
Proceedings of Machine Learning Research 58 (2016) i-iii

NIPS Workshop on Imperfect Decision Makers 2016: Preface
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Imperfect Decision Makes held in conjunction with the 30th Annual Conference on Neural
Information Processing Systems (NIPS 2016) in Barcelona on December 9, 2016. The
workshop continues the series of international meetings on imperfect decision making that
are devoted to the attractive interdisciplinary field covering theory and algorithms. The
focus of this workshop was on real-world rationality.

The assumption on decision-maker’s rationality is central to the prescriptive Bayesian
theory of decision making (DM). However, empirical research indicates that this assumption
is often violated by real decision makers. This limits the ability of the prescriptive Bayesian
theory to describe the real world. One of the reasons that have been proposed for why the
assumption of rationality might be violated by real decision makers is the limited cognitive
and computational resources of such decision makers. The workshop intended to inspect
this core assumption and to consider possible ways to modify or complement it in order to
understand and diminish the discrepancy between the established prescriptive theory and
real-world DM.

We were very pleased to have welcomed invited talks from the leading experts in the field,
Tom Griffiths (University Berkeley), Itzhak Gilboa (HEC Paris), Daniel Braun (Max Planck
Institute for Biological Cybernetics), Naftali Tishby (Hebrew University), Timothy Pleskac
(Max Planck Institute for Human Development), David H. Wolpert (Santa Fe Institute),
Pedro Ortega (DeepMind). The panel discussions on existing research challenges have
indicated that scientific discussions will be going far beyond the limited time of the workshop
and encourage further collaboration.

We would like to express our sincere gratitude to all the authors, invited speakers, mod-
erators, discussants, programme committee and reviewers for their invaluable contributions
to the success of the workshop. We also would like to thank the NIPS 2016 organisers for
their help and assistance. The partial support of the project GA16-09848S is acknowledged.
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Abstract

Simple decision heuristics are cognitive models of human and animal decision making. They
examine few pieces of information and combine the pieces in simple ways, for example, by
considering them sequentially or giving them equal weight. They have been studied most
extensively for the problem of comparison, where the objective is to identify which of a
given number of alternatives has the highest value on a specified (unobserved) criterion.
We present the most comprehensive empirical evaluation of decision heuristics to date on
the comparison problem. In a diverse collection of 56 real-world data sets, we compared
heuristics to powerful statistical learning methods, including support vector machines and
random forests. Heuristics performed surprisingly well. On average, they were only a few
percentage points behind the best-performing algorithm. In many data sets, they yielded
the highest accuracy in all or parts of the learning curve.

1. Introduction

People and animals spend much of their time choosing among alternative options. For ex-
ample, a venture capitalist chooses among companies to invest in, a writer among potential
publishers, and a bee colony among suitable nest sites. The true values of the alternatives
are typically not known in advance. A choice is made by examining other pieces of relevant
information. For instance, venture capitalists do not know how much they will earn from
investing in a particular company but can examine the track record of the founders.

How do people and animals make such decisions? One theory is that they use simple
heuristics (Gigerenzer et al., 1999). These simple decision rules examine only a few pieces
of information, perhaps only a single piece of information, and combine the pieces in simple
ways. For example, lexicographic heuristics consider the various pieces of information se-
quentially, one at a time, while tallying heuristics give different pieces of information equal
weight. There is evidence supporting the use of such simple models in a wide range of
decisions made by people and animals (Gigerenzer et al., 2011; Hutchinson and Gigerenzer,
2005).

Compared to standard statistical decision methods, heuristics are very frugal in their
use of information and have very low computational requirements. And yet earlier stud-
ies have shown that heuristics can be surprisingly effective when compared to statistical
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learning methods, including logistic regression, decision trees, naive Bayes, and nearest
neighbor methods (Brighton and Gigerenzer, 2008; Martignon and Laskey, 1999; Şimşek
and Buckmann, 2015).

Intrigued by these earlier results, we systematically analyzed the performance of heuris-
tics compared to the very best statistical models, including random forests and support
vector machines (SVMs), the two models that performed best in a recent large-scale com-
parison of 179 classification algorithms across 121 data sets (Fernández-Delgado et al., 2014).
In this study, of the five highest ranked classifiers, three were random forest implementations
(first, second, and fifth position) while the other two were SVM implementations.

We analyzed a diverse collection of 56 real-world data sets that included two well-known
heuristics, take-the-best (Gigerenzer and Goldstein, 1996) and tallying (Czerlinski et al.,
1999). Heuristics performed remarkably well. On average, they were only a few percentage
points behind the best performing algorithm. In many data sets, they yielded the highest
accuracy in all or parts of the learning curve.

In the following sections, we first formally define the decision problem we address and
describe decision models that are based on heuristics, classification, and regression. We
then provide an overview of earlier results on how well heuristics perform. We continue
with a description of our methodology and results. We conclude with a discussion of our
findings.

2. Background

The decision problem we address is comparison, where the objective is to identify the
alternative with the highest criterion value, given m alternatives and k attributes on each
alternative. We focus on problems with exactly two alternatives. An example is to determine
which of two stocks will have a higher return on investment in 5 years, given attributes such
as the name recognition of the company.

Let A and B denote the first and the second alternative, respectively. Let xA denote the
vector of attribute values of alternative A, and yA its criterion value. The outcome variable
of interest is oAB = sgn(yA−yB) ∈ {−1, 0, 1}, where sgn is the mathematical sign function.
The objective is to construct a decision rule for selecting one or the other alternative using
the available attributes, in other words, to learn a decision rule f(xA,xB) ∈ {−1, 0, 1} from
training data T = {xi

A,x
i
B, o

i
AB}Ni=1.

The comparison problem is intrinsically symmetrical. Comparing A to B should return
the same decision as comparing B to A. That is, f(xA,xB) should equal −f(xB,xA).
One can expect better accuracy when imposing this symmetry constraint on the learning
method.

Notice that an outcome value of 0 may be useful for training but the learned model need
not identify this outcome at all. From the decision maker’s perspective, when alternatives
have equal value, either alternative would qualify as a correct decision.

In the heuristics literature, attributes are called cues; we follow this custom when dis-
cussing heuristics.

Below, we describe three approaches to comparison and comment on the informational
needs of the various approaches.
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2.1 Decision heuristics

We consider three heuristics: single-cue (Hogarth and Karelaia, 2005; Şimşek and Buck-
mann, 2015), tallying (Czerlinski et al., 1999), and take-the-best (Gigerenzer and Goldstein,
1996). These heuristics associate each cue with a direction to determine how the cue decides
on its own. Cue direction can be positive or negative, favoring the object with the higher or
lower cue value, respectively. It can also be neutral, favoring neither object. Cue directions
can be learned in a number of ways, including social learning. In our analysis, they are
learned from training examples.

Single-cue is perhaps the simplest decision method one can imagine. It compares the
alternatives on a single cue, breaking ties randomly. A model for this heuristic specifies the
identity of the cue and its direction. We learn both from training examples. Specifically,
among the 2k possible models, where k is the number of cues, the single-cue model is the
one that has the highest accuracy in the training examples.

Tallying is a voting model. It determines how each cue votes on its own—for alternative
A, for alternative B, or for neither—and selects the object with the highest number of votes,
breaking ties randomly. A tally model needs only to specify cue directions.

Take-the-best is a lexicographic model. It considers the cues one at a time, in a specified
order, until it finds a cue that discriminates between the alternatives, that is, a cue whose
value differs on the two alternatives. It then decides based on that cue alone. A take-the-
best model specifies cue directions and cue order.

Cue directions are learned in the same manner for all heuristics. The direction of each
cue is learned independently of the directions of other cues. The information required
from each training example is simply the direction d of the cue in that example: d =
sgn((yA − yB) × (xA − xB)) ∈ {−1, 0,+1}. Let p and n respectively denote the number
of positive and negative samples in the training set. Specifically, p =

∑N
i=1 I(di = 1) and

n =
∑N

i=1 I(di = −1), where I is the indicator function. Cue direction is set to positive,
negative, or neutral, respectively, if p > n, p < n, or p = n.

Cue order in take-the-best is set to the order of decreasing validity of the cues in the
training sample, where validity is max{p/(p+ n), n/(p+ n)}. That is, cues are ordered by
how often they decide correctly when they are able to discriminate between the alternatives.

2.2 Classification

Because our outcome variable is discrete, any classification algorithm is directly applicable.
In principle, learning can be done as a function of attribute values of individual objects,
but in practice the training data required will be prohibitive. Thus we explore learning a
decision rule as a function of attribute differences, ∆xAB = xA − xB. Our objective then
is to learn decision rule f(∆xAB) ∈ {1,−1, 0} from training data T = {∆xi

AB, o
i
AB}N1 .

2.3 Regression

Regression can be used to estimate the difference in criterion values of the two alterna-
tives and deduce which alternative has the higher criterion value based on these estimates.
Specifically, we train a regressor h(∆xAB) with training data T = {∆xi

AB, (yA − yB)i}N1
to use in decision rule f(xA,xB) = sgn(h(∆xAB)).
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2.4 Data requirements

Regression requires the highest level of information. It requires that the difference in the
criterion values of the alternatives be known in training data, which may not always be
possible. In contrast, the training data required for classification is more easily available
because all that is required is the identity of the alternative with the higher criterion value—
the criterion values of either alternative or the difference in their criterion values are not
needed.

Informational needs of heuristics are substantially less than those of classifiers. They do
not even require the differences in cue values to be quantified; they need only the sign of
cue differences. For example, if height of a person is a cue, heuristics need to know which of
two people is taller but not the height of either person or the magnitude of the difference.

3. Earlier work

Czerlinski et al. (1999) compared take-the-best and tallying to multiple linear regression in
20 real-world data sets. In each data set, the authors trained the models on all pairwise
comparisons among 50% of the objects and tested them on all pairwise comparisons among
the remaining objects. They dichotomized the numerical attributes around the median,
converting the attribute to binary to mimic people’s typically limited knowledge about at-
tribute values and the potential unreliability of precise values. Take-the-best performed
best, with a mean accuracy of 0.72 across data sets, compared to 0.69 for tallying, and 0.68
for multiple linear regression. When the authors repeated their analysis without dichotomiz-
ing the attributes but using their exact numerical values, mean accuracies of take-the-best
and multiple linear regression were identical at 0.76. The authors did not test tallying with
numerical attributes.

Brighton (2006) presented learning curves on eight data sets, where attributes were again
dichotomized around the median, comparing take-the-best to neural networks, decision
trees, and nearest neighbor methods. In four data sets, take-the-best had the highest
accuracy on almost the entire learning curve. In the other four data sets, take-the-best had
the highest accuracy on at least some parts of the learning curve.

Katsikopoulos et al. (2010) showed mean accuracy in 19 data sets for training sam-
ples of 2 to 10 objects. They compared multiple models, including take-the-best, tallying,
multiple linear regression, and naive Bayes, implementing most models with and without
dichotomizing the attributes. Take-the-best (with undichotomized cues) had the highest
accuracy for all but the smallest training-sample size of two objects, in which case tallying
(with dichotomized cues) had the highest accuracy. Again, tallying was not tested with
exact numerical values.

Brighton and Gigerenzer (2012) compared take-the-best to SVM in a single data set,
where attributes were naturally binary, and found that the accuracy levels of the two models
were comparable throughout the learning curve.

Şimşek and Buckmann (2015) presented learning curves for heuristics, logistic regression,
and decision trees on 63 natural data sets. On average, tallying was the most accurate
method on very small sample sizes. When models were trained on 50% of instances in the
data set, mean accuracy across data sets was 0.725 for tallying, 0.743 for take-the-best,
0.746 for CART, and 0.747 for logistic regression.
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Table 1: Data sets used in the analysis.
ID Name Objects Cues ID Name Objects Cues
1 Manpower 17 5 29 Mortality 60 15
2 Waste 20 5 30 Movie 62 12
3 Jet 22 5 31 Dropout 63 18
4 Sperm 24 8 32 Land 67 4
5 Cigarette 25 3 33 Lakes 69 10
6 Galápagos 29 5 34 City 76 9
7 Agriculture 29 6 35 Car 93 21
8 Ice 30 3 36 Basketball 96 4
9 Oxidant 30 4 37 Infant 101 3
10 Recycling 31 7 38 Obesity 136 11
11 Reactor 32 10 39 Contraception 152 6
12 Rebellion 32 6 40 Votes 159 5
13 Excavator 33 5 41 Pitcher 176 15
14 Occupation 36 3 42 Birthweight 189 8
15 Pinot 38 6 43 Athletes 202 8
16 Highway 39 11 44 CPU 209 6
17 AFL 41 4 45 Tip 244 6
18 Air 41 6 46 Bodyfat 252 13
19 Bones 42 6 47 Hitter 263 19
20 Mussels 44 8 48 Diamond 308 4
21 Mines 44 4 49 Algae 340 11
22 Prefecture 45 5 50 Faculty 397 5
23 Crime 47 15 51 Mileage 398 7
24 Homeless 50 7 52 Monet 430 4
25 SAT 50 4 53 Affair 601 8
26 Fuel 51 5 54 Lung 654 4
27 Salary 52 5 55 Rent 2053 10
28 Sleep 58 7 56 Home 3281 4

4. Analysis

We used 56 data sets gathered from a wide variety of sources, including online data reposito-
ries, statistics and data-mining competitions, packages for R statistical software, textbooks,
and research publications. The subjects were diverse, including biology, business, computer
science, ecology, economics, education, engineering, environmental science, medicine, polit-
ical science, psychology, sociology, sports, and transportation. The data sets varied in size,
ranging from 17 to 3,281 objects. They also varied in the amount of information available,
ranging from 3 to 21 attributes. Many of the smaller data sets contained the entirety of the
population of objects, for example, all 29 islands in the Galápagos archipelago. The data
sets are listed in Table 1 and described in the supplementary material. All data sets are
publicly available.

Missing attribute values were imputed by the mean, median, and mode value in the
data set for interval, ordinal, and categorical attributes, respectively. Objects with missing
criterion values were discarded. For ordinal attributes, attribute difference between two
objects was recoded into a new ordinal attribute with three values, indicating if the differ-
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ence is positive, negative, or zero. This is because the exact value of the difference is not
meaningful for ordinal attributes, only its sign. A categorical attribute with c categories
was recoded into c binary attributes, each indicating membership in one category.

Almost all earlier studies have dichotomized the numerical attributes as described in
Section 3. We did not. All models, including heuristics, generally yield higher accuracy
when attributes are not dichotomized.

We examine two performance metrics on decision quality. Our primary metric is accu-
racy, where a decision is considered to be accurate if it selects the object with the higher
criterion value or if the objects are equal in criterion value. We examine, in addition, a
linear loss metric that equals 0 if the decision is accurate, and |yA−yB |z otherwise, where z
is a normalizing constant for the data set, computed as follows:

z =

∑
∀〈A,B〉 |yA − yB|∑

∀〈A,B〉 1
. (1)

We present results with the following classification algorithms: random forests, SVMs,
and naive Bayes; the following regression algorithms: multiple linear regression (MLR)
with elastic net penalty and random forest regression; and the following heuristics: single-
cue, take-the-best, and tallying. We trained SVMs using their implementation in the R
package e1071 (Meyer et al., 2014). We tried both a linear and a Gaussian kernel, with
a 10-fold cross-validated grid search for parameter values. We trained random forests and
random forest regression using the implementation in the R package randomForest (Liaw
and Wiener, 2002), with 10-fold cross-validated search for the best value of the parameter
mtry. We trained linear regression with elastic net regularization (Zou and Hastie, 2005),
using the R package glmnet (Friedman et al., 2009). We selected the parameter values of α
and λ using 10-fold cross-validation. We used the naive Bayes implementation in R package
e1071 (Meyer et al., 2014), with Laplace smoothing. Additional implementation details are
described in the supplementary material.

5. Results

We present results on the performance of each algorithm as training-set size increases,
starting from a size of one. Recall that a training instance requires information on two
objects. Consequently, a single training instance uses two objects from the data set. These
two objects are then discarded, not to be used again in any train or test instance.

To generate learning curves, we randomly sampled m test instances from each data set
(m = n/10, where n is the number of objects in the data set). We then progressively
sampled training sets of increasing size using the remaining objects in the data set. We
replicated this procedure 4,000 times for SVM, and 10,000 times for all other algorithms.
The smaller numbers for SVM are due to the substantially higher training time required
for this model.

Figure 1 shows the mean learning curve across 56 data sets for various algorithms.
Table 2 reports mean accuracy and linear loss across 56 data sets for training sets of size
10, 20, 50, and 90 instances. Figure 2 displays individual learning curves on 20 of the data
sets.
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Figure 1: Mean accuracy in 56 data sets as a function of the training-set size. On the
horizontal axis, the figure also shows the number of data sets contributing to the
mean performance.

Table 2: Mean performance across 56 data sets
Accuracy 1 − Linear loss

Training set size 10 20 50 90 10 20 50 90
Data sets n 53 n 34 n 19 n 14 n 53 n 34 n 19 n 14
Take-the-best 0.689 0.712 0.739 0.758 0.741 0.772 0.797 0.819
Tallying 0.694 0.710 0.727 0.739 0.750 0.772 0.784 0.798
Single-cue 0.673 0.695 0.723 0.746 0.721 0.749 0.775 0.804
Naive Bayes 0.722 0.733 0.751 0.764 0.792 0.807 0.817 0.832
Random forest 0.715 0.731 0.751 0.767 0.781 0.798 0.811 0.829
SVM (linear) 0.700 0.717 0.747 0.769 0.765 0.784 0.811 0.835
SVM (radial) 0.687 0.710 0.741 0.762 0.745 0.776 0.801 0.824
Random forest regression 0.727 0.742 0.759 0.774 0.800 0.814 0.823 0.839
MLR (elastic net) 0.721 0.737 0.760 0.777 0.788 0.809 0.827 0.846

Along the mean learning curves, the differences between the heuristics and the statistical
learning algorithms are relatively small. The maximum difference in accuracy between
the best heuristic and the best algorithm at a given sample size is at most 0.037. On
the early parts of the curve, tallying performed better than take-the-best but is roughly
0.025 percentage points behind the best performing algorithms: random forest, random
forest regression, and naive Bayes. With larger training-set sizes, take-the-best performed
remarkably well. With training-set sizes of 44 or larger, it trailed the top algorithm by 0.019
on average. We should also note that a relatively simple method, naive Bayes, performed
remarkably well. Along the mean learning curve, it closely trailed random forest regression
on most training-set sizes.
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Figure 2: Learning curves on individual data sets.
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On individual data sets, there were substantial differences in the performance of the
various algorithms. In most of the data sets, at least one heuristic performed as well as or
better than the best performing classification algorithm in all or parts of the learning curve.
The results on linear loss are very similar to those on accuracy.

We measured the computation time required for training and testing the various models
midway along the learning curve, where the size of the training set was roughly 90% of
its maximum value. The experiment was run on a single kernel of a cluster (Intel Xeon
CPU E5-2670, 4GB memory). For one pass over the data sets, SVM with the radial kernel
required on average 283 minutes, SVM with the linear kernel required 16 minutes, random
forest required two minutes, and MLR (elnet) required one minute. In contrast, take-the-
best and tallying each required only 0.40 seconds. Note that the R packages we used to
train SVM and random forests both call highly efficient Fortran and C code, while our
implementation of the heuristics is programmed entirely in the much slower R language.

6. Discussion

Among the decision methods tested earlier in the literature, including logistic regression
and decision trees, tallying stood out as the best method for sample sizes with 1–10 in-
stances (Şimşek and Buckmann, 2015). We found that tallying (on average) falls short of
more powerful statistical algorithms—random forest, random forest regression, and naive
Bayes—even when training sets are small.

One surprising result is that with larger training-set sizes, multiple linear regression
(with elastic net penalty) performed better on average than any other algorithm. This result
has important implications because decision heuristics are often treated as an approximation
of a linear decision rule. Several properties of the decision environment are known to allow
heuristics to approximate a linear algorithm (Hogarth and Karelaia, 2006; Baucells et al.,
2008; Martignon and Hoffrage, 2002; Katsikopoulos, 2011). Furthermore, these properties
are prevalent in natural decision problems (Şimşek, 2013; Şimşek et al., 2016).

It is fair to conclude that in a diverse collection of natural environments, heuristics
fared remarkably well when compared to powerful statistical learning algorithms. To put
this result into context, it is useful to remember that the computational, informational, and
memory requirements of heuristics, both at training and decision time, are extremely low.

One possible reason for the success of heuristics is that comparison is an easy problem,
at least when compared to regression or classification. Given the fundamental importance
of comparison for intelligent behavior, it would be fruitful to examine this problem theoreti-
cally and to develop statistical learning algorithms that address it directly, taking advantage
of its special properties.

We hope these results will encourage further study of decision heuristics. In particu-
lar, we hope they will motivate further mathematical analysis as well as development of
additional heuristic models.
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Abstract

Developing theories of when and why simple predictive models perform well is a key step
in understanding decisions of cognitively bounded humans and intelligent machines. We
are interested in how well simple models predict in regression. We list and review existing
simple regression models and define new ones. We identify the lack of a large-scale empirical
comparison of these models with state-of-the-art regression models in a predictive regression
context. We report the results of such an empirical analysis on 60 real-world data sets.
Simple regression models such as equal-weights regression routinely outperformed state-of-
the-art regression models, especially on small training-set sizes. There was no simple model
that predicted well in all data sets, but in nearly all data sets, there was at least one simple
model that predicted well.

Keywords: Regression, Simple Heuristics, Improper Models

1. Introduction

The study of simple predictive models is an important topic in decision making and machine
learning. High predictive accuracy seems to be the main focus of most current research. Yet
low time complexity, robustness to small sample sizes, and interpretability are also desirable
properties of a useful model. In this article, we study simple models which are much faster
to estimate and easier to understand than their current state-of-the-art peer algorithms.
Their advantage in computation time and interpretability will be obvious. We are mainly
interested in how much predictive power is lost when using simple models, if any.

Predictive models can be simple in many different ways. One seemingly extreme ap-
proach is to take only one predictor into account. Another approach is to take all predictors
into account but to combine them in simple ways, for example, by giving them equal or
random weights. Such simple models have been shown to predict remarkably well in tasks
such as classification (Holte, 1993), paired comparison (Czerlinski et al., 1999; Brighton,
2006; Şimşek and Buckmann, 2015), and portfolio optimization (DeMiguel et al., 2009).
Less attention has been given to simple models in a predictive regression context, that is,
when the problem under consideration is to estimate the value of a continuous response
variable on previously unseen data.

Simple regression models such as equal weights and random weights regression have
been examined empirically and theoretically in the psychological literature. Collectively,

c©2016 Lichtenberg et al.
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such models were termed improper linear models to distinguish them from proper linear
models whose weights are obtained by optimizing some objective function. For example,
ordinary least squares are obtained by minimizing the residual sum of squares.

Wainer (1976) argued that “it don’t make no nevermind” if optimal weights are replaced
by equal weights, as the loss in explained variance is small if predictors are directed properly
(see also Laughlin, 1978; Wainer, 1978). Similar findings, commonly known as the flat
maximum effect, show that the space of nearly optimal weights for linear models is large
(Ehrenberg, 1982; von Winterfeldt and Edwards, 1982; Lovie and Lovie, 1986). Dawes and
Corrigan (1974) and Dawes (1979) concluded that optimal weighting of predictors would
therefore be less important than choosing the right predictors and knowing their directional
relationship with the response.

Moreover, Einhorn and Hogarth (1975) argued that improper models suffer from smaller
estimation error compared to proper models (or no estimation error) because the weights of
improper models do not have to be estimated from the data. Because they combine a small
loss in accuracy with increased robustness due to smaller estimation error, the common
message of these studies was that improper models would be superior to multiple linear
regression in some situations and not greatly inferior in others when the aim is out-of-
sample prediction.

These surprising results showed that improper models can match the performance of
more complex models or even outperform them. However, existing work on simple regres-
sion models did not study these models in a regression context. Some of them used loss
functions that are not regression adequate (Wilks, 1938; Dawes and Corrigan, 1974; Dawes,
1979; Einhorn and Hogarth, 1975; Dana and Dawes, 2004). For example, Dawes (1979)
used the correlation coefficient between predicted and true response values to assess the
prediction performance of different models. Other studies evaluated improper regression
models in a fitting rather than in a prediction context (Wainer, 1976; Waller and Jones,
2009). Furthermore, many results were presented relative to the performance of multiple
linear regression (Einhorn and Hogarth, 1975; Wainer, 1976; Graefe, 2015), which is known
to have severe estimation issues under a large variety of conditions. It is unclear whether
the results still hold relative to more recent proper models, such as the elastic net (Zou and
Hastie, 2005) or other regularized linear models.

In this article, we examine how well simple regression models predict in a regression
context when compared with state-of-the-art statistical models in a large, diverse collection
of real-world data sets. In doing so, we complement and contrast findings from other
domains such as classification and paired comparison, building toward a more general theory
of when and why simple models perform well.

Our results show that simple regression models such as equal weights regression routinely
outperformed not only multiple linear regression but also state-of-the-art regression models,
especially on small training-set sizes. There was no simple model that predicted well in all
data sets, but for nearly all data sets, there was at least one simple model that predicted
well.

In Sections 2 and 3 we review existing simple regression models, define new ones, and
describe how to estimate their parameters. In Section 4 we report the results of a large
empirical study that compared simple models with state-of-the-art regression algorithms on
60 data sets using a regression-adequate loss function.
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2. Simple regression models

Let us assume that we have some data (yi,xi), i = 1, . . . , n, where xi = (xi1, . . . , xip) is a
p-dimensional vector of predictors and yi a real-valued response for the ith observation. A
regression model f is a model that makes a prediction ŷ of y for a potentially new input
vector x, that is,

ŷ = f(x).

The simple models we consider are special instances of the linear regression model1

ŷ = β0 + γ

p∑
j=1

xjαj ,

and share the following properties: (a) weights αj are chosen heuristically (for example,
equal weights), and (b) weights αj can be estimated or determined independently of the
location parameter β0 and the scale parameter γ. Intuitively, the weighted sum determines
the nature of how the predictors are combined or selected. The two parameters β0 and γ
then determine the location and scale of this weighted sum, respectively. Different simple
models correspond to different ways of determining αj . Estimation of β0 and γ is the same
for all considered simple models and is explained in the following section.

We assume that predictors and responses are centered, that is,

ȳ =
1

n

n∑
i=1

yi = 0 and x̄j =
1

n

n∑
i=1

xij = 0 for all j = 1, . . . , p,

and scaled, that is,

sy =
1

n

n∑
i=1

y2i = 1 and sxj =
1

n

n∑
i=1

x2ij = 1 for all j = 1, . . . , p.

A centered and scaled variable is called standardized. Scaling the response is not necessary
for the simple models to function well but simplifies the analysis across different data sets.
Furthermore, predictors are said to be directed if they correlate non-negatively with the
response. We now define each of the considered simple models. Table 1 points to existing
literature for each model.

Mean prediction. This is the simplest available model and always predicts the mean
value of the response calculated on the training data. The corresponding model can be
written as

ŷ = β0.

Mean prediction is appropriate when no predictor is available. Typically, data sets that do
not contain predictive predictors are not considered. Therefore, mean prediction does not
play a role in supervised learning in general. Yet the model can still serve as a baseline.

Random weights. This is perhaps the most improper model one could imagine. Once
standardized and directed, each predictor is assigned a random weight stemming from a

1. Setting βj = γαj , we obtain the classic formulation of linear regression: ŷ = β0 +
∑p

j=1 xjβj .
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Model Literature

Random weights Wilks (1938); Dawes and Corrigan (1974)

Equal weights
Wesman and Bennett (1959); Schmidt (1971); Dawes and Corrigan
(1974); Einhorn and Hogarth (1975); Wainer (1976); Dawes (1979);
Dana and Dawes (2004); Davis-Stober et al. (2010); Graefe (2015)

Correlation weights Dana and Dawes (2004); Waller and Jones (2009)

Single-cue regression Dana and Dawes (2004); Davis-Stober et al. (2010)

Correlation ranks Wesman and Bennett (1959)

Table 1: Literature on simple regression models.

uniform distribution, that is,

ŷ = β0 + γ

p∑
j=1

ωjxj ,

where ωj ∼ U(a, b). Different authors used different values for a and b. We used a = 0
and b = 1. Nearly 80 years ago, Wilks (1938) showed that the correlation of predictions of
two independent random-weights models tends to 1 with an increasing number of positively
intercorrelated variables. Random weights should be outperformed by equal weights because
of the smaller variance of the latter (Dawes, 1979). We include random weights as a lower
benchmark model in our empirical analysis.

Equal weights. This model takes all standardized predictors into account and weights
them equally, that is,

ŷ = β0 + γ

p∑
j=1

xj . (1)

Under the assumption that all predictors are directed, equal weights has only two free
parameters, location and scale.

Equal-weighting has been discussed in a large variety of settings resulting in slightly
different models: If β0 = 0 and γ = 1 in Equation (1), the resulting model is called
unit weights (Einhorn and Hogarth, 1975). In a paired comparison context, where equal-
weights models have been called tallying or Dawes’s rule, these models have been shown
to outperform more complex models, especially on small sample sizes (Gigerenzer et al.,
1999; Şimşek and Buckmann, 2015). An equal-weights model has been found to compete
well with state-of-the-art portfolio theory models in a portfolio allocation problem, where
it is called the 1/ N rule (DeMiguel et al., 2009).

Correlation weights. This model weights all predictors by their correlation with the
response, that is,

ŷ = β0 + γ

p∑
j=1

ryxjxj ,

where ryxj is the sample correlation coefficient between the response and predictor xj .
Correlation weights has to estimate p+ 2 parameters. However, these coefficients are easier
to calculate than ordinary least squares (OLS) weights in terms of both computational
complexity and numerical stability issues. Whereas the OLS model suffers, for example,
from the multicollinearity problem, the correlation coefficients are calculated independently

16



Simple Regression Models

of each other and independently of β0 and γ. The correlation-weights model thus scales
favorably with the number of predictors when compared to the OLS model and its matrix
inversions.

Single-cue regression. This model considers only the predictor that has the highest
correlation with the response among all available predictors. The corresponding model can
be written as

ŷ = β0 + γx1,

where x1 is the cue that is most correlated with the criterion y. To determine the single
cue, the correlations between all predictors and the response are estimated and the one
with the highest absolute value is chosen. Estimation of single-cue regression is not less
complex than estimation of correlation weights as it is necessary to calculate all p predictor–
response correlations in order to determine the single cue. Yet there may be simpler ways
to (approximately) determine the single cue, and single-cue regression is simpler at decision
time, where it requires only the information of one predictor.

Correlation ranks. This model does not need the exact values of the correlation
weights but only their ranks, that is, their relative order. The corresponding model can be
written as

ŷ = β0 + γ

p∑
j=1

ρj xj , where ρj = rank(ryxj ).

The lowest correlated cue has rank 1 and the highest correlated cue has rank p. Ties are
assigned the average rank.2 Correlation ranks might be easier to estimate and thus more
robust than correlation or OLS weights but still allow for differential weighting of multiple
predictors, as opposed to equal-weighting or single-cue strategies. Our implementation of
correlation ranks actually first estimates all correlations and then assigns ranks. However,
there may be simpler ways to (approximately) determine the ranking of correlations. Models
similar to correlation ranks have been compared to true-weights and equal-weights models
in the context of multiattribute decision making3 in Barron and Barrett (1996). We know
of no study that compares the prediction accuracy of correlation-ranks models to other
regression models in a regression context.

3. Parameter estimation from training data

Unless specifically stated otherwise, we assume that β0 and γ are calculated using simple
linear regression (SLR). Estimation of the weights αj depends on the respective algorithm
and is done before the estimation of β0 and γ.

SLR is much easier to estimate than OLS regression in general as it involves no inversion
of matrices but only simple estimates of scale and covariation. Defining c(xi) =

∑p
j=1 xijαj

and c = (c(x1), . . . , c(xn))T , the SLR estimates for model (2) are given by

γ = ryc
sy
sc

and β0 = ȳ − γc̄,

where ryc is the sample correlation coefficient between y and c, and sy and sc are the
standard deviations of y and c, respectively.

2. For example, the vector (7, 4, 4, 2) has ranks (4, 2.5, 2.5, 1).
3. Find the alternative with the highest response value among a set of n ≥ 2 alternatives.
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ID Name Obs. Predictors

1 Abalone 4,177 8
2 AFL 41 5
3 Air 41 6
4 Airfoil 1,503 5
5 Algae 340 11
6 Athlete 202 8
7 Basketball 96 4
8 Birth weight 189 8
9 Body fat 252 13

10 Bone 42 6
11 Car 93 21
12 Cigarette 528 7
13 Concrete 1,030 8
14 Contraception 152 6
15 CPU 209 6
16 Crime 47 15
17 Diabetes 442 10
18 Diamond 308 4
19 Dropout 63 17
20 Excavator 33 4
21 Fish 413 3
22 Fuel 51 5
23 Gambling 47 4
24 Highway 39 11
25 Hitter 263 19
26 Home 3,281 4
27 Homeless 50 7
28 Infant 101 3
29 Labor supply 5,320 5
30 Lake 69 10

Id Name Obs. Predictors

31 Land 67 4
32 Lung 654 4
33 Mammal 58 7
34 Medical expenditure 5,574 14
35 Men 34 3
36 Mileage 398 7
37 Mine 44 4
38 Monet 430 4
39 Mortality 60 15
40 Movie 62 12
41 Mussel 44 8
42 News 39,644 52
43 Obesity 136 11
44 Occupations 36 3
45 Pinot 38 6
46 Pitcher 176 15
47 Plasma 315 12
48 Prefecture 45 5
49 Prostate 97 8
50 Reactor 32 10
51 Rebellion 32 6
52 Recycle 31 7
53 Rent 2,053 10
54 Salary 52 5
55 SAT 50 4
56 Schooling 3,010 22
57 Tip 244 6
58 Vote 159 5
59 Wage 4,360 10
60 White wine 4,898 11

Table 2: Data sets used in the empirical comparison.

