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Abstract. The article addresses a lazy learning approach to fully prob-
abilistic decision making when a decision maker (human or artificial)
uses incomplete knowledge of environment and faces high computational
limitations. The resulting lazy Fully Probabilistic Design (FPD) selects
a decision strategy that moves a probabilistic description of the closed
decision loop to a pre-specified ideal description. The lazy FPD uses cur-
rently observed data to find past closed-loop similar to the actual ideal
model. The optimal decision rule of the closest model is then used in the
current step. The effectiveness and capability of the proposed approach
are manifested through example.
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1 Introduction

A closed decision-making (DM) loop consisting of agent-environment pair is
described by the agent’s actions and environment states (possibly partially ob-
servable). DM problem is to influence the environment behavior in a desired way
by choosing and applying a tailored DM policy generating optional actions with
respect to the environment. The DM formulation covers stochastic and adaptive
control, estimation, filtering, prediction, classification, and others [1]. It has been
shown that DM problem can be better treatable in a probabilistic way [2] such as
Bayesian DM theory, [3], that provides well-justified solution of DM tasks. The
applicability of Bayesian DM theory is limited by the curse of dimensionality,
[4], therefore approximate non-linear estimation, [5], and approximate dynamic
programming, [6], are mostly inevitable. Practically successful techniques rely on
local approximations around the current realisation of the closed-loop behaviour.

This paper is a part of the project trying to lay a ground for lazy Fully
Probabilistic Design. Lazy Learning (LL) is an approach that searches and uses
relevant information from the past data. Inspired by human reasoning it de-
creases deliberation effort by employing early-developed solutions. A simple fact,
that similar DM tasks tend to have similar solution, has caused the approach



has evolved in many areas under different names. Lazy-learning philosophy [7]
has been presented as case-based reasoning, memory-based learning, analogical
modelling, memory-based prediction, just-in-time modelling, transfer learning,
see for instance [8–10]. All of these experience-based methods are problem solv-
ing processes in which an actual problem, defined on the same domain as the past
problems, is solved by searching for a similar situation and using its solution.
These methods are used for transfer learning aiming at improving performance
and learning on a new domain by learning from the past [11].

FPD, an extension of the Bayesian DM, solves a DM problem by considering
probabilistic description of both environment behaviour and DM preferences
[2]. The main aim is then to find an optimal policy minimising the divergence
the probabilistic description of actual closed-loop behaviour from that of ideal
closed-loop behaviour, which expresses DM preferences.

In this paper, a combination of LL and FPD is employed to utilize the com-
petence of both techniques in opting tailored action at each time step when the
knowledge of environment is incomplete. As a result the proposed solution not
only provides the desired decrease of computation demands, but also its over-
all performance is comparable to the performance of the standard FPD. The
proposed approach focuses on single-agent DM aiming at creating efficient and
scalable solution that can easily be extended to multi-agent settings.

The layout of the paper is as follows. Section 2 introduces formal notations
and necessary preliminaries together with a formal description of FPD. Section 3
formulates the lazy FPD problem and outlines its solution. Experimental section
demonstrates the effectiveness of our approach on attitude control of the hovering
helicopter. Finally, Section 5 summarises the main results and outlines the open
problems remained.

2 Underlying theory

This section introduces necessary conventions and notions.

2.1 Preliminaries

The sequence (xt, xt+1, . . . , xt+h) is shortened as x(t, t + h). Discrete time in-
stances are labelled by τ = 1, 2, . . . , t, t ∈ N. Bold capital X represents a set of x
values. An abbreviation pdf denotes probability density function. The Kullback-
Leibler divergence (KLD), [12], measuring the proximity of two pdfs f and g,
acting on a set X, reads

D(f ||g) =

ˆ
X

f(x)ln
f(x)

g(x)
dx, (1)

with D(f ||g) ≥ 0, D(f ||g) = 0 iff f = g almost everywhere on X.
Let us consider an interacting agent-environment pair, see Fig.1. The agent

observes a new environment state st ∈ S at time t and chooses action at ∈ A
to learn or influence the environment in accordance with the agent’s DM prefer-
ences. Having action selected, the environment moves to the next state and the



agent receives one-step reward. The aim of the agent is to find optimal policy
maximizing the future reward.

