(yt = i|Θ, α,∆ (t−1)) f(Θ|α,∆ (t−1)) f(α|∆ (t−1))︸ ︷︷ ︸
joint pdf via the chain rule

= f(xt|Θi) f(yt = i|α) f (Θ|∆ (t− 1)) f (α|∆ (t− 1))︸ ︷︷ ︸
by the independence assumptions

, i ∈ {1, 2, . . . ,K} , (15)

where the following independence assumptions hold ∀i ∈ {1, 2, . . . ,K}:

f (xt|yt = i,Θ, α,∆ (t− 1)) = f (xt|yt = i,Θ) , (16)
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which is the model (1) for the active i-th component, i.e., f (xt|Θi),

f (yt = i|Θ, α,∆ (t− 1)) = f (yt = i|α) (17)

is the model (3) assumed not to be dependent on the old data up to the time t− 1,

f (Θ|α,∆ (t− 1)) = f (Θ|∆ (t− 1)) (18)

is the prior pdf for estimating the parameter Θ, and f (α|∆ (t− 1)) is the prior
pdf for estimating the parameter α, which means that parameters Θ and α are
assumed to be mutually independent.

After grouping the pdfs in (15) between those connected to the components and
the pointer, the righthand side of (15) takes the form

f (xt|Θi) f(Θ|∆(t− 1)︸ ︷︷ ︸
update via (4) for the active i-th component

× f (yt = i|α) f(α|∆(t− 1)),︸ ︷︷ ︸
update via (12) for the current yt

(19)
i ∈ {1, 2, . . . ,K}, which allows updating the statistics for the parameter estimation
directly due to the measured values of yt. The expression f (xt|Θi) f(Θ|∆(t−1) in
(19) represents (4) applied for the value yt = i, available at the time instant t. Thus
the statistics update (8)–(9) for the estimation of Θ is performed ∀i ∈ {1, 2, . . . ,K}
according to [18,38] as follows:

Vi;t = Vi;t−1 + δ(i, yt)

[
xt
1

] [
xt
1

]′
, (20)

κi;t = κi;t−1 + δ(i, yt), (21)

where Vi;t and κi;t denotes the statistics of the i-th component (see Section 3.2),
and δ is the Kronecker delta function such that δ (i, yt) = 1 if the value i of the
variable yt has been measured at the time instant t, otherwise δ (i, yt) = 0.

The expression f (yt = i|α) f(α|∆(t − 1)) in (19) is the direct application of
(12), since values of yt are available. Thus the update of statistics for estimating
the parameter α is done directly using (13) ∀i ∈ {1, 2, . . . ,K} according to [17]:

γi;t = γi;t−1 + δ(i, yt). (22)

Since the data ∆(t) are available until t = T , the statistics stop to be actualized
at the time instant t = T , which means the end of the learning phase. The point
estimates of the parameter Θ are computed for each i ∈ {1, 2, . . . ,K} according to

(10)–(11) resulting in {θ̂i;t, R̂i;t} ≡ Θ̂i;t. The point estimate of the parameter α is
obtained using (14). Generally all point estimates can be computed at each time
instant, but it is enough to obtain them at t = T with the completely updated
statistics. In this way in the end of the learning phase the learned models (1) and
(3) are obtained.

4.1.2 The testing phase

During the testing phase for the time instants t > T the pointer yt is no longer
measured. It means that the data collection ∆(t) includes now {xt,∆(T )}. Thus,
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the values of yt should be recursively estimated for each t > T and then used
for classifying the new data xt with the help of the learned models (1) and (3).
Similarly to the learning phase, the derivation is based on the construction of the
joint pdf of variables to be estimated and the Bayes and the chain rule using the
mixture estimation approach proposed in [18].

The joint pdf now includes also the variable yt, i.e., ∀i ∈ {1, 2, . . . ,K}

f(Θ, yt = i, α|xt,∆(T )) ∝ f(xt,Θ, yt = i, α|∆(T ))︸ ︷︷ ︸
joint pdf via Bayes rule

= f (xt|Θ, yt = i) f(Θ|∆(T )× f (yt = i|α) f(α|∆(T ))︸ ︷︷ ︸
via the chain rule and independence assumptions

, (23)

where the last result is obtained similarly to (15) using the chain rule and the inde-
pendence assumptions (16)–(18), taking into account that the model f (xt|Θ, yt = i)
instead of (1) should be used now because of the absence of the value of yt.