Note that β0 can be omitted (set to 0) for all models when predictors and responses are
standardized. Some authors do not include the scale parameter γ when the loss function is
invariant under scaling. In this article, we are interested in regression under squared error
loss, which is not invariant under scaling. Inclusion of γ is therefore crucial.

4. Empirical analysis

We examined the predictive accuracy of simple regression models on a large collection of
real-world data sets. We assessed the predictive accuracy of different algorithms using root
mean squared prediction error (RMSE).

Data sets. We used 60 publicly available data sets from varying domains. Sources
included online data repositories, statistics and data-mining competitions, packages for
R statistical software, textbooks, and research publications. The number of observations
ranged from 31 to 39,644, the number of predictors from 3 to 52. Table 2 shows the number
of observations and the number of predictors in each data set. Many data sets are from
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earlier studies (Czerlinski et al., 1999; Şimşek, 2013). Detailed information about the data
sets can be found in the Online Appendix.

We had difficulties finding data sets for regression where p > n. Although regularized
linear models have been developed primarily for problems where p > n, such data nat-
urally mostly seem to occur in (binary) classification contexts in biology and genomics.
Nonetheless, p > n situations occurred in our learning curve analysis for small training-set
sizes.

For each data set, the response was standardized and all predictors were standardized
and directed. Missing predictor values were mean imputed and observations with missing
response values were removed from the data set.

Benchmark models. We chose to include three benchmark models, described below.
Two are state-of-the-art regression models. We included the OLS model for historic reasons.

(1) The OLS model minimizes the mean squared error between predicted and true values
on the training data. We used the R (R Core Team, 2015) built-in function lm for estimating
OLS. Whenever there were p predictors, n observations, and p > n, we used only the n− 1
predictors that were most correlated with the response.

(2) The elastic net (Zou and Hastie, 2005) is a state-of-the-art regularized linear regres-
sion model. Regularized linear models were originally developed to overcome the estimation
difficulties of OLS (Hoerl and Kennard, 1970). They attempt to optimize prediction ac-
curacy by finding the happy medium between simplicity and complexity. The elastic net
has two main parameters. Parameter λ ≥ 0 controls the overall strength of regularization.
The elastic net reduces to OLS for λ = 0. Parameter 0 ≤ α ≤ 1 controls the amount of
ridge versus Lasso characteristics. The elastic net reduces to two other regularized linear
models, ridge regression (Hoerl and Kennard, 1970) when α = 0 and the Lasso (Tibshirani,
1996) when α = 1. We used the R package glmnet (Friedman et al., 2015) to estimate the
elastic net. The parameters α and λ were jointly optimized using 10-fold cross-validation
on a two-dimensional grid with α ∈ {0, 0.25, 0.5, 0.75, 1} and λ on the built-in search path
of glmnet, which uses a log-spaced grid with a maximum of 100 candidate values. We also
tested ridge regression and the Lasso in our empirical study and found their results to be
very similar to those of the elastic net.

(3) Random forest regression (Breiman, 2001) is a non-parametric and non-linear re-
gression model. It optimizes prediction accuracy by fitting an ensemble of regression trees.
We used the R package randomForest (Liaw and Wiener, 2002) with ntree = 500 trees per
forest.

Results. We show three sets of results. Figure 1 shows the mean RMSE of each
algorithm across 60 data sets, computed using 10-fold cross-validation. These estimates of
the prediction error correspond to large training-set sizes relative to the total size of the
data set (90% of available observations).

Figure 2 shows learning curves averaged across 60 data sets, as the training set varied in
size from 4 to 100. The figure shows learning curves for all models except mean prediction,
random weights, and OLS.4 The test set consisted of 10% of the total number of observations
in the data set and did not overlap with the corresponding training set. The estimation
procedure was repeated 100 times for each training-set size and algorithm. There is a slight

4. OLS overfits for small ratios of n/p. Resulting average RMSEs were outside the figure boundaries because
some data sets had a large number of predictors p.
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Figure 1: 100 × 10-fold cross validated root mean squared error (RMSE) across 60 data
sets. OLS = ordinary least squares.

increase toward the end of the learning curve because the means were calculated on fewer
data sets for higher training-set sizes. The number of data sets large enough to be eligible
for a given training-set size is indicated at the top of the figure.

Finally, we present learning curves of various algorithms in individual data sets. Figure
3 shows learning curves in the data sets Diabetes, Prostate, and SAT. Figures A.1 to A.3 in
the Online Appendix present the learning curves in all remaining data sets.

We first compare simple regression models to benchmark models collectively. We then
comment on results within the groups of simple and benchmark models, respectively.

Averaged across 60 data sets, simple models were collectively outperformed by all bench-
mark models for larger training-set sizes.5 However, equal weights and correlation ranks
outperformed all competing models for training-set sizes below 15 on the mean learning
curve. In addition, the learning curves in individual data sets show that for many data sets,
there is at least one simple model that performed well across large parts of the learning
curve. Let us define the minimum error curve as the algorithm with minimum error among
all algorithms as a function of training-set size. Then, in 22 of 60 data sets, simple models
occupied the entire minimum error curve except for possibly one training-set size. In an-
other 21 data sets, simple models occupied at least half of the minimum error curve. The
17 remaining data sets were dominated by benchmark models.

On many data sets some simple models performed very well while others performed
very poorly, rather than all simple models performing equally well. A good example is the

5. The end of the learning curve shows the average across all 30 data sets that were large enough for
training-set sizes of 100. The cross-validation-based analysis of Figure 1 shows the average across all 60
data sets for training-set sizes ranging from 27 to 35,679 observations, corresponding to 90% of the total
size of the respective data sets. The two analyses show similar results.
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Figure 2: Learning curves across 60 data sets. The number of large-enough data sets per
training-set size is indicated on top of the graph. Mean RMSEs for OLS are
beyond the plot range and have not been plotted.

SAT data set shown in Figure 3, which is one of the few data sets for which both equal
weights and correlation ranks perform poorly, but for which single cue is the best-performing
algorithm across the entire learning curve.

The data sets Prostate and Diabetes have been used to illustrate the favorable predic-
tion performance of the elastic net and other sophisticated regression models in the past
(Tibshirani, 1996; Efron et al., 2004; Zou and Hastie, 2005). Figure 3 shows that correlation
weights outperformed the elastic net in both data sets in training-set sizes smaller than 30.

On the mean learning curve, correlation ranks outperformed all other simple models
across the entire curve. However, on individual data sets, correlation ranks was often
outperformed by one or more of the other simple models. In fact, in almost all data sets,
the learning curve of correlation ranks lay in between those of equal weights and correlation
weights, independent of which of the two latter models performed better. This confirms the
intuition that correlation ranks is an intermediately complex model that is able to perform
well in situations of scarce information (similar to equal weights) but can also exploit the
benefits of weighting predictors differently when there is enough information to reliably
estimate the ranking of predictors.

Both equal-weights and single-cue regression share the property of performing either
very well or very poorly on many data sets. Single-cue regression was the second-worst or
worst model over the entire range of training-set sizes in 23 of the 60 data sets. Yet it was
also the best-performing model across the entire learning curve in SAT and across large
parts of the learning curve in Body fat. Equal weights outperformed all other models across
the entire learning curve in data sets Bone, Fuel, Pinot, Reactor, Rent, and Wage. But it
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Figure 3: Individual learning curves for data sets Diabetes, Prostate, and SAT. Mean RM-
SEs above 1.2 have not been plotted. OLS = oridnary least squares.

was by far the worst model on large parts of the learning curve in Diamond, Excavator,
Fish, and SAT.

Among benchmark models, OLS was outperformed by random forest regression and the
elastic net, both on average and individually on most of the data sets. Elastic net generally
outperformed random forest regression, especially on small training sets.

5. Discussion

Our analysis shows that simple regression models, for example, equal-weights regression,
routinely outperform not only multiple linear regression but also state-of-the-art regression
models, especially on small training sets.

None of the simple models we examined predicted well in all data sets. But in nearly
all data sets, there was at least one simple model that predicted well.

Because OLS has severe estimation difficulties with small training sets, it would be
reasonable to expect simple regression models to perform better than OLS on small training
sets. However, we did not expect the simple models to be able to compete with state-of-
the-art regularized linear models such as the elastic net.

Regularized linear models attempt to optimize prediction accuracy by searching through
a possibly infinite-dimensional hypothesis space of linear models, ranging from a sparse
linear model to the full, complex OLS solution. All simple models considered here are
special cases of the linear regression model. Even though we tested only four of them,
these simple models could sometimes outperform the carefully-optimized elastic net. These
results indicate that it may be possible to substantially reduce the size of the hypothesis
space of linear models needed to make good inferences. In other words, it is possible to
make good inferences based on simple models if one only knows which simple model to
choose.

Future work could examine models that adaptively choose between a few but maximally
different simple models. For example, a model that chooses between single cue, equal
weights, and correlation ranks using only information in the training data could be a fast
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and robust alternative to current state-of-the-art models, while being computationally less
challenging. The main question will be whether this algorithm can choose an appropriate
simple model on the basis of only a small number of training examples.

An important research direction is to examine whether people can intuitively pick an
appropriate simple model for a given problem. Such a finding may explain how people often
make good decisions despite their bounded cognitive capacities.
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Abstract

The need for inspecting (ir)rationality in decision making (DM) — the observed discrep-
ancy between real and prescriptive DMs — stems from omnipresence of DM in individuals’
and society life. Active approaches try to diminish this discrepancy either by changing
behaviour of participants (DM subjects) or modifying prescriptive theories as done in this
text. It provides a core of unified merging methodology of probabilities serving for knowl-
edge fusion and information sharing exploited in cooperative DM. Specifically, it unifies
merging methodologies supporting a flat cooperation of interacting self-interested DM par-
ticipants. They act without a facilitator and they are unwilling to spare a non-negligible
deliberation effort on merging. They are supposed to solve their DM tasks via the fully
probabilistic design (FPD) of decision strategies. This option is motivated by the fact that
FPD is axiomatically justified and extends standard Bayesian DM.

Merging is a supporting DM task and is also solved via FPD. The proposed merging
formulation tries to be as general as possible without entering into technicalities of measure
theory. The results generalise and unify earlier work and open a pathway to systematic
solutions of specific, less general, problems.

Keywords: fully probabilistic design, distributed decision making, cooperation

1. Introduction

Decision making (DM), seen as a purposeful choice among available options, covers a sub-
stantial portion of human activities as well as of institutions and devices created by people.
DM almost always runs under uncertainty and with incomplete knowledge. This makes DM,
by its nature optimising, extremely demanding on cognitive resources of any participant —
the DM subject. Among a range of DM methodologies those based on Savage’s DM concept,
Savage (1954), seem to be the most promising and they are permanently generalised and
refined. The fully probabilistic design of decision strategies (FPD), Kárný (1996); Kárný
and Guy (2006); Kárný and Kroupa (2012), on which this paper relies, is of a Savage’s
type. The space limitations prevent us to discuss very rich related work even immediate
predecessors as Kárný et al. (2009); Sečkárová (2013). The next characterisation of the
used FPD is an exception enforced by its weak penetration to DM communities.

FPD, as all Bayesian solution, models probabilistically the closed-loop behaviour — the
collection of all considered and opted variables within the DM task. Unlike its predecessors,
FPD probabilistically describes the DM preferences through an ideal closed-loop model.
FPD selects the optimal strategy — the sequence of randomised decision rules mapping the

c©2016 Kárný.
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knowledge on actions — minimising the KLD divergence, Kullback and Leibler (1951), of
the closed-loop model to its ideal counterpart.

DM is always performed with limited resources — the time-span devoted to the solved
DM task, the extent of the manageable knowledge, physical and computational resources.
This naturally led to a division of DM tasks. In it, the involved participants (individuals
or groups formed both by people, technical and organisational tools they use) solve smaller
DM sub-tasks and select actions — irreversibly implemented decisions. This allows groups
of participants to function but at substantial costs expended on cooperation — goods and
knowledge exchanging, sharing, making concessions with respect to participant’s aims, etc.

Governance of the cooperation process by a participant at a higher hierarchical level
(facilitator, coordinator, institutional or legal authority, etc.) is a DM on its own. It can
make the multi-participants’ DM efficient but with increasing complexity of the addressed
DM tasks demands on governance resources quickly increase and its efficiency strongly
drops. Due to this, the need arises for distributed DM (almost) without a facilitator — a
sort of democratic scenario arises, Kárný and Guy (2004).

The democratic scenario essentially lets individual DM subjects to act in a selfish way.
The selfish (self-centered) participant cares about her own DM tasks only. She possibly
cooperates with her neighbours — the participants with which she interacts and about
which she is able and willing to care. The DM aims, however, persist: each participant tries
to optimally reach her “personal” DM objectives under the given circumstances.

Note that the term selfish lacks here a moral dimension. For instance, it can be perceived
as a quite positive if the care about societal welfare is adopted by the participant as her
personal aim. Also note that real limited cognitive resources of any participant imply that
the number of her neighbours will remain relatively small.

This paper aims to equip any selfish participant having limited cognitive resources with
a tool supporting her DM by taking into account influence of neighbours. In the quest for an
applicable prescriptive DM methodology, the constructed “advisor”: i) is to be impersonal
and implementable as a feasible algorithm, which adds as little as possible (ideally none)
additional options (parameters, tuning knobs); ii) must not require from the supported
participants more than what they handle anyway; iii) must offer its support in a way
understandable to individual participants: as a by-product this guarantees privacy of the
respective participants; iv) must let the supported participants decide whether they accept
the advise or not.

The proposed solution assumes that all involved participants use FPD as the tool for
solving their DM tasks. This is the most general prescriptive DM methodology, which is
feasible for realistic but sufficiently small DM tasks. It also covers Bayesian participants.

Section 2 prepares the problem formulation and solution presented in Section 3. The
solution depends on unwanted options (parameters), which are unambiguously specified in
Section 4. The solution operates on joint probabilities acting on the same collection of
variables. Section 5 describes the way how to cope with this restrictive condition. Section
6 adds remarks on conversions of non-probabilistic elements into the merged probabilities,
recommends when to accept the gained advices and outlines open problems.
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2. Preliminaries

We use the following notions and conventions.

DM subjects: A participant P belongs to a group of her neighbours (Pp)p∈p? , |p?| <∞.
The term advisor A refers to the cooperation-supporting algorithm serving to this group.

Sets, mappings, finite collections: Sets of entities a,X,R, . . . are denoted a?, X?,R?, . . .
|X?| means cardinality of the set X?. Sets are subsets of separable spaces, typically, finite
sets of integers, finite-dimensional real spaces or sets of probability densities (pd, Radon-
Nikodým derivatives with respect to counting or Lebesgue’s measure — both denoted d•).
Pds and other mappings are distinguished by san serif fonts. A finite collection of entities,
say real scalars (λp)p∈p? , is often referred as λ = (λp)p∈p? . Inequalities like λ > 0 are then
understood component-wise.

Behaviour, ignorance, action, knowledge: Each supported participant Pp, p ∈ p?,
operates on a specific (closed-loop) behaviour bp ∈ b?p, which is adopted name for all variables
that Pp considers, opts or knows. The opted action splits the behaviour as follows1

bp = (gp, ap, kp) = (ignorance, action, knowledge) behaviour parts (1)

= (considered but inaccessible, opted by Pp,used for the action choice) parts.

The performed minimisation of any expected loss over randomised decision rules reduces
to the minimisation of the expected loss conditioned on the knowledge available for the
action choice, Berger (1985). This allows us to simplify presentation by (mostly) not spelling
explicitly the used knowledge in conditions of the involved pds. This formally reduces
behaviours to

bp = (gp, ap) = (ignorance, action) behaviour parts (2)

= (considered but inaccessible, opted by Pp) parts, p ∈ p?.

Simplifying assumptions: The following concessions from full generality will be made.

• The cardinalities of the behaviour sets of all participants are finite

bp ∈ b?p = {1, . . . , |b?p|}, 2 ≤ |b?p| <∞, p ∈ p?. (3)

The theory of the numerical representation of DM preferences, Debreu (1954), implies
that the considered, numerically representable, behaviour spaces have to be separable.
Then, the considered finite sets of behaviours can be seen as images of finite projections
(discretisations) of the underlying separable spaces of infinite cardinalities.

• Static DMs are considered. Each participant selects a single action, i.e. she selects and
applies a single randomised decision rule described by a pd r(ap) = r(ap|kp), p ∈ p?.

1. While terms “knowledge” and “action” (an irreversibly adopted decision) are common and well-accepted,
the unusual term “ignorance” (linguistically opposite to knowledge) is often felt as inappropriate. We
ask patient reader to take it as technical term describing the part of the closed-loop behaviour differing
from the action and knowledge.
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FPD: Each participant Pp, p ∈ p?, within a group of neighbours deals with her closed-loop
model, see e.g. Kárný and Guy (2006), which is a joint pd,

crp(bp)︸ ︷︷ ︸
closed−loopmodel

= m(gp|ap)︸ ︷︷ ︸
environmentmodel

× r(ap)︸ ︷︷ ︸
decision rule

, bp ∈ b?p. (4)

The factorisation (4) is implied by the chain rule for pds. The first factor on the right-hand
side relates action to ignorance, i.e. to the considered but (yet) unknown reaction of the
participant’s environment. This motivates its interpretation. The second factor already has
been recognised as the model of the decision rule.
Pp applying FPD possesses a preference-expressing ideal counterpart cIp(bp) of crp(bp),

which determines her FPD-optimal decision rule rop = rop(ap)

rop ∈ Arg min
rp∈r?p

∫
b?p

crp(bp) ln

(
crp(bp)

cIp(bp)

)
dbp = Arg min

rp∈r?p
KL(crp ||cIp), p ∈ p?, (5)

i.e. the optimal decision rule rop minimizes the KLD KL(crp ||cIp) of crp from cIp.

3. Merging Problem Formulation and Solution

We assume that a participant seeks for support and her abilities delimit a group of neigh-
bours. This defines a group of supported participants. Any participant can be a member
of many groups, each with its advisor. Groups act in an asynchronous way and advices are
offered for exploitation when created. The following design concerns a fixed group with a
fixed knowledge processed by the group members having a single fixed advisor A.

The required support: Each group member Pp, p ∈ p?, provides the advisor A her
closed-loop model with the aim obtaining an advice about a non-void factor of her closed-
loop model (4), which she is willing to change according to the A advice.

The group behaviour, A action: The group behaviour2 B ∈ B? has the structure

B = (G,A) = (ignorance, action) of the group behaviour parts (6)

G = the group ignorance consists of behaviours (2) of all participants

G? = ∪p∈p?b?p
A = A(G) = the A action is a pd on G? merging pds cr = (crp)p∈p?

A? = all pds with the domain G? of a finite cardinality

K = the A knowledge consists of the pds cr and possibly cI .

Verbally, the advisor action A is the pd A(G) = A(G|K) modelling the group ignorance G
formed by (gp, ap)p∈p? — the advice is offered to any participant Pp before she makes her
action ap. Knowledge K is insufficient for a unique specification of the pd A ∈ A?, and a
randomised decision rule R(A) = R(A|K) is to be designed. This is the factor of the group
closed-loop model CR

CR(B) = CR(G|A)CR(A) = A(G)R(A). (7)

2. The mathematical entities related to the supported participants are marked by small letters while the
group quantities, handled by A, are denoted by their capital counterparts.
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The first equality in (7) uses the definition of the group behaviour B = (G,A) ∈ (G?, A?)
(6) and the chain rule for pds. The second equality in (7) is implied by the definition of the
advisor action A = A and of the decision rule R. The knowledge implicit in conditions of
processed pds (cf. simplified version (2) of (1) is uninfluenced by the optimised rule R.

The desired merger: Let ep(G) be a model of the group behaviour G ∈ G? from the
Pp point of view. Section 5 discusses the construction of these pds from the processed pds
cr(G) = (crp(bp))p∈p? . It contains factors, which the cooperating participants are ready to
replace according to the A advice. Of course, Pp may be inclined to accept the replacement
if the merger — the advisor action — A = A is not too far from ep. The approximation
quality from the participant view point should be measured by the KLD, Bernardo (1979);
Kárný and Guy (2012),

KL(ep||A) =

∫
G?

ep(G) ln

(
ep(G)

A(G)

)
dG, p ∈ p?. (8)

The decision rule R is to provide mergers A ∈ A?, which make the KLD (8) small ∀p ∈ p?.

The supporting DM task: The choice of R is the DM task, which is here formulated as
FPD of the advisor decision rule entering the group closed-loop model (7). The ideal group
closed-loop model described by a pd CI(B) quantifies the A DM aim

CI(B) = CI(G|A)CI(A) = A(G)RI(A), G ∈ G?, A ∈ A?. (9)

The first equality in (9) follows the definition of the group behaviour (6) and the chain rule
for pds. The second one expresses the wish to get such a merger A, which describes well the
group ignorance G ∈ G?. The ideal decision rule RI(A) is one of the design options (tuning
knob) through which the merging aim is fed into the solved group DM task.

For options (7), (9), the optimal decision rule Ro = Ro(A), A ∈ A?, is

Ro ∈ Arg min
R∈R?

KL(CR||CI) = Arg min
R∈R?

KL(R||RI), (10)

where the equality follows from cancelling the common factor A and integrating out the
group ignorance G ∈ G?.

The set of admissible DM rules: The optimisation task (10) is determined by the set
R? of admissible DM rules R and by the ideal decision rule RI . They are gradually selected
with the selection finalised in Section 4.

The KLD KL(R||RI) is finite iff the support of R

supp[R] = {A ∈ A? : R(A) > 0} (11)

is included in the support of RI . Thus, meaningful choices for R? are

∅ 6= R? ⊂ {R : supp[R] = supp[RI ]}. (12)

A specific choice of the set R? should primarily reflect the already formulated wish to
deal with such Rs, which generate mergers A ∈ A?, which make KLDs (8) small. This
singles out the rules R, for which the expectations (with respect to R(A)) of divergences
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KL(ep||A), p ∈ p?, (8) are finite and small. This wish and non-negativity of the inspected
KLDs delimit

R? =

{
R :

∫
A?

R(A)KL(ep||A)dA (13)

=

∫
A?

R(A)

[∫
G?

ep(G) ln

(
ep(G)

A(G)

)
dG

]
dA ≤ φp <∞, p ∈ p?

}
,

where the positive scalars φ = (φp)p∈p? should be chosen as small as possible. This intuitive
wish is given the precise meaning in Section 4. The limits φ serve us a technical tool for
determining the structure of the FPD-optimal decision rule Ro (10). Section 4 removes
these undesirable tuning knobs of the advisor A.

The next proposition determines the FPD-optimal merger selected from (13).

Proposition 1 (The Form of the FPD-Optimal Merger) Let us consider a fixed ideal
decision rule RI and a non-empty set R? (13) of optional A decision rules. Then, the FPD-
optimal decision rule Ro(A) solving (10) on this set is proportional to

RI(A) exp

∑
p∈p?

λp

∫
G?

ep(G) ln (A(G)) dG

 (14)

= RI(A)
∏
G∈G?

(A(G))νλ(G) , νλ(G) =
∑
p∈p?

λpep(G),

where the non-negative Kuhn-Tucker multipliers λ = (λp)p∈p? are chosen so that inequalities
in (13) are satisfied.

Proof We use the Kuhn-Tucker functional, Kuhn and Tucker (1951), respecting the con-
straints (13) on the optimised rules R ∈ R? and rearrange it into the KLD of the optimised
R to Ro (10), which is minimised by equating these arguments. The factor independent of
A cancels and the final form of (14) uses simple operations relying on |G?| <∞. �

4. Choice of the Tuning Knobs

The usefulness of the solution described by Proposition 1 is strongly influenced by the
optional tuning knobs in them. They are gradually and unambiguously specified here.

The replacement of φ by the choice λ: A good advisor A should make the approxi-
mation of all processed pds e = (ep)p∈p? in (13) as tight as possible. It primarily means that
all inequalities are to be active and thus λ > 0. In this case, the choice of φ > 0 becomes
formally equivalent to the choice of λ > 0.

A desired impartial A must not prefer any Pp. This implies the basic requirement on
possible λ > 0, cf. Sečkárová (2015),∫

A?
Ro(A)KL(ep||A)dA = Φ, ∀p ∈ p?, (15)

where the finite constant Φ is common for all p ∈ p?.
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This specify |p?| − 1 conditions on |p?| Kuhn-Tucker multipliers λ > 0. The quest for
tightness of the approximation (8) implies that the advisor A, which uses the ideal decision
rule RI leading to a Φ in (15), is preferable against the advisor Ã with R̃I leading to a
Φ̃ ≥ Φ. This provides the needed |p?|-th condition for an unambiguous choice of λ > 0.

The ideal decision rule RI : The ideal decision rule RI(A) is chosen as a finite mixture
of Dirichlet pds D(·|·), which can arbitrarily-well approximate any RI(A), Antoniak (1974),

RI(A) =
∑
k∈k?

αkD(A|νIk), k? = {1, . . . , |k?|}, |k?| <∞, where (16)

α ∈ α? =
{
αk ≥ 0,

∑
k∈k?

αk = 1
}
, νIk = (νIk(G))G∈G? > 0, k ∈ k?,

D(A|ν) =

∏
G∈G? A(G)ν(G)−1

B(ν)
, B(ν) =

∏
G∈G? Γ(ν(G))

Γ
(∑

G∈G? ν(G)
) , ν = (ν(G))G∈G? ,

where the gamma function Γ(x) =
∫∞

0 tx−1 exp(−t)dt, for x > 0.

The ideal decision rule (16) leads to an optimal rule (14) with the Dirichlet mixture
form

Ro(A) =
∑
k∈k?

αkD(A|νIk + νλ). (17)

The specific choice of α, |k?| and νI follows from the required impartiality of the advisor
A and from the following simple uncontroversial requirement: An impartial A chooses its
ideal decision rule beforehand for all possible e = (ep)p∈p? . It means that it has to process
well even the special case e1 = . . . = e|p?| 6= νIk, k ∈ k?. In this case, the expected values∫

A(G)?
A(G)Ro(A(G))dA(G) = e1(G) = . . . = e|p?|(G), ∀G ∈ G?, (18)

represent the only meaningful option. The optimal rule (17) has the expected values∫
A(G)?

A(G)Ro(A(G))dA(G) =
∑
k∈k?

αk
νIk(G) + νλ(G)∑

G∈G?(νIk(G) + νλ(G))
, ∀G ∈ G?, (19)

for which the equality (18) is reachable iff (νIk(G))k∈k?,G∈G? = 0. Thus, only identical
improper components D(A|νIk = 0) in (16) meet (18). For them, the mixture (16) reduces
to the single-component improper ideal decision rule RI(A) = D(A|νI = 0). This ideal
decision rule always gives the proper optimal rule Ro (14) for the considered λ > 0, which
makes νλ > 0. Indeed, in the linear combination νλ (14) at least one ep assigns a positive
value to any G ∈ G? as G? is delimited by this requirement.

The choice of Φ (15): The above considerations uniquely specified the improper ideal
decision rule RI and the form of the optimal rule Ro

RI(A) = D(A|νI = 0) ∝
∏
G∈G?

A(G)−1

(17)︷︸︸︷⇒ Ro(A) = D(A|νλ). (20)
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It also provided |p?| − 1 conditions (15) for |p?| Kuhn-Tucker multipliers λ > 0. Thus, it
remains to specify the constant Φ in (15).

For a given νλ > 0 (14), and arbitrary p ∈ p?, the left-hand side of (15) reads

Φp =

∫
A?

Ro(A)KL(ep||A)dA (21)

= −
∑
G∈G?

ep(G)

∫
A?

D(A||νλ) ln(A(G))dA−
∑
G∈G?

ep(G) ln(e−1
p (G))︸ ︷︷ ︸

H(ep)

= −
∑
G∈G?

ep(G)

[
Ψ(νλ(G))−Ψ

( ∑
G̃∈G?

νλ(G̃)
)]
− H(ep),

where Ψ is the digamma function, the derivative of logarithm of the gamma function,
Abramowitz and Stegun (1972). The formula for the expectation of ln(A(G)) with respect
to Dirichlet pd is, e.g., in Kárný et al. (2006). The λ-independent summand H(ep) is the
entropy of the processed pd ep. For a simple presentation, let us denote3

µ =
∑
p∈p?

λp, ζp =
λp∑
p∈p? λp

, eζ(G) =
∑
p∈p?

ζpep(G)

(14),(21)︷︸︸︷⇒ (22)

Φp = −
∫
G?

ep(G)Ψ(µeζ(G))dG+ Ψ(µ)− H(ep).

There, the pd eζ on G? is the mixture of the pds supplied by the respective participants.
Given (22), the choice of λ > 0 is equivalent to the choice of the free p−1 positive weighting
probabilities ζ = (ζp)p∈p? and the scaling factor µ > 0. For a given pd ζ > 0, determined
so that all Φp = Φ, the choice of Φ is equivalent to the choice of µ > 0.

The value Φp is a decreasing function of µ and its absolutely smallest value −H(ep) is
reached for µ = ∞. Thus, µ is found by solving (15) with the biggest µ < ∞, for which
its solution exist. With the introduced notations and performed evaluations, (15) gets the
form of |p?| − 1 equations for the probabilistic weights ζ > 0∫

G?
(ep(G)− e1(G))Ψ(µeζ(G))dG = H(e1)− H(ep), ∀p ∈ p?, (23)

and the scalar µ > 0 is selected according to the above dictum.

Remark An analysis is needed for whether a solution of (23) exists, i.e. whether R? 6= ∅.
Also uniqueness is to be inspected and an efficient algorithm for its construction designed.
All these important tasks are out of the paper scope.

5. Extension of Processed PDs cr to PDs e Acting on Group Behaviour

The proposed merging works with the collection of pds e = (ep)p∈p? defined over the group
ignorance G ∈ G?, but participants Pp, p ∈ p?, provide their closed-loop models crp assigning

3. The integral notation used hereafter underlines the conjecture that the results hold for |B?| = ∞.

26



Implementable Prescriptive Decision Making

probabilities to b?p only. The needed extension cr = (crp)p∈p? → e = (ep)p∈p? is to be done
the advisor A. Altogether, A has to select a decision rule RE : cr → (A,E), generating the
action pair consisting of the derived merger A and the pd E ∈ E? on the possible extensions
e = (e(G)p)p∈p?,G∈G? of cr = ((crp(bp))bp∈b?p)p∈p? . The subscript E stresses that the discussed
decision rule extends that treated in previous sections.

The randomised rule RE(A,E) describes action pairs (A(G|E),E(e)) occurring in the
chain-rule factorisation

RE(A,E) = RE(A|E)RE(E). (24)

The (extended) group behaviour is B = (G, (A,E)) = (group ignorance, (action pair)) parts
and the closed-loop model

CRE (B) = CRE (G|A,E)CRE (A|E)CRE (E) = A(G|E)RE(A|E)RE(E), (25)

where the plain chain rule gives the first equality and the second one directly follows from
the definitions of individual factors. The ideal closed-loop model is

CIE(B) = A(G|E)RIE(A|E)RIE(E), (26)

where the chain rule is used and the wish that A should describe well group ignorance is again
applied. With this, the FPD-optimal extended decision rule RoE(A,E) = RoE(A|E)RoE(E)
is the minimising argument in

min
RE∈RE

?
KL(CRE ||CIE) = min

RE∈RE
?

KL(RE ||RIE) (27)

= min
RE(E)

∫
E?

RE(E)

[
ln

(
RE(E)

REI(E)

)
+ min

RE(A|E)

∫
A?

RE(A|E) ln

(
RE(A|E)

RIE(A|E)

)
dA︸ ︷︷ ︸

Φ(E)

]
dE,

where again A(G|E) has cancelled and G integrated out.
As demonstrated below, the treatment of the second summand in (27) reduces to that

specified and optimised in previous sections. Thus, the ideal pd RIE(E) determining the
first summand only needs to be chosen. Its support has to allow only the extensions, which
preserve the closed-loop models cr provided by individual participants, i.e.

supp[RE(E)] = {E : supp[E] = {e = (ep)p∈p? : ep(G) = ep(G−p|bp)cr(bp)}} , (28)

where G−p complements bp to G, i.e. G = (G−p, bp), ∀p ∈ p?.
The following adopted leave-to-the-fate option, Kárný et al. (2006),

RIE(E) = RE(E) on supp[RE(E)] (29)

respects that no other requirements exist with respect to RE(E). Under (29), the minimised
functional (27) is linear in the optimised RE(E) and minimum is reached by the deterministic
rule RoE(E) concentrated on a minimiser Eo of Φ(E) defined in (27).