Fig. 1. The closed decision loop.

The closed-loop model of the environment-agent pair, is fully described by
joint pdf p(st+h, at+h−1, st+h−1, . . . , st+1, at), sτ ∈ S, aτ ∈ A, t ≤ τ ≤ t+ h, t, τ,
h ∈ N, that can be factorised using the chain rule for pdfs, [13], as follows:

p(t,h) =

t+h∏
τ=t+1

p(sτ |s(t, τ − 1), a(t, τ − 1))p(aτ−1|s(t, τ − 1), a(t, τ − 2))p(st).(2)

The first factor, p(sτ |s(t, τ − 1), a(t, τ − 1)), is environment model, the second
factor, p(aτ |s(t, τ), a(t, τ − 1)), is a randomised DM rule and p(st) is a prior pdf
of state. A sequence of DM rules, {p(aτ |s(t, τ), a(t, τ − 1))}τ , up to time t + h,
forms DM policy πτ : (Sτ ×Aτ−1) 7→ Aτ .

2.2 Fully probabilistic design

Any systematic DM design selects a DM policy that makes the resulting closed-
loop model (2) close to the desired one. FPD [2] considers the desired proba-
bilistic closed-loop model as ideal model that expresses the agent’s preferences.
An advantage of FPD is an ability to explicitly describe multiple aims and con-
straints. The resulting optimal DM policy is randomised, unlike in the standard
Bayesian DM. Let us consider the following simplified Markov version of (2):

p(t,h) =

t+h∏
τ=t+1

p(sτ |aτ−1, sτ−1)p(aτ−1|sτ−1)p(st). (3)

In (3), t is a starting step and h ∈ N is a finite horizon. The corresponding ideal
model reflecting agent’s DM preferences reads:

Ip(t,h) =

t+h∏
τ=t+1

Ip(sτ |aτ−1, sτ−1)Ip(aτ−1|sτ−1)p(st). (4)



FPD, provides a DM policy yielding minimum of the KLD, (1), from the current
closed-loop description, (3), to the ideal one, (4). Thus optimal DM policy πopt

coming from the minimisation is

πopt = arg min
{p(aτ |s(τ))}t≤τ≤t+h−1

D(p(t,h)||Ip(t,h)),
∑
aτ∈A

p(aτ |s(τ)) = 1. (5)

3 Lazy fully probabilistic decision making

Lazy learning is an approach, which at the actual time step goes through the
stored data and searches the relevant data to deal with a current DM problem,
see Fig. 2. In this figure, the red points indicate the similar situations in the
past and different closed-loop sequences (sτ+1, aτ , sτ ). We are intending to find
an optimal DM policy that respects our current ideal, based on the past optimal
actions.

Fig. 2. Lazy-learning fully probabilistic decision making strategy.

This section describes the general idea of the proposed solution. Let us con-
sider a DM task Q(t,h) = (p(t,h),

Ip(t,h)) where p(t,h) and Ip(t,h) is given by (3) and
(4), respectively. The collected historic data contain environment states sτ ∈ S
and actions aτ ∈ A, τ < t, observed up to actual time t. The data describe
past (solved) DM tasks Q(τ,h), τ = 1, . . . , t − h. The following assumption is
considered.

Assumption 1. Actions aτ , τ < t applied in the past DM tasks sufficiently well
approximate the optimal solution with respect to the past ideal models Ip(τ,h).

This assumption justifies considering the past actions and employing them to find
current optimal action even without explicit knowledge of past ideal closed-loop
models Ip(τ,h), τ ≤ t − h. Next, we need to find aoptt which makes closed-loop
p(t,h) close to its ideal counterpart Ip(t,h). The proposed solution requires the
following assumptions reflecting real-life DM tasks.



Assumption 2. There exists at least one past ideal Ip(τ,h) that is sufficiently
close to the current ideal closed-loop model Ip(t,h).

Assumptions 2 ensures that past experience is sufficiently rich to cover the cur-
rent DM task. It also allows to search for the similar task in the whole past
history.

