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Abstract

The Bayesian identification of a linear regression model (called the biphasic
model) for time dependence of thyroid gland activity in 131I radioiodine ther-
apy is presented. Prior knowledge is elicited via hard parameter constraints and
via the merging of external information from an archive of patient records. This
prior regularization is shown to be crucial in the reported context, where data
typically comprise only two or three high-noise measurements. The posterior
distribution is simulated via a Langevin diffusion algorithm, whose optimization
for the thyroid activity application is explained. Excellent patient-specific pre-
dictions of thyroid activity are reported. The posterior inference of the patient-
specific total radiation dose is computed, allowing the uncertainty of the dose to
be quantified in a consistent form. The relevance of this work in clinical practice
is explained.

Keywords: biphasic model, prior constraints, external information, Langevin
diffusion, nonparametric stopping rule, probabilistic dose estimation

1. Radioiodine Therapy for Thyroid Gland Cancer

The thyroid gland [1] is located in the neck. It is an important compo-
nent of the endocrine system. Specific thyroid cells bind and accumulate free
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Figure 1: A typical patient activity curve, At, identified using 3 patient measurements (cir-
cles). The remaining measurements (crosses) are used to quantify prediction error.

iodine from the blood. Accumulated iodine is used in the synthesis of thyroid
hormones. These hormones affect the body in the following ways: metabolic,
thermoregulatory, growth and maturation.

While in 1987, when thyroid cancer affected about 5 in every 100 000 peo-
ple in United States, 80 % of them female, in 2009 it was 14 in 100 000 [2].
In therapy, the thyroid is typically removed by surgery. However, it is im-
possible to remove the organ completely, owing to the proximity of the vocal
chords, important arteries and nerves. Hence, in normal clinical practice, these
remnants—along with any metastases (which, in common with the thyroid it-
self, are also iodine-accumulating)—are then destroyed by methods of nuclear
medicine (radioiodine therapy).

Radioiodine therapy for thyroid gland cancer [3] exploits the fact that the
gland selectively accumulates iodine from the blood. Nuclear decays in unsta-
ble (radioactive) 131I release β-particles (electrons) which are absorbed by the
thyroid tissue (as well as by other organs). Therapeutic administration of 131I
is typically in the activity range of 2–10 GBq1, leading to radio-destruction of
the thyroid tissue. The accompanying γ-particles (high energy photons) are not
absorbed by the tissue and can therefore be detected outside the body. Typi-
cally, there is a preliminary diagnostic administration of 131I, at an activity of
70 MBq, in order to assess the mass and disposition of the thyroid remnants, and
to provide guidance in the design of the subsequent therapeutic administration.

The 131I activity, At, of the thyroid, at a time t (days) following adminis-
tration of 131I, is defined as the mean number of nuclear decays (nuclear decay
is a random Poisson-distributed process) occurring in the gland per second at
time t. A typical activity curve is illustrated in Figure 1. It reveals the charac-

11 Giga-Becquerel (GBq) corresponds to 109 nuclear decays per second.
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teristic biphasic (i.e. two-phase) behaviour, comprising the initial uptake phase,
followed by the clearance phase. Note that the time-scale is far shorter than
that for radio-destruction and elimination of the tissue by the immune system,
which takes 3–6 months. Hence, the clearance is due dominantly to the radioac-
tive decay of 131I and metabolic elimination of the isotope by the thyroid. The
key therapeutic quantity of interest is the absorbed dose, D, defined as the total
energy of the β-particles absorbed per unit mass of the thyroid:

D = Sξ, ξ =

+∞∫
0

At dt. (1)

Here, S is a known organ- and isotope-specific constant, provided by the MIRD
methodology (Medical Internal Radiation Dose) [4].

1.1. The Measurement Process

The β-particles—and hence At—cannot be measured directly. However, the
associated γ-particles (photons) released by the thyroid during one-second in-
tervals around a measurement time, t, can be detected and counted by a scintil-
lation probe at a specific range and direction [1, 5]. A matrix of such counts (i.e.
a scintigram) is available if an array of such probes—known as a γ-camera—is
used. The cumulative count in a Region-of-Interest (ROI) marked on the scinti-
gram by the radiologist is then available at the measurement time, t. In standard
radiological practice, the measured background count due to sources other than
the thyroid itself is then subtracted, to yield an estimated count, n̂t, of par-
ticles from the thyroid. A calibration step then converts n̂t into an estimate,
dt, of the thyroid activity, At, at the measurement time, t. The calibration is
achieved using a source of known activity in the same geometrical arrangement
as the patient and probe/camera. The calibration-adjusted estimate, dt (MBq),
is called the measured activity of the thyroid, and is the conventional statistic
computed in standard radioiodine therapeutic practice. Details of this activity
estimation procedure are provided in [6]. For a specific patient, the available
data, D, are therefore the set of measurement times, ti, and the associated
measured activities, dti :

D ≡ {(ti, dti)}
n
i=1 ,

where i is the discrete-time index and n is the number of data recorded for the
specific patient2.

2The maximum measured activity for each specific patient, which we denote by dm (we omit
any patient-specific index for the time being), can differ by several orders of magnitude within
a population of patients, such as the one studied in Section 4.2. This is due to differences

in administered activity of 131I and metabolic variations between patients. For reasons
of numerical stability in the Bayesian identification algorithm (Section 3), scaled measured
activities, dti/dm ∈ (0, 1], are modelled for each patient. For notational simplicity, it is these
scaled quantities that will be referred to as dti in the sequel.
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1.2. The Key Inference Tasks

The ability of thyroid remnants to accumulate iodine depends on the size
of the remnants after surgery, the type of carcinoma, the patient’s metabolism,
the possible presence of metastases, etc. Therefore, patient-specific inference is
of great clinical importance, both at the diagnostic and therapeutic stages.

Therefore, two key inference tasks are addressed in this paper:

1. Patient-specific sequential prediction of measured activity, dt. There are
two uses for these predictions: the first is to validate the parametric model
that we will adopt for At in Section 2.1; and a second potential use is to
provide a tool for quality assurance during logging of measured activities
(i.e. if the recorded value differs significantly from the predicted one,
a warning is generated).

2. Patient-specific inference of ξ and hence the absorbed dose, D (Section 1).
This is the key therapeutic quantity determining the effectiveness of the
radioiodine therapy and hence the patient’s prognosis. In particular, we
wish to quantify the uncertainty in D, since this supports the radiolo-
gists in their planning of possible follow-up treatment for the patient.
Furthermore, the thyroid acts as a radiation source during radioiodine
therapy. β-particles from the thyroid irradiate the blood, while the as-
sociated γ-particles irradiate remote organs. Inference of D allows the
radiologist to assess the levels of such irradiation. Note that distributions
of non-patient-specific dose have been proposed in the radiation protec-
tion literature [7, 8]. Recently, the EANM Dosimetry Committee Series,
Standard Operational Procedures for Pre-Therapeutic Dosimetry [9], pro-
vided guidelines on the assessment of patient-specific absorbed dose, but
this was non-probabilistic. To our knowledge, no reference, beyond the
work reported here, provides a patient-specific probabilistic inference of
dose in radioiodine therapy.