For a fixed E concentrated on a point e in supp[E] (28), the second minimisation in (27),
defining Φ(E), coincides with the optimisation in Section 3, Proposition 1. Also, the choice
of the tuning knobs, Section 4, is the same when taking into account the correspondence

R(A)↔ RE(A|E), RI(A)↔ RIE(A|E). (30)
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This uniquely determines RIE(A|E) = D(A|νI = 0) and the optimal RoE(A|E) = D(A|νλ)
and the function Φ(E) to be minimised with respect to free factors (e(G−p|bp))p∈p? coincides
with the common value Φ (15).

A general pd E in the support of RIE(E) (28) is a convex combination of pds E con-
centrated on pds e ∈ e? = supp[E]. The complete analogy of reasoning made in Section 4
recommends the ideal decision rule RIE(A|E) = D(A|νI = 0). The set e? defined by con-
straints on possible e (28) is the convex set. Thus, the optimisation over E ∈ E? reduces
to optimisation over those concentrated on points e = (e(G−p|bp)crp(bp))p∈p?,G∈G? . This
finalises the solution of the general merging case summarised now for reference purposes.

Proposition 2 (General Merging) Let the closed-loop models of neighbours4 cr(G) =
(crp(bp))p∈p? be given and the group ignorance G ∈ G? be the concatenation of all variables
occurring in bp, p ∈ p?, while for each G ∈ G? at least one crp(bp) is positive. Then, the
FPD-optimal (extended) advising rule of an impartial advisor A respecting (18) is described
as follows. Among pds of the form ep(G) = e(G−p|bp)crp(bp), p ∈ p?, G = (G−p, bp), find

min
(e(G−p|bp))p∈p?

Φ(e) = (31)

min
(e(G−p|bp))p∈p? , µ>0, ζ∈ζ?

∫
G?

e1(G)Ψ(µeζ(G))dG+ Ψ(µ)− H(e1)

with the optimised µ > 0 and the probabilistic weights ζ > 0 entering

eζ(G) =
∑
p∈p?

ζpe(G−p|bp)crp(bp) and∫
G?

(ep(G−p|bp)crp(bp)− e1(G−1|b1)cr1(b1))Ψ(µeζ(G))dG = H(e1)− H(ep), ∀p ∈ p?,

with Ψ(µ) being digamma function and the entropy H(ep) defined

H(ep) = −
∫
G?

ep(G−p|bp)crp(bp) ln(ep(G−p|bp)crp(bp))dG. (32)

The minimiser (eo, µo, ζo) determines the optimal advisory rule with RoE(E) concentrated
on eo and RoE(A|E) = RoE(A|eo) = D(A|µoeoζo), with eoζo =

∑
p∈p? ζopeop(G−p|bb)crp(bp).

6. Concluding Remarks

The contribution to a prescriptive DM theory, which respects constraints of real DM par-
ticipants in knowledge sharing, is the main message brought by this paper. The proposed
merging of probabilistic knowledge of neighbours is based on a systematic use of FPD and
the impartiality requirement suppressing undesirable tuning knobs. Limited space prevents
us in describing how to support participants in transforming their non-probabilistic knowl-
edge into probabilities (crisp values as measures concentrated on them, marginal pds and
deterministic relations, Sečkárová (2015), extended by minimum cross-entropy principle,
Shore and Johnson (1980), re-interpretation of fuzzy rules as conditional pds, etc.)

The paper described how to construct advices but does not guide when accept them. It
has, however, a relatively clear conceptual solution. After merging, the advisor A generates

4. The same procedure applies even when factors of crp(bb) are communicated to A only.
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an advice Ao either via sampling from RoE(A|eo), Proposition 2, or by taking Ao as the
expected value of the optimal advising rule. Then the advice cAp is simply the marginal pd
of Ao(G), G ∈ G?

cAp(bp) =

∫
G?−p

Ao(G−p, bp)dG−p. (33)

It operates on variables known to the participant Pp and as such it is understandable to
her. If the participant replaces crp or its factor by the corresponding factor of the advice Ao
she gets the modified closed-loop model cAp. Naturally, she takes it as a good advice iff

D(cAp||cIp) ≤ D(crp ||cIp). (34)

Thus, Pp evaluates the quality of the advice according to her original selfish aim. The
improvement (34) leading to advice acceptance is possible due to the fact that the advisor A
operates on a wider knowledge and may respect supportive as well as competitive tendencies
in the group interactions.

Specialisations to subclasses of our general solution, like Quinn et al. (2016), theoretical
analysis of the proposed solution and its steps as well as the conversion of the conceptual
solution into a practical tool are obvious directions to be addressed.

Good news are that preliminary brute-force numerical experiments (made without ex-
tensions only) indicate desirable properties of the merger: i) the average is the optimal
merger iff the merged pds have identical entropy but its weight µ < |p?|; ii) the weight ζp
assigned to ep increases with entropy H(ep), which makes the merger robust; iii) the Bayes’
rule is the optimal merger if the merged pds are concentrated on crisp values.

It remains to discuss the concessions made, see Section 2. The obtained results are
conjectured to be amendable to unbounded refinements of the discretisation mappings.
This makes the assumption about finite cardinality of the behaviours’sets (3) non-restrictive.
Also, dynamic DM is expected to be solvable in the exactly the same way as the considered
static case. Note that whenever an external decision layer provides relative importance
degrees of the respective participants within a group then the advisor can respect them by
making the value Φ (15) the participant-specific.
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M. Kárný, J. Böhm, T. V. Guy, L. Jirsa, I. Nagy, P. Nedoma, and L. Tesař. Optimized
Bayesian Dynamic Advising: Theory and Algorithms. Springer, 2006.
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V. Sečkárová. Cross-entropy based combination of discrete probability distributions for dis-
tributed decision making. PhD thesis, Charles University in Prague, Faculty of Math-
ematics and Physics, Dept. of Probability and Mathematical Statistics., Prague, 2015.
Submitted in May 2015. Successfully defended on 14.09.2015.

V. Sečkárová. On supra-Bayesian weighted combination of available data determined by
Kerridge inaccuracy and entropy. Pliska Stud. Math. Bulgar., 22:159–168, 2013.

J. Shore and R. Johnson. Axiomatic derivation of the principle of maximum entropy & the
principle of minimum cross-entropy. IEEE Tran. on Inf. Th., 26(1):26–37, 1980.

30



Proceedings of Machine Learning Research 58 (2016) 31-40

Forecasting Spot Oil Price Using Google Probabilities

Krzysztof Drachal kdrachal@wne.uw.edu.pl

Faculty of Economic Sciences

University of Warsaw

Warsaw, Poland

Editor: Tatiana V. Guy, Miroslav Kárný, David Rios-Insua, David H. Wolpert

Abstract

In this paper DMA (Dynamic Averaging Model) is expanded by adding certain probabilities
based on Google Trends. Such a method is applied to forecasting spot oil prices (WTI). In
particular it is checked whether a dynamic model including stock prices in developed mar-
kets, stock prices in China, stock prices volatility, exchange rates, global economic activity,
interest rates, production, consumption, import and level of inventories as independent
variables might be improved by including a certain measure of Google searches. Monthly
data between 2004 and 2015 were analysed. It was found that such a modification leads to
slightly better forecast. However, the weight ascribed to Google searches should be quite
small. Except that it was found that even unmodified DMA produced better forecast than
that based on futures contracts or naive forecast.

Keywords: Dynamic Model Averaging, Dynamic Model Selection, Google Trends, Inter-
net Search Data, Spot Oil Price

1. Introduction

The oil market is quite a complex one. As a result, for practitioners there is no commonly
accepted model of forecasting spot oil prices. Usually, forecasts based on futures contracts
are used (Yang et al., 2002). Despite that obstacles, well-performing forecasts are crucial
for the whole energy market, oil-importing and oil-exporting countries, macroeconomic
forecasters, etc. (Alquist et al., 2013).

Generally, various forecasting methods on the oil market can be classified as: time
series models, financial models, structural models, artificial neural networks based models,
support vector machines models and qualitative method. The review of them can be found,
for example, in papers of Drachal (2016a) or Behmiri and Pires Manso (2013).

In this paper quite a novel method, called DMA (Dynamic Model Averaging) is explored
(Raftery et al., 2010). However, following Koop and Onorante (2014) the original method
is slightly modified to include Internet searches. Recently, Internet search data were exten-
sively applied in economics (Pavlicek and Kristoufek, 2015; Bangwayo-Skeete and Skeete,
2015; Scott and Varian, 2015; Choi and Varian, 2012; Dangl and Halling, 2012; Wu and
Brynjolfsson, 2010; Choi and Varian, 2009; Schmidt and Vosen, 2009).

Actually, also for the oil market Google searches were applied (Li et al., 2015; Fantazzini
and Fomichev, 2014), but not within the context of DMA. In particular, herein Google
variables are not used as independent variables in the regression equation, but they are used
to construct certain probabilities, which are used in computation of posteriori probabilities

c©2016 Drachal.



Krzysztof Drachal

in DMA recursive estimation. This is motivated by the assumption that a surge in searches
about certain determinant might indicate the relevance of this variable in the model.

Indeed, many researches indicated that the impact of various determinants of the oil
price might change in time (Aastveit and Bjornland, 2015; Zhang and Wu, 2014; Baumeister
and Peersman, 2013). DMA seems to be a very good method in such a case. Actually, the
interest in this method grows rapidly in finance (Naser, 2016; Aye et al., 2015; Bork and
Moller, 2015; Baur et al., 2014; Koop and Korobilis, 2012; Nicoletti and Passaro, 2012).

Herein, in particular the following problem was addressed: Do Google Trends might
somehow improve DMA forecast of the spot oil price? This question is positively answered
further in the text.

2. Data

Now, a short review of potential oil price determinants is presented. This serves as an
argument for the further data selection to the model.

According to Hotelling (1931) the price of non-renewable commodity should depend on
the interest rate. Up to 1980s it was commonly agreed that the most important oil price
determinant is OPEC decisions. Later attention was shifted to gross domestic product, stock
market activity and exchange rates (Bernabe et al., 2004; Yousefi and Wirjanto, 2004), as
well as, emerging markets (Basher et al., 2012).

Indeed, emerging markets were suggested to significantly impact the oil market (Li and
Leung, 2011). There is some evidence that oil price changes between 2007 and 2008 might
have happened due to the halt in the Chinese demand and supply (Kaufmann, 2011).

Within this context the global economic activity was also analysed. One of the ap-
proaches, which allows to use monthly frequency data is by the Kilian index (He et al.,
2010; Kilian, 2009).

Moreover, Du and He (2015), as well as many other researchers focused on the impact
of stock market volatility. Recently, much attention was put on speculative pressures (Car-
mona, 2015; Kilian and Murphy, 2014; Fattouh et al., 2013). Usually, they were measured
by the level of inventories (Hamilton, 2009).

Much more extensive literature review on the oil price determinants within the context
of a time-varying framework can be found, for example, in a paper by Drachal (2016a).

According to the presented literature review 10 potential oil price determinants were
identified (Tab. 1). Strategic Petroleum Reserves were excluded from the level of inventories
(Bu, 2014). Monthly data beginning on 2004 and ending on 2015 were taken. (Only for
IMP the weekly data were aggregated to monthly one by taking the daily mean for the
corresponding month.) This results in relatively short (in the context of DMA approach)
data set. However, this is an obstacle that cannot be overcome, because Google Trends
date back to 2004 only. (This is a common problem for all research with Google Trends
statistics.)

If there is much easily available data for U.S., there is a lack of global time series.
However, following, for example, Hamilton (2009) and Kilian and Murphy (2014), U.S.
data can be taken as proxies.

The estimated forecast was compared to the one obtained by NFP (Alquist et al., 2013),
i.e., 1-month NYMEX WTI futures prices (in USD).
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Table 1: Data description
name description

WTI WTI spot price (in USD)
MSCI MSCI World Index
TB3MS U.S. 3-month treasury bill secondary market rate (in percentages)
KEI Kilian index of global economy activity (Kilian, 2009)
TWEXM trade weighted U.S. dollar index (Mar, 1973 = 100)
PROD U.S. crude oil production (in 1’000 barrels)
IMP daily average of U.S. crude oil import (in 1’000 barrels / day)
INV U.S. total ending stocks of commercial crude oil (in 1’000 barrels)
VIX implied volatility of S&P 500
CONS total consumption of petroleum products in OECD (in quad BTU)
CHI Shanghai Composite Index

It should be noticed that DMA does not require data to be stationary. On the other
hand, it is desirable to normalize data, as this might significantly improve the outcomes
(Drachal, 2016b).

In case of search terms the following ones were taken. For MSCI: ”stocks”, ”developed
markets”, ”msci index”, ”stock prices”, ”stock market”, ”stock quotes”, ”equity perfor-
mance”. For TB3MS: ”market rates”, ”interest rates”, ”cpi”, ”inflation”, ”bond rates”,
”treasury bill”, ”fed”, ”libor”. For KEI: ”world economic activity”, ”gdp growth”, ”eco-
nomic activity”, ”economy”, ”economic growth”, ”business cycle”, ”industrial production”.
For TWEXM: ”exchange rates”, ”USD”. For PROD: ”oil production”, ”energy production”,
”oil supply”, ”opec”. For IMP: ”oil import”. For INV: ”oil inventories”, ”oil speculation”.
For VIX: ”stock market volatility”, ”market stress”, ”market risk”, ”implied volatility”,
”vix”, ”volatility index”. For CONS: ”oil consumption”, ”energy consumption”, ”oil de-
mand”, ”opec”. For CHI: ”china”, ”chinese economy”, ”china market”, ”shanghai compos-
ite index”. For WTI: ”wti”, ”oil price”, ”crude oil price”. Then for each variable the mean
of corresponding Google Trends was computed. This choice of search terms is quite general
and arbitrary. It might be desirable to include more search terms. However, it was left for
the further and much more extensive study, as even the choice of search terms is quite a
challenging task (Stephens-Davidowitz and Varian, 2015).

All calculations were done in R (2015) software.

3. Methodology

Herein, just a brief sketch of DMA (Dynamic Model Averaging) and DMS (Dynamic Model
Selection) is presented in order to explain the proposed modification with Google probabil-
ities. The detailed explanation can be found in the original paper (Raftery et al., 2010).

Let there be m determinants. Then, K = 2m different models can be constructed,
including the one with constant solely. Let us index time by t, and let the dependent variable
(the oil price) be yt. Let xkt denote determinants in the kth model (k = {1, . . . ,K}). Notice,
that for independent variables 1st lags were taken in all estimated models. Then, the state
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space model is given by

yt = xkt θ
k
t + εkt , (1)

θkt = θkt−1 + δkt . (2)

The regression parameters are denoted by θkt and εkt ∼ N(0, V k
t ) and δk ∼ N(0,W k

t ).
Initially, V k

0 := I and W k
0 is set according to the algorithm given by Raftery et al. (2010).

I denotes the unit matrix. (Setting V k
0 := I is reasonable, because data were normalized.

In particular, let Yt denote the core data. Then, the normalization is done with the formula
yt := Yt−min(Y0,...,Yt,...)

max(Y0,...,Yt,...)−min(Y0,...,Yt,...)
.) Further, V k

t is estimated by a recursive method of

moments estimator, and W k
t by the Kalman filter updating. This needs a certain forgetting

factor λ ∈ (0, 1] to be specified (Raftery et al., 2010; Dedecius et al., 2012). (Notice, that if
λ = 1 there is no forgetting.)

The estimation is done recursively. First, it is set π0|0,k := 1
K . Then, it is proceeded

with

πt|t−1,k =
(πt−1|t−1,k)

α + c∑K
i=1(πt−1|t−1,i)

α + c
, (3)

πt|t,k =
πt|t−1,kfk(yt|y0, y1, . . . , yt−1)∑K
i=1 πt|t−1,ifi(yt|y0, y1, . . . , yt−1)

. (4)

The above equations contain the second forgetting factor α ∈ (0, 1] and fk(yt|y0, y1, . . . , yt−1)
denotes the predictive density of the kth model at yt given the data from the previous
periods. πt|t,k are called posteriori inclusion probabilities. Also, a small constant is specified,
for example, c := K · 10−3 in order to avoid reducing the probabilities to zero due to
numerical approximations during computations.

Then, the DMA forecast is formulated in the following way

ŷt =

K∑
k=1

πt|t−1,kŷ
k
t (5)

where ŷkt is the forecast produced by the kth model.
According to Raftery et al. (2010), if α = 1 = λ, there is no forgetting, and the method

is still recursive but not dynamic.
However, let π̂t|t−1,k := maxi={1,...,K}{πt|t−1,i}, where πt|t−1,i are computed as in Eq. 3.

In DMS the Eq. 5 is modified in the following way

ŷt = π̂t|t−1,kŷ
k
t . (6)

Now, let gi be the Google Trends variable corresponding to Internet search of ith term.
This variable is between 0 and 100. So, it can be easily rescaled to fit between 0 and 1 and
interpreted as Google probability (Koop and Onorante, 2014). (Notice that Google Trends
correspond not to the absolute volume of Internet search terms, but to the relative one, i.e.,
relative to all Internet searches.) Now let

pt,k :=
∏
i∈IN

gi ·
∏

j∈OUT
(1− gj) , (7)
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where IN correspond to variables included in the kth model at time t, and OUT correspond
to variables not included in the kth model at time t.

Then, Eq. 3 can be modified in the following way

πt|t−1,k = ω ·
(πt−1|t−1,k)

α + c∑K
i=1(πt−1|t−1,i)

α + c
+ (1− ω) · pt,k , (8)

where ω is a parameter from [0, 1]. In this way DMA with Google probabilities and DMS
with Google probabilities are obtained, by repeating the rest of procedures since Eq. 3
unmodified. If ω = 1 then the standard DMA (DMS) is obtained. If ω = 0 the procedure
is highly changed and Google Trends play the whole role.

4. Results

First of all, it was imposed in all tested models that α = λ, because these parameters
correspond to the weight of information from the past that is put in the present. Therefore,
this restriction can be nicely interpreted.

First, DMA models were estimated with variables as that in Tab. 1. Initially, models
with ω = {1, 0.75, 0.50, 0.25, 0} and α = {1, 0.99, . . . , 0.90} = λ were estimated. Unfortu-
nately, in all cases the modification of DMA with Google probabilities lead to worse forecast
(with respect to MSE), i.e., for all α = λ the smallest MSE was given by the model with
ω = 1, and decline in ω resulted in higher MSE for all α = λ fixed. The model with the best
forecast (with respect to minimise MSE) was that with α = 0.93 = λ. In such a case MSE
was 0.0072153. Unfortunately, it is higher than that of the naive forecast, i.e., 0.0043214.

Therefore, having fixed α = 0.93 = λ more detailed examination was performed, i.e.,
with ω = {0.99, 0.98, 0.97, 0.96, 0.95, 0.90, 0.85, 0.80}. It was found that for high ω slight
forecast improvements are present. In particular, if ω = 0.99 then the forecast of DMA with
Google probabilities is approximately 2% better than the forecast of a standard DMA, i.e.,
it is 0.0070549. However, it is better than the forecast based on futures contracts (its MSE
= 0.0118336).

Notice that, if Et are residuals for Yt, and εt are residuals for yt, where Yt = a · yt + b
(which corresponds to normalization), then Et = a · εt. So, the futures based forecast can
be computed for the initial data and then its errors can be rescaled to be comparable with
the estimated DMA/DMS models.

Still, this is a very small improvement. Moreover, the weight put to Google probabilities
in Eq. 8 is marginal.

As a result, in this case it cannot be said that Google internet searches lead to significant
improvement of DMA forecast performance. However, in case of relatively small α = λ even
other (but still high ones) values of ω 6= 1 lead to outperforming the forecast based on futures
contracts. (Due to the limited space the details are not reported.)

Following Koop and Onorante (2014) it was also checked whether switching to DMS
with Google probabilities would give better forecast. Unfortunately, for α = 0.93 = λ and
ω = 0.99 the forecast is slightly worse than in the corresponding case of DMA with Google
probabilities (MSE = 0.0070922).

Some attempts were taken to improve the above model, for example, by reducing the
set of oil price determinants up to those variables which met the following criterion. Notice
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Table 2: MSE for DMA
ω \ α = λ 1 0.99 0.98 0.97 0.96 0.95

1 0.0043768 0.0042989 0.0042445 0.0042226 0.0042234 0.0042408
0.75 0.0059041 0.0055031 0.0051488 0.0048673 0.0046572 0.0045124
0.50 0.0089551 0.0079541 0.0070400 0.0062966 0.0057389 0.0053560
0.25 0.0121312 0.0104178 0.0088705 0.0076298 0.0067211 0.0061154
0 0.0148107 0.0125550 0.0105091 0.0088525 0.0076452 0.0068500

that, posteriori inclusion probabilities for every model which contains a given variable can
be summed. Now, let reduce the set of oil price determinants up to the variables which
posteriori inclusion probabilities are over 50% for most of the time since 2010. (Before 2010
it could have been observed that there is much variation of these probabilities, because
the model ”learns”.) As a result, the set of determinants was reduced to MSCI, TB3MS,
TWEXM and CHI. Unfortunately, it did not lead to any significant improvement of forecast.

Therefore, following Drachal (2016b) the following oil price determinants were consid-
ered: 1st and 2nd lags of WTI, MSCI, CHI, and 2nd lag of VIX. It can be seen that in
such a case, if α = {1, 0.99, . . . , 0.90} = λ and ω = {1, 0.75, 0.50, 0} the naive forecast
was outperformed, but only if ω = 1. (See Tab. 2.) The best forecast was obtained for
α = 0.97 = λ and ω = 1. (Due to the limited space herein only the most important part of
results is presented.)

Switching to DMS method did not help, as for the estimations with the same spread of
parameters α, λ and ω the minimal MSE was 0.0044905.

Further, ω = {0.99, 0.98, . . . , 0.90} for fixed α = 0.97 = λ was examined (see Tab. 3).
It can be seen that the best forecast was given by DMA with ω = 0.96. However, this lead
to only 2% improvement with respect to MSE in comparison with DMA without Google
probabilities. Moreover, the weight put to Google probabilities is very small.

Finally, it was also checked if DMS model with α = 0.97 = λ and ω = 0.96 would give
better forecast. It was not so, as its MSE = 0.0046273.

5. Conclusions

It can be concluded that, even if Google probabilities can slightly improve DMA perfor-
mance (by approx. 2%) the current findings are not much amazing, as this improvement is
marginal. However, it can be expected that further investigation will provide better results.
Due to the limited space herein, they will be presented elsewhere.

For further research it seems that it should be rather DMA framework explored than
DMS. It would be also interesting to consider more indices from financial markets as oil price
determinants, and omitting macroeconomics factors and supply-demand forces indicators.
Such data are obtainable in higher frequencies, which allows to prepare a better data sample.
Secondly, Google Trends statistics should be examined more carefully, and some other
variations of Eq. 7 could be proposed.
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Table 3: MSE for
DMA with
α = 0.97 = λ

ω

0.99 0.0041645
0.98 0.0041381
0.97 0.0041266
0.96 0.0041249
0.95 0.0041303
0.94 0.0041414
0.93 0.0041572
0.92 0.0041771
0.91 0.0042005
0.90 0.0042271

naive 0.0043214

futures 0.0118336

Figure 1: Posteriori probabilities for DMA with α = 0.97 =
λ and ω = 0.96
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Data sources

WTI, PROD, IMP, INV, CONS and NFP (U.S. Energy Information Administration)

http://www.eia.gov/dnav/pet/pet crd crpdn adc mbbl m.htm

http://www.eia.gov/dnav/pet/pet move wkly dc NUS-Z00 mbblpd 4.htm

http://www.eia.gov/dnav/pet/pet stoc wstk dcu nus m.htm

http://www.eia.gov/dnav/pet/pet pri spt s1 m.htm

http://www.eia.gov/countries

http://www.eia.gov/dnav/pet/pet pri fut s1 m.htm

MSCI (MSCI World)

http://www.msci.com/end-of-day-data-search

TB3MS and TWEXM (Federal Reserve Bank of St. Louis)
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http://research.stlouisfed.org/fred2/series/TB3MS

http://research.stlouisfed.org/fred2/series/TWEXBMTH

KEI (Kilian, 2009)

http://www-personal.umich.edu/∼lkilian/paperlinks.html

VIX (Chicago Board Options Exchange)

http://www.cboe.com/micro/buywrite/monthendpricehistory.xls

CHI (Stooq)

http://stooq.com

GOOGLE SERACH

http://www.google.com/trends
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Abstract

The aggregation of available information is of great importance in many branches of eco-
nomics, social sciences. Often, we can only rely on experts’ opinions, i.e. probabilities
assigned to possible events. To deal with opinions in probabilistic form, we focus on the
Kullback-Leibler (KL) divergence based pools: linear, logarithmic and KL-pool (Sečkárová,
2015). Since occurrence of events is subject to random influences of the real world, it is
important to address events assigned lower probabilities (unlikely events). This is done by
choosing pooling with a higher entropy than standard linear or logarithmic options, i.e.
the KL-pool. We show how well the mentioned pools perform on real data using absolute
error, KL-divergence and quadratic reward. In cases favoring events assigned higher proba-
bilities, the KL-pool performs similarly to the linear pool and outperforms the logarithmic
pool. When unlikely events occur, the KL-pool outperforms both pools, which makes it a
reasonable way of pooling.

Keywords: Opinion Pooling, Combining Probability Distributions, Minimum Kullback-
Leibler Divergence

1. Introduction

Problem of information aggregation from multiple sources is of interest in decision making
and its applications in areas such as social sciences, economics and business. The choice
of the final decision is a delicate process and if an unexpected situation occurs, it can
have big psychological or financial impact. In this contribution, we address this problem
by considering statistical and information-theoretic techniques and show that, if necessary,
impact of the final decision in unexpected situations can be softened.

In applications of decision making (elections, information markets) we often rely on
information formulated as an opinion. The process of aggregating this type of information
is then referred to as (expert) opinion pooling. By the term expert we not only mean a
person, who has knowledge about the variable of interest based on previous experience. We
also include sources which, by investing reasonable time and energy, exploit the today’s
amount of information distributed by media into their advantage. Some of the experts
may be certain about the decision (event), some prefer to express the uncertainty among
possible events. To include the uncertainty in predicting possible events, we consider the
expert opinion in the form of probability distribution. We assume, that experts are able to

c©2016 Sečkárová.
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form probability distribution as a probability vector and we will not include the details of
its elicitation; an extensive discussion about elicitation of probability distributions can be
found in (Garthwaite et al., 2005).

Although sources form their opinion to their best knowledge and abilities and assign high
probability to the most probably event, the occurrence of the described event is subject to
the random influences of the real world such as nature, political situation, . . . Then, an
event assigned lower probability (an unlikely event) causing non-negligible loss may occur.
Thus, the pool admitting unlikely events should assign more uncertainty in events; but still
give a reasonable result in the regular case, when event assigned high probability from ex-
perts occurred. To measure the amount of uncertainty for probability distribution resulting
from combining experts’ opinions we exploit information theory, i.e. the Shannon entropy
(Shannon and Weaver, 1963). To measure the utility of resulting probability distribution
we consider the Kullback-Leibler (KL) divergence as recommended in (Bernardo, 1979).

There are many algorithms for combining probability distributions available and being
developed in areas such as risk analysis (Clemen and Winkler, 1999), weather forecasting
(Ranjan and Gneiting, 2010), economics (Chen et al., 2005), parameter estimation with
knowledge elicitation (Kárný et al., 2014), knowledge sharing with deliberator (Azizi and
Quinn, 2016). We focus on the basic combining algorithms used for opinion pooling: linear
and logarithmic pool. Both can be obtained via unconstrained optimisation, i.e., minimi-
sation of the KL-divergence (Abbas, 2009). We also consider more sophisticated version
of linear pool (KLp) inspired by (Kárný et al., 2009) and introduced in (Sečkárová, 2015),
arising from the constrained minimisation of the KL-divergence. The result of any pool-
ing can be viewed as a compromise among considered sources; the compromise is usually
derived to satisfy group aims and every included individual has to sacrifice its own aims.
Consequently, when majority of experts’ opinions are similar, the influence of an expert
with different (opposite) opinion is suppressed.

We address these shortcomings by focusing on a combining approach KLp that yields
combination with higher entropy than, e.g., linear or logarithmic pool. In particular, we
consider constraints on acceptance of the resulting combination of opinions by individual
sources, again in the sense of the KL-divergence. KLp, being a conservative compromise,
is thus an appropriate pool when unlikely event occurs, especially if reward for formulated
opinion is included.

The aim of this contribution is to verify our hypothesis, that the KLp behaves similarly
to standard pooling options (linear, logarithmic) in regular case, but outperforms these in
case of unlikely events. For comparison purposes, we use the absolute error and the KL-
divergence with respect to the perfect prediction (probability 0 for the losing team) together
with the quadratic reward.

Next section contains the overview of the construction of the KL-divergence pool KLp
and shows behavior of the linear, logarithmic and KLp pools in terms of the entropy of
pooled probabilities. In the third section we apply considered opinion pools on the real
data obtained from contest for National Football League in USA (NFL games). The fourth
section concludes the work.
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2. Combining Experts’ Discrete Distributions

Consider a finite number of experts labeled by j = 1, . . . , s providing discrete probability
distributions represented by n-dimensional probability vectors:

pj = (pj1, . . . , pjn) : pji ≥ 0,

n∑
i=1

pji = 1, n <∞, j = 1, . . . , s.

where n denotes the number of possible events, i.e., outcomes of an underlying random
variable.

Let q denote an unknown probability vector representing the combination of p1, . . . ,ps.
Its estimator q̂ is chosen as the minimiser the expected Kullback-Leibler divergence (Bernardo,
1979):

q̂ ∈ arg min
q̃(p1,...,ps)

Eπ(q|p1,...,ps)KLD(q||q̃). (1)

The minimisation task (1) follows the theory of Bayesian decision making (Savage, 1972)
and yields:

q̂ = (q̂1, . . . , q̂n) = Eπ(q|p1,...,ps)[q|p1, . . . ,ps]. (2)

The expectation in (2) depends on the conditional probability density function (pdf)
π(q|p1, . . . ,ps), which we specify in two consequent steps:

1. We assume that each expert, if considered as the ‘best’ representation of value of
unknown q, has a finite expected divergence from q

Eπ(q|p1,...,ps)[KLD(pj ||q)|p1, . . . ,ps] <∞, j = 1, . . . , s, (3)

and he is willing to include other experts’ opinions in the final combination if they
represent q equally or worse in terms of (3). Applying this condition to every expert
in the group we obtain that conditional pdfs have to satisfy:

Eπ(q|p1,...,ps)[KLD(pj ||q)|p1, . . . ,ps] = Eπ(q|p1,...,ps)[KLD(ps||q)|p1, . . . ,ps], (4)

j = 1, . . . , s − 1. Previous attempts in terms of the bounded Kerridge inaccuracy
(Kerridge, 1961) can be found in (Sečkárová, 2013).

2. We assume that the set of all pdfs satisfying (4) is non-empty. We exploit the minimum
cross-entropy principle (Shore and Johnson, 1980) and choose the pdf solving the
following optimisation task

min
π(q|p1,...,ps) satisfying (4)

KLD(π(q|p1, . . . ,ps)||π0(q)), (5)

with

π0(q) = π0(q|p1, . . . ,ps)

being the prior guess on the conditional pdf π(q|p1, . . . ,ps).
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The constrained optimisation task (5) yields

π(q|p1, . . . ,ps) ∝ π0(q)

n∏
i=1

q
∑s−1

j=1 λj(pji−psi)
i , (6)

where λj are the Lagrange multipliers resulting from the minimisation of (5) with respect
to (s− 1) equations in (4).

To obtain more specific form of the combination (2) we next specify prior pdf in (5).
This pdf is defined over (n − 1)-dimensional probability simplex - a set of all pj . Based
also on the relation given in (6), we exploit numerically appealing Dirichlet distribution.
We then obtain that pdf π(q|p1, . . . ,ps) is also the pdf of the Dirichlet distribution. Its
parameters have the following form:

ν̂i = ν0i +
s−1∑
j=1

λj(pji − psi), i = 1, . . . , n,

where ν01, . . . , ν0n are parameters of the prior Dirichlet distribution, λ1, . . . , λs−1 are the
Lagrange multipliers from the constrained optimisation task.

Based on the properties of the Dirichlet distribution

Eπ(q|p1,...,ps)[qi|p1, . . . ,ps] =
ν̂i∑n
i=1 ν̂i

,

the estimator (2) is

q̂i =
ν0i∑n
k=1 ν0k

+

s−1∑
j=1

λj∑n
k=1 ν0k

(pji − psi), i = 1, . . . , n. (7)

Equation (7) represents the KL-pool (KLp) of expert opinions p1, . . . ,ps.

In many real-life inspired cases (elections, betting predictions), there is very little or
no prior information available before processing expert opinions. We are thus forced to
exploit given opinions in prior guess for parameters of the Dirichlet distribution. Since no
new information is included in combining, it is natural that the sum of prior parameters
ν0i and parameters after combining ν̂i to be equal (see (2)). In particular, we set this sum
of parameters to be equal to the number of opinions (or generally observations). Each
parameter ν0i is then assigned value relative to the arithmetic mean of the given opinions

ν0i = s
s∑
j=1

pji
s

=
s∑
j=1

pji, i = 1, . . . , n. (8)

For comparison purposes, we use

• linear pool (linp):

q̂ ∝
s∑
j=1

wjpj , (9)
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Figure 1: Values of pooling for q̂1 and amount of uncertainty (entropy) for the linear (9),
logarithmic (10) and KL-pool (7).