Assumption 3. The environment behaviour does not significantly change over
time period considered.

Technically Assumption 3 means that probabilities in (3) do not change with
time. Note that Assumption 3 is not so restrictive. Once its violation is suspected,
different forgetting-like techniques [14] can be applied.
The proposed solution of the lazy FPD is given by the following proposition.

Proposition 1. Consider a set of past DM tasks Q(τ,h) = (p(τ,h),
Ip(τ,h)), τ =

1, . . . , t−h respecting Assumptions 1-3. Then optimal action aoptt for the current
DM task can be found as follows:

τopt = arg max
τ∈(0,t−h)

Ip(τ, h) (6)

aoptt = aτopt .

The maximisation in (6) runs over past sequence of states and actions

(sτ+h, aτ+h−1, sτ+h−1, . . . , sτ+1, aτ ), τ ∈ N

such that states observed at times τ and t are virtually equal. An optimal action
is then taken from a sequence maximising the current ideal closed-loop model.

4 Experiment

This section aims to verify the effectiveness of the proposed single-agent strategy.
A linear model of the helicopter in hovering is considered as an example. The
DM strategy designed by the presented approach is compared with a Linear
Quadratic Gaussian (LQG) control strategy.

4.1 Lazy-learning fully probabilistic LQG

The helicopter has six degrees of freedom in its motion, [15]. There are four
control inputs concerning its flight in addition to throttle control. By coordinat-
ing these inputs the helicopter can make forward and backward flight, sideward
flight, hovering, hovering turn, vertical climb and descent, etc.

Assuming the main rotor is composed of two blades without dragging motion,
the vehicle mass center is located under the rotor shaft, rotor angular velocity
is constant in hovering, and the tail rotor is composed of two blades and its hub
center is located on the fuselage longitudinal axis, the model of helicopter can



be separated into two parts. The first part represents main rotor dynamic and
the second one models dynamics behaviour of the tail rotor.

In the hovering mode, only main rotor dynamics describes the roll and pitch
movement of the craft. The aim is to move roll and pitch angle to zero values.

We consider the following linear model of helicopter, details see [16]:
φt+1

φ̇t+1

θt+1

θ̇t+1

 =


1 0.021 0 0.0002
0 0.99 0 0.025
0 −0.0013 1 0.02
0 −0.1820 0 0.848



φt
φ̇t
θt
θ̇t

+


0.06 0.0032
4.75 0.45
−0.0098 0.313
−1.18 27.356

[θstθct
]

(7)

In (7) t denotes discrete time step, θ̇ and θ are pitch angular velocity and pitch
angle, φ̇ and φ are roll angular velocity and roll angle, and θs and θc are roll con-
trol (laterally cyclic) and pitch control (longitudinally cyclic), respectively. Under

Fig. 3. The closed loop behaviour under different strategies.

different strategies implied by various unknown ideals, roll and pitch movements
are shown in Fig. 3. In order to gather the closed-loop data, the decentralised
Proportional-Derivative (PD) controllers, [17], with different parameters are em-
ployed. Since system outputs are continuous, finding similar past data requires
an infinite database. To solve this problem, control actions and system outputs
are discretised in values, see Fig. 4. As it can be seen in Fig. 4, roll and pitch
movements respond correctly and the helicopter moves to the hovering position
from the different initial states. Fig. 5 depicts a histogram of control actions when
the current value of φ ∈ (0.798, 0.8) while the previous value of φ ∈ (0.998, 1.0).
The diversity of actions guarantees that finding tailored set of control actions
based on a given ideal FPD and past data is highly plausible.



Fig. 4. The discrete-valued system outputs and control actions.

In order to formulate lazy-learning fully probabilistic LQG in hovering mode,
the ideal state distribution and ideal controller strategy are assumed to be Gaus-
sian with zero mean value and covariance matrices Σ > 0 and R > 0:

Ip(sτ+1|aτ , sτ ) = Nsτ+1
(0, Σ) (8)

Ip(aτ |sτ ) = Naτ (0, R), (9)

For the linear Gaussian state-space model, the controller found by FPD approach
can be interpreted as a standard LQG with a state penalization matrix Σ−1 and
input penalization matrix R−1, details see [2].