To obtain the pdf for yt, the result (23) should be marginalized over parameters
Θ and α

f(yt = i|xt,∆(T ))∝
∫

Θ∗

∫
α∗
f (xt|Θ, yt = i) f(Θ|∆(T )× f (yt = i|α) f(α|∆(T ))︸ ︷︷ ︸

(23)

dΘdα

=

∫
Θ∗
f (xt|Θ, yt = i) f(Θ|∆(T ) dΘ×

∫
α∗
f (yt = i|α) f(α|∆(T )) dα. (24)

The first integral in (24) is approximated using the Dirac delta function δ
(

Θ, Θ̂T

)
as the prior pdf of the parameter Θ, i.e., ∀i ∈ {1, 2, . . . ,K}∫

Θ∗
f (xt|Θ, yt = i) f(Θ|∆(T ) dΘ

.
= f

(
xt|Θ̂i;T

)
, (25)

which means that the point estimates Θ̂i;T obtained in the end of the learning
phase are substituted into the corresponding i-th components. This approximation
simplifies computations and offers a very good interpretation to the expression. The
result of (25) provides the proximity of the current data xt to each component. It
is denoted by Li;xt

and here it has the form ∀i ∈ {1, 2, . . . ,K}

Li;xt
= (2π)−N/2|R̂i;T |−1/2 exp

{
−1

2
[xt − θ̂i;T ]′R̂−1

i;T [xt − θ̂i;T ]

}
. (26)

The second integral in (24) provides the point estimate of the parameter α using
its statistics γT from the time instant t = T according to (14).

After computing these two integrals the required pdf (24) takes the following
form, using [18], ∀i ∈ {1, 2, . . . ,K}:

f(yt = i|xt,∆(T )) ∝ Li;xt
α̂i;T ,︸ ︷︷ ︸

denoted by w̃i;t

(27)
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which is normalized

wi;t =
w̃i;t∑K
k=1 w̃k;t

, (28)

where the values wi;t are the probabilities of activity of the i-th component at time t.
The obtained probabilities create the weighting vector wt = [w1;t,w2;t, . . . ,wK;t]

′
.

During the testing phase for the time t > T this weighting vector is enough for
the task of classification of the data xt. They are classified as belonging to the
component, corresponding to the biggest entry of the vector wt, which is the point
estimate of the pointer yt at time t.

Both the phases are summarized in the form of the following structural algo-
rithm.

Algorithm 1

{Initialization, i.e., t = 1}
Specify K components (2).
for all i ∈ {1, 2, . . . ,K} do

Set the initial values of the statistics Vi;t, κi;t for each component (2) and γi;t
for the model (3). {See explanations in Section 3.2.}

end for
{The off-line learning phase}
for t = 2, . . . , T do

Measure the data xt and yt.
Update the active component, i.e., the statistics Vi;t, κi;t and γi;t according
to (20), (21) and (22) respectively.
if t = T then

for all i ∈ {1, 2, . . . ,K} do
Compute the point estimates Θ̂i;t =

{
θ̂i;t, R̂i;t

}
and α̂i;t according to (11)

and (14).
end for

end if
end for
{The on-line testing phase}
for t = T + 1, T + 2, . . . do

Measure the new data xt.
for all i ∈ {1, 2, . . . ,K} do

Compute proximities of the data xt to each component via (26).
Compute probabilities wi;t for the weighting vector wt according to (27)
and (28).

end for
Classify the data xt as belonging to the component, corresponding to the
biggest entry of the vector wt. {This biggest entry is the point estimate of the pointer

yt at time t. }
end for
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4.2 On-line multinomial mixture-based logistic regression

The previous section provides the solution to the problem formulated in Section 2.
This section adjusts it to the situation when it is not possible to accumulate the
statistics from measured data yt during the separate learning phase (for instance,
because of measuring failures, a longer period of measuring xt and yt, etc.). In
this case it is advantageous to join the learning and the testing phases, estimate
parameters on-line only from the data xt and use the predicted value of yt for
classification. However, if the observed values of yt are available at the time instant
t, they are used for learning instead its estimate. It leads to a combination of the
previous algorithm with the mixture estimation from [18].