A difficult inference regime is implied for the following reasons:

1. for economic reasons, and to avoid possible distress to patients, only
a small number, 2 ≤ n <∼ 9, of non-uniformly sampled measurements,
dti , are available per patient;

2. these measured activities are subject to considerable uncertainty (noise),
due to imprecise calibration of the measurement system and uncertain
background radiation levels.

The poor quality, and small quantity, of the available data point to the need for
a Bayesian approach to the tasks above, as, succesfully, in similar situations,
e.g. [10].

1.3. Structure of the Paper

In Section 2.1, the biphasic linear regression model for At is introduced, for
which an elegant Bayesian conjugate framework is available (Section 3). A key
benefit of the Bayesian approach in this case is that it provides the opportunity
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to improve the patient-specific inference using an available database of measured
activities for a large population of patients. In Section 4, we use these historic
data, as well as known parameter constraints, to construct a suitable prior for
the biphasic model parameters. The posterior inference is deduced in Section 5,
and problems associated with its evaluation are outlined. Selection and tuning
of an appropriate stochastic sampling algorithm for approximation of the exact
inference is outlined in Section 6. The resulting activity prediction and dose
inference are assessed for a population of actual patients in Section 7. The
impact of the work on current clinical practice, and prospects for future work
in the area, are discussed in Section 8.

2. Modelling of 131I Activity

The uptake and clearance of 131I by the thyroid is a topic in pharmacoki-
netics (PK), e.g. [11]. PK models have been proposed for quantifying the dose
associated with inhalation [12] or ingestion [7] of 131I, and for assessing its vari-
ability. In [8], the dose variability is evaluated and its distribution is assumed
log-normal. In population PK, the individual pharmacokinetic parameters are
studied across a patient population, e.g. [13]. However, we emphasize that the
inference tasks which we defined in the previous Section are patient-specific, and
so we do not concern ourselves with population PK models. Reported methods
that are based on individual dosimetry, and on quantifying dose in individual
131I-therapy patients (e.g. [4, 14]), do not provide measures of uncertainty. In
contrast, in this paper, we develop a fully probabilistic, patient-specific inference
of dose for the first time (Section 6).

Compartmental PK models for iodine activity, At, in the thyroid gland differ
in the number of compartments and their purpose. The 1-compartment model
is equivalent to a mono-exponential model for At (e.g. [15]), and so it omits the
uptake phase (Figure 1). In our earlier work [15], the uptake phase was treated
heuristically via a linear approximation. A 2-compartment model was used for
the study of hyperthyroidism in [16], and it was also used in [9] as a reference
model to evaluate precision of simpler methodologies. A 4-compartment model
was used in [17] to model iodine metabolism, and a 6-compartment model was
proposed in [18] to account for early uptake. Cyclic compartmental models,
requiring more parameters, have also been proposed [19].

Recently, due to availability of a high computational power, physiologically-
based pharmacokinetic models are frequently used, either for personalised me-
dicine [20] or in population PK [21]. These models are typically sets of ordinary
differential equations (possibly nonlinear) describing transport of a substance
between organs (compartments) according to physilogical processes. However,
they tend to a high number of parameters, some of which can be correlated.

A simple 3-parameter linear regression model for At was proposed in [15].
This biphasic model was obtained as a functional approximation of At given
by solution of a 4-compartment cyclic model [22] for 131I, involving about 20
parameters. Its advantages are that (i) standard Bayesian methodology for re-
cursive linear model identification [23] can be exploited; (ii) the model can be
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identified even for the small number, n, of data encountered in clinical prac-
tice (Section 1.2); and (iii) good prediction of activity—even for these small
datasets—was reported in [15], in contrast to the mono-exponential model whose
predictions were highly sensitive to perturbations of the data, and to their num-
ber.

2.1. The Three-Parameter Biphasic Model for Thyroid Activity, At

The following 3-parameter biphasic model will be adopted:

lnAt = a1 + a2 ln (c t) + a3 (c t)
2
3 ln (c t)− t

Tp
ln 2 = ψ′ta − αt, (2)

ψt ≡
(

1, ln (c t), (c t)2/3 ln (c t)
)′
.

Here, by convention, t > 0 is measured in days , a = (a1, a2, a3)′ is a vector
of unknown linear regression parameters3 ( ′ denotes transposition), and ψt is
the known regressor at time t. This model is an adaptation of the one first
introduced in [15], to include a known time-scale factor, c > 0, whose value will
be set in Appendix A. As we will see there, c will allow full exploitation of the
biophysical requirements on the behaviour of the function At. The parameter-
dependent term,

gt ≡ ψ′ta,

models the accumulation of 131I by the thyroid, whereas the parameter-indep-
endent term, −αt, α = ln 2/Tp, models the radioactive decay (exponential) of
the isotope itself, with Tp denoting the physical half-life of 131I (8.04 days).

It was shown in [6] that the measured activity, dt > 0 (Section 1.1), has
an asymmetric distribution on a positive support, and is approximately log-
normal with At as its first moment (mean). It follows that ln dt has a Gaussian
distribution, N (µ, r). For At � 0, it follows that µ ≈ lnAt [24]. The following
approximate model for the measured activity, dt, is therefore justified:

f(ln dt|At) = N (lnAt, r). (3)

Here, r > 0 denotes the constant but unknown variance.
From (2), the implied parametric observation model is

xt ≡ ln dt + αt ≡ ψ′ta + et,

f(xt|a, r) = N (ψ′ta, r) =
1√
2πr

exp

{
− (xt − ψ′ta)2

2r

}
. (4)

et ∼ N (0, r) is the additive residual representing the uncertainty (noise) in the
background subtraction and calibration steps used to compute dt (Section 1.1).

3Note that the model for the unscaled data of a specific patient (see Section 1.1) is trivially
obtained by replacing a1 by a1 + ln dm, where dm is the maximum measured activity in the
patient’s data (see footnote 2).
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It also quantifies the modelling error introduced by this simple 3-parameter
model (2). The effect of unmodelled covariates—such as gender, age, metabolic
factors, etc.—could be partially accounted for by introducing correlation in the
process, et (i.e. a coloured innovations process [23]). The two main disadvan-
tages of doing this are (i) the increased complexity of the model: the correlation
structure would then need to be identified (e.g. in parametric form) for each
patient, from just the 2 or 3 available data points; and (ii) the unavailability of
a conjugate inference framework in this case (Section 3) [23]. For these reasons,
we take et as independent and identically distributed (i.i.d.) at the distinct
observation times, ti. Note, finally, that since the γ-particles are released by
independent nuclear decays in 131I, and since the observation times, ti, are dis-
tinct, the i.i.d. assumption is consistent with these aspects of the measurement
process.

