
Application of Hamiltonian Mechanics 
to Control Design for Industrial Robotic Manipulators 

 

Václav Záda 
Department of Electromechanical Systems and Robotics 
Institute of Mechatronics and Engineering Informatics 

FM, TUL, Studentská 2, 461 17 Liberec, Czech Republic 
E-mail: vaclav.zada@tul.cz 

Květoslav Belda 
Department of Adaptive Systems 

Institute of Information Theory and Automation of the CAS 
Pod Vodárenskou věží 4, 182 08 Prague 8, Czech Republic 

E-mail: belda@utia.cas.cz
 
 

Abstract—The paper deals with a tracking control for robotic 
manipulators, where the robot dynamics is described by means  
of Hamiltonian mechanics. This way leads to different physical 
descriptive quantities used in control design. In the paper,  
the model-oriented Lyapunov-based control is considered. It is in-
troduced in the novel formulation using Hamiltonian mechanics 
and compared with the conventional formulation based on La-
grangian mechanics. The theoretical results, generally applicable 
to usual articulated industrial robotic manipulators, are demon-
strated on one specific robot arm with three degrees of freedom. 

I. INTRODUCTION 

Engineering practice usually employs classical vector ori-
ented Newtonian mechanics to describe interactions of force 
effects. The interactions can be described by scalar functions  
of Lagrangian or Hamiltonian mechanics as well [1], [2]. 
Controllers for robots have usually to manage complicated robot 
structures that represent strong nonlinear systems [3], [4]. 

In most cases, Lagrange equations are used for the descrip-
tion of robot dynamics used in control design [5]. Usual state 
space is represented by positions and velocities, thus by kine-
matic quantities. Generally, there exist specific limits for posi-
tions, velocities, accelerations and control torques, respectively. 
They depend on a given robotic manipulator. The limits of velo-
cities are constant for all configurations of the robot. It does not 
respect that the appropriate robot moments of inertia differ sig-
nificantly for different configurations during the robot motion. 
Momenta, as adequate descriptive quantities, are not used to take 
these differences into account. However, just inertia moments 
(as momenta) change with respect to robot motion very quickly, 
often their rate reaches 1/10. Hence, the study of control 
methods from Hamiltonian point of view may be useful. 

Note, in regards to Hamiltonian mechanics, that the approach 
employing the property of passivity of the robot was investi-
gated, see [6]. Such approach can modify the natural energy  
of the robot so that it can meet the desired targets, i.e. position 
or tracking control. Hamiltonian mechanics was used for control 
design e.g. in [7], [8] and [9]. However, Hamiltonian formalism 
is not frequently employed. In this paper, let us investigate quite 
novel way, different from the aforementioned. 

The aim of this paper is to answer the following question: 
“Which of Lagrangian or Hamiltonian formalism is more 
convenient for the problems of robot control?” 

In this paper, the similar algorithms defined in Lagrangian  
and Hamiltonian configuration spaces will be explored and com-
pared. The algorithms will be applied to the same problems  
of the robot control. Initial ideas can be found in [10]. 

The paper is organized as follows. Section II briefly summa-
rizes Lagrangian formalism. Section III explains Hamiltonian 
formalism in details. Section IV deals with a tracking control 
design. Section V focuses on the mathematical comparison  
of usual Lagrangian versus specific Hamiltonian formalism. 
Finally, Section VI demonstrate by solved comparative example 
theoretical outputs of proposed tracking control algorithms 
applied to a robotic arm with three degrees of freedom. 

II. USUAL LAGRANGIAN FORMALISM 

Lagrange equations of classical Lagrangian mechanics are 
predominantly used for description of complicated mechanical 
systems [2]. These equations can be described as 
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where n is a number of degrees of freedom (DOF); a scalar 
function L = Ek – Ep is Lagrange function, Ek is kinetic energy 
and Ep is potential energy; Fj are generalized forces  and qj 
generalized coordinates. For technical applications, the forces Fj 
represent non-conservative forces. Conservative forces are 
represented by the potential energy Ep. 