• logarithmic pool (logp):

q̂ ∝
s∏
j=1

p
wj

j , (10)

in this contribution, with wj denoting weights, i.e., subjective preferences among experts
1, . . . , s. These two combining approaches arise from the minimisation of both versions of
asymmetric KL-divergence without constraints (Abbas, 2009).

2.1 KL-pool as Treatment for Unlikely Events

We expect the experts posses certain level of expertise when assigning the probability to
possible events. However, they often have incomplete information about random influences
in real world such as nature, political situation, physical and mental abilities of others.
Even minor changes in these factors can have huge impact on the occurrence of improbable
events. Thus, it is important to reflect also events with lower probabilities assigned by
experts – by allowing more uncertainty in the set of probable events. To measure the amount
of uncertainty allowed by the combination in (7) we focus on the entropy (Rényi, 1961),
exploited in environmental scenarios, e.g., methane emissions from wetlands (Sabolová et al.,
2015). Higher values of entropy indicate that more uncertainty is present and that unlikely
events should be assigned higher probability.

The formula (7) is not closed; the values of q̂ = (q̂1, . . . , q̂n) are obtained numerically via
optimisation with respect to either λ1, . . . , λs−1 or ν1, ..., νn. The direct theoretical com-
parison of KLp with linp and logp, by exploiting constraints (4) rewritten for the Dirichlet
distribution or by using an approximation of q̂, is a part of the future research.
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Figure 2: Left column Results for pooling based on the linear (linp), logarithmic (logp)
and KL-pool (KLp), the absolute error (11) of the pools and the KL-divergence (13) for
randomly picked games. Right column Results for pooling based on the linp, logp and
KLp, the absolute error of the pools and the KL-divergence for the subset of games to which
the players assigned low probabilities to the winning team.

We now consider a numerical example to see that the proposed KL-pool has this desirable
property: let us thus combine two opinions pj = (pj1, pj2), j = 1, 2, where

p1 = (0, 1), . . . , (1, 0) and p2 = (0.5, 0.5),

i.e., p1 varies in the above range with increments in p11 equal to 0.02. Figure 1 shows how
KLp, with ν01, . . . , ν0n given by (8), behaves in comparison with linear (9) and logarithmic
(10) pools arising for unit weights wj , j = 1, 2. In Figure 1 on the left we see the outcomes of
considered pools for the first event (i = 1). On the right, we see that the KL-pool has equal
or higher entropy than linear and logarithmic pool for low-probability events (p11 ≤ 0.5)
and thus fits better for the treatment of unlikely events.

3. Real Data Application

In this section we demonstrate that the behaviour of the KL-pool, illustrated on the toy
example in the previous section, is favourable when processing real data. We obtained data
from http://probabilityfootball.com/2005/, an online football contest also referred to
as “a game of skill”, where the players “estimate, for each football game, the probability
that each NFL team will win based on how strong they believe each team to be”. Players
pick a probability of winning for each team, ranging from 0 to 1 (according to webpage in
percentile ranging from 0% to 100%), which they think accurately describes the strength of
teams.
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Figure 3: Left column Results for the linear (linp), logarithmic (logp) and KL-pool (KLp)
in terms of cumulative absolute error (12) and cumulative quadratic reward (14) for ran-
domly chosen games. Right column Results for the linp, logp and KLp in terms of CAE
and CQR for games, when players assigned low probabilities to the winning team.

We apply previously mentioned linp (9), logp (10) and KLp (7) to demonstrate their
behaviour and compare:

• values of pooling for the first event (the team that eventually won),

• absolute error measuring the difference between perfect prediction (probability 0 for
losing team) and the actual prediction (Chen et al., 2005)

AE = |0− q̂losing team|, q̂losing team ∈ {linp, logp, KLp} (11)

and its cumulative version

CAEt = CAEt−1 + |0− q̂losing team,t|, q̂losing team,t ∈ {linp, logp, KLp} (12)

where CAEt−1 is the sum of absolute errors from (t−1) previous games and q̂losing team,t

is the pooling of opinions for current game,

• and KL-divergence

KLDiv = KLD(qperfect||q̂), q̂ ∈ {linp, logp, KLp} (13)

where qperfect is a perfect prediction (probability 0 for losing team),

• cumulative quadratic reward

CQR = CQRt−1 + 100− 400(q̂losing team,t)
2, q̂losing team,t ∈ {linp, logp, KLp} (14)

with quadratic reward used in the contest (Chen et al., 2005).
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Firstly, focus on the first 6 weeks of NFL in 2005 for 7 successful players, each week 6
games were chosen. Results in the left column of Figure 2 show, that KL-pool performs
similarly to the linear pool in terms of absolute error (11) and KL-divergence (13). This
result is expected because of the additive nature of the KL-pool. The performance of the
logarithmic pool is due to its multiplicative form oscillatory - it performs either very good
or very poor.

Secondly, we focus on 18 games, when the majority of picked players put more believe
into a team, which eventually lost the game. Figure 2 (in the right column) shows that in
such case our method performs better than the linear pool, as intuitively expected.

Because of the design of this example, i.e., the variability in playing football teams, it is
difficult to study the properties of considered pools sequentially (based on estimates from
the previous game). Thus, we next exploit performance of these pools with respect to the
cumulative versions of the absolute error (12) and the quadratic reward (14). The results
depicted in Figure 3 are similar to the non-cumulative case: for randomly chosen games, the
KL-pool performs similarly to the linear pool and both pools outperform the logarithmic
pool (their CAE is lower and CQR is higher). In case of games, where the losing team was
assigned lower probability by the players, the KL-pool outperforms both, the linear and the
logarithmic pool.

4. Conclusion and Future Work

In this contribution we focused on problem of pooling expert opinions when events assigned
lower probabilities occur (unlikely events). This is especially important in cases when
also a reward for formulated opinion is also included: the higher probability assigned to
the event that did not occur can yield huge loss. To treat this we need an opinion pool
resulting in a combination with a higher entropy than standard pooling ways, so that
unlikely events obtain reasonable probability. We considered the Kullback-Leibler based
opinion pool (Sečkárová, 2015), values of which were obtained via constrained non-linear
optimisation. This pool was constructed as the compromise for group of experts a) without
sacrificing their own aims and b) without suppressing opinion which significantly differs
from other opinions.

We showed on numerical example that KL-pool reaches higher values of entropy than
generally known pools: (equally weighted) linear pool and logarithmic pool. We then
applied these pools on real data and compared them using following performance measures:
the absolute error, the KL-divergence and the quadratic reward. Because of the additive
form of the KL-pool, its performance was similar to the performance of the linear pool for
regular data (not many unlikely events occurred). In case of unlikely events, the KL-pool
outperformed the linear and the logarithmic pool in terms of cumulative version of the
absolute error and the quadratic reward and thus is a reasonable tool for pooling expert
opinions. The future work includes the theoretical comparison of KL-pool with other opinion
pools by using its approximation. Also, the application of the KL-pool on other sets of real
data including betting with knowledge of fixed-odds, handling financial contracts, weather
forecasts, is of interest.
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V. Sečkárová. Weighted probabilistic opinion pooling based on cross-entropy. In Neural
Information Processing, 22nd International Conference, ICONIP 2015, Istanbul, Turkey,
November 9-12, 2015, Proceedings, Part II, pages 623–629, Istanbul, Turkey, 2015.

C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. Number pt.
11 in Illini books. University of Illinois Press, 1963.

J. E. Shore and R. W. Johnson. Axiomatic derivation of the principle of maximum entropy
and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory, 26:26–37, 1980.

50



Proceedings of Machine Learning Research 58 (2016) 51-60

Experimental Performance of Deliberation-Aware Responder
in Multi-Proposer Ultimatum Game

Tatiana V. Guy guy@utia.cas.cz

Marko Ruman marko.ruman@gmail.com
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Abstract

The ultimatum game serves for studying various aspects of decision making (DM). Recently,
its multi-proposer version has been modified to study the influence of deliberation costs. An
optimising policy of the responder, switching between several proposers at non-negligible
deliberation costs, was designed and successfully tested in a simulated environment. The
policy design was done within the framework of Markov Decision Processes with rewards
also allowing to model the responder’s feeling for fairness. It relies on simple Markov mod-
els of proposers, which are recursively learnt in a Bayesian way during the game course.
This paper verifies, whether the gained theoretically plausible policy, suits to real-life DM.
It describes experiments in which this policy was applied against human proposers. The re-
sults – with eleven groups of three independently acting proposers – confirm the soundness
of this policy. It increases the responder’s economic profit due to switching between pro-
posers, in spite of the deliberation costs and the used approximate modelling of proposers.
Methodologically, it opens the possibility to learn systematically willingness of humans to
spent their deliberation resources on specific DM tasks.

Keywords: decision making; deliberation effort; Markov decision process; ultimatum game

1. Introduction

Maximizing of expected utility is perceived as “rational” within traditional economic mod-
els (von Neumann and Morgenstern (1944); Thaler (2000)). The observed discrepancies
between theoretically optimal DM and real DM, e.g. (Gong et al. (2013), Jones (1999),
Regenwetter et al. (2011)), can be diminished by changing the behaviour of DM subjects
(by educating them) and by modifying decision rewards and models used in prescriptive
theories. Our paper deals with the latter case and focuses on the influence of deliberation
effort in DM.

A proper theory respecting deliberation effort should take into account that any decision
made, either by humans or machines, costs time (Ortega and Stocker (2016)) energy and
possibly other, limited, resources (Ortega et al. (2016)); a sample of different application

c©2016 Guy et al.
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domains and related references are in Ruman et al. (2016). In this paper, we rely on, the
design of DM policies respecting deliberation effort treated as an application of standard
Markov Decision Process (MDP, Puterman (1994)) with the reward explicitly influenced
by deliberation costs and with the environment model learnt in a Bayesian way (Peterka
(1981)). The solution was developed for designing policy of the responder in multi-proposer
ultimatum games (UG, Rubinstein (1994)). The simplicity of the UG enables extensive
tests confronting prescriptive and human DM. In the UG, the proposer offers the split of a
given amount of money and the responder either accepts this split, and the money are split,
or refuses it, and none of players gets anything. In multi-proposer versions, the responder
has the right to select the proposer among several of them. Any change of the proposer
between rounds is penalized. In this way, the influence of deliberation effort is respected.
Simulations documented in Ruman et al. (2016) confirmed the expected behaviour of the
proposed responder’s policy. However, a key question remained open: Will this policy
be successful in real-life? It is a specific case of the generally inspected question: Does a
prescriptive, theoretically justified, solution suit real life DM? Our experiments with human
proposers, which form the core of this paper, provide answers to the posed questions.

The paper layout is as follows. Section 2 recalls formalization and the optimal design
of the responder’s policy in the multi-proposer UG. Section 3 describes the performed
experiments and their results. Section 4 contains discussion. Section 5 provides concluding
remarks.

2. Tested Decision-Making Policy

The section formalizes the multi-proposer UG and recalls the essence of the tested policy
proposed in Ruman et al. (2016) as an application of MDP (Puterman (1994)).

2.1 Preliminaries

Throughout, bold capital X is a set of x-values; xt is the value of x at the decision epoch
t ∈ T = {1, . . . , N} bounded by a horizon N ∈ N (here, the number of game rounds);
p(x|y) is a conditional probability. MDP provides a general framework for describing an
agent (here, responder), which interacts with an environment (here, available proposers) by
taking appropriate actions to achieve her goal. The decisions about actions at ∈ A (here,
select the proposer to play with and accept or reject her offer) made are only influenced
by the observed environment state st−1 ∈ S ⊂ N, not by the whole environment history.
The state st−1 evolves to st according to the transition probabilities, p = (p(st|at, st−1))t∈T,
influenced by actions (at)t∈T, and the agent receives rewards r = (r(st, at, st−1))t∈T. Given
the initial state s0 = 0, the tuple (T,S,A, r, p) describes MDP. The agent evaluates ran-
domized DM policies π =

(
(p(at|st−1))at∈A,st−1∈S

)
t∈T — formed by randomized decision

rules p(at|st−1), at ∈ A, st−1 ∈ S, t ∈ T — based on the expected reward

Eπ[r(st, at, st−1)] =
∑
at∈A

∑
st∈S

∑
st−1∈S

r(st, at, st−1)p(st|at, st−1)p(at|st−1)p(st−1), (1)

where state probabilities p(st) evolve according to

p(st) =
∑
at∈A

∑
st−1∈S

p(st|at, st−1)p(at|st−1)p(st−1)

52



Influence of Deliberation Costs

with p(s0) = δ(s0, 0). The used Kronecker symbol δ(x, y) = 1 if x = y, δ(x, y) = 0 if x 6= y.
The agent seeks for the optimal policy πopt maximizing the sum of expected rewards (1)

up to the horizon N

πopt ∈ argmax
π

∑
t∈T

Eπ[r(st, at, st−1)]. (2)

2.2 Deliberation-Aware Multi-Proposer Ultimatum Game

The considered multi-proposer N -round UG assumes a group of K ∈ N proposers P ∈ P =
{P1, . . . ,PK} and one responder R. The responder’s goal is the same as in the traditional
UG, i.e. to influence her accumulated profit Rt, see (4), while accepting or rejecting the
offers. The main difference is that at the beginning of each round t ∈ T the responder
chooses a proposer Pt ∈ P = {P1, . . . ,PK} to play with. The choice of a proposer Pt at
round t ∈ T is the first responder’s action a1t = Pt ∈ P = A1. To model deliberation
costs, the choice of a proposer different from that in the previous round is penalized by a
deliberation penalty d ∈ N. This leads to the accumulated deliberation cost of the responder

Dt = d
t∑

τ=1

(1− δ(Pτ ,Pτ−1)). (3)

Then, as in the original UG (Rubinstein (1994)) the chosen proposer Pt offers a split ot ∈
O = {1, 2, . . . , q − 1}, q ∈ N, for the responder and (q−ot) for herself. Money split according
to the proposal if the responder accepts the offer, if she chooses the action a2t = 2. None of
the players get anything if the responder rejects the offer, if she chooses the action a2t = 1.
The accumulated responder’s (economic) profit, Rt, at round t ∈ T, is

Rt =
∑
P∈P

PPt, PPt =
t∑

τ=1

oτ (a2τ − 1)δ(a1τ ,P), P ∈ P . (4)

Proposers play a passive role whenever they are not selected in the round. The accumulated
proposers’ (economic) profits are

ZPt =
t∑

τ=1

(q − oτ )(a2τ − 1)δ(a1τ ,P), ∀P ∈ P . (5)

In the multi-proposer UG, the responder R can be modelled as an agent in MDP, which
tries to maximize her accumulated profit while minimising her accumulated deliberation
cost.

Definition 1 The multi-proposer UG in the MDP framework, with epochs t ∈ T identified
with game rounds, is described through

• the environment state at t ∈ T

st = (ot, σt) with σt = (Pt,Dt,Rt, ZP1t, ZP2t, ..., , ZPKt), where (6)

ot ∈ O is an offer made by the proposer Pt. The accumulated deliberation cost Dt, the
accumulated responder’s (economic) profit Rt and the accumulated (economic) profits
of proposers ZPt, P ∈ P, are defined by (3), (4) and (5), respectively.
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• the two-dimensional action a = (a1, a2) ∈ A1×A2 consists of the selection a1 ∈ A1 =
P of the proposer to play with and of a2 ∈ A2 = {1, 2} = {reject, accept} the offered
split made by the selected proposer.

The selection of the proposer a1t = Pt ∈ P is based on the state st−1 (6), while the
action a2t ∈ A2 also depends on the offer ot ∈ O of the selected proposer Pt ∈ P.
Thus,

p(at|ot, st−1) = p(a1t, a2t|ot, st−1) = p(a1t|st−1)p(a2t|ot, a1t, st−1). (7)

Consequently, the optimal policy πopt is searched among sequences of functions

π =
(
p(a1t|st−1), p(a2t|ot, a1t, st−1)

)
t∈T. (8)

• The reward function with the penalty for the deliberation costs and respecting also
self-fairness (Guy et al. (2015)) is considered

r(st, at, st−1) = w(Rt − Rt−1)− (1− w)(ZPtt − ZPt(t−1))− (Dt − Dt−1), w ∈ [0, 1]. (9)

• The transition probabilities p = p(st|a1t, st−1) are assumed to be known, possibly as
point estimates resulting from recursive estimation (H̊ula et al. (2016)).

For the inspection of the influence of deliberation costs, the risk neutral economic re-
sponder, caring about pure economic profit balanced with deliberation costs, is of interest.
It is a special case of (9) with the weight w = 1. The results in Hůla et al. (2016), were
adaptive proposer was studied, indicate that the economic player generates insufficiently
exciting actions causing non-convergence of parameter estimates. In the cited case, the
economic proposer generated very narrow range of offers and could not learn reactions of
the responder to values out of this range. To avoid it, the self-fair modification of the re-
sponder’s policy with weight w 6= 1 in (9), was used, but the results were judged according
to the responder’s profit.

2.3 Optimal Deliberation-Aware Responder Policy

Dynamic programming (Bellman (1957); Bertsekas (2001)) is used to solve (2). The special
structure of policies (8) calls for a specific construction of the optimal policy. The following
theorem — a tailored dynamic programming presented in Ruman et al. (2016) — provides
the optimal strategy of the responder.

Theorem 2 (Optimal policy of the deliberation-aware responder) The optimal pol-
icy πopt constrained by (7) is formed by the sequence of decision rules

{
(popt(a1t|st−1), popt(a2t|ot, a1t, st−1))

}N
t=1

,
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with st = (ot, σt) (6), which are evaluated against game course, starting with the value
function ϕN (sN ) = 0, ∀sN ∈ S,

ϕt−1(st−1) = E[r(ot, σt, a
?
1t, a

?
2t, st−1) + ϕt(st)|a?1t, a?2t, st−1]

a?1t(st−1) ∈ argmax
a1t∈A1

E [r(ot, σt, a1t, a2t, st−1) + ϕt(st) | a1t, st−1]

popt(a1t|st−1) = δ(a1t, a
?
1t(st−1))

a?2t(ot, a
?
1t, st−1) ∈ argmax

a2t∈A2

E [r(ot, σt, a
?
1t, a2t, st−1) + ϕt(st) | a?1t, a2t, ot, st−1]

popt(a2t|ot, st−1) = δ(a2t, a
?
2t(ot, a

∗
1t, st−1)). (10)

For the reward (9), the action a?1t in (10) describes the optimal, deliberation-aware, choice
of the proposer and a?2t the optimal response to her offer.

3. Experiments

Successful simulation experiments of the optimal responder’s policy πopt (described by The-
orem 2) were presented in Ruman et al. (2016). Its usefulness in real life has not been tested.
This section presents results of experiments performed to fill this gap. The assumption that
real proposers use time-invariant proposal policies describable by known or well-estimated
probabilities p = p(st|a1t, st−1) is the key potential weakness of the theoretically optimal
responder’s policy. Thus, the experiments mainly checked this assumption. In this exper-
iment human-participants played roles of proposers against a virtual responder that was a
computer programme implementing the deliberation-aware policy as described in Section
2.3.

3.1 Experimental Setup

Thirty three university students (mostly males, age range 19-25 years) participated in the
study. The participants had no or minimal knowledge of the UG. The human-proposers
could not interact/communicate during the game as the game ran through a web interface
on personal computers. The keyboard was used as a response device. The participants
were instructed about the UG rules and their role in the experiment. At each round a
participants action was to propose an integer split of q = 10CZK. Participants were told
to play trying to maximize their profit. The real money was at stake. The participants
played with virtual money but they were paid their profits won in the game block (see
below) at the end of experiment. The virtual responder always played with a group of three
human-proposers P ∈ P = {P1,P2,P3}. While playing, the virtual responder recursively
learned the parameters αP , βP > 0, αP + βP < 1 of the simplified proposer’s model

p(st|at, st−1, αP , βP) = p(ot|ot−1, αP , βP) =


αP for offers ot > ot−1
βP for offers ot < ot−1
1− αP − βP for offers ot = ot−1

. (11)

Learning essentially consists of evaluating the relative frequencies α̂P , β̂P corresponding to
(11).
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Interaction with a human group was split into learning block and game block. In the
learning block, the virtual responder played N = 20 game rounds with each proposer P ∈ P
(fixed a1t = P) while maximizing the expected accumulated reward with the reward function
(9) and with the transition probabilities p(st|at, st−1) = p(ot|ot−1, α̂Pt , β̂Pt). This made the
virtual player adaptive. The learning block also helped the participants familiarize with
their task.

In the game block, the virtual responder played N = 20 game rounds with all three
human-proposers at once P ∈ P (a1t = Pt was also optimized), while maximizing the
expected accumulated reward with the reward function (9) and with the transition prob-
abilities p(st|at, st−1) = p(ot|ot−1, α̂Pt , β̂Pt), where the point estimates (α̂P , β̂P ) of (α, β)
were permanently updated. Thus, during each round the virtual responder had selected
one of the human-proposers, who offered a split. Then the virtual responder decided on the
acceptance/rejection of the split. The deliberation cost was set to d = 1CZK.

The results presented in Hůla et al. (2016) indicated that the economic player mostly
generates insufficiently exciting actions, which result into divergence of parameter estimates.
In the case of economic proposer, studied in Hůla et al. (2016), the player generated very
narrow range of offers and could not learn reactions of the responder to values out of this
range. To suppress this effect in our case, the self-fair modification of the virtual responder’s
policy with the weight w = 0.6 in (9) (Guy et al. (2015)) was used. The results were,
however, judged according to the responder’s profit.

3.2 Results

The achieved results are summarized in Table 1. It contains the profits Pk = PPkN , (4),
when playing with the proposer Pk, k = 1, 2, 3, in the learning block. The average

RM =
1

3

3∑
k=1

Pk (12)

of these profits is comparable with the virtual responder’s profit R = RN (4) in the game
block. Switching between proposers is profitable if and only if the difference R − RM > 0.
The results in the table are ordered according to this difference. Sample descriptive statistics
are provided.

The ordered differences are also presented in Figure 1. Figure 2 presents two more
detailed samples of the game results related to games with the worst and the best responder’s
results (1 and 11, Table 1).

4. Discussion

The experimental results confirm the potential applicability of the proposed responder’s
policy based on MDP in real life. Table 1 shows that the average and median of responder’s
profits increased by switching in spite of the relatively high switching cost, see boldface
numbers. The increase realized in experiments with seven human groups from the performed
eleven experiments, see Figure 1. Three experiments led to quite bad results and the
difference of the average and median indicates that the distribution of differences R − RM
has heavy tail at negative profit differences. Thus, there is a space for improvement of the
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Game P1 P2 P3 RM R R− RM

1 70.00 25.00 117.00 70.67 51.00 -19.67

2 95.00 119.00 137.00 117.00 102.00 -15.00

3 163.00 130.00 121.00 138.00 131.00 -7.00

4 81.00 87.00 75.00 81.00 80.00 -1.00

5 96.00 80.00 106.00 94.00 96.00 2.00

6 140.00 94.00 60.00 98.00 101.00 3.00

7 79.00 69.00 58.00 68.67 77.00 8.33

8 76.00 88.00 91.00 85.00 94.00 9.00

9 63.00 76.00 83.00 74.00 86.00 12.00

10 75.00 93.00 76.00 81.33 95.00 13.67

11 64.00 103.00 120.00 95.67 110.00 14.33

mean 91.09 87.64 94.91 91.21 93.00 1.79

median 79.00 88.00 91.00 85.00 95.00 3.00

minimum 63.00 25.00 58.00 68.67 51.00 -19.67

maximum 163.00 130.00 137.00 138.00 131.00 14.33

standard 32.10 27.47 26.80 20.96 20.32 11.52
deviation

Table 1: Pk is the virtual-responder’s profit when playing with proposer Pk with no switch-
ing, RM is the average (12), R = RN (4) is the virtual responder’s profit in the game block
(with penalized switching).
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Figure 1: Profit differences in the game block and the average profit (12).

applied policy. Primarily, it has to improve the environment modelling, i.e. modelling of
the proposers. Specifically:

• The assumed structure (11) should be refined by making probabilities of offers de-
pendent on the values of differences ot − ot−1. A geometric change can still provide
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Figure 2: Left column concerns game 1, right column game 11 . First row shows the
average profit RM (12), the virtual responder’s profit R = RN (4) in the game block, and
profits Pk = PPkN while playing with proposers Pk in the learning block. Second row
shows switching between proposers Pk in the game block. Third row presents offers (•) and
decisions Accept/Reject (∗) within the game course played in the game block.

parsimonious parametrization when considering constant (possibly asymmetric) de-
crease rates of probabilities p(ot|ot−1).
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• Carefully selected prior probabilities of estimated parameters, based, for instance,
on the already run games, may speed up estimation and increase the responder’s
profit. This is the main advantage of the adopted Bayesian estimation (Berger (1985);
Garthwaite et al. (2005)), which is confirmed in the UG context in Hůla et al. (2016).

• The adopted exploitive strategy, definitely influenced the results as seen in Figure
2. The exploration-supporting “trick” based on optimization of non-economic profit
reward (assuming self-fair virtual responder (Guy et al. (2015)) should be replaced by
a more systematic treatment based on approximate dynamic programming (Si et al.
(2004)) needed when dealing with learnt environment models (Feldbaum (1960)).

5. Concluding Remarks

This paper experimentally examined the influence of deliberation costs of the virtual re-
sponder in a multi-proposer Ultimatum Game with human proposers. It confirmed that
the use of the MDP machinery while taking proposers as a part of environment is an ef-
ficient tool for solving game-like situations. This solution is close to the Bayesian games
(Harsanyi (2004)). Our paper supports the claim that the approach caring about dynamics
and incomplete knowledge of players makes the adopted theory applicable in real life. It
offers extreme flexibility in modelling player’s aims. In our case, it respects the influence
of deliberation costs on decision making. This makes it not only a useful design tool but
also an analytical tool. The analysis concerns a real decision maker, whose acting differs
from “rational”, purely economic, behaviour. We can analyse it as an inversion problem:
assuming that she is rational but uses a different than economic reward, we can learn it
from her actions. This idea was successfully used in learning of self-fairness in Guy et al.
(2015). This paper opens the way of learning laziness, the personal penalty of deliberation
effort. This is one direction of future work, which has to deal with others aspects like: i)
extension of the presented experimental study to more groups of proposers with improved
learning; ii) fighting with the curse of dimensionality inherent to the Bayesian games; iii)
joint modelling of non-profit influences (deliberation costs, fairness, emotions, etc.).
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Abstract
In many settings people must give numerical scores to entities from a small discrete set. For in-
stance, rating physical attractiveness from 1–5 on dating sites, or papers from 1–10 for conference
reviewing. We study the problem of understanding when using a different number of options is
optimal. For concreteness we assume the true underlying scores are integers from 1–100. We con-
sider the case when scores are uniform random and Gaussian. While in theory for this setting it
would be optimal to use all 100 options, in practice this is prohibitive, and it is preferable to utilize
a smaller number of options due to humans’ cognitive limitations. Our results suggest that using a
smaller number of options than is typical could be optimal in certain situations. This would have
many potential applications, as settings requiring entities to be ranked by humans are ubiquitous.

1. Introduction

Humans rate items or entities in many important settings. For example, users of dating websites
and mobile applications rate other users’ physical attractiveness, teachers rate scholarly work of
students, and reviewers rate the quality of academic conference submissions. In these settings,
the users assign a numerical (integral) score to each item from a small discrete set. However, the
number of options in this set can vary significantly between applications, and even within different
instantiations of the same application. For instance, for rating attractiveness, three popular sites all
use a different number of options. On “Hot or Not,” users rate the attractiveness of photographs
submitted voluntarily by other users on a scale of 1–10 (Figure 11). These scores are aggregated
and the average is assigned as the overall “score” for a photograph. On the dating website OkCupid,
users rate other users on a scale of 1–5 (if a user rates another user 4 or 5 then the rated user receives
a notification)2 (Figure 23). And on the mobile application Tinder users “swipe right” (green heart)
or “swipe left” (red X) to express interest in other users (two users are allowed to message each
other if they mutually swipe right), which is essentially equivalent to using a binary {1, 2} scale
(Figure 34). Education is another important application area requiring human ratings. For the 2016
International Joint Conference on Artificial Intelligence, reviewers assigned a “Summary Rating”
score from -5–5 (equivalent to 1–10) for each submitted paper (Figure 4).5). The papers are then

1. http://blog.mrmeyer.com/2007/are-you-hot-or-not/
2. The likelihood of receiving an initial message is actually much more highly correlated with the variance—and par-

ticularly the number of “5” ratings—than with the average rating (Fry, 2015).
3. http://blog.okcupid.com/index.php/the-mathematics-of-beauty/
4. https://tctechcrunch2011.files.wordpress.com/2015/11/tinder-two.jpg
5. https://easychair.org/conferences/?conf=ijcai16

c©2016 Ganzfried.
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Figure 1: Hot or Not users rate attractiveness 1–10. Figure 2: OkCupid users rate attractiveness 1–5.

Figure 3: Tinder users rate attractiveness 1–2.

Figure 4: IJCAI reviewers rate papers -5–5.

discussed and scores aggregated to produce an acceptance or rejection decision based largely on the
average of the scores.

Despite the importance and ubiquity of the problem, there has been little fundamental research
done on the problem of determining the optimal number of options to allow in such settings.
We study a model in which users have a underlying integral ground truth score for each item in
{1, . . . , n} and are required to submit an integral rating in {1, . . . , k}, for k � n. (For ease of pre-
sentation we use the equivalent formulation {0, . . . , n−1}, {0, . . . , k−1}.) We use two generative
models for the ground truth scores: a uniform random model in which the fraction of scores for
each value from 0 to n−1 is chosen uniformly at random (by choosing a random value for each and
then normalizing), and a model where scores are chosen according to a Gaussian distribution with
a given mean and variance. We then compute a “compressed” score distribution by mapping each
full score s from {0, . . . , n− 1} to {0, . . . , k − 1} by applying

s←

⌊
s(
n
k

)⌋ . (1)
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We then compute the average “compressed” score ak, and compute its error ek according to

ek =

∣∣∣∣af − n− 1

k − 1
· ak
∣∣∣∣ , (2)

where af is the ground truth average score. The goal is to pick argminkek. While there are many
possible generative models and cost functions to use, these seemed like the most natural ones to
start with. We leave study of alternative choices for future work.

We derive a closed-form expression for ek that depends on only a small number (k) of parame-
ters of the underlying distribution for an arbitrary distribution.6 This allows us to exactly character-
ize the performance of using each number of choices. In computational simulations we repeatedly
compute ek and compare the average values. We focus on n = 100 and k = 2, 3, 4, 5, 10, which we
believe are the most natural and interesting choices for initial study.

One could argue that this model is somewhat “trivial” in the sense that it would be optimal to
set k = n to permit all the possible scores, as this would result in the “compressed” scores agreeing
exactly with the full scores. However, there are several reasons that would lead us to prefer to
select k � n in practice (as all of the examples previously described have done), thus making this
“thought experiment” worthwhile. It is much easier for a human to assign a score from a small set
than from a large set, particularly when rating many items under time constraints. We could have
included an additional term into the cost function ek that explicitly penalizes larger values of k,
which would have a significant effect on the optimal value of k (providing a favoritism for smaller
values). However the selection of this function would be somewhat arbitrary and would make the
model more complex, and we leave this for future study. Given that we do not include such a penalty
term, one may expect that increasing k will always decrease ek in our setting. While the simulations
show a clear negative relationship between k and ek, we show that smaller values of k can actually
lead to smaller ek surprisingly often. These smaller values would receive further preference with a
penalty term.

The most closely related theoretical work studies the impact of using finely grained numerical
grades (e.g., 100, 99, 98) vs. coarse letter grades (e.g., A, B, C) (Dubey and Geanakoplos, 2010).
They conclude that if students care primarily about their rank relative to the other students, they
are often best motivated to work by assigning them to coarse categories (letter grades) than by the
exact numerical exam scores. In a specific setting of “disparate” student abilities they show that
the optimal absolute grading scheme is always coarse. Their model is game-theoretic; each player
(student) selects an effort level, seeking to optimize a utility function that depends on both the
relative score and effort level. Their setting is quite different from ours in many ways. For one, they
study a setting where it is assumed that the underlying “ground truth” score is known, yet may be
disguised for strategic reasons. In our setting the goal is to approximate the ground truth score as
closely as possible.

While we are not aware of prior theoretical study of our problem, there have been experimental
studies on the optimal number of options on a “Likert scale” (Matell and Jacoby, 1971; Wildt and
Mazis, 1978; Cox III, 1980; Friedman et al., 1981). The general conclusion is that “the optimal num-
ber of scale categories is content specific and a function of the conditions of measurement” (Garland,

6. For theoretical simplicity we theoretically study a continuous version where scores are chosen according to a dis-
tribution over (0, n) (though the simulations are for the discrete version) and the compressed scores are over
{0, . . . , k − 1}. Continuous approximations for large discrete spaces have been studied in other settings; for in-
stance, they have led to simplified analysis and insight in poker games with continuous distributions of private infor-
mation (Ankenman and Chen, 2006).
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1991). There has been study of whether including a “mid-point” option (i.e., the middle choice from
an odd number) is beneficial. One experiment demonstrated that the use of the mid-point category
decreases as the number of choices increases: 20% of respondents choose the mid-point for 3 and 5
options while only 7% did for 7, 9, . . . , 19 options (Matell and Jacoby, 1972). They conclude that
it is preferable to either not include a mid-point at all or use a large number of options. Subsequent
experiments demonstrated that eliminating a mid-point option can reduce social desirability bias
which results from respondents’ desires to please the interviewer or not give what they perceive to
be a socially unacceptable answer (Garland, 1991).