3. Bayesian Conjugate Inference for At

The conjugate distribution for the Normal observation model (4) is Normal-
inverse-Gamma [25], f(a, r|V, ν) = N iG(V, ν). Here, ν > 0 is the degrees-of-
freedom parameter, and V is the positive-definite extended information matrix,
of dimension (p+1)×(p+1), where p is the length of a (i.e. p = 3 for the biphasic
model (2)). For reasons of numerical stability and computational efficiency (see
below), V is expressed via the LD-decomposition [23], as

V = L′ΛL,

where L is a lower triangular matrix with unit diagonal and Λ is a diagonal
matrix with non-negative elements. L may be partitioned as

L =

(
l11 0
la1 Laa

)
,

where l11 = 1 is the (1, 1) element. Similarly, Λ may be expressed via a partition
into λ11 and Λaa. The N iG distribution can then be expressed as follows:

f(a, r|V, ν) ≡ f(a, r|L,Λ, ν) ∝ r− ν2 exp

{
− 1

2r

[
(Laaa− la1)

′
Λaa (Laaa− la1) + λ11

]}
.

The distribution is proper if ν > p + 2 = 5, in which case the normalizing
constant, ζ, is available in closed form [23].

The first moment and second central moment of a and r, respectively, are
as follows [23]:

E[a] = L−1aa la1 ≡ â, E[r] =
λ11

ν−p−4 ≡ r̂,

cov[a] = r̂ L−1aa Λ−1aa (L′aa)
−1
, var[r] = 2r̂2

ν−p−6 .

(5)
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Finally, from (4), and noting the linear dependence of lnAt on a (2), the log of
the measured activity (3) is Student-t, yielding the following predictor4:

Ef(dt|V,ν) [ln dt] = ψ′tâ− αt, (6)

varf(dt|V,ν) [ln dt] = r̂
[
1 + ψ′tL

−1
aa Λ−1aa (L′aa)

−1
ψt

]
≡ r̂ [1 + ρt] ≡ r̂t.

3.1. The Marginal Distribution of a

The marginal distribution of a is of the Student type [23],

f(a|L,Λ, ν) ∝
[
1 + λ−111 (a− â)

′
L′aaΛaaLaa (a− â)

]− 1
2 (ν−2) , (7)

using (5). Once again, the normalizing constant, ζ, is available in closed form.
The transformed variable,

a∗ = T (a− â), T =

√
ν − p− 4

λ11
Λaa Laa,

ν > p + 4, has zero mean and identity covariance matrix, a property which we
will exploit in Section 6. Here,

√
Λaa denotes the element-wise square-root.

3.2. The Conjugate Update

Let the prior also be the conjugate Normal-inverse-Gamma distribution, i.e.
f(a, r|V , ν) = N iG(V , ν), where V and ν are prior statistics. From (4), we
define the extended regressor at observation time, ti:

Ψti ≡ (xti , ψ
′
ti)
′. (8)

The posterior distribution is then f(a, r|D) = N iG(Vn, νn), where

Vn = V +

n∑
i=1

ΨtiΨ
′
ti ,

νn = ν + n,

and Vn = L′nΛnLn, as above. To avoid the effects of rounding errors, Ln and
Λn are, in fact, updated directly via the Ψti , ensuring positive-definiteness of
Vn [23].

Note that λ11,n, the (1, 1)-element of Λn, is an offset least-squares remainder,

λ11,n = λ11 +

n∑
i=1

(xti − ψti â)′(xti − ψti â),

where λ11 is the offset from V .

4 The unscaled log-data are predicted by adding ln dm to the quantity in (6) (see foot-
note 2).
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4. Construction of the Parameter Prior

In this thyroid activity context, prior information about the parameters, Θ =
(a′, r)′ (4), is available from two independent sources (represented by Jeffreys’
notation):

Ic, a set of constraints specified by the radiologist, in order that any activity
curve, At, be physically realizable (Figure 1), as explained in Section 4.1
below. This will be expressed via an appropriate prior, f(a|Ic). Since
no information on the magnitude of r is available in advance, no prior
constraints are imposed on r, beyond r > 0.

I0, an archive of measured thyroid activities for members of a population of
131I-therapy patients; in Section 4.2, this will be merged into the conju-
gate, data-informed prior,

f(a, r|I0) = f(Θ|I0) = N iG(V0, ν0), (9)

where I0 is merged via the prior parameters, V0 and ν0.

4.1. Hard Parameter Constraints, Ic: Physical Properties of At

We consider prior limitations on the parameters, a, of the biphasic model
(2), imposed by the following prior physiological constraints on the activity of
the thyroid At, (see Figure 1):

1. At → 0+ as t→ 0+, and as t→ +∞;

2. At achieves a unique global maximum at some tm > 0;

3. medical experience [15] dictates that tm ∈ (tl, tu), where tl = 4 hours
(0.167 days) and tu = 72 hours (3 days);

4. for some th > tm, then At decreases for t > th faster than the decrease
caused by physical decay of 131I (the latter being represented by the term,
−αt, in (2)).

The resulting inequalities (see Appendix A), along with a3 < 0 from (A.1),
confine a to a convex domain, A, via a linear matrix inequality, as follows:

a ∈ A ≡ {a | Ma < b} , M =

 0 0 1
0 1 4.8687
0 −1 0

 , b =

 0
0.2586
−0.0144

 .

(10)
Here, ‘<’ denotes element-wise inequalities. The prior,

f(a|Ic) ∝ χA(a), (11)

is a conservative quantification of this prior knowledge, Ic. Here, χ denotes the
indicator function on the set. Since A has infinite measure, the prior (11) is
improper.
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4.2. Historic Data, I0: the Patient Archive

There exists an archive of activity measurements for a large population of
thyroid cancer patients treated with 131I at Motol Hospital, Prague, Czech
Republic. From this archive, 3 876 datasets, Dj , j = 1, . . . , 3 876, were chosen,

each containing a variable number, 2 ≤ nj ≤ 10 of data pairs,
{

(tji , d
j
ti)
}nj
i=1

(Section 1.1). We emphasize that the task in our work is to infer the activity,
At, of a specific (new) patient. However, this historic data constitutes external
information, I0, which can be exploited in the patient-specific inference. This
external information is represented by statistics V0 and ν0. These statistics,
together with V and ν (see Section 3.2) are described in Appendix B.