The derivations are identical to (23)–(28) used for the testing phase of the
previous section except for the restriction by the time T . The data collection ∆(t)
includes x(t) always and yt periodically with the time t = 1, 2, . . .. It is not known
before whether the values of yt are measured or not, therefore yt is among the
variables to be estimated. Here the resulted pointer pdf has the form

f(yt = i|xt,∆(t)) ∝
∫

Θ∗
f (xt|Θ, yt = i) f(Θ|∆(t) dΘ×

∫
α∗
f (yt = i|α) f(α|∆(t)) dα

∝ Li;xt
α̂i;t−1︸ ︷︷ ︸

denoted by w̃i;t

to be normalized via (28), (29)

where the proximity Li;xt is obtained according to (26) with the previous point

estimates θ̂i;t−1 and R̂i;t−1.

In (29) the point estimate θ̂i;t−1, R̂i;t−1 and α̂i;t−1 are obtained at the previous
time instant t−1 either using the direct updates (20), (21) and (22) respectively (if
the value of yt is observed), or with the help of the mixture estimation algorithm
from [18] as follows. The statistics updates (20), (21) and (22) are performed
with replacing the Kronecker function δ (i, yt) by the probability wi;t for each i ∈
{1, 2, . . . ,K} obtained from (28) for the corresponding time instant, i.e.,

Vi;t = Vi;t−1 + wi;t

[
xt
1

] [
xt
1

]′
, (30)

κi;t = κi;t−1 + wi;t, (31)

γi;t = γi;t−1 + wi;t. (32)

The updated statistics are then used for recomputing the point estimates (11) and
(14) for each i ∈ {1, 2, . . . ,K}. The structural algorithm is provided below.

5. Results

5.1 Example with simulated data

Let’s demonstrate Algorithm 1 with the help of a simple example with simu-
lated data. The discrete dependent variable yt has 5 possible values, i.e., yt ∈
{1, 2, 3, 4,K = 5}, and yt is generated by the random generator from the uniform
distribution. The data vector xt = [x1;t, x2;t, x3;t, x4;t]

′ has four continuous entries.
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Algorithm 2

{Initialization, i.e., t = 1}
Specify K components (2).
for all i ∈ {1, 2, . . . ,K} do

Set the initial values of the statistics Vi;t, κi;t for each component (2) and γi;t
for the model (3). {See explanations in Section 3.2.}
Using these initial statistics, compute the point estimates Θ̂i;t =

{
θ̂i;t, R̂i;t

}
and α̂i;t according to (11) and (14).

end for
{On-line learning and testing}
for t = 2, 3, . . . do

Measure the data xt.
if the data item yt is measured then

Update the active component, i.e., the statistics Vi;t, κi;t and γi;t according
to (20), (21) and (22) respectively.

for all i ∈ {1, 2, . . . ,K} do
Recompute the point estimates Θ̂i;t =

{
θ̂i;t, R̂i;t

}
and α̂i;t according to

(11) and (14).
end for

end if
for all i ∈ {1, 2, . . . ,K} do

Compute proximities (26) of the data xt to each component, using θ̂i;t−1

and R̂i;t−1.
Compute probabilities wi;t according to (27) and (28) using α̂i;t−1.

end for
Classify the data xt as belonging to the component, corresponding to the
biggest entry of the vector wt, which is the point estimate of the pointer yt at
time t.
for all i ∈ {1, 2, . . . ,K} do

Update the statistics using (30)–(32).

Recompute the point estimates θ̂i;t−1, R̂i;t−1 and α̂i;t−1 according to (11)
and (14) and go to the first step of the on-line part of the algorithm.

end for
end for

Simulation

The data xt are generated for each value of yt using the model (2) with the
following parameters

θ1 =


3
−1

5
4

 , θ2 =


−8

8
−2

5

 , θ3 =


13
−10

0
6

 , θ4 =


9
0

15
7

 , θ5 =


0
−8
10
8

 ,
(33)
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and with the same variances 3 placed in the diagonal of the covariance matrices
Ri, ∀i ∈ {1, 2, 3, 4, 5}.