2. Theoretical characterization

Suppose scores are given by continuous pdf f (with cdf F ) on (0, 100), and we wish to compress
them to two options, {0, 1}. Scores below 50 are mapped to 0 and scores above 50 to 1.

The average of the full distribution is

af = E[X] =

∫ 100

x=0
xf(x)dx.

The average of the compressed version is

a2 =

∫ 50

x=0
0f(x)dx+

∫ 100

x=50
1f(x)dx =

∫ 100

x=50
f(x)dx

= F (100)− F (50) = 1− F (50).

So e2 = |af − 100(1− F (50))| = |E[X]− 100 + 100F (50)|.
For three options,

a3 =

∫ 100/3

x=0
0f(x)dx+

∫ 200/3

x=100/3
1f(x)dx+

∫ 100

x=200/3
2f(x)dx

= F (200/3)− F (100/3) + 2(1− F (200/3))
= 2− F (100/3)− F (200/3)

e3 = |af − 50(2− F (100/3)− F (200/3))|
= |E[X]− 100 + 50F (100/3) + 50F (200/3)|

In general for n total and k compressed options,

ak =
k−1∑
i=0

∫ n(i+1)
k

x=ni
k

if(x)dx

=

k−1∑
i=0

[
i

(
F

(
n(i+ 1)

k

)
− F

(
ni

k

))]

= (k − 1)F (n)−
k−1∑
i=1

F

(
ni

k

)

= (k − 1)−
k−1∑
i=1

F

(
ni

k

)
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ek =

∣∣∣∣∣af − n

k − 1

(
(k − 1)−

k−1∑
i=1

F

(
ni

k

))∣∣∣∣∣
=

∣∣∣∣∣E[X]− n+
n

k − 1

k−1∑
i=1

F

(
ni

k

)∣∣∣∣∣ (3)

Equation 3 allows us to characterize the relative performance of choices of k for a given distri-
bution f . For each k the characterization requires only knowing k statistics of f (the k − 1 values
of F

(
ni
k

)
plus E[X]). In practice these could likely be closely approximated from historical data

for small values of k.
As an example we see that e2 < e3 iff

|E[X]− 100 + 100F (50)| < |E[X]− 100 + 50F (100/3) + 50F (200/3)|

Consider a full distribution that has half its mass right around 30 and half its mass right around
60 (Figure 5). Then af = E[X] = 0.5 · 30 + 0.5 · 60 = 45. If we use k = 2, then the mass
at 30 will be mapped down to 0 (since 30 < 50) and the mass at 60 will be mapped up to 1
(since 60 > 50) (Figure 6). So a2 = 0.5 · 0 + 0.5 · 1 = 0.5. Using normalization of n

k = 100,
e2 = |45 − 100(0.5)| = |45 − 50| = 5. If we use k = 3, then the mass at 30 will also be mapped
down to 0 (since 0 < 100

3 ); but the mass at 60 will be mapped to 1 (not the maximum possible value
of 2 in this case), since 100

3 < 60 < 200
3 (Figure 7). So again a3 = 0.5 · 0 + 0.5 · 1 = 0.5, but now

using normalization of n
k = 50 we have e3 = |45− 50(0.5)| = |45− 25| = 20. So, surprisingly, in

this example allowing more ranking choices actually significantly increases error.

Figure 5: Example distribution for which compressing with k = 2 produces lower error than k = 3.

3. Rounding compression

An alternative model we could have considered is to use rounding to produce the compressed scores
as opposed to using the floor function from Equation 1. For instance, for the case n = 100, k = 2,
instead of dividing s by 50 and taking the floor, we could partition the points according to whether
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Figure 6: Compressed distribution using k = 2. Figure 7: Compressed distribution using k = 3.

they are closer to t1 = 25 or t2 = 75. In the example above, the mass at 30 would be mapped to t1
and the mass at 60 would be mapped to t2. This would produce a compressed average score of

a2 =
1

2
· 25 + 1

2
· 75 = 50.

No normalization would be necessary, and this would produce error of

e2 = |af − a2| = |45− 50| = 5,

as the floor approach did as well. Similarly, for k = 3 the region midpoints will be q1 = 100
6 ,

q2 = 50, q3 = 500
6 . The mass at 30 will be mapped to q1 = 100

6 and the mass at 60 will be mapped
to q2 = 50. This produces a compressed average score of

a3 =
1

2
· 100

6
+

1

2
· 50 =

100

3
.

This produces an error of

e3 = |af − a3| =
∣∣∣∣45− 100

3

∣∣∣∣ = 35

3
= 11.67

Although the error for k = 3 is smaller than for the floor, it is still significantly larger than the error
for k = 2, and using two options still outperforms using three for the example in this new model.

In general, this approach would create k “midpoints” {mk
i }:

mk
i =

n(2i− 1)

2k

For k = 2 we have

a2 =

∫ 50

x=0
25 +

∫ 100

x=50
75 = 25F (50) + 75(1− F (50)) = 75− 50F (50)

e2 = |af − (75− 50F (50))| = |E[X]− 75 + 50F (50)|

One might wonder whether the floor approach would ever outperform the rounding approach
(in the example above the rounding approach produced lower error k = 3 and the same error for
k = 2). As a simple example to see that it can, consider the distribution with all mass on 0. The
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floor approach would produce a2 = 0 giving an error of 0, while the rounding approach would
produce a2 = 25 giving an error of 25. Thus, the superiority of the approach is dependent on the
distribution. We explore this further in the experiments.

For three options,

a3 =

∫ 100/3

x=0
100/6f(x)dx+

∫ 200/3

x=100/3
50f(x)dx+

∫ 100

x=200/3
500/6f(x)dx

= 100/6F (100/3) + 50(F (200/3)− F (100/3)) + 500/6(1− F (200/3)
= 100/6F (100/3) + 50F (200/3)− 50F (100/3) + 500/6− 500/6F (200/3)

= 500/6− 100/3F (100/3)− 100/3F (200/3)

e3 = |af − (500/6− 100/3F (100/3)− 100/3F (200/3))|
= |E[X]− 500/6 + 100/3F (100/3) + 100/3F (200/3)|

For general n and k,

ak =
k−1∑
i=0

∫ n(i+1)
k

x=ni
k

mk
i+1f(x)dx

=

k−1∑
i=0

∫ n(i+1)
k

x=ni
k

n(2i+ 1)

2k
f(x)dx

=

k−1∑
i=0

[
n(2i+ 1)

2k

(
F

(
n(i+ 1)

k

)
− F

(
ni

k

))]

=
n

k

k−1∑
i=0

[
i

(
F

(
n(i+ 1)

k

)
− F

(
ni

k

))]
+

n

2k

k−1∑
i=0

[(
F

(
n(i+ 1)

k

)
− F

(
ni

k

))]

=
n

k

[
(k − 1)−

k−1∑
i=1

F

(
ni

k

)]
+

n

2k

=
n(2k − 1)

2k
− n

k

k−1∑
i=1

F

(
ni

k

)

ek =

∣∣∣∣∣af −
[
n(2k − 1)

2k
− n

k

k−1∑
i=1

F

(
ni

k

)]∣∣∣∣∣ =
∣∣∣∣∣E[X]− n(2k − 1)

2k
+
n

k

k−1∑
i=1

F

(
ni

k

)∣∣∣∣∣ (4)

Like for the floor model ek requires only knowing k statistics of f . The rounding model has
an advantage over the floor model that there is no need to convert scores between different scales
and perform normalization. One drawback is that it requires knowing n (the expression for mk

i is
dependent on n), while the floor model does not. In our experiments we assume n = 100, but
in practice it may not be clear what the agents’ ground truth granularity is and may be easier to
just deal with scores from 1 to k. Furthermore, it may seem unnatural to essentially ask people to
rate items as “100

6 , 50,
200
6 ” rather than “1, 2, 3” (though the conversion between the score and mk

i

could be done behind the scenes essentially circumventing the potential practical complication).
We note that one could generalize both the floor and rounding model by using a score of s(n, k)i
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for the i’th region. For the floor setting we set s(n, k)i = i, and for the rounding setting we set
s(n, k)i = mk

i = n(2i+1)
2k .

4. Computational simulations

The above analysis leads to the immediate question of whether the example for which e2 < e3 was
just a fluke or whether using fewer choices can actually reduce error under reasonable assumptions
on the generative model. We study this question using simulations which we believe are the two
most natural models. While we have studied the continuous setting where the full set of options is
continuous over (0, n) and the compressed set of options is the discrete space {0, . . . , k−1}, we will
now consider the perhaps more realistic setting where the full set is the discrete set {0, . . . , n− 1},
and the compressed set is {0, . . . , k − 1} (though it should be noted that the two settings are likely
extremely similar qualitatively).

The first generative model we consider is a uniform model in which the values of the pmf pf
for each of the n possible values are chosen independently and uniformly at random. Formally, we
construct a histogram of n scores for pf according to Algorithm 1. We then compress the full scores
to a compressed distribution pk by applying Algorithm 2.

The second generative model is a Gaussian model in which the values are generated according
to a normal distribution with specified mean µ and standard deviation σ. This model also takes as
a parameter a number of samples s to use for generating the scores. The procedure is given by
Algorithm 3. As for the uniform setting, Algorithm 2 is then used to compress the scores.

Algorithm 1 Procedure for generating full scores in uniform model
Inputs: Number of scores n

scoreSum← 0
for i = 0 : n do

r ← random(0,1)
scores[i]← r
scoreSum = scoreSum +r

for i = 0 : n do
scores[i] = scores[i] / scoreSum

Algorithm 2 Procedure for compressing scores
Inputs: scores[], number of total scores n, desired number of compressed scores k
Z(n, k)← n

k . Normalization
for i = 0 : n do

scoresCompressed
[⌊

i
Z(n,k)

⌋]
+= scores[i]

For our simulations we used n = 100, and considered k = 2, 3, 4, 5, 10, which are popular
and natural values. For the Gaussian model we used s = 1000, µ = 50, σ = 50

3 . For each set of
simulations we computed the errors for all considered values of k for m = 100, 000 “items” (each
corresponding to a different distribution generated according to the specified model). The main
quantities we are interested in computing are the number of times that each value of k produces the
lowest error over the m items, and the average value of the errors over all items for each k value.
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Algorithm 3 Procedure for generating full scores in Gaussian model
Inputs: Number of scores n, number of samples s, mean µ, standard deviation σ

for i = 0 : s do
r ← randomGaussian(µ, σ)
if r < 0 then

r = 0
else if r > n− 1 then

r ← n− 1

++scores[round(r)]
for i = 0 : n do

scores[i] = scores[i] / s

In the first set of experiments, we compared performance between using k = 2, 3, 4, 5, 10 to see
for how many of the trials each value of k produced the minimal error. The results are in Table 1.
Not surprisingly, we see that the number of victories increases monotonically with the value of k,
while the average error decreased monotonically (recall that we would have zero error if we set
k = 100). However, what is perhaps surprising is that using a smaller number of compressed scores
produced the optimal error in a far from negligible number of the trials. For the uniform model,
using 10 scores minimized error only around 53% of the time, while using 5 scores minimized error
17% of the time, and even using 2 scores minimized it 5.6% of the time. The results were similar
for the Gaussian model, though a bit more in favor of larger values of k, which is what we would
expect because the Gaussian model is less likely to generate “fluke” distributions that could favor
the smaller values.

2 3 4 5 10
Uniform # victories 5564 9265 14870 16974 53327

Uniform average error 1.32 0.86 0.53 0.41 0.19
Gaussian # victories 3025 7336 14435 17800 57404

Gaussian average error 1.14 0.59 0.30 0.22 0.10

Table 1: Number of times each value of k in {2,3,4,5,10} produces minimal error and average error
values, over 100,000 items generated according to both models.

We next explored the number of victories between just k = 2 and k = 3, with results in Table 2.
Again we observed that using a larger value of k generally reduces error, as expected. However, we
find it extremely surprising that using k = 2 produces a lower error 37% of the time. As before, the
larger k value performs relatively better in the Gaussian model. We also looked at results for the
most extreme comparison, k = 2 vs. k = 10. These results are provided in Table 3. Using 2 scores
outperformed 10 8.3% of the time in the uniform setting, which was larger than we expected. In
Figures 8–10, we present a distribution for which k = 2 particularly outperformed k = 10.

We next repeated the extreme k = 2 vs. 10 comparison, but we imposed a restriction that the
k = 10 option could not give a score below 3 or above 6. (If it selected a score below 3 then we set it
to 3, and if above 6 we set it to 6). These result are given in Table 4. For some settings, for instance
the paper reviewing setting, extreme scores are very uncommon, and we strongly suspect that the
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2 3
Uniform number of victories 36805 63195

Uniform average error 1.31 0.86
Gaussian number of victories 30454 69546

Gaussian average error 1.13 0.58

Table 2: Number of times each value of k in {2,3} produces minimal error and average error values,
over 100,000 items generated according to both generative models.

2 10
Uniform number of victories 8253 91747

Uniform average error 1.32 0.19
Gaussian number of victories 4369 95631

Gaussian average error 1.13 0.10

Table 3: Number of times each value of k in {2,10} produces minimal error and average error
values, over 100,000 items generated according to both generative models.

Figure 8: Example distribution for which compressing with k = 2 produces significantly lower
error than k = 10. The full distribution has mean 54.188, while the k = 2 compression
has mean 0.548 (54.253 after normalization) and the k = 10 compression has mean 5.009
(55.009 after normalization). The normalized errors between the means were 0.906 for
k = 10 and 0.048 for k = 2, yielding a difference of 0.859 in favor of k = 2.

vast majority of scores are in this middle range. Some possible explanations are that reviewers who
give extreme scores may be required to put in additional work to justify their scores, and are more
likely to be involved in arguments with the other reviewers (or with the authors in the rebuttal).
Reviewers could also experience higher regret or embarrassment for being “wrong” and possibly
off-base in the review by missing an important nuance. In this setting using k = 2 outperforms
k = 10 nearly 1

3 of the time in the uniform model.
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Figure 9: Compressed distribution for k = 2. Figure 10: Compressed distribution for k = 10.

2 10
Uniform number of victories 32250 67750

Uniform average error 1.31 0.74
Gaussian number of victories 10859 89141

Gaussian average error 1.13 0.20

Table 4: Number of times each k in {2,10} produces minimal error and average error values, over
100,000 items generated according to both models. For k = 10, we only permitted scores
between 3 and 6 (inclusive). If a score was below 3 we set it to be 3, and above 6 to 6.

We also considered the situation where we restricted the k = 10 scores to fall between 3 and
7 (as opposed to 3 and 6). Note that the possible scores range from 0–9, so this restriction is
asymmetric in that the lowest three possible scores are eliminated while only the highest two are.
This is motivated by the intuition that raters may be less inclined to give extremely low scores
which may hurt the feelings of an author (for the case of paper reviewing). In this setting, which
is seemingly quite similar to the 3–6 setting, k = 2 produced lower error 93% of the time in the
uniform model!

2 10
Uniform number of victories 93226 6774

Uniform average error 1.31 0.74
Gaussian number of victories 54459 45541

Gaussian average error 1.13 1.09

Table 5: Number of times each k in {2,10} produces minimal error and average error values, over
100,000 items generated according to both models. For k = 10, we only permitted scores
between 3 and 7 (inclusive). If a score was below 3 we set it to be 3, and above 7 to 7.

We next repeated these experiments for the rounding compression function. There are several
interesting observations from Table 6. In this setting, k = 3 is the clear choice, performing best in
both generative models (by a very significant margin for the Gaussian model). The smaller values
of k perform significantly better in the rounding model than in the floor model (as indicated by
lower average errors) while the larger values perform significantly worse, and their errors seem to
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approach 0.5 for both models. Taking both compression functions into account, the optimal overall
approach would still be to use the floor approach with k = 10, which produced the smallest average
errors of 0.19 and 0.1 in the two models, while using k = 3 in the rounding setting produced errors
of 0.47 and 0.24. The 2 vs. 3 experiments produced very similar results for the two compressions
(Table 7). The 2 vs. 10 results were quite different, with 2 performing better almost 40% of the time
with rounding, vs. less than 10% with the floor function (Table 8). In the 2 vs. 10 truncated 3–6
experiments 2 performed relatively better in the rounding setting for both models (Table 9), and for
the 2 vs. 10 truncated 3–7 experiments k = 2 performed better nearly all the time (Table 10).

2 3 4 5 10
Uniform # victories 15766 33175 21386 19995 9678

Uniform average error 0.78 0.47 0.55 0.52 0.50
Gaussian # victories 13262 64870 10331 9689 1848

Gaussian average error 0.67 0.24 0.50 0.50 0.50

Table 6: Number of times each value of k in {2,3,4,5,10} produces minimal error and average error
values, over 100,000 items generated from both models with rounding compression.

2 3
Uniform number of victories 33585 66415

Uniform average error 0.78 0.47
Gaussian number of victories 18307 81693

Gaussian average error 0.67 0.24

Table 7: Number of times each value of k in {2,3} produces minimal error and average error values,
over 100,000 items generated according to both models with rounding compression.

2 10
Uniform number of victories 37225 62775

Uniform average error 0.78 0.50
Gaussian number of victories 37897 62103

Gaussian average error 0.67 0.50

Table 8: Number of times each value of k in {2,10} produces minimal error and average error val-
ues, over 100,000 items generated according to both models with rounding compression.

5. Conclusion

Settings in which humans must rate items or entities from a small discrete set of options are ubiqui-
tous. We have singled out several important applications—rating attractiveness for dating websites
and mobile applications, assigning grades to students, and reviewing academic papers for confer-
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2 10
Uniform number of victories 55676 44324

Uniform average error 0.79 0.89
Gaussian number of victories 24128 75872

Gaussian average error 0.67 0.34

Table 9: Number of times each value of k in {2,10} produces minimal error and average error val-
ues, over 100,000 items generated according to both models with rounding compression.
For k = 10, we only permitted scores between 3 and 6 (inclusive). If a score was below 3
we set it to be 3, and above 6 to 6.

2 10
Uniform number of victories 99586 414

Uniform average error 0.78 3.50
Gaussian number of victories 95692 4308

Gaussian average error 0.67 1.45

Table 10: Number of times each value of k in {2,10} produces minimal error and average error
values, over 100,000 items generated according to both generative models with rounding
compression. For k = 10, we only permitted scores between 3 and 7 (inclusive). If a
score was below 3 we set it to be 3, and above 7 to 7.

ences. The number of available options can vary considerably, even within different instantiations
of the same application. For instance, we saw that three popular sites for the attractiveness rating
problem use completely different systems: Hot or Not uses a 1–10 system, OkCupid uses 1–5 “star”
system, and Tinder uses a binary 1–2 “swipe” system.

Despite the ubiquity and importance of the problem of selecting the optimal number of rating
choices, we have not seen it studied theoretically previously. Our goal is to select k to minimize
the average (normalized) error between the compressed average score and the ground truth average.
We studied two natural models for generating the scores. The first is a uniform model where the
scores are selected independently and uniformly at random, and the second is a Gaussian model
where they are selected according to a more structured procedure that gives more preference for the
options near the center.

We provided a closed-form solution for continuous distributions with arbitrary cdf. This allows
us to characterize the relative performance of choices of k for a given distribution. We saw that,
counterintuitively, using a smaller value of k can actually produce a smaller error for some distribu-
tions (even though we know that as k approaches n the error approaches 0). We presented a specific
example distribution f for which using k = 2 outperforms k = 3.

We performed numerous computational simulations, comparing the performance between dif-
ferent values of k for different generative models and metrics. The main metric we used was the
absolute number of times for which values of k produced the minimal error. We also considered
the average error over all simulated items. Not surprisingly, we observe that performance generally
improves monotonically with increased k, and more so for the Gaussian model than the uniform.
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However, we observe that small k values can be optimal a non-negligible amount of the time, which
is perhaps counterintuitive. In fact, using k = 2 outperformed k = 3, 4, 5, and 10 on 5.6% of the
trials in the uniform setting. Just comparing 2 vs. 3, k = 2 performed better around 37% of the time.
Using k = 2 outperformed k = 10 8.3% of the time, and significantly more as we imposed some
very natural restrictions on the k = 10 setting that are motivated by intuitive phenomena. When
we restricted the k = 10 to only assign values between 3 and 7 (inclusive), using k = 2 actually
produced lower error 93% of the time! This could correspond to a setting where raters are ashamed
to assign extreme scores (particularly extreme low scores).

We compared two different natural compression rules—one based on the floor function and one
based on rounding—and weighed the pros and cons of each. For smaller values of k the rounding
approach leads to significantly lower error than the floor approach, with k = 3 being the clear
optimal choice, while for larger values of k rounding leads to significantly higher error.

One avenue for future study would be to extend our theoretical characterization analysis in order
to get a better understanding of the specific distributions for which different values of k are optimal,
as opposed to our experimental results which are in aggregate over many distributions. Specific ap-
plication domains will have distributions with different properties, and improved understanding will
allow us to determine which k value is optimal for the types of distributions we expect to encounter
for a given domain. This improved theoretical understanding can be coupled with exploring data on
specific applications of interest.
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Abstract

Decision heuristics are simple models of human and animal decision making that use few
pieces of information and combine the pieces in simple ways, for example, by giving them
equal weight or by considering them sequentially. We examine how decision heuristics can
be learned—and modified—as additional training examples become available. In particular,
we examine how additional training examples change the variance in parameter estimates of
the heuristic. Our analysis suggests new decision heuristics, including a family of heuristics
that generalizes two well-known families: lexicographic heuristics and tallying. We evaluate
the empirical performance of these heuristics in a large, diverse collection of data sets.

1. Introduction

Decision heuristics (Gigerenzer et al., 1999, 2011) are models of human and animal decision
making. They use few pieces of information and combine the pieces in simple ways, for
example, by giving them equal weight or by considering them sequentially. We examine how
such heuristics can be learned from training examples. Our motivation is both computational
and cognitive. From a computational viewpoint, we want to develop heuristics that are fast
in computation, frugal in information use, and effective in making good decisions. From
a cognitive viewpoint, we want to understand how people and animals create and modify
decision heuristics over time, as they accumulate experiences. While there is a large literature
on decision heuristics, few studies have examined the learning process.

Simple decision heuristics are most widely studied within the context of comparison
problems, where the objective is to identify which of a number of alternatives has the highest
value in a specified (unobserved) criterion. We study the learning process in this context,
examining two well-known families of heuristics: lexicographic heuristics and tallying. In
particular, we examine the variance resulting from small training-set sizes and its effect on
the building blocks of these heuristics.

Our theoretical analysis suggests new heuristics, including a generalization of lexicographic
heuristics and tallying. We examine the performance of these heuristics in a large, diverse
collection of data sets, comparing their performance to random forests. We find that sampling
variance can have a large impact on the learning rate of heuristics and that very simple
methods for accounting for sampling variance can substantially improve predictive accuracy.

c©2016 Şimşek et al.
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2. Background

The comparison problem asks which of a given set of objects has the highest value on an
unobserved criterion, given a number of attributes of the objects. We focus on pairwise
comparisons, where exactly two objects are being compared. In the heuristics literature,
attributes are called cues; we will follow this custom. We use xA and yA to denote the cue
and criterion value, respectively, of object A.

For the comparison problem, two well-known families of heuristics are lexicographic
heuristics and tallying. Both families decide by comparing the objects on one or more cues,
asking which object has the more favorable cue value. Each cue is associated with a direction
of inference, known as the cue direction, which can be positive or negative, favoring the
object with the higher or lower cue value, respectively. Neither family requires the difference
in cue values to be quantified. For example, if height of a person is a cue, one needs to be
able to determine which of two people is taller but it is not necessary to know the height of
either person or the magnitude of the difference.

Lexicographic heuristics (Fishburn, 1974) consider the cues one at a time, in a specified
order, until they find a cue that discriminates between the objects, that is, one whose value
differs on the two objects. The heuristic then decides based on that cue alone. An example
is take-the-best (TTB; Gigerenzer and Goldsein, 1996), which orders cues with respect to
decreasing validity on the training sample, where validity is the accuracy of the cue among
pairwise comparisons on which the cue discriminates between the objects.

Tallying (Czerlinski et al., 1999) is a voting model. It determines how each cue votes on
its own (selecting one or the other object or abstaining from voting) and selects the object
with the highest number of votes, breaking ties randomly. Cue directions are set to the
direction with the highest validity in the training set.

Note that the comparison problem has a symmetry: a comparison of A to B and B to A
should agree on which object has the higher criterion value.

3. Distribution of sample statistics

A primary building block of decision heuristics is how a cue decides on its own, independently
of the other cues. This is determined by the cue direction. If the direction is positive, the
cue favors the alternative with the higher cue value; if it is negative, the cue favors the
alternative with the lower cue value.

A second building block is how well a cue decides on its own, in other words, how
accurate it is when it discriminates among the alternatives. This building block informs how
the various cues should be integrated within the heuristic, for example, how they should be
ordered in a lexicographic decision rule. For this building block, two quantities are relevant:
the positive and negative validity, which are the probability that the cue makes the correct
decision given that the cue discriminates between the alternatives if the cue is used in the
positive or negative direction, respectively. Cue validity is the larger of positive and negative
validity—it is the accuracy of the cue when it discriminates between the alternatives if the
cue is used in the correct direction.
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In earlier work (Şimşek and Buckmann, 2015), these building blocks were examined with
a focus on expected rate of learning. Here, our main focus is on sampling variance in cue
parameters.

When learning decision heuristics, cue directions and cue validities are estimated from a
training sample, where each training instance corresponds to a single pairwise comparison
between two objects. We assume that the instances in the training sample are independent.

From a comparison of object A to object B, the information we need is a single variable
with three possible values: positive if the cue and the criterion move in the same direction,
that is, if (xA − xB)× (yA − yB) > 0; negative if the cue and the criterion move in opposite
directions, that is, if (xA − xB)× (yA − yB) < 0; and neutral otherwise. We can therefore
denote a training sample with three numbers, {a, b, c}, where a is the number of positive
instances, b the negative instances, and c the neutral instances.

Given a training sample, the estimate of cue direction, d̂, is positive if a > b, negative if
a < b, and positive or negative with equal probability if a = b. The estimate of cue validity,
v̂, is max{a, b}/(a + b). Notice that the value of c does not play a role in these estimates.
Our analysis therefore focuses on samples with no neutral instances, where the sample size
is n = a + b. We call n the number of informative instances. We denote the true validity
and direction of the cue with v and d, respectively. In the analysis that follows, we assume,
without loss of generality, that d is positive.

We examine the sample distributions of three variables. The first is d̂, which is 1 if the
cue-direction estimate from the sample is identical to the cue direction in the population,
and 0 otherwise. The second variable is v̂, and the third is o, which is the expected accuracy
of the cue on an unseen test instance where the cue discriminates between the alternatives if
the cue is used in the direction inferred from the sample. Our main objective in this section
is to examine the variance in d̂, v̂, and o.

Lemma 1 Random variable d̂ follows a Bernoulli distribution with probability of success
p1 =

∑n
k=bn/2c+1 B(k, n, v) + 0.5×B(n/2, n, v), expected value p1, and variance p1(1− p1),

where B(x, n, p) =
(
n
x

)
px(1− p)n−x denotes the binomial function.

Lemma 2 Random variable v̂ has expected value v and variance v(1− v)/n. This follows
from v̂ = a/n and the fact that a follows the binomial distribution with parameters n and v,
with expected value nv and variance nv(1− v).

Lemma 3 Random variable o has expected value p1(2v − 1) + 1− v and variance p1(1−
p1)(2v − 1)2. Proof: o = d̂v + (1 − d̂)(1 − v) = d̂(2v − 1) + 1 − v. It follows that
E(o) = E(d̂)(2v − 1) + 1− v and V ar(o) = V ar(d̂)(2v − 1)2.

First, we briefly examine the expected prediction error (E) of a single cue:

E = (1− v)× P (d̂ = 1) + v × (1− P (d̂ = 1))

= (1− v)p1 + v(1− p1)

= (1− v)︸ ︷︷ ︸
irreducible

+ (2v − 1)(1− p1)︸ ︷︷ ︸
reducible

(1)
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Figure 1: Reducible error, variance in d̂, and variance in v̂, as the number of informative
samples increases.

The first term in Equation 1 is the irreducible error of the cue: This is the error that would
be incurred even if the direction was known. The second term results from misestimation
of the cue direction and becomes zero as sample size goes to infinity. Figure 1 (leftmost
panel) shows the reducible error as a function of n for various v values. The plot shows
an interesting pattern: When reducible error is high, it reduces rapidly; when it is low, it
reduces very slowly. This conclusion was noted earlier (Şimşek and Buckmann, 2015); the
analysis here is an alternative that shows it more clearly.

Figure 1 (middle and rightmost panel) shows how the variance in d̂ and v̂ decreases as
sample size increases. Variance in sample validity reduces fairly rapidly within the first few
samples. On the other hand, for cue direction, reduction in variance can be rapid or slow,
depending on population validity. For high population validity, variance reduces rapidly.
The closer the population validity is to 0.5, the slower the reduction in variance.

These results show that the sample variance of the cue-direction estimate varies sub-
stantially with population validity and with the number of informative samples. This has
important consequences for learning heuristics. Even when the data set is complete, with
no missing cue or criterion values, typically cues will vary (sometimes substantially) in the
number of informative samples they have. For example, cues with lower discrimination rates
will typically have smaller n.

Existing decision heuristics do not take this information into account. For example,
tallying collects votes from all available cues, with no regard for how much uncertainty
there is around the cue direction estimates. Similarly, TTB orders cues with respect to
their sample validity, with no regard for the uncertainty around cue direction and validity
estimates.

When the training set is large enough, the uncertainty in parameter estimates will
diminish and not play a role, but with small training sets, there will often be substantial
differences in how certain one is about the true direction and validity of the various available
cues.
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What can be done? In the next section, we turn our attention to the reverse infer-
ence problem: Given sample statistics, what is the true cue direction and validity in the
population?

4. Inference on population statistics from a sample

We now examine how to make inferences on cue direction, cue validity, and o, given a
training set {a, b, c}. First, we derive the posterior probability that population direction is
positive given the training sample, P (d+|a, b, c). Note that the quantity c is irrelevant and
P (d+|a, b, c) = P (d+|a, b).

P (d+|a, b) =
P (a, b|d+)

P (a, b)
P (d+) =

∫ 1
v=0 P (a, b|v, d+)P (v|d+)dv∫ 1

v=0 P (a, b|v)P (v)dv
P (d+)

=

∫ 1
v=0.5

(
a+b
a

)
va(1− v)b 2P (v) dv∫ 1

v=0

(
a+b
a

)
va(1− v)bP (v) dv

0.5

=

∫ 1
v=0.5 v

a(1− v)bP (v) dv∫ 1
v=0 v

a(1− v)bP (v) dv
(2)

To arrive at Equation 2, we first used Bayes’s rule, then conditioned on the population
validity v, both in the numerator and in the denominator. Due to the symmetry of the
comparison problem, P (d+) (prior probability of positive cue direction) is 0.5, and P (v|d+)
is 2× P (v) if v ≥ 0.5 and 0 otherwise.

Equation 2 uses P (v), the prior on v. Figure 2 shows the distribution of cue validities
in a large, diverse collection of natural data sets (described in section 6). The triangular
distribution matches the validity distribution well.

Next, we derive the posterior distribution of population validity given sample statistics:

P (v|a, b) =
P (a, b|v)

P (a, b)
P (v) =

P (a, b|v)∫ 1
v=0 P (a, b|v)P (v)dv

P (v)

=

(
a+b
a

)
va(1− v)b∫ 1

v=0

(
a+b
a

)
va(1− v)bP (v) dv

P (v)

=
va(1− v)b∫ 1

v=0 v
a(1− v)bP (v) dv

P (v) (3)

To arrive at Equation 3, we first used Bayes’s rule, then conditioned on the population
validity v in the denominator.

And finally, we derive the posterior distribution of o, the probability that the cue will be
accurate on a test instance, given that it discriminates between the alternatives, if the cue is
used in the direction inferred from the training set.

P (o|a, b) =

∫ 1

v=0
P (o|v, a, b)P (v|a, b) dv

=

∫ 1

v=0
(vd̂ + (1− v)(1− d̂))P (v|a, b) dv (4)

79
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Figure 2: Left: A histogram showing the distribution of cue validity in 56 natural data sets.
The blue line is a density estimate with a corresponding vertical axis to the right
of the curve. The gray line is a triangular distribution that is a very close fit to the
density. Right: The posterior probability that the population direction is positive
given the number of positive and negative instances in the training set, computed
by setting the prior on population validity to the triangular distribution shown on
the left.

We now examine some of these quantities using the triangular distribution in Figure 2
as a prior on cue validity. Figure 2 (right panel) shows the posterior probability of positive
cue direction as a function of a and b. The plot has a simple structure. There is a narrow
band around the line a = b where each additional informative sample changes the posterior
substantially. For example, at (a = 3, b = 1), the posterior probability is 0.62, and after
sampling one more positive instance, the posterior becomes 0.73. This band slowly expands
in width as a and b increase.

The figure also shows that values of a and b that yield identical sample validities can
have vastly different posterior probabilities of positive cue direction. Consider having four
cues with training sets {2, 1}, {4, 2}, {6, 3}, and {8, 4}. All cues have sample validity 2/3
but their posterior probabilities of positive cue direction are 0.69, 0.78, 0.83, and 0.87,
respectively. The general pattern is similar for the posterior probability that o = 1 (plot not
shown).