The merging of historic data proposed above avoids the need for population
modelling of the patients and has proved to be a convenient means of initializing
the identification of the biphasic model. A formal optimization with respect to ν
and ν0 would require evaluation of the predictive distribution of D as a function
of these quantities, but would be unwieldy. We will see in Section 7 that the
merging achieved above is satisfactory, in the sense that identification of patient-
specific biphasic parameters is greatly enhanced using these values of V0 and ν0.

5. The Posterior Inference

The posterior inference of thyroid activity parameters (2) for a specific pa-
tient, given prior constraints, Ic, and external information from the patient
archive, I0, is given by

f(a, r|D, I0, Ic) ∝ f(a, r|Ic) f(a, r|I0)

n∏
i=1

f(xti |a, r)

=

n∏
i=1

Nxti (ψ
′
tia, r) N iGa,r(V0, ν0) χA(a)

∝ N iGa,r(Vn, νn) χA(a).

V0 and ν0 are given in Section 4.2, and the posterior statistics, Vn and νn, are
calculated from these via the conjugate updates in Section 3.2. Recall (Sec-
tion 1.2) that our aim is to predict patient-specific activity and to infer dose, ξ.
These are consistently addressed via the associated marginal in a,

f(a|D, I0, Ic) ∝ f(a|Ln,Λn, νn) χA(a), (12)

where f(a|Ln,Λn, νn) is given by (7). Now, the normalizing constant is not
available in closed form, owing to the domain restriction imposed by χA(a).

The following difficulties emerge:

1. From (2), the patient’s posterior mean log-activity curve is given by

Ef(a|D,I0,Ic)[lnAt] = ψ′tâc − αt.
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Here, the expectation is with respect to the constrained distribution (12),
whose required moments—such as âc or covc[a] (where subscript ‘c’ de-
notes a constrained moment)—are, again, unavailable in closed form, be-
cause of the domain restriction, χA(a).

2. The transformed distribution, f(ξ|D, I0, Ic), via the surjective mapping
a → ξ(a) implied by (1) and (2), is unavailable in closed form, since the
integral in (1) cannot be evaluated analytically.

These difficulties necessitate an approximation of f(a|D, I0, Ic). We adopt
a stochastic sampling technique, as described next. Similar approach to nu-
merical transformation of distributions was used e.g. in [26].

6. Stochastic Sampling from the Posterior Inference

Stochastic samples are drawn—in a manner to be described next—from the
transformed posterior density, f(a∗|D, I0, Ic), under the transformation in Sec-
tion 3.1. The transformed support, A∗ (10), is the solution space of M∗ a∗ < b∗,
with M∗ = MT−1 and b∗ = b −Mâ. Here, â is the unconstrained posterior
mean (5). As explained in Section 3.1, the unconstrained distribution (Student),
f(a∗|D, I0), has zero mean and identity covariance matrix, and so the posterior
distribution (12) is now completely specified by A∗ and νn. This greatly reduces
the number of matrix multiplications required when drawing a proposal sample,
reducing the run time.

The Langevin diffusion algorithm [27, 28] is well adapted to sampling from
a low-dimensional, heavy-tailed distribution such as ours’. The algorithm differs
from the Random Walk Metropolis-Hastings (RWMH) sampler via a determin-
istic shift of the proposed point in the direction of maximal gradient of the
sampled distribution. As shown in [27], the Langevin diffusion, when optimally
tuned, exhibits an acceptance rate of 57.4 %, which is more than twice that of
the RWMH algorithm (23 %), therefore achieving faster convergence.

Each i.i.d. realization of a∗(i) is inverse-transformed to a(i) (Section 3.1), and
substituted into (2). The equivalent realization from f(ξ|D, I0, Ic) is obtained
by numerical evaluation of the integral (1), using the QUANC8 algorithm [29].

6.1. Tuning the Langevin Sampler

When the sampler is tuned appropriately, posterior moments and confidence
intervals of ξ can be evaluated for a specific patient in the order of 0.1 second
using C++ on a standard PC. Hence, this inference procedure is suitable for
use in clinical practice. The salient features of this tuning are now outlined.

6.1.1. Initialization

The chain is initialized at the Maximum a Posteriori (MAP) estimate, once
again found by constrained optimization of the quadratic denominator (7). Since
the hard constraints (10) are linear, quadratic programming is used whenever
â∗ /∈ A∗ (10), where â∗ is the unconstrained transformed posterior mean, equal
to zero, as explained above. In practice, â∗ ∈ A∗ iff all the elements of b∗ are
positive.
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6.1.2. Step-Size

The step-size of the Markov chain (MC) can be derived analytically in the
Langevin diffusion case, if the posterior distribution belongs to the exponential
family, if it can be factorized into univariate factors, and if it has unbounded
support [27]. However, the posterior (12) does not satisfy any of these require-
ments.

Instead, the patient archive of 3 876 data sequences (Section 4.2) is used to
generate a population of optimal MC step-sizes empirically. For each patient,
the criterion of maximum first-order efficiency η [27] is used to search for the
optimal step-size:

η =
1

N − 1

N∑
i=2

(
|xi − xi−1|2

)
.

Here, N is the number of drawn samples xi, and |x− y| denotes the Euclidean
distance between the points x and y. In the case of the unconstrained posterior
distribution (7), the acceptance rate for proposed samples is over 50 % when
using the optimum step-size in terms of η. This is in agreement with [27]. The
acceptance rate decreases as the mass of f(a|Ln,Λn, νn) is limited by the prior
support, χA(a). It was observed that the acceptance rate is never less than
10 % for any case of â (5) and A. The magnitude of the step-size in a∗-space
is approximately 1.6 when Mâ � b. However, if â 6∈ A, then the step-size,
optimized in terms of η above, can be as much as 106.

6.1.3. Burn-In

The burn-in stage of the MC run is used for finer adjustment of the step-
size given by the rule above. After drawing 200 samples, the acceptance rate
is estimated. If it is higher than 57 %, the step-size is multiplied by

√
2. If it

is lower than 10 %, the step-size is divided by
√

2. The procedure is repeated
until the acceptance rate is stabilized between 10 % and 57 %. In the majority
of cases, no adjustment is necessary, but no more than two such adjustments
are made in any case.

6.1.4. Stopping Rule

Stochastic sampling from f(a|D, Ic, I0) is terminated using the nonpara-
metric Bayesian stopping rule proposed in [30]. The number of i.i.d. samples at
stopping satisfies

N = min {k : KLD [Dk||Dk−1;Pk] < ε} .

Here, Dk denotes the Dirichlet measure induced by the first k i.i.d samples.
KLD[·] denotes the Kullback-Leibler divergence between consecutive Dirichlet
measures on the partition, Pk, of the parameter space, A, using the k i.i.d. sam-
ples as vertices. ε denotes the maximum permitted divergence at stopping [30].