Initialization
Since K = 5, the initial statistics for 5 components are constructed as follows.

The information matrix of each component, i.e., Vi;t ∀i ∈ {1, 2, . . . ,K} is chosen
as the zero square matrix of the dimension (N + 1) = 5, where N = 4 is the
dimension of the vector xt. The counter κt is chosen as the zero vector of the
dimension K = 5. Each its entry corresponds to κi;t of the i-th component. The
initial statistics of the switching model γt is also chosen as the zero 5-dimensional
vector.

The learning phase
The measured data yt and xt for t = 1, 2, . . . , T = 300 are used for the learning

phase. Using these data the above statistics are updated for the value i equal to
the actual measured yt (i.e., for the active component) according to (20), (21) and
(22) respectively, i.e.,

Vi;t = Vi;t−1 +


x1;t

x2;t

x3;t

x4;t

1




x1;t

x2;t

x3;t

x4;t

1


′

, κi;t = κi;t−1 + 1, γi;t = γi;t−1 + 1. (34)

For the time instant t = 300 the matrices Vi;T for each i ∈ {1, 2, 3, 4, 5} are
partitioned according to (10) so that Vxx is a matrix of dimension (4 × 4), V ′x is
a 4-dimensional column vector and V1 is a scalar. Then the point estimates of the
regression coefficients are computed according to (11) as follows:

θ̂1;T =


3.28
−0.82

4.8
3.94

 , θ̂2;T =


−7.96

7.74
−2.10

4.97

 , θ̂3;T =


12.86
−9.92
−0.06

5.96

 ,

θ̂4;T =


9.21
−0.01
15.07
7.19

 , θ̂5;T =


−0.19
−8.05

9.79
8.33

 . (35)

Their values correspond to (33). The estimated covariance matrices are not shown
here to save space, however their diagonal entries correspond to those used for the
simulation. In the case of necessity of observing the estimation evolution, the point
estimates could be computed during the estimation at each time instant and then
plotted. The point estimate of the parameter of the switching model is computed
according to (14) and obtained as

α̂i;T =
[

0.190 0.205 0.200 0.197 0.208
]

(36)

that corresponds to the uniform distribution used for the simulation.
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The testing phase

The testing phase lasts from t = 301 till t = 1500, when only the data xt are
measured. Each time instant from t = 301 till t = 1500 using the measured data
item xt the proximities (26) are computed for each i ∈ {1, 2, 3, 4, 5}. According
to (26), (27) and (28) at each time instant the obtained point estimates are used
for constructing the 5-dimensional weighting vector, where its each i-th entry is
the probability of the current activity of the i-th component. The biggest entry
of the weighting vector is the point estimate of yt at each time instant during the
testing phase. Average number of wrong estimates of yt for 10 simulations with
parameters (33) and various random generators is 2.97%.

The measured data vector xt is classified as belonging to the active component
indicated by this biggest entry at each time instant t = 301, . . . , 1500 during the
testing phase of the algorithm. It is difficult to show the detected clusters in the
multidimensional space, that’s why Fig. 1 demonstrates selected results by plotting
two variables from the vector xt against each other. A rest of results is of a similar
quality.

Fig. 1 Selected classification results. The figure shows the variable x1;t plotted
against x2;t. Five clusters denoted by symbols ×, �, •, +, ◦ correspond to five
possible values of the pointer yt.

The computation time of both the phases altogether is 0.5 seconds using the
Scilab (see www.scilab.org) functions tic and toc.

In the case of using Algorithm 2, when the learning and the testing phase are
joined, changes in this example are straightforward. The updates of statistics are
done according to (30)–(32), when values of yt are unavailable.