It is important to note that while the computation of the posteriors is complex, the
resulting posterior distributions exhibit simple patterns that simple rules for handling
uncertainty would be able to express. This analysis shows that in early stages of learning,
there are strong reasons to pay attention to the differences among cues in the level of
uncertainty about their key parameters. In the next section, we consider three decision
models that are sensitive to sample variance.
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5. Decision models to consider

Motivated by the analysis in the previous sections, we consider three decision models. Two
of the models are two extremes of the lexicographic decision rule where the training method
ignores the dependencies among the cues. The first model answers, in a principled way,
how to best take into account the differences in sample variances of the different cues. The
second model asks to what extent this problem can be addressed using minimum effort and
computation. As training-set size grows, both models converge to TTB. The third model
takes a different perspective, and asks, if there is uncertainty about the order of the cues,
why should one order the cues at all?

Lexicographic-by-posterior is a lexicographic decision rule that orders cues with respect
to the posterior probability of a correct decision (o = 1), as computed by Equation 4,
breaking ties randomly. This method is not computationally simple but represents an ideal
for lexicographic decision rules that ignore the dependencies between the cues—it is the best
that can be done. We call this method lexipost for short.

TTBS is a variation on TTB. It orders cues in decreasing order of sample validity (as
TTB does) but breaks ties in favor of the cue with the higher number of informative samples.
Variance in sample estimates of cue direction and cue validity reduces with increasing number
of informative samples, and TTBS is one of the simplest, most straightforward methods of
being sensitive to sample variance.

Lexicographic-tallying is a family of heuristics that generalizes lexicographic models and
tallying. It is characterized by cue directions and cue levels. At decision time, at first, only
the cues at level 1 are examined. These cues vote independently, and their independent
decisions are tallied. If the result favors one or the other alternative, a decision is reached.
Otherwise (if the tally at level 1 is neutral between the two alternatives), the cues at level
2 are tallied, and so on, until a decision is reached. If all cues are at level 1, the method
reduces to tallying. If no cues share the same level, it reduces to a lexicographic decision
rule. We refer to this model as lexital for short. We are not aware of earlier uses of this
model even though it is a natural generalization of existing heuristics.

One motivation for using lexital is uncertainty in cue parameters. When there is not
enough certainty about how a subset of the cues should be ordered (e.g., if they have equal
sample validity and an equal number of informative samples), tallying these cues is a more
reasonable approach than using them sequentially. There are other reasons for employing
the hierarchical structure of lexital but uncertainty in cue parameters is a natural reason for
doing so.

How should the parameters of a lexital model be determined from training samples?
This is an open question, with many possible approaches. Here we consider perhaps the
simplest approach: Order cues according to decreasing sample validity; when multiple cues
tie on their sample validity, assign them to the same level in lexital. We call this model
tally-the-best.

6. Empirical performance

We examined the performance of various heuristics in a large, diverse collection of natural
data sets. The collection included 56 data sets gathered from a wide variety of sources,
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including online data repositories, textbooks, packages for R statistical software, statistics
and data-mining competitions, research publications, and individual scientists collecting
field data. The subjects were diverse, including biology, business, computer science, ecology,
economics, education, engineering, environmental science, medicine, political science, psy-
chology, sociology, sports, and transportation. The data sets varied in size, ranging from 13
to 601 objects. Many of the smaller data sets contained the entirety of the population of
objects, for example, all 29 islands in the Galápagos archipelago. Most of the data sets were
used in earlier studies (Czerlinski et al., 1999; Şimşek, 2013; and Şimşek and Buckmann,
2015). All are publicly available. The data sets are described in the supplementary material.

We tested the following models: TTB, TTBS, lexipost, and tally-the-best. In addition,
we tested random forests (Breiman, 2001), one of the very best statistical learning algorithms,
to provide a strong benchmark from machine learning. We trained random forests using
their implementation in R package randomForest (Liaw and Wiener, 2002). Typically, the
only parameter tuned when using random forests is mtry, which specifies how many cues
should be randomly selected for consideration when splitting a branch (Hastie et al., 2009).
We tuned mtry using 10-fold cross-validation in the training set. A description of our
random-forest implementation is provided in the supplementary material.

We focused on cases where sample variance plays a role in the learning process, for
example, due to differences in discrimination rates, resulting in differences in the number of
informative samples available for different cues (even though all cues were trained on the
same set of paired comparisons). We observed (not so small) differences in the learning
curves of TTB and lexipost in 25 of the 56 data sets.

Figure 3 (top left) shows the mean accuracy in these 25 data sets as the training-set size
grows, starting with one instance. We focus here on differences in early stages of learning.
Because some of the data sets are smaller than others, the number of data sets included
in the figure decreases as training-set sizes increases (therefore the tail end of the learning
curves are not smooth). On the 25 data sets, there is a substantial gap between TTB and
random forest. TTBS, lexipost, and tally-the-best close this gap to some extent.

In the heuristics literature, it is common to dichotomize the cues around the median (Cz-
erlinski et al., 1999; Brighton, 2006; Martignon et al., 2008), for which one reason is “to
mimic the limited knowledge about cue values that people typically have, and the potential
unreliability of precise values” (Gigerenzer et al., 1999). With dichotomized cues, sampling
variance almost always plays an important role in the learning process. In Figure 3 (top
right), we show mean accuracy in all 56 data sets when the cues were dichotomized around
the median. All three models performed better than or as well as random forests. TTB
lagged behind in some regions of the learning curve.

The figure shows, in addition, individual learning curves in 9 of the 25 data sets. These
plots show two standard errors around each learning curve as a shaded region surrounding the
curve above and below. On individual data sets, lexipost frequently made large improvements
in performance compared to TTB. Surprisingly, this was also true for the other two methods,
tally-the-best and TTBS, despite their very simple handling of sampling uncertainty.
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Figure 3: Top left: Mean accuracy in 25 data sets where there was a visible difference
between the learning curves of take-the-best (TTB) and lexipost. Top right: Mean
accuracy in all 56 data sets, when the cues are dichotomized around the median.
In both plots, the horizontal axis is drawn on a log scale. Other plots: Learning
curves in 9 of the 25 data sets (no dichotomization of the cues).
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7. Discussion

Our results provide a foundation for taking into account sample variance in learning decision
heuristics. The far superior performance of lexipost compared to TTB suggests that
lexicographic heuristics have large untapped potential. In our simulations, even very simple
ways of accounting for sampling uncertainty resulted in large performance improvements in
many data sets. Principled methods of handling uncertainty have the potential to further
improve performance. Our analysis may be useful in understanding how people take sampling
uncertainty into account in learning simple decision rules.
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Abstract
We develop a theory of quantum rational decision making in the tradition of Anscombe and Au-
mann’s axiomatisation of preferences on horse lotteries. It is essentially the Bayesian decision
theory generalised to the space of Hermitian matrices. Among other things, this leads us to give a
representation theorem showing that quantum complete rational preferences are obtained by means
of expected utility considerations.
Keywords: Quantum mechanics, Bayesian decision theory, Horse lotteries, Imprecise probability.

1. Introduction

The aim of this paper is simple. We have recently shown in Benavoli et al. (2016a) that Quantum
Mechanics (QM) coincides with the Bayesian theory once this is formulated in the space of Hermi-
tian matrices (so as to make possible to gamble on quantum experiments). Such an identification
makes a number of things, at least in principle, straightforward: one of these is the extension of QM
to make it handle non-linear utility. We do so by adapting the traditional axiomatisation of rational
preferences by Anscombe and Aumann (1963) to the quantum setting.

After axiomatising quantum rational preferences in this way, we move on to give a representa-
tion theorem that shows that quantum rational preferences can be obtained by means of expected
utility considerations. Our route to this results is based on the approach devised by Zaffalon and
Miranda (2015) in the classical case: we show that the axiomatisation of quantum rational prefer-
ences is equivalent to the quantum theory of coherent desirable gambles—the very same theory at
the heart of Benavoli et al.’s (2016a) formulation of QM—yet formulated so as to consider prizes
other then events. Intuitively, this allows us to formally bring quantum rational preferences back to
plain QM through an enlargement of the space of possibilities. We eventually show how this leads to
quantum probabilities and utilities after enforcing axioms for state independence and completeness.
All proofs can be found in the extended version (Benavoli et al., 2016c).

Before briefly reviewing related work and making some final comments, we illustrate one el-
egant consequence of the correspondence between preferences and desirability: namely, how to
derive a coherent rule for updating preferences determining how should a subject rationally change
her preferences in the prospect of obtaining new information in the form of an event.

Since the wording “quantum” is used nowadays with a number of acceptations in the literature,
we would like to make precise what our framework actually addresses: that is, nothing else but

∗. The authors are listed in alphabetic order.

c©2016 Benavoli et al.
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gambling on quantum mechanics experiments; we are not, at this stage, endorsing any other inter-
pretation of the quantum decision theory developed here. Moreover, we would like to remark that
our framework is an actual generalisation of classical decision-theoretic approaches in the tradition
of Anscombe and Aumann (1963): in fact, we can recover them by simply focusing on the sub-
set of Hermitian matrices made by diagonal real-valued matrices; that is, by focusing on classical
experiments.

2. Rational gambling on quantum experiments

We start by defining a gambling system about the results of a quantum experiment. To this end,
we consider two subjects: the bookmaker and the gambler (Alice). The bookmaker prepares the
quantum system in some quantum state. Alice has her personal knowledge (beliefs) about the
experiment—possibly no knowledge at all.

1. The bookmaker announces that he will measure the quantum system along its n orthogonal
directions and so the outcome of the measurement is an element of Ω = {ω1, . . . ,ωn}, with ωi

denoting the elementary event “detection along i”. Mathematically, it means that the quantum
system is measured along its eigenvectors,1 i.e., the projectors2 Π∗ = {Π∗1, . . . ,Π∗n} and ωi

is the event “indicated” by the i-th projector. The bookmaker is fair, meaning that he will
correctly perform the experiment and report the actual results to Alice.

2. Before the experiment, Alice declares the set of gambles she is willing to accept. Mathemati-
cally, a gamble G on this experiment is a Hermitian matrix in Cn×n

h , the space of all Hermitian
n×n matrices being denoted by Cn×n

h . We will denote the set of gambles Alice is willing to
accept by K ⊆ Cn×n

h .
3. By accepting a gamble G, Alice commits herself to receive γi ∈ R utiles if the outcome of

the experiment eventually happens to be ωi. The value γi is defined from G and Π∗ through
Π∗i GΠ∗i = γiΠ

∗
i for i = 1, . . . ,n. It is a real number since G is Hermitian.

Denote by H + = {G∈Cn×n
h : G 0} the subset of all positive semi-definite and non-zero (PSDNZ)

matrices in Cn×n
h : we call them the set of positive gambles. The set of negative gambles is similarly

given by H − = {G ∈ Cn×n
h : G� 0}. Alice examines the gambles in Cn×n

h and comes up with the
subset K of the gambles that she finds desirable. Alice’s rationality is characterised as follows:

1. Any gamble G ∈Cn×n
h such that G 0 must be desirable for Alice, given that it may increase

Alice’s utiles without ever decreasing them (accepting partial gain): H + ⊆K .
2. Any gamble G ∈ Cn×n

h such that G � 0 is not desirable for Alice, given that it may only
decrease Alice’s utiles without ever increasing them (avoiding partial loss): H −∩K = /0.

3. If Alice finds G desirable, that is G ∈ K , then also νG must be desirable for her for any
0 < ν ∈ R (positive homogeneity).

4. If Alice finds G1 and G2 desirable, that is G1,G2 ∈K , then she must also accept G1 +G2,
i.e., G1 +G2 ∈K (additivity).

To understand these rationality criteria, originally presented in Benavoli et al. (2016a, Sec. III),
we must remember that mathematically the payoff for any gamble G is computed as Π∗i GΠ∗i if
the outcome of the experiment is the event indicated by Π∗i . Then the first two rationality criteria
above hold no matter the experiment Π∗ that is eventually performed. In fact, from the properties
of PSDNZ matrices, if G  0 then Π∗i GΠ∗i = γiΠ

∗
i with γ∗i ≥ 0 for any i and γ j > 0 for some j.

1. We mean the eigenvectors of the density matrix of the quantum system.
2. A projector Π is a set of n positive semi-definite matrices in Cn×n

h s.t. ΠiΠk = 0, (Πi)
2 = Πi = (Πi)

†, ∑
n
i=1 Πi = I.
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Therefore, by accepting G  0, Alice can only increase her utiles. Symmetrically, if G � 0 then
Π∗i GΠ∗i = γiΠ

∗
i with γi ≤ 0 for any i. Alice must then avoid the gambles G � 0 because they can

only decrease her utiles. This justifies the first two rationality criteria. For the last two, observe that

Π
∗
i (G1 +G2)Π

∗
i = Π

∗
i G1Π

∗
i +Π

∗
i G2Π

∗
i = (γi +ϑi)Π

∗
i ,

where we have exploited the fact that Π∗i G1Π∗i = γiΠ
∗
i and Π∗i G2Π∗i =ϑiΠ

∗
i . Hence, if Alice accepts

G1,G2, she must also accept G1 +G2 because this will lead to a reward of γi +ϑi. Similarly, if G is
desirable for Alice, then also Π∗i (νG)Π∗i = νΠ∗i GΠ∗i should be desirable for any ν > 0.

In other words, as in the case of classical desirability (Williams, 1975; Walley, 1991), the four
conditions above state only minimal requirements: that Alice would like to increase her wealth
and not decrease it (conditions 1 and 2); and that Alice’s utility scale is linear (conditions 3 and
4). The first two conditions should be plainly uncontroversial. The linearity of the utility scale is
routinely assumed in the theories of personal, and in particular Bayesian, probability as a way to
isolate considerations of uncertainty from those of value (wealth).

We can characterise K also from a geometric point of view. In fact, from the above properties,
it follows that a coherent set of desirable gambles K is a convex cone in Cn×n

h that includes all pos-
itive gambles (accepting partial gains) and excludes all negative gambles (avoiding partial losses).
Without loss of generality we can also assume that K is not pointed, i.e., 0 /∈K : Alice does not
accept the null gamble. A coherent set of desirable gambles is therefore a non-pointed convex cone.

Definition 1 We say that K ∈ Cn×n
h is a coherent quantum set of desirable gambles (DG) if

(S1) K is a non-pointed convex-cone (positive homogeneity and additivity);
(S2) if G 0 then G ∈K (accepting partial gain).

If in addition a coherent set of desirable gambles satisfies the following property:
(S3) if G ∈K then either G  0 or G− εI ∈K for some strictly positive real number ε (open-

ness),3

then it is said to be a coherent quantum set of strictly desirable gambles (SDGs).

Note that the although the additional openness property (S3) is not necessary for rationality, it
is technically convenient as it precisely isolates the kind of models we use in QM (as well as in
classical probability), see Benavoli et al. (2016a). Property (S3) has a gambling interpretation too:
it means that we will only consider gambles that are strictly desirable for Alice; these are the positive
ones or those for which she is willing to pay a positive amount to have them. Note that assumptions
(S1) and (S2) imply that SDGs also avoids partial loss: if G � 0, then G /∈ K (Benavoli et al.,
2016a, Remark III.2).

In Benavoli et al. (2016a), we have shown that maximal set of SDGs, that is SDG sets that are
not included in any larger set of SDG, and density matrices are one-to-one. The mapping between
them is obtained through the standard inner product inCn×n

h , i.e., G ·R= Tr(G†R) with G,R∈Cn×n
h .

This follows by a representation result whose proof is a direct application of Hahn-Banach theorem:

Theorem 2 (Representation theorem from Benavoli et al. (2016a)) The map that associates a max-
imal SDG the unique density matrix ρ such that Tr(G†ρ) ≥ 0 ∀G ∈K defines a bijective corre-

3. In Benavoli et al. (2016a) we used another formulation of openness, namely (S3’): if G ∈K then either G  0 or
G−∆ ∈K for some 0 < ∆ ∈ Cn×n

h . (S3) and (S3’) are provably equivalent given (S1) and (S2).
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spondence between maximal SDGs and density matrices. Its inverse is the map (·)◦ that associates
each density matrix ρ the maximal SDG4 (ρ)◦ = {G ∈Cn×n

h |G 0}∪{G ∈Cn×n
h | Tr(G†ρ)> 0}.

This representation theorem has several consequences. First, it provides a gambling interpretation
of the first axiom of QM on density operators. Second, it shows that density operators are coherent,
since the set (ρ)◦ that they induce is a valid SDG. This also implies that QM is self-consistent—
a gambler that uses QM to place bets on a quantum experiment cannot be made a partial (and,
thus, sure) loser. Third, the first axiom of QM on Cn×n

h is structurally and formally equivalent to
Kolmogorov’s first and second axioms about probabilities on Rn (Benavoli et al., 2016a, Sec. 2).
In fact, they can be both derived via duality from a coherent set of desirable gambles on Cn×n

h and,
respectively, Rn. In Benavoli et al. (2016a) we have also derived Born’s rule and the other three
axioms of QM from the illustrated setting and shown that measurement, partial tracing and tensor
product are just generalised probabilistic notions of Bayes rule, marginalisation and independence.
Finally, as shown in (Benavoli et al., 2016b), the representation theorem enables us to derive a
Gleason-type theorem that holds for any dimension n of a quantum system, hence even for n = 2.

3. Quantum horse lotteries and preference relations

As seen in Sec. 2, QM is just the Bayesian theory of probability formulated over Hermitian matrices.
Now we proceed to extend such a theory of probability to make it handle non-linear utility. To this
end, we work in the tradition of Anscombe and Aumann (1963). Central to this tradition is the
notion of a horse lottery.

Consider a set of prizes X = {x1, . . . ,xm} with m≥ 2 (this last constraint will be clarified later).
A horse lottery is a compound lottery such that if ω ∈ Ω occurs, it returns a simple lottery, which
can depend on ω , over the prizes in X . The idea is that at some later point the subject (Alice) will
play the simple lottery thus earning one of the prizes. Anscombe and Aumann’s setting axiomatises
rational preferences over horse lotteries; from this, it follows that there are probabilities and utilities
that represent those preferences via maximum expected utility.

3.1 Horse lotteries over complex numbers

As in the classical case, now we consider that when Π∗i is observed, Alice receives a probability
mass function pi (pmf) over the prices X rather than the value γi as in Sec. 2. This framework is a
composite system made of a quantum experiment and a classical experiment (on X). To describe it
in a mathematically convenient way, we need to define gambles on this composite system. First, we
define the form of the gambles. Since the experiment on X is classical, it can be described by the
subspace of Cm×m

h of diagonal matrices; we denote it as Dm. Gambles on this composite system are
therefore elements of Dm⊗Cn×n

h ⊂Cmn×mn
h , where⊗ denotes the tensor product. It can be observed

that G is a block diagonal matrix with elements inCn×n
h , i.e. G=Diag(G1, . . . ,Gm) with Gk ∈Cn×n

h .
We are interested in the special case of gambles on Dm⊗Cn×n

h that return a pmf pi when the
quantum system is measured along some projector.

Definition 3 Let Q ∈ Dm⊗Cn×n
h . Q is said to be a quantum horse lottery (QH-lottery) if

∀Π,∀Πi ∈Π,∃pi ∈ Pm : (Im⊗Πi)Q(Im⊗Πi) = pi⊗Πi, (1)

4. Here the gambles G  0 are treated separately because they are always desirable and, thus, they are not informative
on Alice’s beliefs about the quantum system. Alice’s knowledge is determined by the gambles that are not G 0.
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where Pm⊂Dm denotes the subset of trace one diagonal-matrices whose elements are non-negative.

The set Pm is isomorphic to the set of all probability mass functions (pmf) on Rm. Therefore, with
an abuse of terminology we improperly refer to the diagonal matrix pi as a pmf. We denote the
subspace of Dm⊗Cn×n

h of QH-lotteries as QL. By Definition 3, a QH-lottery is therefore a gamble
that returns to Alice the pmf pi on X whenever a measurement Π is performed on the quantum
system and the projector Πi ∈Π is observed. In what follows, we determine some properties of QL.

Consider the matrix Q inDm⊗Cn×n
h defined as Q = ∑

n
j=1 q j⊗Vj, with q j ∈ Pm and V = {Vj}n

j=1
is an orthogonal decomposition (OD) on Cn×n

h . It turns out that actually Q is a QH-lottery.We call
it a simple QH-lottery. Note that a convex combination of simple QH-lotteries is a QH-lottery.
However, such a combination need not be simple anymore. The next theorem isolates necessary
and sufficient conditions for an element of the composite space Dm⊗Cn×n

h to be a QH-lottery.

Theorem 4 Let Q ∈ Dm⊗Cn×n
h of the form Q = Diag(Q1, . . . ,Qm). Then Q ∈ QL if and only if

Q j ≥ 0 for every j = 1, . . . ,m and ∑
m
j=1 Q j = In.

Remark 5 It should be observed that Q1, . . . ,Qm are Hermitian positive semi-definite matrices that
sum up to the identity operator. This is the definition of positive-operator valued measure (POVM).
Therefore the generalisation of horse lotteries to the quantum setting naturally leads to POVMs.

Remark 6 The classical definition of horse lotteries can be recovered by the quantum one just by
considering, instead of the space Cn×n

h , the space of diagonal real-valued matrices. Obviously, the
composite system under consideration is Dm×Dn. This space is isomorphic to the space L (X×Ω)
of real valued functions whose domain is X ×Ω, where Ω = {1, . . . ,n} and X = {1, . . . ,m}. By
applying Definition 3, we immediately obtain that an object Q ∈L (X ×Ω) satisfies Property 1 if
and only if Q(·,ω) is a pmf on X for each ω ∈Ω, meaning that Q is a (classical) horse lottery.

3.2 Coherent preference relations

Horse lotteries are given a behavioural interpretation through a notion of preference. The idea is
that Alice, who aims at receiving a prize from X , will prefer some horse lotteries over some others,
depending on her knowledge about the quantum experiment, as well as on her attitude towards the
prizes. We consider the following well-known axioms of rational preferences, formulated here in
the quantum setting.

Definition 7 A preference relation over quantum horse lotteries is a subset �⊆QL×QL. It is said
to be coherent if it satisfies the following axioms:

(A.1) (∀P,Q,R ∈ QL)P 6� P and P� Q� R⇒ P� R [strict partial order];

(A.2) (∀P,Q ∈ QL)P � Q⇔ (∀R ∈ QL)(∀α ∈ (0,1])αP+(1−α)R � αQ+(1−α)R [mixture
independence].

Our approach is therefore a straightforward generalisation of the classical setting to the quantum
case. In the classical axiomatisations of rational preferences, it is customary to assume that the
preference relation has a best and a worst horse lottery. For us it is enough to assume that the worst
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one exists and that it actually corresponds to a worst element in X .5 Formally, we denote the last
(m-th) element of X as z. By pz ∈ Pm we denote the pmf that assigns all the mass to z. Finally, by
Z we denote the QH-lottery pz⊗ In. Notice that Z = ∑

n
i=n pz⊗Πi, for every OD Π = {Πi}n

i=1, and
therefore (Im⊗Πi)Z(Im⊗Πi) = pz⊗Πi, for every Πi ∈Π.

Definition 8 Let �⊂ QL×QL be a preference relation. We say that � has the worst outcome if
there is z ∈ X such that P� Z for every P 6= Z.

In what follows we assume that preference relations have such a worst outcome. The rationale
is that the elements of X\{z} are actual prizes, whereas z represents the event that no prize in X\{z}
is won (nothing is won). We have assumed that m≥ 2 precisely as a consequence of the assumption
that there is the worst-outcome z among the elements of X .

The scaled differences of QL-lotteries is the set defined by

A = {λ (P−Q) | λ > 0,P,Q ∈ QL}, (2)

where λ is a positive real. The set A constitutes a vector space.

Theorem 9 The map � 7→ C = {λ (P−Q) | P,Q ∈ QL, λ > 0,P � Q} determines a bijection
between coherent preference relations over QL and non-pointed convex cones in A .

Thus, it turns out that non-pointed cones and coherent quantum preference relations are just two
ways of looking at the same thing.

4. Quantum desirability vs quantum preference: two faces of the same coin

In this section we follow the same strategy as in Zaffalon and Miranda (2015) to establish an equiv-
alence between the theories of coherent quantum preference and coherent quantum desirability. To
this end, we first define the projection operator that drops the z-components from an act.

Definition 10 The projection operator is the functional Proj :Dm⊗Cn×n
h →Dm−1⊗Cn×n

h that takes
the QL-lottery (m-block diagonal matrix) Q and returns Proj(Q) = Diag(Q1, . . . ,Qm−1).

In this paper, we are going to use this operator to project QH-lotteries in Dm⊗Cn×n
h into gambles

on Dm−1⊗Cn×n
h . However, instead of working directly with the space QL, in what follows it will

be more convenient to reason on the space A of scaled differences of QH-lotteries defined in (2).
Note also that the restriction of Proj to A is injective.

Based on the correspondence between cones on A and preference relations, it is then an easy
step to show (see (Benavoli et al., 2016c, Proposition 22)) that given a coherent preference relation
�, one can define a coherent set K of desirable gambles on Dm−1⊗Cn×n

h as K = {λ Proj(P−Q) :
P� Q,λ > 0} and with the property that

P� Q⇔ Proj(P−Q) ∈K . (3)

One can actually verify that there is an exact correspondence between coherent sets of desirable
gambles and coherent preference relations.

Theorem 11 There is a one-to-one correspondence between coherent sets of desirable gambles
over Dm−1⊗Cn×n

h and coherent preference relations over QL×QL.

5. The two requirements—having a worst horse lottery and a worst element in X—have been shown equivalent in
Zaffalon and Miranda (2015, Proposition 8).
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5. Archimedeanity and the representation theorem

Archimedeanity is an extra axiom adopted in traditional axiomatisations of rational preferences
that tries to capture a form of continuity; it is such an axiom that makes it possible to have a
representation of preferences in terms of expected utilities. Zaffalon and Miranda (2015, Prop.
11) (and in the quantum case, we, in (Benavoli et al., 2016c, Proposition 22)) have shown that the
traditional Archimedean axiom has some drawbacks that can be fixed with a slight change in its
definition. It is based on the notion of objective preference.

Definition 12 (Objective preference) Let P,Q ∈ QL. We say that P is objectively preferred to Q if
Proj(P−Q) 0. We denote objective preference by PBQ.

(Note that the definition neglects the outcome z, since it is not one any subject actually wants.)
Objective preference is a preference relation. Moreover, it is the least preference relation over

QL×QL in the sense that it is included in any other preference relation (in this sense, we call it
“objective”). Now we can directly rephrase Zaffalon and Miranda’s Archimedean notion as follows
for the quantum case:

(A.3) (∀P,Q ∈ QL) P� Q,P 6B Q⇒ (∃α ∈ (0,1)) αP+(1−α)Z � Q [Weak Archimedeanity].

Analogously to their case, we obtain that it is equivalent to use coherent quantum sets of strictly
desirable gambles in order to represent weakly Archimedean coherent preference relation on quan-
tum horse lotteries. Recall also that a preference relation � is said to be complete (or total) if either
P� Q or Q� P, for every P,Q ∈ QL with P 6= Q.

Theorem 13 There is a one to one correspondence between coherent sets of SDG overDm−1⊗Cn×n
h

and coherent preference relations over QL×QL that are weakly Archimedean. Moreover, such a
correspondence induces a bijection between maximal coherent sets of SDG and complete weakly
Archimedean coherent preference relations.

Based on Theorem 13, we can then obtain a representation theorem for complete weakly Archi-
medean coherent preference relations as follows. First of all, Theorem 2 from Benavoli et al. (2016a)
can be restated in the case of quantum horse lotteries as follows.

Theorem 14 The map that associates a maximal SDG over Dm−1 ⊗Cn×n
h the unique trace-one

positive matrix R∈Dm−1⊗Cn×n
h such that Tr(G†R)≥ 0 ∀G∈K defines a bijective correspondence

between maximal SDGs over Dm−1⊗Cn×n
h and trace-one positive matrices over Dm−1⊗Cn×n

h . Its
inverse is the map (·)◦ that associates each trace-one positive matrix R the maximal SDG

(R)◦ = {Dm−1⊗Cn×n
h | G 0}∪{G ∈ Dm−1⊗Cn×n

h | Tr(G†R)> 0}. (4)

All trace-one positive matrices R are of the form R = Diag(p1ρ1, . . . , pm−1ρm−1) with ρi ∈Cn×n
h

being density matrices and Diag(p1, . . . , pm−1) ∈ Pm−1. Hence, applying Theorems 13 and 14 to
Property 3 yields the following representation result for complete preference relations:

Corollary 15 A relation � over QL×QL is a complete weakly Archimedean coherent preference
relation if and only if there is a unique trace-one positive matrix R = Diag(p1ρ1, . . . , pm−1ρm−1)
such that

P� Q⇔
(

either PBQ or
m−1

∑
i=1

piTr(P†
i ρi)>

m−1

∑
i=1

piTr(Q†
i ρi)

)
∀P,Q ∈ QL. (5)
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Consistently with our generalisation of Gleason’s theorem (Benavoli et al., 2016b), this result holds
in any dimension (even n = 2), because we ask preference relations to be coherent.

6. Coherent updating and state independence

This section shows how to derive in a very simple, elegant, way a coherent rule for updating prefer-
ences. In particular our aim is to answer this question: how should Alice change her preferences in
the prospect of obtaining new information in the form of an event?

We initially assume that Alice considers an event “indicated” by a certain projector Πi ∈ Cn×n
h

in Π = {Πi}n
i=1. The information it represents is: an experiment Π is performed and the event

indicated by Πi happens.6

Now, assume that Alice’s preferences are modelled by the coherent relation � on QL. From
Theorem 11 we can consider the coherent set K in Dm−1⊗Cn×n

h . Hence, we reason as in the
derivation of the second axiom of QM in Benavoli et al. (2016a, Sec. V). Under the assumption that
an experiment Π is performed and the event indicated by Πi happens, Alice can focus on gambles
that are contingent on Im−1⊗Πi: these are the gambles such that “outside” Im−1⊗Πi no utile is
received or due—status quo is maintained—; in other words, they represent gambles that are called
off if the outcome of the experiment is not Πi. Mathematically, these gambles are of the form

G =

{
H if Im−1⊗Πi occurs,
0 if Im−1⊗Π j occurs, with j 6= i.

It is then clear that H = αIm−1⊗Πi with α ∈R since ΠiΠ j = 0 for each j 6= i. In this light, we can
define Alice’s conditional preferences by moving to the equivalent view on gambles, restricting the
attention to gambles of the form Im−1⊗ΠiGIm−1⊗Πi = αIm−1⊗Πi with G ∈ Dm−1⊗Cn×n

h , and
finally updating the preferences by looking at the corresponding preference relation.

Definition 16 Let � be a preference relation. The relation obtained as �Πi := Proj−1
1 (KΠi), with

KΠi =
{

G ∈ Dm−1⊗Cn×n
h | G 0 or (Im−1⊗Πi)G(Im−1⊗Πi) ∈K

}
(6)

is called the preference relation conditional on Πi.

By the same argument as in Benavoli et al. (2016a, Prop. A.6), one can prove that KΠi is a
coherent set of (strictly) desirable gambles, whenever K is a coherent set of (strictly) desirable
gambles. By Theorems 11 and 13 this yields that:

Theorem 17 Let � be a (weakly Archimedean) coherent preference relation. The relation �Πi

conditional on the event Πi is also a (weakly Archimedean) coherent preference relation.

Now, we rely on conditioning to introduce the concept of state-independent preferences. For
this purpose, we use results in Benavoli et al. (2016a) to prove the fourth postulate of QM about
composite systems. We first define the concept of epistemic irrelevance.

6. We assume that the quantum measurement device is a “perfect meter” (an ideal common assumption in QM), i.e.,
there are not observational errors—Alice can trust the received information.

94



QUANTUM RATIONAL PREFERENCES AND DESIRABILITY

Definition 18 Let R ⊂ Dm−1⊗Cn×n
h , and let us define

margDm−1(R) =
{

G ∈ Dm−1 | G⊗ In ∈R
}
,

R|Cn×n
h

=
{

H ∈ Dm−1⊗Cn×n
h | H  0 or (Im−1⊗Πi)H(Im−1⊗Πi) ∈R

}
,

An SDG K on Dm−1⊗Cn×n
h is said to satisfy epistemic irrelevance of the subsystems Dm−1 to

Cn×n
h when margDm−1(K ) =margDm−1(K|Cn×n

h
) for each projection measurement Π = {Πi}n

i=1.

Let us briefly explain this definition. K is the SDG conditional on the event indicated by Im−1⊗Πi,
as it follows from its definition and (6). Thus, margDm−1(K )=margDm−1(KCn×n

h
) means that Alice’s

marginal SDG margDm−1(K ) on the subsystem Dm−1 and the marginal on Dm−1 of Alice’s SDG
updated with the information “the event indicated by Πi has happened”, which is margDm−1(KCn×n

h
),

coincide. If this holds for all possible Πi’s, then any information on Cn×n
h does not change Alice’s

beliefs on Dm−1: this is precisely the definition of epistemic irrelevance. In case K is maximal
and satisfies epistemic irrelevance, we have shown in Benavoli et al. (2016a, Sec. VII.c) that the
representation Theorem 14 applied to such K defines a matrix R that factorizes as R = p⊗ ρ .
Therefore, as in the classical framework for decision theory, the “joint” density matrix R factorizes
as the product of p ∈ Pm and the density matrix ρ ∈ Cn×n

h . Stated otherwise, K models indepen-
dence between utility (p) and the “probabilistic” information (ρ) associated to the quantum system.
Alice’s preferences are state-independent in this case.