For ε = 0.002, the average value of N is N̄ = 4 529, across 700 data sequences
in the patient archive. The standard deviation is 540. The histogram of N is
illustrated in Figure 2 for this set of 700 patients. For each of the 700 patients,
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Figure 2: Histogram illustrating variability of the number, N , of i.i.d. samples at stopping,
across a population of patients (700 patient cases, ε = 0.002).

i = 1, . . . , 700, two empirical distributions of ξ (1) are constructed: (i) fri(ξ),
the reference, using N = 50 000 samples, and (ii) fεi(ξ), using Ni samples,
where Ni satisfies the stopping rule above. The medians, mri and mεi, were
evaluated in each case and the relative error (mεi −mri)/mri, was calculated,
i = 1, . . . , 700. Finally, the mean and the standard deviation of these relative
errors was calculated. The same procedure was applied to the lower bound,
upper bound and length of the symmetric 95% confidence intervals of fri(ξ)
and fεi(ξ), i = 1, . . . , 700. None of the means and standard deviations of these
relative errors was greater than 0.035. We conclude that the stopping rule yields
an accurate approximation of f(ξ|D, I0, Ic).

7. Performance Study: Influence of the Priors

We now consider the influence of the hard parameter constraints, Ic (Sec-
tion 4.1), and the external information from the patient archive, I0 (Section 4.2),
on the inference of thyroid activity for a specific patient. Thus, in Figure 3,
we plot f(a2|D, I0, Ic), which is the marginal of the parameter a2 (2) im-
plied by (12), for the patient whose data are illustrated in Figure 1. Note
that f(a2|D, I0) is almost identical to f(a2|D, I0, Ic), and so it is not shown in
Figure 3. However, f(a2|D) which ignores both forms of prior information, and
f(a2|D, Ic) which ignores the external information from the patient archive, I0,
are shown in Figure 3. Similar behaviour is observed in the respective marginals
for a3, while a1 is unconstrained (10).

Note that, for this patient case, â /∈ A, where â is the unconstrained posterior
mean (5). This is found to be the case in about 41 % of the patients in the archive
(see Table 1). In contrast, the posterior mean of f(a|D, I0) is well within A in
this case, as occurs in about 99.5 % of patients (Table 1).

We note the following:
(i) In most patient cases, the hard constraints, via χA(a), have little impact on
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Figure 3: Marginal posterior inference of a2 for the patient data in Figure 1 (i.e. n = 3
activity measurements). Solid line: the complete regularized inference, f(a2|D, I0, Ic), from
(12). Dashed line: unregularized inference, f(a2|D). Dotted line: inference, f(a2|D, Ic),
constrained via χA(a), but without the data-informed prior, N iG(V0, ν0) (9). Note that
f(a2|D, I0) is almost identical to f(a2|D, I0, Ic), differing only in respect of the truncation
at a2 = 0. It is therefore not illustrated.

the value of the point estimate, â, once I0 is taken into account. In this sense,
the external information is seen to ‘regularize’ the inference of a. In conclusion,
for most of the patient cases,

f(a|D, I0, Ic) ≈ f(a|D, I0);

i.e. a is approximately conditionally independent of Ic a posteriori, given I0.
(ii) Since the distribution of a is heavy-tailed, a relatively diffuse truncated
distribution, f(a|D, Ic), is typically implied in the case when I0 is ignored (see
Figure 3). In the rare cases when â ∈ A (here, â is the mean of the unregularized
inference, f(a2|D) (5)), the optimum step-sizes are between 1 and 2 and the
acceptance rates are between 35 % and 50 %. Recall, from Section 6.1.2, that
in the frequent cases when â 6∈ A (e.g. Figure 3), the optimum step-sizes can
increase to as high as 106, and the acceptance rates can drop to as low as 10 %.
Hence, the external information from the patient archive, I0, greatly improves
the performance of the Langevin sampler and stabilizes the optimum step-size.

7.1. Statistical Study of Activity Prediction

Next, the influence of the priors on the prediction of measured activity is
studied. The same set of 2 355 data sequences as was used in Section Appendix
B was used here, each containing at least 4 measurement pairs. For each data
sequence (i.e. patient case), the log of the measured activity at the 4th mea-
surement time, t4, is predicted via Ef(dt4 |Vn,νn) [ln dt4 ] (6), given the first n = 3
measurements. The following four predictions are generated for each of the 2 355
patients:
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(a) Prior knowledge Ic and I0 are ignored (i.e. Vn and νn are initialized via
V and ν respectively (Section Appendix B)). In this case, about 41 %
of the predictions (Table 1) must be rejected, since the inferred mean
activity curve (2) is physically impossible (i.e. â 6∈ A in these cases, as
discussed in the previous Section). Clearly, this diffuse prior assumption
is unacceptable for inference with typical patients.

(b) Ic is active, but I0 is ignored (i.e. initialization as in (a) above). By
definition, all predictions are now accepted.

(c) I0 is active, but Ic is ignored (i.e. V0 is constructed via external informa-
tion from the patient archive, as explained in Section Appendix B, and so
Vn and νn are initialized as V + V0 and ν + ν0 respectively). In this case,
only 0.5 % of the predictions need to be rejected (Table 1) as physically
impossible.

(d) Both Ic and I0 are active (i.e. initialization as in (c) above). Once again,
by definition, all predictions are accepted.

For each of the 2 355 patients, the prediction error, i.e. Ef(dt4 |Vn,νn) [ln dt4 ]−
ln dt4 , is evaluated (where, once again, the argument of E[·] is to be understood
as a random variable, while dt4 is the available fourth measurement in each
case (footnote 4)). The mean, median and standard deviation of this quantity
across the 2 355 patients are recorded in Table 1 for each of the cases (a)–
(d) above. We note a major improvement in activity prediction when both Ic

prior initialization posterior mean median st. dev. % valid

(a) V ν (7) −0.2333 −0.1464 0.7118 59.0
(b) V ν (12) −0.1989 −0.1454 0.6553 100.0
(c) V + V0 ν + ν0 (7) −0.0008 −0.0340 0.4713 99.5
(d) V + V0 ν + ν0 (12) 0.0000 −0.0348 0.4727 100.0

Table 1: Statistics of the prediction error in measured log-activity for the four prior knowledge
structures, (a)–(d), listed in the text, over a population of 2 355 patients. The “% valid”
column gives the percentage of data sequences yielding valid predictions.

(prior constraints) and I0 (extended information) are exploited. For example,
the mean and median errors are reduced by a factor greater than 4 compared to
the unregularized case (a). Most of this improvement is achieved via I0 (case
(c)) alone, as discussed in Section 7. The modest extra improvement between
cases (c) and (d), and the robustness of the predictions in case (d) (see the “%
valid” column), recommend the conditioning of patient-specific inferences on
both I0 and Ic (12).