Let us consider a robotic manipulator with n DOF. The kine-
tic energy may be described as a quadratic positive definite form 
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The potential energy can be written as 
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If we use the equation (1), then equations of robot motion can be 
derived in the compact form (for details see [4], [5] and [11]): 

 uqgqqqCqqM  )(),()(   (4) 

where M is n  n inertia matrix; q is n  1 vector; C is n  n 
matrix representing Coriolis and centrifugal forces; g is  
n  1 vector of gravity influences and u is n  1 vector of control 
actions relating to generalized forces F. 
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III. HAMILTONIAN FORMALISM 

A. Hamilton Equations 

Analytical mechanics was developed to be usable in all 
branches of physics. Hamilton equations have a special meaning 
in quantum mechanics. Forces, velocities and accelerations are 
not as significant for study of elementary particles as energies 
and momenta. Hence, let us study the meaning of the Ha-
miltonian formalism for the purpose to control of robotic 
manipulators. 

For this paper aim, let a vector-matrix description be used. 
For instance, let generalized momentum pj be defined as 
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Let all vectors be defined in usual way as p = [p1, · · ·, pn]T,  
q = [q1, · · ·, qn]T, etc. Then, the relation (5) can be rewritten as 
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Form (6) is more suitable for further explanation. Similarly,  
the definition of the Hamilton function is 
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The Lagrange function L is the function of vectors q and its time 
derivative q , but the Hamilton function is the function of vec-
tors q and p. So, the both functions can be generally written 
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Then, the equations (1) can be rewritten as follows 
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Similarly the equations of motion with using Hamiltonian H can 
be rewritten as well 
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The system of equations (10) are Hamilton equations in the vec-
tor form. It will be useful in further explanation. 

B. Equations of Robot Dynamics 

Any arbitrary robot may be considered as the time invariant 
system. Then, it is well known that the Hamiltonian (7) repre-
sents full energy that is the sum of kinetic and potential energies.  
Since the Lagrangian L depends on positions and velocities  
and Hamiltonian depends on positions and generalized momen-
ta, the relations (8) can be expressed as 
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The following equation expresses the interesting fact 
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Moreover, the partial derivative of the potential energy is 
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Equations, describing the dynamics or robot motion, can be de-
fined as follows [10] 
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The kinetic energy (2) in (q, p) coordinates is as follows 
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Thus, the relations (15) and (16) fully describe the robot dyna-
mics in the Hamiltonian formalism. 

C. Simplification for Control Design 

Let us consider a specific skew symmetric matrix S defined  
by components as 
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Then, it can be proved that 
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The equations (15) and (16) can be expressed in the following 
compact form [10] 
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This form is more suitable for the study of control stability.  
The vector F in (16) is replaced in (21) by u. Note that all 
velocities in (21) must be rewritten by (20), since now (q, p) 
coordinates are considered. The vector u in (21) plays a role  
of a control vector similarly as in (4). The equations (20)  
and (21) are the final equations that describe the dynamics  
of robot motion. 

The conditions are derived in [10]. Their meeting leads  
to better robot positioning when the Hamiltonian formalism  
is used for control design. In the following section, the tracking 
control, i.e. control along a desired trajectory will be studied. 
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IV. TRACKING CONTROL 

The tracking control is a standard task of robot control along 
required trajectories. For articulated robots, the trajectory is 
usually given by the time sequence of joint coordinates and their 
appropriate derivatives. Several schemes for performing these 
objectives exist, e.g. well-known inverse dynamic control  
and computed torque control [4] or the passivity based control 
and the Lyapunov-based control [5]. 

Here, one of Lyapunov-based control with state transfor-
mation will be introduced. It will be shown just as exponentially 
stable control according to Lyapunov theory of stability.  
Similar algorithm was derived in [12]. The derivation was based 
on classical Lagrangian formalism. 

For simplicity, we shall call the Hamiltonian space the space 
defined by coordinates (q, p). Similarly, the Lagrange space will 
be the space with coordinates given by positions q and their time 
derivatives q . Note that these definitions are not commonly 
used, but, for the paper aim, they will be useful. 

A. Tracking Control in Hamilton Space 

Let the following vector transformations be considered 
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where e is a control error and e  is its appropriate derivative. 
Then, the robotic system (20) and (21) can be controlled  
by the following control law 
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where A and B are non-singular matrices of control parameters; 
y represents the estimation of the momentum p; and z is  
a difference between current momentum p and its estimate y.  
By the insertion of (23) into (21), the feedback equation is: 
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It represents expected trend of z used for determination of y. 