7. Related work

Axiomatic frameworks for the theory of subjective expected utility were originally given by Savage
(1954) and by Anscombe and Aumann (1963). Karni (2013) provides a recent overview of several
variations and extensions of these two models.

Busemeyer and Bruza’s (2012) presents an overview and many references to quantum-like ap-
proaches to cognition and decision theory. Deutsch (1999), Khrennikov (2016) and Danilov et al.
(2016) are examples of other works addressing similar issues. In particular the latter proposes an ax-
iomatisation for quantum preferences directly in the space of Hermitian matrices similar to the one
presented here. However, the authors only consider what we call simple quantum horse lotteries. In
doing so, the traditional axiom of mixture independence is formulated relative to the particular or-
thogonal decomposition associated to a simple lottery; an additional axiom becomes then necessary
to bind lotteries based on different orthogonal decompositions. Moreover their representation theo-
rem crucially employs Gleason’s theorem and therefore only works on spaces of dimension greater
than two. Because of those characteristics, it is unclear to us whether or not that axiomatisation is
coherent: e.g., whether it guarantees that a subject whose quantum preferences on a space of dimen-
sion two cannot be made a sure loser, that is, shown to be irrational. The case of dimension two is
particularly critical as dispersion-free probabilities—which Benavoli et al. (2016b) have shown to
be incoherent—could in principle be employed.

8. Concluding remarks

In this paper, we have axiomatised rational preferences over quantum horse lotteries. Such a de-
velopment is a natural follow up of our recent work (Benavoli et al., 2016a), which has shown that
Quantum Mechanics is the Bayesian theory of probability over Hermitian matrices. By bridging
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those rational preferences with quantum desirability, we have given a representation theorem in
terms of quantum probabilities and utilities.

There are many directions that can be explored starting from those in this paper. Two of them
are particularly important in our view. The first regards the full extension of our setting to partial
(i.e., incomplete) preferences; this would enable it to deal with sets of quantum probabilities and
utilities. The second is the definition of horse lotteries in their full generality as compound quantum
lotteries.
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Abstract

The purpose of this note is to outline a framework for uncertain reasoning which drops
unrealistic assumptions about the agents’ inferential capabilities. To do so, we envisage a
pivotal role for the recent research programme of depth-bounded Boolean logics (D’Agostino
et al., 2013). We suggest that this can be fruitfully extended to the representation of rational
belief under uncertainty. By doing this we lay the foundations for a prescriptive account of
rational belief, namely one that realistic agents, as opposed to idealised ones, can feasibly
act upon.

Keywords: Prescriptive rationality, tractability, logic-based probability, Bayesian norms

1. Introduction and motivation

Probability is traditionally the tool of choice for the quantification of uncertainty. Since
Jacob Bernoulli’s 1713 Ars Conjectandi, a number of arguments have been put forward to
the effect that departing from a probabilistic assessment of uncertainty leads to irrational
patterns of behaviour. This contributed to linking tightly the rules of probability with
the defining norms of rationality, as fixed by the well known results of de Finetti (1974);
Savage (1972). Lindley (2006) and Parmigiani and Inoue (2009) provide recent introductory
reviews.

Over the past few decades, however, a number of concerns have been raised against the
adequacy of probability as a norm of rational reasoning and decision making. Following
the lead of Ellsberg (1961), whom in turn found himself on the footsteps of Knight (1921)
and Keynes (1921), many decision theorists take issue with the idea that probability pro-
vides adequate norms for rationality. This is put emphatically in the title of Gilboa et al.
(2012), a paper which has circulated for almost a decade before its publication. As a result,
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considerable formal and conceptual effort has gone into extending the scope of the prob-
abilistic representation of uncertainty, as illustrated for instance by Gilboa and Marinacci
(2013). Related to this, is the large family of imprecise probability models, and its decision-
theoretic offsprings, which constitute the cutting edge of uncertain reasoning research, see
e.g. Augustin et al. (2014).

One key commonality between “non Bayesian” decision theory and the imprecise prob-
abilities approach is the fact they take issue with the identification of “rationality” and
“probability” on representational grounds. For they insist on the counterintuitive conse-
quences of assuming that the rational representation of uncertainty necessitates the Bayesian
norms, and in particular that all uncertainty is to be represented probabilistically.

This note makes a case for adding a logical dimension to this ongoing debate. Key to
this is a logical framing of probability. As recalled explicitly below, probability functions
are normalised on classical tautologies. That is to say that a Bayesian agent is required to
assign maximum degree of belief to every tautology of the propositional calculus. However
classic results in computational complexity imply that the problem of deciding whether a
given sentence is a tautology, exceeds, in general, what is considered to be feasible. Hence,
probability imposes a norm of rationality which, under widely agreed hypotheses, realistic
agents cannot be expected to meet. A related concern had already been put forward by
Savage (1967), but this did’t lead proponents of the Bayesian approach to take the issue
seriously. This is precisely what the research outlined in this note aims to do.

By framing the question logically, we can offer a perspective on the problem which
highlights the role of classical logic in determining the unwelcome features of canonical
Bayesian rationality (Section 3). This suggests that a normatively reasonable account of
rationality should to take a step back and rethink the logic in the first place.

The recently developed framework of Depth-Bounded Boolean logics (DBBLs) is partic-
ularly promising in this respect. By re-defining the meaning of logical connectives in terms
of information actually possessed by the agent DBBLs give rise to a hierarchy of logics which
(i) accounts for some key aspects of the asymmetry between knowledge and ignorance and
(ii) provide computationally feasible approximations to classical logic. Section 4.2 reviews
informally the core elements of this family of logics.

Finally, Section 5 outlines the applicability of this framework to probabilistic reasoning.
In particular it points out how the hierarchy of DBBLs to can serve to define a hierarchy
of prescriptively rational approximation of Bayesian rationality.

2. Bayesian rationality

In a number of areas, from Economics to the Psychology of reasoning and of course Statistics,
probability has been defended as the norm of rational belief. Formally this can be seen to
imply a normative role also for classical logic. So the Bayesian norms of rationality are best
viewed as combination of probability and logic.

This allows us to distinguish two lines of criticisms against Bayesian rationality. First,
it is often pointed out that probability washes out a natural asymmetry between knowledge
and ignorance. Second, the intractability of classical logical reasoning is often suggested to
deprive the normative theory of practical meaning. Both lines of criticisms can be naturally
linked to the properties of classical logic.
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2.1 Against the probability norm: the argument from information

Uncertainty has to do, of course, with not knowing, and in particular not knowing the
outcome of an event of interest, or the value of a random variable. Ignorance has more subtle
features, and is often thought of as our inability to quantify our own uncertainty. Knight
(1921) gave this impalpable distinction an operational meaning in actuarial terms. He
suggested the presence of ignorance is detected by the absence of a compete insurance market
for the goods at hand. On the contrary, a complete insurance market provides an operational
definition of probabilistically quantifiable uncertainty. Contemporary followers of Knight
insist that not all uncertainty is probabilistically quantifiable and seek to introduce more
general norms of rational belief and decision under “Knightian uncertainty” or “ambiguity”.

A rather general form of the argument from information against Bayesian rationality is
summarised by the following observation by Schmeidler (1989):

The probability attached to an uncertain event does not reflect the heuristic
amount of information that led to the assignment of that probability. For ex-
ample, when the information on the occurrence of two events is symmetric they
are assigned equal probabilities. If the events are complementary the probabili-
ties will be 1/2 independent of whether the symmetric information is meager or
abundant.

Gilboa (2009) interprets Schmeidler’s observation as expressing a form of “cognitive
unease”, namely a feeling that the theory of subjective probability which springs naturally
from Bayesian epistemology, is silent on one fundamental aspect of rationality (in its infor-
mal meaning). But why is it so? Suppose that some matter is to be decided by the toss of
a coin. According to Schmeidler’s line of argument, I should prefer tossing my own, rather
than some one else’s coin, on the basis, say of the fact that I have never observed signs
of “unfairness” in my coin, whilst I just don’t know anything about the stranger’s coin.
See also Gilboa et al. (2012); Gilboa (2009). This argument is of course reminiscent of the
Ellsberg two-urns problem, which had been anticipated in Keynes (1921).

Similar considerations have been put forward in artificial intelligence and in the foun-
dations of statistics. An early amendment of probability theory aimed at capturing the
asymmetry between uncertainty and ignorance is known as the theory of Belief Functions
(Shafer, 1976; Denoeux, 2016). Key to representing this asymmetry is the relaxation of the
additivity axiom of probability. This in turn may lead to situations in which the probabilis-
tic excluded middle does not hold. That is to say an agent could rationally assign belief
less than 1 to the classical tautology θ∨¬θ. Indeed, as we now illustrate, the problem with
normalising on tautologies is much more general.

2.2 Against the logic norm: the argument from tractability

Recall that classical propositional logic is decidable in the sense that for each sentence θ
of the language there is an effective procedure to decide wether θ is a tautology or not.
Such a procedure, however, is unlikely to be feasible, that is to say executable in practice.
In terms of the theory of computational complexity this means that there is probably no
algorithm running in polynomial time. So, a consequence of the seminal 1971 result by
Stephen Cook, the tautology problem for classical logic is widely believed to be intractable.
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If this conjecture is correct, we are faced with a serious foundational problem when imposing
the normalisation of probability on tautology. For we are imposing agents constraints of
rationality which they simply may never be able to satisfy.

It is remarkable that L.J. Savage had anticipated this problem with the Bayesian norms
he centrally contributed to defining. To this effect he observed in Savage (1967) the follow-
ing:

A person required to risk money on a remote digit of π would have to compute
that digit in order to comply fully with the theory though this would really be
wasteful if the cost of computation were more than the prize involved. For the
postulates of the theory imply that you should behave in accordance with the
logical implications of all that you know. Is it possible to improve the theory in
this respect, making allowance within it for the cost of thinking, or would that
entail paradox [. . .] , as I am inclined to believe but unable to demonstrate ?
If the remedy is not in changing the theory but rather in the way in which we
attempt to use it, clarification is still to be desired. (Our emphasis)

Fifty years on, the difficulty pointed out by Savage failed to receive the attention it
deserves. As the remainder of this note illustrates, however, framing the issue logically
brings about significant improvements in our understanding of the key issues, paving the
way for a tractable approximation of Bayesian rationality – or rational beliefs real agents
can have.

3. Logic, algebra and probability

A well-known representation result (see, e.g. Paris (1994)) shows that every probability
function arises from distributing the unit mass across the 2n atoms of the Boolean (Linden-
baum) Algebra generated by the propositional language L = {p1, . . . pn}, and conversely,
that a probability function on L is completely determined by the values it takes on such
atoms. Such a representation makes explicit the dependence of probability on classical
logic. This has important and often underappreciated consequences. Indeed logic plays a
twofold role in the theory of probability. First, logic provides the language in which events
–the bearers of probability– are expresses, combined and evaluated. The precise details
depend on the framework. See Flaminio et al. (2014) for a characterisation of probability
on classical logic, and Flaminio et al. (2015) for the general case of Dempster-Shafer belief
functions on many-valued events.

In measure-theoretic presentations of probability, events are identified with subsets of
the field generated by a given sample space Ω. A popular interpretation for Ω is that of
the elementary outcomes of some experiment, a view endorsed by A.N. Kolmogorov, who
insisted on the generality of his axiomatisation. More precisely, letM = (Ω,F , µ) a measure
space where, Ω = {ω1, ω2 . . .} is the set of elementary outcomes, F = 2Ω is the field of sets
(σ−algebra) over Ω. We call events the elements of F , and µ : F → [0, 1] a probability
measure if it is normalised, monotone and σ-additive, i.e.

(K1) µ(Ω) = 1

(K2) A ⊆ B ⇒ µ(A) ≤ µ(B)
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(K3) If {E}i is a countable family of pairwise disjoint events then P (
⋃
iEi) =

∑
i P (Ei)

The Stone representation theorem for Boolean algebras and the representation theorem
for probability functions recalled above guarantee that the measure-theoretic axiomatisation
of probability is equivalent to the logical one, which is obtained by letting a function from
the language L to the real unit interval be a probability function if

(PL1) |= θ ⇒ P (θ) = 1

(PL2) |= ¬(θ ∧ φ)⇒ P (θ ∨ φ) = P (θ) + P (φ).

Obvious as this logical “translation” may be, it highlights a further role for logic in the
theory of probability, in addition that is to the linguistic one pointed out above. This role is
best appreciated by focussing on the consequence relation |= and can be naturally referred
to as inferential.

In its measure-theoretic version, the normalisation axiom is quite uncontroversial. Less
so, if framed in terms of classical tautologies, as in PL1. Indeed both arguments against
Bayesian norms discussed informally above, emerge now formally. The first is to do with
the fact that |= interprets symmetrically “knowledge” and “ignorance” as captured by the
fact that |= θ∨¬θ is a tautology. Indeed similarly bothersome consequences follow directly
from PL1 and PL2, namely

1. P (¬θ) = 1− P (θ)

2. θ |= φ⇒ P (θ) ≤ P (φ)

2 implies that if θ and φ are logically equivalent they get equal probability.

The argument from information recalled in Section 2.1 above clearly has its logical roots
in the semantics of classical logic.

Similarly, the argument from tractability of Section 2.2 leads one into questioning the
desirability of normalising probability on any classical tautology. Taken as a norm of
rationality this requires agents to be capable of reasoning beyond what is widely accepted
as feasible. Again, the unwelcome features of probability are rooted in classical logic.

A further, important, feature which emerges clearly in the logical presentation of prob-
ability is that uncertainty is resolved by appealing to the semantics of classical logic. This
leads to the piecemeal identification of “events” with “sentences” of the logic. This identi-
fication, however, is not as natural as one may think.

On the one hand, an event, understood classically, either happens or not. A sentence
expressing an event, on the other hand is evaluated in the binary set as follows

v(θ) =

{
1 if the event obtained

0 otherwise.

Hence, the probability of an event P (θ) ∈ [0, 1] measures the agent’s degree of belief that
the event did or will obtain. Finding this out is, in most applications, relatively obvious.
However, as pointed out in Flaminio et al. (2014), a general theory of what it means for
“states of the world” to “resolve uncertainty” is far from trivial.
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A more natural way of evaluating events arises taking an information-based interpreta-
tion of uncertainty resolution. The key difference with the previous, classical case, lies in
the fact that this leads naturally to a partial evaluation of events, that is

vi(θ) =


1 if I am informed that θ

0 if I am informed that ¬θ
⊥ if I am not informed about θ.

Quite obviously standard probability logic does not apply here, because the classical
resolution of uncertainty has no way of expressing the ⊥ condition.

As the next section shows, by looking for a logic which fixes this information asymmetry,
we will also find a logic which deals successfully with the tractability problem.

4. An informational view of propositional logic

The main idea underlying the informational view of classical propositional logic is to replace
the notions of “truth” and “falsity”, by “informational truth” and “informational falsity”,
namely holding the information that a sentence ϕ is true, respectively false. Here, by saying
that an agent a holds the information that ϕ is true or false we mean that this information
(i) is accepted by a in the sense that a is ready to act upon it1 (ii) it is feasibly available
to a, in the sense that a has the means to obtain it in practice (and not only in principle);
given the (probable) intractability of classical propositional logic this condition is not in
general preserved by the corresponding consequence relation.

Clearly, these notions do not satisfy the informational version of the Principle of Biva-
lence: it may well be that for a given ϕ, we neither hold the information that ϕ is true,
nor do we hold the information that ϕ is false. Knowledge and ignorance are not treated
symmetrically under the informational semantics. However, in this paper we assume that
they do satisfy the informational version of the Principle of Non-Contradiction: no agent
can actually possess both the information that ϕ is true and the information that ϕ is false,
as this could be deemed to be equivalent to possessing no definite information about ϕ.2

4.1 Informational semantics

We use the values 1 and 0 to represent, respectively, informational truth and falsity. When
a sentence takes neither of these two defined values, we say that it is informationally in-
determinate. It is technically convenient to treat informational indeterminacy as a third
value that we denote by “⊥”.3 The three values are partially ordered by the relation �

1. The kind of justification for this acceptance and whether or not the agent is human or artificial do not
concern us here. Acceptance may include some (possibly non-conclusive) evidence that a deems sufficient
for acceptance, or communication from some external source that a regards as reliable.

2. Notice that this assumption does not rule out the possibility of hidden inconsistencies in an agent’s
information state, but only of inconsistencies that can be feasibly detected by that agent. It is, however,
possible to investigate paraconsistent variants of this semantics in which even this weak informational
version of the Principle of Non-Contradiction is relaxed. This will be the subject of a subsequent paper.

3. This is the symbol for “undefined”, the bottom element of the information ordering, not to be confused
with the “falsum” logical constant.
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∧ 1 0 ⊥
1 1 0 ⊥
0 0 0 0
⊥ ⊥ 0 ⊥, 0

∨ 1 0 ⊥
1 1 1 1
0 1 0 ⊥
⊥ 1 ⊥ ⊥, 1

¬
1 0
0 1
⊥ ⊥

Figure 1: Informational tables for the classical operators

such that v � w (“v is less defined than, or equal to, w”) if, and only if, v = ⊥ or v = w
for v, w ∈ {0, 1,⊥}.

Note that the old familiar truth tables for ∧,∨ and ¬ are still intuitively sound under
this informational reinterpretation of 1 and 0. However, they are no longer exhaustive: they
do not tell us what happens when one or all of the immediate constituents of a complex
sentence take the value ⊥. A remarkable consequence of this approach is that the semantics
of ∨ and ∧ becomes, as first noticed by Quine (1973, pp. 75–78), non-deterministic. In
some cases an agent a may accept a disjunction ϕ ∨ ψ as true while abstaining on both
components ϕ and ψ. To take Quine’s own example, if I cannot distinguish between a
mouse and chipmunk, I may still hold the information that “it is a mouse or a chipmunk”
is true while holding no definite information about either of the sentences “it is a mouse”
and “it is a chipmunk”. In other cases, e.g. when the component sentences are “it is a
mouse” and “it is in the kitchen” and I still hold no definite information about either, the
most natural choice is to abstain on the disjunction. Similarly, a may reject a conjunction
ϕ ∧ ψ as false while abstaining on both components. To continue with Quine’s example, I
may hold the information that “it is a mouse and a chipmunk” is false, while holding no
definite information about either of the two component sentences. But if the component
sentences are “it is a mouse” and “it is in the kitchen” and I abstain on both, I will most
probably abstain also on their conjunction. In fact, this phenomenon is quite common as
far as the ordinary notion of information is concerned and the reader can figure out plenty
of similar situations. Thus, depending on the “informational situation”, when ϕ and ψ
are both assigned the value ⊥, the disjunction ϕ ∨ ψ may take the value 1 or ⊥, and the
conjunction ϕ ∧ ψ may take the value 0 or ⊥.

As a consequence of this informational interpretation, the traditional truth-tables for
the ∨, ∧ and ¬ should be replaced by the “informational tables” in Figure 1, where the
value of a complex sentence, in some cases, is not uniquely determined by the value of its
immediate components.4 A non-deterministic table for the informational meaning of the
Boolean conditional can be obtained in the obvious way, by considering ϕ → ψ as having
the same meaning as ¬ϕ ∨ ψ (see D’Agostino, 2015, p. 82).

4. In his (Quine, 1973) Quine calls them “verdict tables” and the values are “assent”, “dissent” and “ab-
stain”. This non-deterministic semantics was subsequently and independently re-proposed (with no
apparent connection with the intuitive interpretation given by Quine) by Crawford and Etherington
(1998) who claimed without proof that it provides a characterization of unit resolution (a tractable
fragment of resolution that requires formulae to be translated into clausal form). The general theory
of non-deterministic semantics for logical systems has been brought to the attention of the logical com-
munity and extensively investigated (with no special connection with tractablity) by Arnon Avron and
co-authors (see Avron and Zamansky (2011) for an overview).
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4.2 Depth-bounded Boolean logics

In (D’Agostino et al., 2013) and (D’Agostino, 2015) it is shown that the informational
semantics outlined in the previous section provides the basis to define an infinite hierarchy
of tractable deductive systems (with no syntactic restriction on the language adopted) whose
upper limit coincides with classical propositional logic. As will be clarified in the sequel the
tractability of each layer is a consequence of the shift from the classical to the informational
interpretation of the logical operators (that is the same throughout the hierarchy) and on
an upper bound on the nested use of “virtual information”, i.e. information that the agent
does not actually hold, in the sense specified in the previous section.

Definition 1 A 0-depth information state is a valuation V of the formulae in L that agrees
with the informational tables.

Note that, given the non-determinism of the informational tables, the valuation V is not
uniquely determined by an assigment of values to the atomic sentences. For example the
valuation V1 that assigns ⊥ to both p and q and ⊥ to p∨ q is as admissible as the valuation
V2 that still assigns ⊥ to both p and q, but 1 to p ∨ q. Let S0 be the set of all 0-depth
information states.

Definition 2 We say that ϕ is a 0-depth consequence of a finite set Γ of sentences, and
write Γ �0 ϕ, when

(∀V∈ S0)V (Γ) = 1 =⇒ V (A) = 1.

We also say that Γ is 0-depth inconsistent, and write Γ �0 if there is no V ∈ S0 such that
V (Γ) = 1.

It is not difficult to verify that �0 is a Tarskian consequence relation, i.e., it satisfies reflex-
ivity, monotonicity, transitivity and substitution invariance.

In fact, it can be shown that we do not need to consider valuations of the whole language
L but can restrict our attention to the subformulae of the formulae that occur as premises
and conclusion of the inference under consideration. Let us call search space any finite set
Λ of formulae that is closed under subformulae, i.e., if ϕ is a subformula of a formula in Λ,
ϕ ∈ Λ.

Definition 3 A 0-depth information state over a search space Λ is a valuation V of Λ that
agrees with the informational tables.

Let SΛ
0 be the set of all 0-depth information states over a search space Λ. Given a finite set

∆ of formulae, let us write ∆∗ to denote the search space consisting of all the subformulae
of the formulae in ∆. Then, it can be shown that:

Theorem 4 Γ �0 ϕ if and only if (∀V ∈ S(Γ∪{ϕ})∗
0 )V (Γ) = 1 =⇒ V (A) = 1. Moroever,

Γ �0 if and only if there is no V ∈ S(Γ∪{ϕ})∗
0 such that V (Γ) = 1.

On the basis of the above result, in (D’Agostino et al., 2013) it is shown that �0 is tractable:
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Theorem 5 Whether or not Γ �0 ϕ ( Γ is 0-depth inconsistent) can be decided in time
O(n2) where n is the total number of occurrences of symbols in Γ ∪ {ϕ} (in Γ).

A simple proof system that is sound and complete with respect to � is shown in (D’Agostino
et al., 2013; D’Agostino, 2015) in the form of a set of introduction and elimination rules
(in the fashion of Natural Deduction) that are only based on actual information, i.e., in-
formation that is held by an agent, with no need for virtual information, i.e., simulating
information that does not belong to the current information state, as happens in case-
reasoning or in some ways of establishing a conditional (as in the introduction rule for the
conditional in Gentzen-style natural deduction).

The subsequent layers of the hierarchy depend on fixing an upper bound on the depth
at which the nested use of virtual information is allowed.

Let v be the partial ordering of 0-depth information states (over a given search space)
defined as follows: V v V ′ if and only if V ′ is a refinement of V or is equal to V , that is,
for every formula ϕ in the domain of V and V ′, V (ϕ) 6= ⊥ implies that V ′(ϕ) = V (ϕ).

Definition 6 Let V be a 0-depth information state over a search space Λ.

• V 0 ϕ if and only if V (ϕ) = 1

• V k+1 ϕ if and only if

(∃ψ ∈ Λ)(∀V ′ ∈ SΛ
0 )V v V ′ and V ′(ψ) 6= ⊥ =⇒ V ′ k ϕ.

Here j , with j ∈ N, is a kind of “forcing” relation and the shift from one level of depth to
the next is determined by simulating refinements of the current information state in which
the value of some ψ ∈ Λ is defined (either 1 or 0) and checking that in either case the value
of ϕ is forced to be 1 at the immediately lower depth. Such use of a definite value for ψ,
that is not even implicitly contained in the current information state V of the agent, is what
we call virtual information.

Definition 7 A k-depth information state over a search space Λ is a valuation V of Λ that
agrees with the informational tables and is closed under the forcing relation k.

Let SΛ
k be the set of all k-depth information states over Λ.

Definition 8 We say that ϕ is a k-depth consequence of Γ, and write Γ �k ϕ if

(∀V ∈ S(Γ∪{ϕ})∗
k )V (Γ) = 1 =⇒ V (ϕ) = 1.

We also say that Γ is k-depth inconsistent, and write Γ �k , if there no V ∈ S(Γ∪{ϕ})∗
k such

that V (Γ) = 1.

It can also be shown that Γ �k ϕ if and only if there is a finite sequence ψ1, . . . , ψn such
that ψn = ϕ and for every element ψi of the sequence, either (i) ψi is a formula in Γ or (ii)

V k ψi for all V ∈ S(Γ∪{ϕ})∗
0 such that V {ψ1, . . . , ψi−1} = 1.

Unlike �0, �k is not a Tarskian consequence relation, but gets very close to being such,
for �k satisfies reflexivity, monotonicity, substitution invariance and the following restricted
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version of transitivity in which the “cut formula” is required to belong to the search space
defined by the deduction problem under consideration.

(∀ψ ∈ (Γ ∪ {ϕ})∗) Γ �k ψ and ∆, ψ �k ϕ =⇒ Γ,∆ �k ϕ. (Bounded Transitivity)

In (D’Agostino et al., 2013) it is shown that �k is tractable for every fixed k.

Theorem 9 Whether or not Γ �k ϕ ( Γ is k-depth inconsistent) can be decided in time
O(n2k+2), where n is the total number of occurrences of symbols in Γ ∪ {ϕ}(Γ).

Observe that, by definition, if Γ �j ϕ (Γ is j-depth inconsistent), then Γ �k ϕ (Γ is k-depth
inconsistent) for every k > j. Classical proposition logic is the limit of the sequence of the
depth-bounded consequence relations �k as k →∞.

A proof system for each of the k-depth approximations is obtained by adding to the
introducton and elimination rules for �0 a single structural rule that reflects the use of
virtual information in Definition 6, and bounding the depth at which nested applications
of this rule are allowed (see (D’Agostino et al., 2013; D’Agostino, 2015) for the details and
a discussion of related work).

5. Towards a prescriptive theory of Bayesian rationality

Let us briefly recap. By framing probability logically we are able to locate the source of a
number of important criticisms which are commonly held up against Bayesian rationality in
classical logic. The theory of Depth-Bounded Boolean logics meets some of those objections,
and gives us an informational semantics leading to a hierarchy of tractable approximations
of classical logic. The logical axiomatisation of probability recalled above naturally suggests
to investigate which notion of rational belief is yielded once |= is replaced with |=k in PL1-
PL2 above.

This gives us a natural desideratum, namely to construct a family of rational belief
measures Bi from L to [0, 1], i ∈ N acting as the analogues of probability functions on Depth-
bounded logics. Since DBLs coincide, in the limit, with classical propositional logic, our
desideratum is then the construction of a hierarchy of belief measures B0, . . . , Bk . . . which
asymptotically coincides with probability, i.e. such that for all sentences θ, B∞(θ) = P (θ).

Each element in the resulting hierarchy would then be a natural candidate to providing
a logically rigorous account of a prescriptive model of rational belief, in the sense of Bell
et al. (1988): every agent whose deductive capabilities are bounded by |=k must quantify,
on pain of irrationality, uncertainty according to Bk.

There is an obvious link between the interpretation of disjunction given by the non-
deterministic informational semantics discussed in Section 4.1 and the behaviour of this
logical connective in quantum logic. As is well-known, in quantum logic a proposition θ
can be represented as a closed subspace Mθ of the Hilbert space H under consideration.
The disjunction ϕ ∨ ψ is not represented by the union of Mϕ and Mψ, for in general
the union of two closed subspaces is not a closed subspace, but by Mϕ tMψ, i.e. as the
smallest closed subspace including both Mϕ and Mψ. So, as is the case for the informational
interpretation of disjunction given by the non-deterministic semantics discussed above, a
disjunction ϕ ∨ ψ in quantum logic may be true even if neither of the disjuncts are true,
since Mϕ tMψ may contain vectors that are not contained in Mϕ ∪Mψ. On this point see
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(Aerts, 2000) and (Dalla Chiara et al, 2004). The negative part of the analogy concerns the
behaviour of conjunction which in quantum logic is interpreted as Mϕ ∩Mψ, so that if a
conjunction is false, at least one of the two conjuncts must be false, which departs from the
informational intepretation of this operator given by our non-deterministic table. We also
point out that this connection between the non-deterministic semantics of Depth-bounded
Boolean Logics and the semantics of Quantum Logic opens to a natural parallel between our
desideratum and quantum probabilities. This is reinforced by recent experimental findings
in the cognitive sciences (Pothos and Busemeyer, 2013; Oaksford, 2014) suggesting that some
features of Bayesian quantum probability (Pitowsky, 2003) provide accurate descriptions of
experimental subjects.

The key step towards achieving our goal will be of course to define the sense in which
we take any Bk to be a rational belief measure. The task, as it can be easily figured out,
is far from trivial. Though encouraging, our preliminary results suggest that much work
is still to be done in this direction. At the same time they suggest that the consequences
of such a fully-fledged framework will be far reaching, as it will provide significant steps
towards identifying norms of rationality realistic agents can abide to.
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Abstract
We propose a model that addresses an open question in the cognitive science literature: How
can we rigorously model the cognitive bias known as hindsight bias such that we fully account
for critical experimental results? Though hindsight bias has been studied extensively, prior
work has failed to produce a consensus theoretical model sufficiently general to account for
several key experimental results, or to fully demonstrate how hindsight impedes our ability
to learn the truth in a repeated decision or social network setting. We present a model in
which agents aim to learn the quality of their signals through repeated interactions with
their environment. Our results indicate that agents who are subject to hindsight bias will
always believe themselves to be high-type “experts” regardless of whether they are actually
high- or low-type.
Keywords: Hindsight Bias, Bounded Rationality, Sequential Decision-making, Non-
Bayesian Social Learning

1. Introduction

Hindsight bias, also known as the curse of knowledge, is a pervasive cognitive bias that
captures the difficulty of faithfully reconstructing one’s foresight knowledge in retrospect,
after one has learned actual outcome or correct answer of a decision-making task (Fischhoff
and Beyth, 1975; Camerer et al., 1989). Hindsight bias has been shown to contaminate
judgment and decision-making on tasks ranging from predicting outcomes to arithmetic
calculation to knowledge retrieval, and in people of all ages, skill and knowledge levels,
intelligence, and cultures (Pohl et al., 2002; Bernstein et al., 2011; Pohl et al., 2010; Coolin
et al., 2014).

Hindsight bias has been observed in many domains, in both the laboratory and the real
world. In politics, pundits and laypeople alike commonly forget their pre-election predictions
after a surprising election result, and report feeling that they had in fact anticipated the
actual outcome all along. In healthcare settings, diagnosing physicians often experience
exaggerated feelings of having been able to anticipate patient outcomes after the fact, or
cannot objectively retroactively assess colleagues’ diagnostic competence in cases where they
begin knowing the patient’s fate. Analogously, lawyers commonly claim to have known the
outcome all along in the aftermath of a verdict, regardless of what they actually predicted
before and during the trial. In gambling, sports bettors’ mistaken recollection of having
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predicted shocking game results has been shown to give some gamblers unearned confidence
to take increasingly risky future bets. Similar examples abound in educational, research,
business, financial, and scientific decision making (Fischhoff and Beyth, 1975; Fischhoff,
2007; Fiedler et al., 2015; Arkes, 2013; Harley, 2007). As we discuss in this paper, the
effects of hindsight bias, such as overconfidence, misattribution of blame to external factors,
and normalized perception of unlikely tail events, can gravely distort heuristics and future
decisions.

Ubiquity aside, hindsight bias is a compelling topic for study because of the striking
difficulty of eliminating hindsight bias from people’s decision-making. Indeed, Fischhoff
(1975) and many others have deemed the so-called curse of knowledge an inevitability. This
supposed inevitability bears out intuition: Once an outcome or answer is revealed, a person’s
outlook, and modes of interpretation, and judgment can be fundamentally changed in
complex ways. Just as knowledge cannot be willed away, in the absence of costly, scrupulous
bookmarking of knowledge and thoughts at various points in time, it can be extremely
challenging to faithfully reconstruct one’s prior, naive memory, judgments, and thought
processes from a new position of information privilege.

We contribute to the substantial literature on hindsight bias by introducing a new,
more complex, more general model of hindsight biased decision-making than currently
exists. Using this model, we examine biased decision-making in two novel settings: when
people can make infinitely many repeated judgments, and when they make decisions while
communicating with a large social network of heterogeneous neighbors.