The prediction study was repeated for prediction of activities, dt, using the
log-normal mean, d̂t4 = exp (ψ′âc − αt+ r̂t4/2) [24], where r̂t4 is the predictive
variance at time t4. The results were similar to those in Table 1.
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7.2. Statistical Study of Predictive Variance

Next, the influence of prior information, I0 and Ic, on predictive variance,
r̂t = r̂[1 + ρt] in (6), was examined. Data containing 3 355 sequences, each with
at least 4 activity measurements, were selected, as in Section 7.1. From these,
three populations were selected, containing, respectively,

P1: all 2 355 sequences,

P2: 2 344 sequences for which χA(â) = 1, identified using 3 measurements with
external information I0,

P3: 1 389 sequences for which χA(â) = 1, identified using 3 measurements
without external information I0.

For all sequences, the unconstrained posterior mean, â (5), was used for classifi-
cation into the populations P2 and P3. For the sequences in P1 in case (iv) be-
low, whenever χA(â) = 0, then the MAP estimate, âMAP, obtained by quadratic
programming (see Sections Appendix B and 6.1.1), was used to guarantee
a physically meaningful At. As noted in the previous section, statistics for the

case initialization population mean median std. dev. min. max.

(i) V + V0, ν + ν0 P1 1.572 1.134 1.282 0.301 9.191
(ii) V + V0, ν + ν0 P2 1.574 1.134 1.284 0.301 9.191
(iii) V + V0, ν + ν0 P3 1.543 1.140 1.228 0.304 9.191
(iv) V , ν P1 15.277 6.793 97.868 0.999 4 637.600
(v) V , ν P3 12.602 6.773 21.947 1.018 259.620

Table 2: Sampling statistics of ρt4 = ψ′t4L
−1
aa Λ−1

aa (L′aa)−1 ψt4 (6), for the combinations (i)–(v)
of prior information and the selected patient populations listed in the text.

cases (i)–(iii) in Table 2, where I0 is used, do not differ significantly, whereas,
in (iv) and (v), the absence of I0 increases predictive variance greatly, particu-
larly in case (iv), where nearly 1 000 of the estimated activity curves are based
on âMAP above, yielding poor prediction. The impact of I0 on the quality of
prediction is particularly evident when comparing cases (iii) and (v), as they
involve the same populations of patients.

For the next study, the population P3 was used. For each data sequence in
the population, quantities ρ+t4 (using external information I0) and ρ−t4 (without
I0) were evaluated, and combined as shown in Table 3. These results demon-
strate that external information I0 decreases predictive variance (6) approxi-
mately fourfold in the mean.

7.3. The Posterior Distribution of ξ

The empirical approximation of f(ξ|D, I0, Ic) computed via the Langevin
diffusion-based sampler (Section 6) is illustrated in Figure 4 for the specific pa-
tient data shown in Figure 1 (n = 3). There is evidence in the literature to
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expression mean median std. dev. min. max.

(1 + ρ−t4)/(1 + ρ+t4) 4.310 3.617 3.185 1.103 76.707

Table 3: Sampling statistics of the ratio of predictive variance terms (6), excluding and
including external information, I0, and based on the patient population, P3, defined in the
text.
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Figure 4: Empirical approximation (with binning) of f(ξ|D, I0, Ic), for the patient data in
Figure 1. Computation was via a Langevin diffusion sampler (Section 6) with ε = 0.002,
giving N = 4 600 at stopping.

support a log-normal distribution of ξ across a patient population. For exam-
ple, a theoretical thyroid mass distribution was used to support such a claim
in [7], and sources of uncertainty were assumed log-normal in [8]. It is therefore
of interest to examine the log-normality of our patient-specific dose inference
above.

Our investigations concerning log-normality of f(ξ|D, I0, Ic) were partly re-
ported in [31]. The accumulated evidence is now summarized:

(i) Bayesian binary hypothesis testing between a log-normal and normal model
for f(ξ|·) was undertaken for many patient cases. This supported the for-
mer against the latter, but did not consider other alternatives.

(ii) A Kolmogorov-Smirnov (KS) test of normality was performed on samples
from f(ξ|·) and f(ln ξ|·). The average KS statistic, across a large sample
of patients in the database, was too large to support normality of either
f(ξ|·) or f(ln ξ|·). This was probably due to an insufficient number of
samples drawn from f(ξ|·).

(iii) For each of 700 patients drawn from the database, a log-normal model
was fitted to the empirical approximation of f(ξ|·), generated, as always,
via the Langevin diffusion-based sampler (Figure 4). The median, and the
lower and upper bounds of the 95 % confidence interval, were calculated
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for the empirical approximation, and averaged over the 700 cases. The
same was done for the log-normal fit. Pairwise comparison of these three
averaged statistics, between the empirical and parametric cases, agreed to
within 2 %, providing good support for a log-normal model of ξ.

(iv) Finally, the skewness of both the empirical approximations, f(ξ|D, I0, Ic)
and f(ln ξ|D, I0, Ic), were quantified. The rationale is that ξ should ex-
hibit positive skewness if it is, indeed, approximately log-normal, while
ln ξ (which is therefore approximately normal) should have skewness close
to zero. These quantities were calculated for each of the 3 876 data se-
quences in the patient archive, and the statistics of the resulting empirical
distributions of skewness were evaluated and compared, as summarized in
Table 4. Note that the mean skewness of f(ξ|D, I0, Ic) is more that five

f(·|D, I0, Ic) mean median st. dev.

ξ 1.69 0.85 3.60
ln ξ 0.28 0.23 0.62

Table 4: Statistics for the skewness of the empirical approximations of f(ξ|D, I0, Ic) and
f(ln ξ|D, I0, Ic) across a population of 3 876 patients.

times greater than that of f(ln ξ|D, I0, Ic) and the latter is quite small.
Again, this supports a log-normal model for f(ξ|·). Note also from Ta-
ble 4 that the mean skewness of f(ξ|D, I0, Ic) is about twice its median
skewness, suggesting that this distribution is heavily skewed for many of
the patient cases.

This evidence, particularly in (iii) and (iv), supports the adoption of a log-
normal model for patient-specific dose, f(ξ|D, I0, Ic). However, further work
on formal parametric identification of ξ, via (1), (2) and (7), is warranted.

Finally, for each of the 3 876 data sequences in the patient archive, the
standard deviation of f(ln ξ|D, Ic) was computed (i.e. ignoring the external
information from the patient archive, I0 (Section 4.2)). This was repeated for
f(ln ξ|D, I0, Ic), i.e. exploiting the external information. The average standard
deviation in the latter case was found to be just 36 % of the former case. This
underlines the major impact which the external information from the patient
archive has in reducing uncertainty concerning the radiation dose delivered to
a specific patient. This has practical significance in the design of a probabilistic
dose advisory system based on f(ξ|D, I0, Ic) (see Section 8).