The aim of this example is to explain how the presented approach works and to
verify the programming. Testing with real data is a much more challenging task.
The results can be found in the next section.
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5.2 Experiments with real data

Here the approach is tested on real data measured on a vehicle during driving.
The main aim of the performed data analysis (not limited by that presented in this
paper) is modeling the components characterizing different styles of driving. It can
be, for instance, eco-, sporty and dangerous driving, a tired and drowsy driver, a
sharply changed driving style that can signal sudden health problems of the driver
or the fact that the car is driven by a different driver (e.g., it has been stolen),
etc. A series of experiments was performed. Here the typical obtained results are
demonstrated.

5.2.1 Data

The following measurements were selected for experiments.
The discrete dependent variable yt expresses the gear selection during driving

with the six-speed gearbox. It has the possible values: {−1, 0, 1, 2, 3, 4, 5, 6}, where
0 denotes the neutral gear and −1 is the reverse gear. The major part of the
taken data represents driving with a relatively high speed out of city, which more
corresponds to higher values of the gear. Because of this, values −1 and 1 were
observed only rarely. To avoid their interpretation as outliers, values {−1, 0, 1}
were grouped into one value 1.

The explanatory variable xt is the three-dimensional vector [x1;t, x2;t, x3;t]
′,

where x1;t is the vehicle speed [km/h], x2;t is position of the gas pedal [%], x3;t

is the engine speed [rpm].

5.2.2 Results

Here the results of application of both the algorithms are shown. Data measured
each 0.2 seconds were taken for the experiments. The available data set was divided
among 8 sets, each containing 9427 data items.

For Algorithm 1, a mix of data of the same size taken randomly over all data
sets were used for the the learning phase, and 8 data sets for the testing phase. For
Algorithm 2, these 8 data sets were tested so that 1000 (i.e., approximately one
eighth) measured values of yt were taken at random time instants during on-line
running.

For comparison the following counterparts are chosen: (i) KNIME logistic re-
gression tools (www.knime.org) and (ii) the Matlab functions mnrfit and mnrval

(www.mathworks.com).
Tab. I demonstrates a percentage of incorrect estimates (PIE) of the discrete

dependent variable yt obtained by all the algorithms for 8 data sets. Columns of
the table correspond to the data sets, rows to the compared methods.

The data used for the validation were measured in different traffic situations:
from a relatively calm economic driving on the highway and a mixed driving on the
first and second class roads to driving through several villages. This was done to
obtain data covering as many driving styles as possible. Because of the character of
data, the quality of estimation differs among the tested sets. Tab.I shows (compare,
for example, results for data sets 1 and 4) that if PIE is higher, it grows for all the
compared methods, and similarly it drops.

431



Neural Network World 5/2016, 417–437

1 2 3 4 5 6 7 8

Algorithm 1 2.10 3.50 10.93 12.22 9.04 8.72 6.78 7.00
Algorithm 2 3.21 3.24 6.04 11.79 5.95 10.98 4.93 5.66
KNIME tools 2.77 2.41 11.03 12.36 7.71 10.56 2.55 3.23
Matlab functions 4.95 4.63 11.66 12.36 10.23 15.52 7.97 6.85

Tab. I Percentage of incorrect estimates for 8 tested data sets.

Comparing PIE among the methods it can be seen that in general the results
are close to each other. The average PIE of Algorithm 1 over 8 tested data sets is
7.54%. Algorithm 2 gives 6.48%, KNIME 6.58%, and Matlab functions 9.27%. It
means that the most successful estimation was provided by Algorithm 2, and the
worst results were with the Matlab functions. The difference is not too significant.
However, closeness of the results to such trustful counterparts as the KNIME and
Matlab estimators confirms that both Algorithms 1 and 2 can serve as an alter-
native logistic regression tool. A relatively successful estimation of real data of all
the algorithms is also a part of the validation process.

Tab. II provides the average computation time (ACT) of the algorithms calcu-
lated by functions tic and toc. The computation time of Algorithms 1 and 2 is
similar, and it is on the third place after the KNIME and Matlab estimators. But
it should not be forgotten that both the Algorithms 1 and 2 work on the entirely
different idea than the estimators used for the validation. They are running on-line
(Algorithm 1 partially and Algorithm 2 completely) unlike to offline estimators of
KNIME and Matlab, which means that further data could be classified if available.