1.1 What is Hindsight Bias?

First documented by Fischhoff and Beyth (1975), hindsight bias formalizes the well-known “I
knew it all along” distortion of cognition and information processing. This highly pervasive
bias clouds a decision maker’s ability to recall her prior expectations for an outcome after
learning new information such as when the true state of the world, or to reliably anticipate
the decisions of people she knows are not privy some knowledge she is. Outcomes and
answers that seemed impossible to anticipate can suddenly seem obvious once the truth is
revealed, because these truths either distort original memories, bias the reconstruction of
foresight (pre-answer) knowledge, or both.

Interestingly, unless the revealed outcome or correct answer is subsequently debunked,
most laboratory interventions attempting to mitigate hindsight bias have failed. In fact,
several experiments have shown that even informing people they are prone to such bias,
and instructing them to avoid allowing it to contaminate their answers during a range of
decision-making tasks, fails to prevent hindsight from contaminating their answers (Fischhoff,
1976; Pohl and Hell, 1996; Bernstein et al., 2011).

Hindsight bias is generally identified and measured within two main experimental
paradigms. The first, known as memory design, involves asking participants questions about
a relatively obscure topic. These questions may involve judging the probability of a certain
outcome, or answering a factual question (often with a numerical answer), such as the number
of satellites of a planet. To assess hindsight bias, researchers first pose such a question to
participants, reveal the answer or true outcome, and then again ask what the participants’
original answer was. Hindsight bias is observed when participants’ post-revelation answer
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moves away from the original response and towards the correct answer. The number of times
and distance a subject’s answer move towards the correct answer determine the magnitude
of her bias. The second, hypothetical design, involves first informing experimental subjects
of the answer to a relatively obscure question, then asking how they would have answered
before learning the answer, or how a hypothetical naïve peer would have answered the
same question. In this setup, hindsight bias would be expected to cause subjects to report
hypothetical answers closer to the correct answer when they are informed of the answer
than when they are not (Coolin et al., 2016; Leary, 1982)

Hindsight bias affects judgment in a broad range of settings. For example, Biais and
Weber (2009) study hindsight bias exhibited by stock market traders. Traders need to
update their risk assessments when volatility is stochastic, using realized returns. On
observing unexpectedly positive or negative returns, rational agents should raise their
volatility estimates. Hindsight biased traders will form inaccurate beliefs compared to fully
rational agents, because in retrospect, they perceive their prior beliefs as having accounted
for this tail event. In doing so, they fail to consider such returns were unexpected, and
thus underestimate variances. This failure to correctly assimilate information naturally
leads to inferior trades, and thus suboptimal financial performance, as they fail to hedge
appropriately, fail to reject analyses that are challenged by the facts, and fail to differentiate
between their information and that of their peers.

Next, consider the decisions in the context of medicine (Danz et al., 2015). First, we
note that after a tumor has been diagnosed, in hindsight, 90 percent of lung cancers and 70
percent of breast cancers that had previously not been recognized are observed on radiographs
(Berlin, 2003). Suppose that in the past, a trainee doctor had seen a radiograph of an patient
but overlooked the tumor. Suppose also, as in the situation posed above, that the tumor
was discovered later. A supervising doctor not involved with the diagnosis, who, armed
with the knowledge of the existence of this tumor, is hindsight biased, unfairly evaluates the
subordinate’s ability to diagnose cancer. In other words, being informed about the location
of the tumor, the supervisor overestimates the likelihood that she would herself have found
the tumor initially. Consequently, she might underestimate the abilities of the young trainee
doctor, against the backdrop of her own inflated sense of ability (Madarász, 2011).

1.2 Origins of Hindsight Bias

Despite a substantial amount of research devoted to the topic, theoretical modeling work is
sparse, and no consensus model of hindsight bias has been proposed – likely because gener-
alizing across the incredible heterogeneity of settings and tasks addressed by experimental
work on the subject appears daunting. The prevailing theories of hindsight bias can be
hierarchically grouped into three categories of theoretical constructs (Roese and Vohs, 2012;
Blank et al., 2008; Nestler et al., 2008; Bernstein et al., 2015).

The first theoretical umbrella relates to distorted memories, which can cause people to
incorrectly recall that they had correctly guessed the actual outcome or answer. Within
this category, the first memory-based theory is automatic assimilation, or the idea that
the brain encodes the correct answer automatically, and with negligible effort (Fischhoff,
1982; Bernstein et al., 2012). Automatic assimilation is consistent with the observation that
informing participants of their hindsight bias does not reduce bias of their responses. The
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next theory is the trace-strength hypothesis, which asserts that memory traces, or records, for
the original and correct answers possess different strengths, or degrees of accessibility, that
determine the magnitude of the hindsight bias (Hell et al., 1988; Wood, 1978; Harley et al.,
2004). The third memory construct is recollection bias, which describes the phenomenon
in which learning the correct answer makes it more difficult to recall the original answer –
either because the new memory overwrites or becomes more accessible than the previous
memory (Erdfelder and Buchner, 1998; Erdfelder et al., 2007).

The second theoretical umbrella relates to the reconstruction bias, which arises when
people attempt to reconstruct their naive foresight knowledge by some process that is, to
some extent, biased or weighted toward the correct answer or revealed outcome (Schwarz
and Stahlberg, 2003). The first theoretical construct in this category is anchoring and
adjustment, in which participants anchor their response to correct answer, and adjust
(perhaps incompletely) toward their original answer to a degree reflecting the magnitude of
their bias (Epley and Gilovich, 2006). The second of these theories is biased memory search,
according to which the correct answer corrupts memory recall by guiding the memory search
toward content related to the correct answer (Hoffrage et al., 2000). The final construct,
metacognitive regulation theory, asserts that adjustment toward the correct answer depends
on one’s confidence in the original and recalled answers, and on the extent of surprise caused
by the newly-learned information (Müller and Stahlberg, 2007).

The final theoretical umbrella is motivational theory. In essence, this theory is rooted in
the idea that people tend to misremember their original judgments or answers such that they
are perceived as wiser or smarter than they actually believe themselves to be. Motivational
theory presupposes that humans are motivated to maintain a sense of self-worth, which they
derive from markers of intelligence such as decision-making aptitude, level of knowledge, and
fidelity of memory. Three theories comprise this category. The first is retroactive pessimism,
which asserts that people protect their sense of self-worth in the face of negative outcomes
by convincing themselves a negative outcome was more likely than they believed it to be in
foresight, and perhaps inevitable (Tykocinski and Steinberg, 2005). The second construct
is defensive processing. According to this theory, people self-protectively perceive negative
outcomes as less-predictable in hindsight to absolve themselves of responsibility and guilt
for having made bad decisions that led to the outcome in question (Louie, 1999; Mark and
Mellor, 1991). The last, motivated sense-making combines the two preceding theories, such
that people use external and internal factors, depending on the nature and degree of surprise
the experience, to explain discrepancies in expectation versus outcome (Pezzo, 2011).

1.3 Motivation and Contributions to the Literature

In this paper, we present a novel model of hindsight-biased learning that is both more
generalizable and more complex than past models. First, thanks to its relative complexity,
unlike existing models, our model clearly captures elements of all three aforementioned
theoretical constructs. Our model accounts for faulty memories as well as faulty memory
reconstruction (through anchoring and adjustment) as previous models have done, but with
an additional element of randomness that accounts for motivational theory. By introducing
this randomness, we account for the tension between a person’s drive to produce correct
answers to feel competent (motivational theory), and the orthogonal need to stress-test
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hypotheses and admit heuristic weakness, in order to be able to improve future decision-
making.

Second, we incorporate elements that allows us to distinguish among agents heterogeneous
in multiple dimensions. We define classes of good decision-making and bad decision-
making agents as a broad proxy for inherent differences in skill, domain knowledge, age,
intelligence, memory capacity, that influence decision-makers’ susceptibility to hindsight bias
in the real world, and can account for result discrepancies in experiments administered to
different populations of subjects (Roese and Vohs, 2012). We further accommodate subject
heterogeneity by distinguishing between signal reception and signal perception. Unlike
previous models, we distinguish between decision-makers not only in terms of what signals
they receive, but also in how they perceive those signals – an additional layer of complexity
that lends itself to increased generalizability.

Thanks to our modeling choice, we can contribute the first study of hindsight biased
decision outcomes under infinitely repeated decisions, and in an arbitrarily large networked
setting with social learning. More specifically, unlike previous models, which typically
consider decision-making as a two-step process, we study the cumulative effects of hindsight
bias over repeated decisions, such as those of a stock trader who makes investment decisions
every day. We also study the implications of communications with a network of heterogeneous
agents for hindsight-biased learning.

2. Modeling Hindsight Bias

There exist several models of hindsight bias in the literature. One of the most prominent is
that of Madarász (2011). Here, an agent has a signal realization s, but does not correctly
remember it. Instead, her memory is biased towards the state of the world revealed to
be true in the meantime. Unlike the approaches used in the earlier models of Camerer
et al. (1989) and Biais and Weber (2009) where the parameter λ ∈ (0, 1) is used to form
the linear combination of the true signal and the true state of the world, Madarász (2011)
regards the parameter λ as the weight of the two beliefs. This is a subtle but highly critical
distinction. A λ-hindsight biased agent, in forming her posterior belief, weights the signal
realization from the first period with (1− λ) and the true state of the world with λ. Here,
parameter λ denotes the strength of the hindsight bias. If we denote the posterior beliefs
of the agent by π+(·) and the truth state by ω, the biased agent’s posterior belief becomes
π+(·) = λπ+(·|ω) + (1− λ)π+(·|s). This is a deviation from the Bayesian posterior π+(·|s),
which updates the prior belief, denoted by π(·), given the observation s according to the
Bayes rule. Another prominent model introduced by Biais and Weber (2009) defines the
hindsight bias by forming the reconstructed prior mean of the biased agent as a weighted
average of the true prior mean and of the realization of the random variable.

In contrast to the above authors’ approaches, we model the cognition of the hindsight-
biased agent as a random process, such that: with probability λ ∈ (0, 1] the biased agent
believes she has observed the correct signal (coinciding with the truth), irrespective of of her
actual observation. We thus distinguish between the agents’ perceptions rt and observation
st by modeling both as random processes, which may or may not agree with the true state ωt.
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The observations st are a sequence of independent random variables1, and the perceptions
rt are such that rt = st with probability 1− λ and rt = ωt (the truth state) with probability
λ; we thus investigate the dynamic effects as the agents receives a sequence of observations,
while updating their beliefs based on their perceptions:

rt =


ωt with probability λ,

st with probability (1− λ).
(1)

The above equation captures the fact that the agent has a limited memory of her past
signal. The first term represents the potentially false memory from projecting her knowledge
of the state of the world onto her past signal, while the second represents a factual memory of
the signal observed in the past. Stated differently, in this formulation, the agent’s recollection
of the signal realization, given in the second term, is corrupted by the agent’s memory
limitation and cognitive bias, which leads her to project her current information ωt onto her
past signal st.

We can also justify the model and the bias parameter λ from a motivational theory
perspective: Every time that our decision-maker makes a mistake, she pays an emotional
(fixed) cost of believing herself mistaken. On the other hand, every time she remembers
her choice correctly, she benefits by learning about the quality of her choice (informational
benefit), so λ could balance the expected (emotional) cost of making mistakes against the
informational advantage of new correct samples. For if λ were such that the expected cost of
mistake – in other words, the expected negative emotions caused by perception of a mistake
– exceeded the informational benefits of a correct sample, the agent would be always flipping
her choice to avoid the negative emotions; while if the expected informational benefits
of a new sample were more valuable to her, then she would always be forcing herself to
remember her samples correctly so that she could learn from them. The fact that the agent
randomizes between the two strategies implies that the bias parameter λ should equalize
the expected costs and benefits of the incoming samples. It is worthwhile to highlight two
main assumptions that underlie equation (1): first the bias parameter λ is fixed over time
(time-invariance); secondly, the agent is unaware of her hindsight bias and the underlying
parameter λ as well as the stimuli random process st are not observable to her.

3. How does Hindsight bias limit rational learning?

Inspired by Danz et al. (2015), we assume that agents are heterogeneous in some characteris-
tics that govern their decision-making abilities. We model this as follows: we assume nature
draws the type of the agent (at random), and the agent’s type can be either high (i.e., good)
denoted by θ̄ or low (i.e., bad), denoted by θ. We further assume the prior probability of
being a high-type agent is π0(θ̄). The agent does not know her own type, but does have a
prior π0(·) about the type distributions. The latter represents the agent’s knowledge of the
distribution of the types before she makes any personal observations about her own type;

1. The independence assumption models repeated interactions of the agent with her environment, for
example examinations of radiographs of different patients by a doctor. This assumption may be relaxed
to some extent as long as the arguments pertaining to the application of the law of large numbers to the
sum of random variables in the appendix remain valid.
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for example, π0(θ̄) can be induced by the prior knowledge about the fraction of radiologists
who have superior skills in diagnostic radiography. At the beginning of each period t, nature
draws the state of the world ωt, which can be thought to represent a property of widespread
interest such as the health status of a patient. States of the world are drawn independently
across periods, and the two possible realizations of the state of the world, 0 and 1, are
equally likely. The latter assumption is only for the sake of clarity and the ensuing analysis
does not rely on this assumption because the inferences of the agent are based only on the
agreements or disagreements between the perceived random process rt and the truth states
ωt; such agreements and disagreements are in turn dependent on the received signals st
through (1). The quality of the signal, i.e., the probability ρ that the signal corresponds
to the true state of the world, depends on the type θ of the agent: A high type (θ̄) agent
receives signals that are correct with probability ρ̄ whereas a low type (θ)’s signals are only
correct with probability ρ, where 0.5 ≤ ρ < ρ̄ ≤ 1.

We begin with the assumption of independence across time. At every t, we have ωt
which takes either of the two values {0, 1} with equal probability. Thus in lack of any side
information, st and rt also takes values {0, 1} with equal probabilities. Here, the learning goal
is to determine whether the agent’s type, denoted as θ, is low (θ) or high (θ̄); symbolically,
whether θ = θ or θ = θ̄.

Concretely, in a real-world setting, a high-type agent is a person with the capacity to
make better inferences about the state of the world than her low-type counterparts. For
modeling purposes, we could use the type parameter θ to more generally capture heterogeneity
of any of a vast number of qualities that influence judgment and decision-making – for
example, domain knowledge, skill, or expertise; memory size or reliability; memory retrieval;
intelligence, attention span; arithmetic aptitude; age to the extent that it influences cognitive
processes; confidence; and many others.

3.1 Description of the Dynamic Model

At every round state ωt is drawn and a signal st is observed. The likelihood of the signal
given the state is determined by the agent’s type, which could be high or low. We denote
the observed signals of low and high type agents by st and s̄t, respectively. The signal of a
high type agent is distributed according to

s̄t =


ωt with probability ρ̄

1− ωt with probability 1− ρ̄.

while the likelihood of the signals for low type agent is given by

st =


ωt with probability ρ,

1− ωt with probability 1− ρ.

The signal perceived by the agent differs from her actual observations due to her bias. We
denote the perceived signal of a high type agent by r̄t; similarly for a low type agent, we use
rt.
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The high and low types will subsequently update their beliefs based on their (biased)
perceptions rather than their actual observations. Hence for a high type we have πt(θ) =
P
{
θ|r̄1, r̄2, ..., r̄t

}
, θ ∈ {θ̄, θ}, and for a low type we obtain πt(θ) = P

{
θ|r1, r2, ..., rt

}
, θ ∈

{θ̄, θ}; i.e. the belief at time t is the conditional probability of each state given the perceptions
made up until time t. In the case that there is no hindsight bias and the agent is fully
rational, the perceptions correspond to the actual observations, and we have:

r̄t = s̄t ∀ t → r̄t = s̄t =


ωt with probability ρ̄

1− ωt with probability 1− ρ̄.

for a rational high type agent and

rt = st ∀ t → rt = st =


ωt with probability ρ

1− ωt with probability 1− ρ.

for a rational low type agent. For such a fully Bayesian agent, we have that

πt(θ = θ̄) −→
a.s.

1(θ = θ̄) as t→∞, (2)

similarly for θ = θ. Thus rational agents always learn their true types (with probability
one).

On the other hand, a biased agent would, with probability 0 < λ < 1, perceive her
observed signal as the truth ωt that is revealed to her, after her experiment with her
environment (leading to her observation). Similarly, with probability 1− λ she will perceive
her signal as it was, i.e. s̄t for a high type and st for a low type. Consequently, we can
derive the likelihoods of the perceived signals conditional on the state ωt for low and high
types as follows:

r̄t =


ωt with probability λ+ (1− λ)ρ̄,

1− ωt with probability (1− λ)(1− ρ̄),
(3)

for a high type, and

rt =


ωt with probability λ+ (1− λ)ρ,

1− ωt with probability (1− λ)(1− ρ),

for a low type. Now, we ask whether, following experimentation with their environ-
ment and after updating their beliefs based on their perceptions according to πt(θ) =
P
{
θ|r̄1, r̄2, ..., r̄t

}
, θ ∈ {θ̄, θ}, and πt(θ) = P

{
θ|r1, r2, ..., rt

}
, θ ∈ {θ̄, θ}: can agents correctly

learn their types, despite their hindsight bias?
Recall from (2) that rational agents learn their types, almost surely; in fact, one can show

that this learning occurs at a rate that is asymptotically exponentially fast, cf. Section III.A
of (Rahimian and Jadbabaie, 2015). The situation for hindsight biased agents is different:

118



Hindsight Bias Impedes Learning

Theorem 1 (Bayesian Learning with Hindsight) Regardless of type, an agent with
hindsight believes herself to be of a high type. In particular, low-type hindsight biased agents
always mislearn their true states.

Theorem 1 establishes that low type agents may come to incorrectly believe themselves
to be of a higher type due to their hindsight following their experimentations with their
environment. As illustrated by this case, hindsight bias prevents rational processing, and
therefore, learning from past data. As Fischhoff (1982) wrote, hindsight bias prevents
agents from rejecting their hypotheses about the world. Biased agents’ memories and
reconstruction processes are contaminated by the actual outcome information. Therefore,
they underestimate past surprises by mistakenly factoring current information into the
original expectation about the state of the world. As a result, agents use weak tests to
evaluate hypotheses, and fail to properly update original hypotheses that they might have
about the state of the world during experimentation.

In practical terms, the inability to be surprised, learn from the past and and reject
hypotheses can be very destructive. As an illustration, stock traders burdened by such
limitations will fail to recognize and revise incorrect hypotheses about the market, and
thus fail to cut losses, sell investments, or avoid risky trades when a fully rational agent
would. Also, hindsight-biased investors might incorrectly (irrationally) incorporate new
informational content like signals from sources like earnings announcement or macroeconomic
news, contaminating their memory reconstruction, giving them a falsely optimistic view of
the optimality and value of their trading heuristics.

3.2 How is social learning affected by the hindsight bias?

Next, we consider the dynamic model of Section 3 in a network setting. Suppose that
there are n agents. There is a type variable that is common to all agents, and determining
this is the objective of the learning process. This type could encapsulate any number of
characteristics of this society, such as the performance of the economy: if the agents are
high type, then they live in a good economy; whereas if the agents are low-type, then they
live in a bad economy. In this case, based on their experiences in their environment and on
their interactions with each other, agents form an opinion about the state of their economy.
Starting from a prior π0(θ̄) at beginning of each round, neighboring agents communicate with
each other and update their beliefs following a log-linear update with positive weights that
sum to one, cf. (Rahimian and Jababaie, 2015) and Section 4 of (Rahimian and Jadbabaie,
2016) for behavioral and cognitive foundations of log-linear belief updates. After this initial
communication they interact with their environment in the following manner: at each time t,
nature draws a binary state ωi,t for each of the n agents. Each agent observes a signal (s̄i,t
or si,t depending on society’s type) conditional on her state and after the state is revealed to
her, she changes her perception of her observation into a biased version (r̄i,t or ri,t depending
on society’s type) and she then updates her belief about her type based on her perception
and using the Bayes rule. At the initiation of each future epoch, the agents communicate
their beliefs following the same log-linear rule and interact with their environment in the
manner described above. The states ωi,t, signals si,t, and perceptions ri,t encode the essential
aspects of the agents’ interactions with their environment: for example in a good economy,
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each agent i ∈ [n] can make better judgments about her state ωi,t and thus makes decisions
that lead to increased prosperity.

Our next theorem addresses the asymptotic outcome of the social learning with hindsight;
in particular, whether the agents reach consensus and if they do, is it a consensus on truth
or not. What if different agents have different λi? How does the heterogeneity in individual
biases affect the learning outcome? All these questions are addressed by the following
theorem.

Theorem 2 (Social Learning with Hindsight) Consider a society of agents with a com-
mon type θ, which could be high or low, and at every epoch they communicate their beliefs
about this common type. In addition, the agents also have a sequence of individual inter-
actions with their environment and make private observations accordingly. If agents are
subject to hindsight bias with parameter λi for each agent i, then regardless of type, a society
of agents with hindsight believe themselves to be of a high type. In particular, a society of
low-type hindsight biased agents always mis-learn their true types. This is true even if all but
one agents are rational, as long as

∑n
i=1 λi > 0 and the agents communicate in a connected

social network some agents’ hindsight prevents all of them from correctly learning their true
types.

Theorem 2 reinforces the conclusions of Theorem 1 in that the low types agents’ inference
is compromised by their hindsight, causing them to incorrectly believe themselves to be of
a higher type. Furthermore, the proof of Theorem 2 demonstrates that the hindsight bias
for the network as a whole is simply the average hindsight over all agents in the network.
Hence, interacting with biased agents contaminates the opinion of unbiased ones and subjects
them to the same kinds of bias. Putting highly biased agents into such a setting with a
large number of less-biased or unbiased agents would be an effective strategy for mitigating
hindsight bias within a networked setting.

4. Conclusions

We have modeled the effect of hindsight bias on the inferences of a rational observer and
also on the social learning outcomes in a network of arbitrary size. We introduced a
more generalizable, more nuanced model that can capture multiple dimensions of agent
heterogeneity, and has a demonstrable connection to each of three major hindsight bias
theoretical constructs – both of which previous models lack. Our results also help verify
the intuition that people become overconfident because they do not or cannot faithfully
retain their past track record of wrong predictions, or correctly reconstruct earlier thought
processes.
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Appendix A. Proofs of the Main Results

A.1 Proof of Theorem 1

For a high-type hindsight biased agent, we have, for the probability it puts on being high-type:

πt(θ̄) = 1(r̄t = ωt)
πt−1(θ̄)ρ̄

πt−1(θ̄)ρ̄+ πt−1(θ)ρ
+ 1(r̄t 6= ωt)

πt−1(θ̄)(1− ρ̄)
πt−1(θ̄)(1− ρ̄) + πt−1(θ)(1− ρ)

.

and analogously, for the probability the same agent puts on being low-type,

πt(θ) = 1(r̄t = ωt)
πt−1(θ)ρ

πt−1(θ̄)ρ̄+ πt−1(θ)ρ
+ 1(r̄t 6= ωt)

πt−1(θ)(1− ρ)
πt−1(θ̄)(1− ρ̄) + πt−1(θ)(1− ρ)

whence we calculate the following ratio:

πt(θ̄)
πt(θ)

=


πt−1(θ̄)
πt−1(θ)

ρ̄
ρ , if rt = ωt

πt−1(θ̄)
πt−1(θ)

(1−ρ̄)
(1−ρ) , if rt 6= ωt

(4)

It follows that we have the recursive relation

πt(θ̄)
πt(θ)

=
(
ρ̄

ρ

)1(r̄t=ωt)(1− ρ̄
1− ρ

)1(r̄t 6=ωt)πt−1(θ̄)
πt−1(θ)

and hence, iterating on t, we easily see that:

πt(θ̄)
πt(θ)

=
t∏

τ=1

(
ρ̄

ρ

)1(r̄t=ωt)(1− ρ̄
1− ρ

)1(r̄t 6=ωt)π0(θ̄)
π0(θ) (5)

=
(
ρ̄

ρ

)∑t

τ=1 1(r̄t=ωt)(1− ρ̄
1− ρ

)∑t

τ=1 1(r̄t 6=ωt)π0(θ̄)
π0(θ) .

Now, it follows easily from the law of large numbers that:
∑t
τ=1 1(r̄t = ωt) −→

a.s.
t
(
λ+(1−λ)ρ̄))

and
∑t
τ=1 1(r̄t = ωt) −→

a.s.
t
(
(1− λ)(1− ρ̄)

)
. Finally, using the latter two limits in the above

equation, we obtain, for a high-type agent:

πt(θ̄)
πt(θ)

−→
a.s.

((
ρ̄

ρ

)(λ+(1−λ)ρ̄)(1− ρ̄
1− ρ

)(1−λ)(1−ρ̄))tπ0(θ̄)
π0(θ) .

The base of the exponential term for all range of parameters 0.5 < ρ < ρ̄ < 1 and 0 < λ < 1
is always strictly greater than one2, indicating that the belief ratio πt(θ̄)/πt(θ) for high type

2. To see why, consider the first-order partial derivative of the function

f(λ, ρ̄, ρ) =
(
ρ̄

ρ

)(1−λ)ρ̄+λ(1− ρ̄
1− ρ

)(1−λ)(1−ρ̄)

, with respect to λ:
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agent always converges almost surely to +∞ leading to her learning her true type which
is high. However, the case for a low type agent is different, following the same steps as
above and using rt instead of r̄t for the perceived signals of a low type agent we obtain the
following almost sure limit for the belief ratio of a low type agent:

πt(θ̄)
πt(θ)

−→
a.s.

((
ρ̄

ρ

)(λ+(1−λ)ρ)(1− ρ̄
1− ρ

)(1−λ)(1−ρ))tπ0(θ̄)
π0(θ)

If a low type agent is to learn her type correctly then we need the above belief ratio to
converge to 0 almost surely or equivalently we need the parameters ρ, ρ̄ and λ be such that

(
ρ̄

ρ

)(λ+(1−λ)ρ)(1− ρ̄
1− ρ

)(1−λ)(1−ρ)
< 1, (6)

There are no parameters 0.5 < ρ < ρ̄ < 1 and 0 < λ < 1 for which the above inequality is
not violated3, causing a low type agent to always incorrectly believe she is of a higher type;
thence, the ability of a low type agent to learn her type is compromised by her hindsight.

∂f(λ, ρ̄, ρ)
∂λ

= (ρ̄− 1)
(
ρ̄− 1
ρ− 1

)(λ−1)(ρ̄−1)(
ρ̄

ρ

)λ(−ρ̄)+λ+ρ̄(
log
(
ρ̄− 1
ρ− 1

)
− log

(
ρ̄

ρ

))
.

The latter is positive everywhere and therefore increasing monotonically over the domain, which implies
that for any fixed choice of ρ̄, ρ, f(λ, ρ̄, ρ) is minimized at λ∗ = 0. Now, we seek values of ρ̄, ρ that
minimize

f(λ∗, ρ̄, ρ) =
(
ρ̄

ρ

)ρ̄(1− ρ̄
1− ρ

)(1−ρ̄)

, to satisfy the condition f(λ∗, ρ̄, ρ) < 1.

Given our assumption of positive ρ̄ and ρ, we have

∂f(λ∗, ρ̄, ρ)
∂ρ

=
(ρ̄− 1)ρ̄(ρ̄− ρ)

(
ρ̄−1
ρ−1

)−ρ̄ (
ρ̄
ρ

)ρ̄−1

(ρ− 1)2ρ2 < 0,

which is monotonic decreasing in ρ, which implies that for any fixed ρ̄, f(λ∗, ρ̄, ρ) is minimized by maximal
ρ. Hence, over the domain of f ,

f(λ, ρ̄, ρ) ≥ f(λ∗, ρ̄, ρ) ≥ ρ̄
(
ρ̄

ρ̄

)ρ̄(1− ρ̄
1− ρ̄

)(1−ρ̄)

= 1 =⇒
(
ρ̄

ρ

)(1−λ)ρ̄+λ(1− ρ̄
1− ρ

)(1−λ)(1−ρ̄)

≥ 1,

and hence a high type agent always learns her type correctly.
3. In more details (6) is satisfied, only if

λ <

( log( ρ−1
ρ̄−1 )

log( ρ−1
ρ̄−1 ) + log( ρ̄

ρ
)
− 2ρ

)
(1− ρ)−1, which can never be since λ > 0, 2ρ > 1 and

log( ρ−1
ρ̄−1 )

log( ρ−1
ρ̄−1 ) + log( ρ̄

ρ
)
< 1, for all 0.5 < ρ < ρ̄ < 1.
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A.2 Proof of Theorem 2

Let G = ([n], E , T ), [n] = {1, . . . , n} be the weighted graph of social network influences, with
T = [Tij ]i,j∈[n] being the matrix of influence weight and Ti,j ≥ 0 being the influence of agent
j on i, and E ⊂ [n]× [n] is the set of edges corresponding to the non-zero entries of matrix T .
We assume T to be a doubly stochastic matrix. At every round t, let πi,t(θ̄) and πi,t(θ) be
the beliefs of agent i on the false and true states after communicating with her neighbors and
experimenting with her environment at the particular round. The neighborhood of agent i
is the set of all agents who have a strictly positive influence on her: N (i) = {j : Ti,j > 0}.
At all epochs t, define π̂i,t(θ̄)/π̂i,t(θ) to be the updated belief of agent i after communicating
with her neighbors but before experimenting with her environment, i.e. before observing s̄i,t
or perceiving r̄i,t for a high type society (we consider the case of high-type agents and the
low-type case is similar). The log-linear belief updates prescribe the updated belief of the
agent before experimenting with her environment π̂i(θ̄)/π̂(θ) in terms of the reported beliefs
of her neighbors:

π̂i,t(θ̄)
π̂i,t(θ)

=
∏

j∈N (i)

(
πj,t−1(θ̄)
πj,t−1(θ)

)Tij
. (7)

Consider the agent in a society of high type agents, after communicating with her neighbors
the agent engages with her environment and (4) still holds true in her updating of her beliefs
following her observation of the private signal si,t and after her true state ωi,t us revealed to
her, subjecting her to a hind sight bias. Following (5) and (7) we can write:

πi,t(θ̄)
πi,t(θ)

=
(
ρ̄

ρ

)1(r̄i,t=ωi,t)(1− ρ̄
1− ρ

)1(r̄i,t 6=ωi,t) π̂i,t(θ̄)
π̂i,t(θ)

(8)

=
(
ρ̄

ρ

)1(r̄i,t=ωi,t)(1− ρ̄
1− ρ

)1(r̄i,t 6=ωi,t) ∏
j∈N (i)

(
πj,t−1(θ̄)
πj,t−1(θ)

)Tij

Define the log of the belief ratios for every agent as φi,t = log(πi,t(θ̄)/πi,t(θ)), and concatenate
the log of the belief ratios for all agents into a single vector φt defined as φt = (φ1,t, . . . , φn,t).
Similarly, define the log likelihood ratio of the perceived signals as

¯̀
i,t = 1(r̄i,t = ωi,t) log(ρ̄/ρ) + 1(r̄i,t 6= ωi,t) log((1− ρ̄)/(1− ρ)) (9)

and let ¯̀
t = (¯̀1,t, . . . , ¯̀

n,t) be their concatenation. Taking logarithms of both sides in (8)
and using the concatenations φt and ¯̀

t, we obtain the following linearized and vectorized
update:

φt = Tφt−1 + ¯̀
t =

t∑
τ=1

T t−τ ¯̀
τ + φ0.

Next note that for a doubly stochastic matrix limτ→∞ T
τ = (1/n)11T . Hence, we can invoke

the Cesàro mean together with the strong law applied to the i.i.d. sequence {¯̀t, t ∈ N0} to
conclude that (Rahimian and Jababaie, 2015),

1
t
φt →

1
n
11TE{¯̀t}
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or equivalently that φi,t → (t/n)
∑n
i=1 E{¯̀i,t} with probability one, as t→∞. Next using

(3) and (9) we can write

E{¯̀i,t} = (λi + (1− λi)ρ̄) log
(
ρ̄/ρ

)
+ (1− λi)(1− ρ̄) log

(
(1− ρ̄)/(1− ρ)

)
,

and the conclusion for high type agents follows because E{¯̀i,t} > 0 for all agents i ∈ [n] with
0.5 < ρ < ρ̄ < 1 and 0 < λi < 1; and in particular: (1/n)

∑n
i=1 E{¯̀i,t} > 0 implying that

φi,t → +∞ leading to all high type agents to learn their true type correctly. The situation
is distinctively different in a society of low type agents. Repeating the above analysis using
ri,t instead of r̄i,t we obtain that for all low type agents i ∈ [n]: φi,t → (t/n)

∑n
i=1 E{`i,t}

with probability one, as t→∞, where:

E{`i,t} = (λi + (1− λi)ρ) log
(
ρ̄/ρ

)
+ (1− λi)(1− ρ) log

(
(1− ρ̄)/(1− ρ)

)
.

Defining λavg = (1/n)
∑n
i=1 λi we get that if

(λavg + (1− λavg)ρ) log
(
ρ̄/ρ

)
+ (1− λavg)(1− ρ) log

(
(1− ρ̄)/(1− ρ)

)
> 0

or equivalently if

(
ρ̄

ρ

)(λavg+(1−λavg)ρ)(1− ρ̄
1− ρ

)(1−λavg)(1−ρ)
> 1, (10)

then the society of high type agents reach a consensus on a false state; incorrectly believing
themselves to be of a higher type. An analysis identical to the one in footnote 3 in Appendix
A.1 reveals that (10) is in fact always true for any choice of parameters 0 < λavg < 1, and
0.5 < ρ < ρ̄ < 1.
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