8. Discussion

The inference of biphasic model parameters for an individual patient’s thy-
roid activity in 131I-therapy is a challenging problem since the maximum number
of measurements is typically three, while noise from the background and other
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sources of uncertainty are typically high. In previous work [15], the biphasic
model was shown to yield far better predictions of activity during the clearance
phase than is possible for a monoexponential model, in addition to modelling
the uptake phase of course. This, in turn, provides improved inference of dose
via the integrated activity curve (1). In this paper, we have concentrated on
the role of the biphasic model in thyroid 131I-therapy, and have reported an
optimized Bayesian framework for inference of its parameters.

8.1. Key findings

The following are the key findings of this work:
(i) The original biphasic model [15, 31] used a time-scale factor of c = 1. The
optimization of c undertaken in this paper has allowed the expert information
on At to be fully exploited, as described in Section 4.1. With c = 1, the increase
of inferred At in the initial stage of accumulation (Figure 1) was too slow, es-
pecially for lower values of a3. Modification of c to values higher than proposed
in Section Appendix A does not significantly improve the model behaviour.
(ii) The hard constraints, a ∈ A, on the model parameters, imposed via prior
information, Ic, have ensured physically realizable inferences of thyroid activity
in 131I-therapy.
(iii) The prior statistics, V0, constructed by processing external information, I0,
from the patient archive, have ensured excellent prior regularization in the sense
that the model parameters are found to be a posteriori approximately condition-
ally independent of Ic, given I0 (Section 7). Three practical benefits of merging
I0, reported in this paper, have been (a) improved accuracy in the prediction of
future measured activities (Section 7.1), (b) significantly increased acceptance
rates for proposal samples in the Langevin diffusion sampler (Sections 6.1.2 and
7), and (c) greatly reduced uncertainty in the inference of patient-specific dose,
ξ (Section 7.3).
(iv) The nonparametric Bayesian stopping rule (Section 6.1.4) can speed up
the computation of the dose (ξ) distribution for a particular patient by up to
20 % compared to the use of a pre-specified sample size (being N̄ + 2σN , i.e.
4 529+1 080=5 609 samples, while ensuring a specified precision of the confi-
dence interval bounds (Section 6.1.4)).
(v) Reliable probabilistic inference of dose, ξ, for individual patients has been
achieved, quantifying its uncertainty. Its approximation by a log-normal distri-
bution has been justified.

8.2. Clinical practice and research potential

This work has the following potentional impact on clinical practice at nu-
clear medicine clinics:
(i) The irradiated thyroid acts as a source of radiation for the patient’s other
organs. The Bayesian inference of dose delivered to the thyroid (Section 7.3)
may be used directly in the inference of dose delivered by the thyroid to other
organs during 131I-therapy, in line with the MIRD methodology [4].
(ii) The prediction of the patient’s thyroid activity at the next measurement
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time (6) can be used to check for gross measurement or logging errors. A mea-
sured activity that diverges significantly from the predicted activity, using an
appropriate criterion that has yet to be specified, would generate a warning to
the operator.

The reported techniques would provide the means for retrospective studies
for the following purposes:
(i) Quantification of thyroid stunning : there is empirical evidence that the rel-
ative maximum activity of the thyroid is reduced, and the rate of clearance
increased (up to threefold), during therapeutic (high) administration of 131I, as
compared to the values observed at the preliminary diagnostic administration
(Section 1). The accurate Bayesian prediction of activity during the clearance
phase, using the biphasic model, is proving to be important in the quantitative
study of this thyroid stunning phenomenon.
(ii) An advisory system for design of patient-specific optimized administrations
of 131I [32, 33]: the quantification of dose, ξ, and particularly its uncertainty,
can be used to recommend an optimized administration of 131I for a specific
patient. It is hoped that an advisory system of this kind will contribute to
the quality of 131I-therapy for the patient and to radiation protection of the
environment.

8.3. Possible extensions

The key aim of this work has been to demonstrate the success of the simple
3-parameter biphasic model (2) in prediction of measured activity and dose for
individual patients undergoing thyroid 131I-therapy. The numerical benefits of
the associated conjugate framework for this linear-Gaussian model have been
emphasized (Section 3). The paucity of data available for each patient discour-
ages the introduction of extra parameters (Section 2.1). While these might,
indeed, reduce the modelling error, et (4), a higher prediction error (6) would
be inevitable (i.e. the influence of Ockham’s razor). Nevertheless, the following
three extensions do warrant consideration in the future:
(i) Note the large variability in measured activity across the patient archive
(Figure B.5). Also, in Table 1, the standard deviation in the prediction error
is relatively large compared to the mean, and variability is also indicated by
the significant differences between the mean and median (columns 4 and 5 of
the Table). The same is true of the estimates of ξ in Table 4. This points to
the heterogeneity of the data in the patient archive. In reality, the response of
an individual patient will depend on factors such as age, gender, weight and
other patient-specific metabolic variables. There may be an advantage in in-
troducing some of these as covariates in the model for measured activity in the
thyroid. Informally, the patient archive might be partitioned into more homo-
geneous sub-groups, and the inference for an individual patient conditioned on
the I0 calculated from the sub-group to which they belong (Section 4.2). More
formally, a mixture of biphasic regression models might be used to analyze the
patient archive.
(ii) The biphasic model (2) with nonlinear time-scale factor c can be written as
a regression model without time-scaling, but with four linear parameters. Its
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identification would yield a patient-specific inference of c, but at the cost of
increased model complexity, as noted above.
(iii) Further work on the formal parametric identification of the dose distribu-
tion, f(ξ|D, I0, Ic) (Section 7.3), is required, to include testing of other possible
skewed distributions on a positive support.

9. Conclusion

The reported inferences of thyroid activity and radiation dose can provide
radiologists with important quantitative feedback concerning the impact of 131I-
therapy on individual patients in their care. The capacity to predict thyroid ac-
tivity several days beyond the measurement times is important for model valida-
tion, and for quality assurance of the measurement procedure. The estimation
of dose, and its uncertainty, at the diagnostic stage is important in inferring
the irradiation of the patient’s other organs, and in planning the subsequent
therapeutic administration of 131I. This paper has shown how a Bayesian con-
jugate inference framework has been crucial in exploiting external information
available in situ from a patient archive and from expert opinion. Evidence of
improved activity predictions and dose inference for the individual patient has
been provided.
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Appendix A. Hard Parameter Constraints, Ic

Here, the prior limitations on the parameters, a, specified in the constraints
1–4, Section 4.1, are formalised.