ACT, [s]

Algorithm 1 4.69
Algorithm 2 4.34
KNIME tools 2.11
Matlab functions 3.51

Tab. II Average computation time of the compared algorithms.

An example of graphic representation of results is shown in Fig. 2. A fragment
of 7000 data items from the first tested data set was chosen for plotting. The
most part of the data corresponds to driving on the highway with higher values of
the gear yt. These data were estimated similarly successfully by all the compared
algorithms. However, the most interesting are fragments of the estimation with
changing the gear values.

Fig. 2 (top) compares results of Algorithms 1 and 2 with real measurements. It
can be seen that Algorithm 1 (which is at the third place with the average PIE)
demonstrates several incorrect estimates around 2700, 3400, 5200 and 7500 data
items. Algorithm 2, which has the least average PIE, covers changing the gear
values successfully even around 8500 data items.
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Fig. 2 (bottom) demonstrates results of the KNIME and Matlab estimators. In
this fragment of estimation they are both mostly successful, excepting places near

Fig. 2 Comparison of results of estimating the gear values. The top figure provides
results of Algorithms 1 and 2. The bottom figure shows results of the KNIME and
Matlab estimators. Notice the difference of the results in all figures around 2700,
3400, 5200, 7500 and 8500 data items.
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3300, 3800 and 5400 data items, and they do not catch sudden changes of real gear
values around 8500 data items. Visualization of the rest of tested data sets looks
similar.

A colored visualization of classifying the data xt requires too much space in the
paper. To save space it is not shown here. The data are classified according to 6
estimated values of the gear among 6 clusters.

5.3 Discussion

To summarize the experimental part of the work, it should be noticed that the
presented on-line alternative of the logistic regression was successfully validated
with the help of 8 sets of real data. The results of both the algorithms are close to
those provided by the taken counterparts, and sometimes even better. It confirms
that the proposed idea of the mixture-based formulation of logistic regression is
competitive. This can be decisive for application areas, requiring the real-time
estimation of the active regime in which a considered system operates in dependence
on continuous data.

6. Conclusions

The paper focuses on on-line modeling of discrete variables depending on continu-
ous variables. The problem known as the logistic regression is considered via the
recursive Bayesian estimation of mixture models. The main aim of the research is
to explore a possibility of constructing the continuous data dependent switching
model that should be estimated on-line. The formulated task requires avoiding
numerical iterative methods. The paper demonstrates that the recursive mixture
estimation theory in the presented interpretation can serve for solving the logistic
regression problem. Several remarks to the discussed approach are given below:

• Due to a possibility to combine the learning and the testing phases either as
two separate parts of the algorithms or as the one joint part, the approach
can be tailored to a specific task depending on the availability of data.

• Existing solutions to the multinomial logistic regression are mostly based on
the extension of the binary case. The presented approach does not make
a difference about the number of possible values of the discrete dependent
variable. The structure of the model is entirely different from that used in
the logistic regression.

• The presented paper demonstrates the approach using the normal compo-
nents. However, this is not a limitation of the approach. Different compo-
nents with the reproducible statistics (state-space, exponential, categorical,
etc.) can be used, which will allow to cover different types of data in de-
pendence on specific tasks. In the case of the explanatory variable xt of the
mixed continuous and discrete nature the solution would require to add a
discrete component (either static similar to (3) or the Markov model) for
modeling a discrete entry of xt. Its statistics should be updated similarly to
(13) according to [17], and the point estimates of its parameters should be
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obtained using (14). Since such a discrete entry is a measured variable, the
change does not bring any computational complexity. This is planned to be
published elsewhere.

• The provided validation experiments demonstrate promising results.

The approach also contributes to the systematic extension of the recursive mix-
ture estimation algorithms published in [29, 30]. However, the open problems still
remain, including e.g., the following:

• The estimation algorithms can be extended for different combinations of com-
ponents and the switching model.

• Multi-step-ahead mixture prediction within the considered context is a sepa-
rate task planned to be solved. It is expected that the dynamic mixture pre-
diction algorithm will be a significant contribution in the field of classification-
related problems.

• Extension of the switching model up to several delayed values in the regression
vector is a further planned task.
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