B. Exploration of the Stability Conditions 

To explore stabilizing control actions, let us define a positive 
definite quadratic form 

 zMz 1

2

1  TW  (25) 

where its time derivative, considering (24), leads to 
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The multiplication of matrices in the quadratic form (26) is 
positive definite. So the function W decreases in time. Then,  
the following inequality from (26) can be obtained 
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Let min be the smallest eigenvalue of the matrix M-1B, i.e. 
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where Q is a domain of the robot. For min > 0 and all z,  
the following inequality is valid 
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This relation implies the following inequality 
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Since ||z||2 = zTz and 0  W(t)  W(0), then it can be seen  
that z  L2  L, [13]. Similarly to (28), let us define  
the following eigenvalues 
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The values (31) and (32) are positive as well. They can be 
involved in the following inequalities 
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These inequalities with quadratic forms are valid for all z.  
Hence, they can be simply written as 
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It can be proved that inequalities (34) can be expressed as 
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Then, new inequality can be introduced 
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It leads to the following compact inequality 
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Let the multiplication of the eigenvalues be denoted as 
follows ma min . Then, inequality (37) may be rewritten as 
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Integration of the inequality (38) leads to the estimation 
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Hence, the variable z is exponentially bounded from above 

       atect  1||)(|| z     for     ||)0(||)( 5.01
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From (41), the variable z  0 for t  . Let us study  
the differential equation obtained from (22) 
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This equation has a solution starting from  e0 = e(0) 
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Using inequalities for matrices and vectors with norms,  
the following estimation can be derived (derivation can be found 
in Appendix A): 
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for some positive constants c2 and b and for t   the error 
vector e  0 as well. 

Let us rewrite the equation (42) in the form 
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then 
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Using (41) and (44), the following inequality is obtained: 
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where c3 is a positive constant. Hence, if t  , then  
the velocity of the error signal e  converges to 0. 

The relations (46) and (47) show that the control algorithm  
defined in the section IV-A is exponentially stable. 

C. Selection of Matrices A and B 

To ensure stability conditions, the matrix A has to be stable,  
i.e. its eigenvalues have to be in the left side of the complex 
plane. The matrix product M-1  B must be positive definite.  
Since M and M-1 are positive definite matrices, it is sufficient  
so that B be diagonal matrix with positive elements. Then,  
the product M-1 B is positive definite as well. 

Note that the multiplication of arbitrary two positive definite 
matrices does not be a positive definite matrix again. 

For simplicity, the matrix  B  can be selected as  B = b0 I.  
Any alternative choice is to define some matrix  B0  as positive 
definite and then define matrix B as B = M(q) B0.  
Then,  M-1 B = B0  in (26) is automatically the positive definite 
matrix. 

D. Tracking Control in Lagrange Space 

Similarly to the previous part, let us define new vectors y, v 
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and consider the control law as follows 
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If this control law is substituted into (4), then the feedback is: 
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Similarly to (25), let us define quadratic form 
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where its time derivation is 
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Hence, we have proved the following exponential stability 
theorem of robot control. 

Theorem 1.  
The discussed control laws given by (22) and (23) have the fol-
lowing properties: 
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where a, b, c1 , c2 , c3  are positive constants. 

V. COMPARISON: HAMILTON VERSUS LAGRANGE 

This section compares the convergence velocity of the con-
trol from two points of view. Let us compare (25) and (51).  
The relation (25) can be expressed as 

 VW TT   MvvMvMMv
2

1
)(

2

1 1  (53) 

Now, let us compare (26) and (52). The relation (26) can be 
rewritten as 
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Let us study the conditions for which the following inequality 
is valid 

 VW    (55) 

From (52) and (54), it can be seen that inequality (55) is valid 
if and only if 

 vIMBv )(0  T  (56) 

This is true for v  0 if B (MI) is a positive definite matrix. 
Since B is a diagonal positive definite matrix, it sufficient  
so that MI be positive definite matrix. 