Fig. 5. The histogram of control actions.

By considering Σ−1 = diag(1, 1, 0, 0) and R−1 = I2, where I is the identity
matrix, and substituting (8) and (9) into (4), the ideal close-loop behaviour is



defined as follows:

Ip(t,h) ∝
t+h−1∏
τ=t

e−(θ̂
2
τ+1+φ̂

2
τ+1+(θsτ )

2+(θcτ )
2). (10)

Roll and pitch trajectories for the initial condition s(0) =
[
0.75, 0, −0.5, 1.0

]T
obtained by lazy-learning FPD h = {1, 10}, LQG approach and PD regulator
can be seen at Fig. 6. Under the same initial condition, Fig. 7 illustrates the
evolution of control signal. Fig. 6 and Fig. 7 indicate that the roll and pitch
movements respond correctly and the helicopter is conduced to the hovering po-
sition. Fig. 6 and Fig. 7 clearly demonstrate closeness of the proposed approach

Fig. 6. Trajectories of the roll and pitch angle.

to the LQG control, and show that even when the decision maker uses incom-
plete knowledge of environment, the proposed approach is very effective. By
other words, the proposed approach obviously alleviates the computational load
needed and decreases the dependency on accurate knowledge of environment in
the FPD approach (Proposition 2 in [2]).

A detailed comparison of the approaches (see Table 1) is based on perfor-
mance indices are calculated for different strategies. In particular we considered:

• Transient cost : closed-loop performance index in the first 20 steps under the
influence of initial state.

• Persistent cost : value of closed-loop cost function in the last 100 steps under
the influence of the process noise and the measurement noise.

• Total cost : value of the performance indices under the influence of initial
state and Gaussian noise.



Fig. 7. Evolution of the control signals.

From Table 1, it can be seen that proposed approach (LLFPD LQG) with horizon
h = 10 chooses the optimal control action. Compare to the standard LQG,
LLFPD with h = 10 had competitive responses in the transient and persistent
state. Moreover under incomplete knowledge, LLFPD is a good alternative to
FPD approach. The proposed approach provides results that highly outperform
PD controller. Moreover it can reach visibly high control quality (see Table 1)
with comparable computational effort.

Table 1. Performance quality

Method

Cost Function

J(tmin, tmax) = Σtmax
t=tmin(θ2t+1 + φ2t+1 + (θst )

2 + (θct )
2)

Total cost Transient cost Persistent cost
J(0, 200) J(0, 20) J(100, 200)

LQG 3.19623 3.10324 0.04751
PD 6.53832 6.37771 0.08482
LLFPD, h = 1 3.50326 3.19382 0.11641
LLFPD, h = 2 3.46451 3.22531 0.09185
LLFPD, h = 5 3.38828 3.20451 0.07306
LLFPD, h = 10 3.34851 3.21622 0.06081



5 Concluding remarks

The paper describes lazy fully probabilistic design of DM strategies. The idea
is based on searching similar previously experienced closed-loop models. The
similarity criterion is maximisation of the current DM preferences. Instead of
searching over the whole action space, the approach investigates the previously
experienced DM tasks only. The solution can be of help even when past ideal
models are unknown.

The proposed solution significantly decreases: i) the computational load needed
by FPD and other design techniques; ii) danger of choosing inappropriate DM
preferences that are based on little or no knowledge of the environment. More-
over switching between different controllers can have weak stability (see [18])
while LL FPD provides stable closed-loop behaviour. The lazy FPD also allows
for efficient preference elicitation, (especially when no prior knowledge is avail-
able), see [19, 20]. In this case suitable past ideal models can be used as ideal for
the current DM task.

LL FPD approach designs an efficient optimising single-agent DM that does
not depend on perfect knowledge of the environment and thus can create a reli-
able base for multi-agent systems. The approach also gives a way how to transfer
ideals/models between different agents solving similar DM tasks on the same
environment. This ability is highly demanded in many real-world applications
where knowledge transfer cannot be easily ensured.
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