Theorem 2.  
If  M  I  is a positive definite matrix and the control of robot 
uses the access introduced in the section IV.A, then this control 
process is faster than the similar control process described  
in the section IV-D, if it starts from the same initial error e  
and appropriate time derivative e . 

Note that this condition is true for considered industrial robots. 
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VI. ILLUSTRATIVE EXAMPLE 

Let us consider the robotic arm with 3 DOF, the kinematic 
structure of which is shown in the Fig. 1. It corresponds  
to configuration of the industrial robot JANOME. 

 
Fig. 1. Structure of robotic arm with 3 DOF. 

The robot arm represents kinematic configuration containing 
one prismatic (P) and two revolute (R) joints. Its model,  
considering masses mi and moments of inertia Ji in centres  
of gravity Ti, is composed with the following elements: 
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The condition, that the matrix M  I is positive definite,  
is equivalent to the inequality conditions ,1m  122 M   

and 13322  MMF . 

The following figures Fig. 2 - Fig. 4 show the robot motion along 
reference trajectory and control errors for  2 and  3. 

 
Fig. 2. 3D model of robotic arm and testing trajectory. 

 
Fig. 3. Comparison of errors of the coordinate q2 (rad). 

 
Fig. 4. Comparison of errors of the coordinate q3 (rad). 

Note, that error in q1 is not pictured due to the independence  
of q1 of other coordinates, as well as corresponding control 
actions. 

Fig. 5 shows corresponding kinematic quantitates of the test-
ing trajectory. Fig. 6 shows comparison of the appropriate 
control actions. It is obvious the smaller magnitudes especially 
of the third control action related to the coordinate  3.  
Fig. 7 shows the similar result showing better energy distribution  
in Hamiltonian space, but compared with cumulative control 
actions, where it is obvious especially for control action u3. 
Hence, for comparable control errors and smaller control 
actions, the Hamiltonian formalism shows more suitable be-
havior in comparison with usual Lagrangian description. It is 
significant and promising for robot motion optimization 
including an adequate internal energy distribution. 

VII. CONCLUSION 

In this paper, the novel method of tracking control expressed 
in Hamilton coordinates (q, p) is introduced. In section V,  
it was proved that this control is faster than classical control  
in state space (q, q ). This result is true generally for almost all 
control methods applied to electro dynamical systems, where  
the momenta quickly change their values. 
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Fig. 5. Time histories of kinematic quantitates: q1 = z; q2 =  2; q3 =  3. 

 

Fig. 6. Time histories of control actions for Lagrangian and Hamiltonian formalisms: u1 (N); u2 (N∙m); u3 (N∙m). 

 
Fig. 7. Time histories of cumulative control actions for Lagrangian formalism (left) and Hamiltonian formalism (right). 

The advantage is that control algorithms can be simply ex-
pressed in the new space q and p. A drawback is that the vector  
of momenta p has to be computed, since only velocities can be 
measured. But the state space (q, q ) represents only kinematic 
variables that do not represent robot dynamics at all. The space 
(q, p) represents positions and dynamical parameters p. Hence, 
from the control point of view, the Hamilton equations are more 
convenient for electromechanical systems with more DOF. 
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APPENDIX A. PROOF OF THE EQUATION (44) 

Let the solution (43) be considered. Then, it can be derived 

 dttt
t

||||||||||))(exp(||||||||)exp(||||)(||
0

1
0 zMAeAe    (57) 

Since A is stable matrix, there exist positive constants k and c 
for s  0 in the following expression 
 cskes ||)exp(|| A  (58) 
where  e  is the Euler number. Thus, (57) may be expressed as 

  dekekt
t

tcct ||||||||||||||)(||
0

1)(

0 zMee           (59) 

The domain Q of all admissible vectors q is bounded, there 
exists constant kM such that  
 Mk||)(|| qM  (60) 
Hence with using these facts and (41), the following expression 
can be written 

  deekkcekt
t

acct
M
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If c = a, then the integral in (61) is t. Generally it is c  a. 
However, the case c = a can be included in this second case, 
if c is replaced by any smaller positive c. Then 
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Let b = min{a, c}. Then 
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 and (62) can 

be expressed as 













 

||
||||||)(||

1
0 ac

kkc
ket

Mbt ee  (63) 

Hence (63) has the form of (44). 
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