Constraint 1: Zero Limits of At. It follows directly from (2) that constraint 1
is fulfilled if

a3 < 0 < a2. (A.1)

Constraint 2: Unique Maximizer, tm, of At. The biphasic model (2) of At
is a continuously differentiable function, ∀t > 0. Furthermore, gt = ψ′ta has
a unique maximizer, tmg, if (A.1) is fulfilled. This is given by the solution of

gt
(1) = 0 (here, dpgt

dtp ≡ gt
(p)). It follows that At = exp (gt − αt) also has a unique

maximizer, tm, satisfying constraint 2 without any further requirements on a.
Furthermore, tmg > tm, since α > 0.
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Constraint 3: Allowed Interval, (tl, tu), for the Maximizer, tm. Since tm < tu,

it follows that the first derivative At
(1) < 0 for t ≥ tu.

a2 < − a3 (c tu)
2
3

(
2

3
ln(c tu) + 1

)
+ αtu.

Similarly, for t ≤ tl,

a2 > − a3 (c tl)
2
3

(
2

3
ln(c tl) + 1

)
+ αtl. (A.2)

(A.2) can be written as a2 + ka3 > q, where q > 0. If k < 0, then (A.1) and
(A.2) are in contradiction for some values of a3, in which case tm cannot reach
its lower limit, tl. To overcome this problem, the time-scale factor, c, in (2), can
be chosen to ensure that k ≥ 0. In particular, k = 0 if

c =
1

tl
exp

(
− 3

2

)
≡ 1.3388 days−1,

in which case (A.2) is simply replaced by a2 > αtl, and the upper bound in
(A.1) becomes redundant.

Constraint 4: Faster Decrease of At than the Physical Decay, for t > th .
gt

(1) < 0 when t > tmg, in which case At
(1) < −α, as required. Also, tmg > tm,

and so constraint 4 is satisfied by choosing th = tmg.

Constraint 1 may be extended to higher-order derivatives of At, i.e. At
(i) →

0+ for i = 0, 1, . . . , q, as t→ 0+, in order to capture the initial convexity in the
accumulation of 131I by the thyroid. The required modification of (A.1) is then
a2 > q. Nevertheless, the current choice, q = 0, still guarantees behaviour of At
that is physically reasonable.

Appendix B. External Information, I0

A review of methods for merging external information in probabilistic in-
ference is provided in [34]. In [35], a general Bayesian theory is elaborated
for hierarchical models. In [36], the task is specialized to observation models,
m(Ψ,Θ), belonging to the exponential family, with extended regressor, Ψ, and
parameters, Θ. In that approach, I0 is expressed by (i) an externally supplied
distribution, M(Ψ), on Ψ and (ii) a probabilistic weight, w, quantifying the ob-
server’s belief in this external information. With these conditions, it was shown
that I0 adapts the inference of Θ, as follows:

f(Θ|D, I0) ∝ f(Θ|D) exp

(
ν0

∫
M(Ψ) lnm(Ψ,Θ) dΨ

)
,

where ν0 = n
(

w
1−w

)
, and n is the number of observations in the data se-

quence, D. In the special case of a normal linear regression model for obser-
vations (4), Θ = (a′, r)′ and the term modulating the posterior above has the
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form N iG(V0, ν0) [36, 37], with

V0 = ν0

∫
M(Ψ) ΨΨ′ dΨ,

for any supplied M(Ψ). It remains, therefore, to construct5 M(Ψ) using the
historic data from the patient archive, and to set an appropriate value for ν0.

Construction of M(Ψ). A scatterplot of measurement pairs, (tji , ln d
j
ti), from

the patient archive is illustrated in Figure B.5, where j indexes the patients in
the archive.
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Figure B.5: A scatterplot of measurement pairs, (tji , ln d
j
ti

), from the patient archive.

We note the following:
(i) Measurement times, tji , are strongly clustered around integer times t ∈
{1, 2, . . . , 10}, measured in units of days. This reflects the fact that patients
are measured during regular clinic hours on the days immediately following ad-
ministration of 131I. About 5 % of measurement times in toto fell outside the
intervals ±∆t, ∆t = 0.2 days, around these integer times, and all such measure-
ment pairs, (tji , d

j
ti), were removed (censored). The standard deviation of times

in each resulting cluster was then found to be in the range 2–4×10−2 days.
(ii) The uncensored measured log-activities, ln djti , in each cluster are assumed
to be scattered normally. We evaluated the arithmetic mean, 〈ln dt〉k, and stan-
dard deviation, σ̂k, of the ln djti in each cluster, k = 1, . . . , 10. From (4), we
denote x̂k = 〈ln dt〉k + αk. The σ̂k were found to be in the range (0.8, 1.1), i.e.

5In the case where M(Ψ) = N−1
N∑
i=1

δ(Ψ − Ψi) (i.e. the empirical distribution, where

δ(Ψ − Ψi) is the distribution degenerate at Ψi), and ν0 = N (i.e. w = N
n+N

), then each

externally processed regressor, Ψi, contributes an unweighted outer-product, ΨiΨ
′
i, to the

posterior extended information matrix, Vn (Section 3.2), in agreement with standard results
in nonparametric learning [30].
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much larger than the deviations of measured times in each cluster (Figure B.5),
as given in (i) above. This observation justifies our neglecting of the uncertainty
in the time measurement, i.e. we assume M(tk) = δ(t− k).
(iii) In the vast majority of patient cases, three measurements were taken in the
days following diagnostic administration of 131I. Hence, only the three clusters
at k = 1, 2 and 10 were chosen, as representative of a typical patient.

From the foregoing, the externally supplied distribution, M(·), which sum-
marizes the historic data from the patient archive, is the following mixture:

M(xt, t) =
1

3

∑
k=1,2,10

N (x̂k, σ̂
2
k) δ(t− k).

Since the mapping (2), (8), is bijective, we can replace Ψt by (xt, t). Substituting
M(xt, t) into the expression for V0 above, we obtain

V0 =
ν0
3

∑
k=1,2,10

Ψ̂kΨ̂′k + σ̂2
k

 1
0
0
0

 [1 0 0 0]
 ,

where Ψ̂k =
(
x̂k, 1, ln(ck), (ck)2/3 ln(ck)

)′
. The method for choosing an appro-

priate value of ν0 will be explained in the next Section.

Choice of V , ν and ν0. The following constraints must be observed in order
that N iG(V, ν), a ∈ Rp, be proper (i.e. that its normalizing constant, ζ [25],
exist) and for existence of its key moments (5):

Existence of Constraint

ζ ν > p+ 2 = 5
r̂, cov[a] ν > p+ 4 = 7
var[r] ν > p+ 6 = 9

In the 131I-therapy context, the minimal number of measurements is n = 2.
From Section 3.2, we therefore note that if ν = 7.05, then νn ≥ 9.05 in the
posterior distribution, guaranteeing that it is proper with finite moments, even
in the absence of any external information, I0. We choose this conservative value
of ν to ensure maximal influence of the data in the posterior inference. This
value also ensures that the proposed transformation, T , in Section 3.1, exists.
In the absence of other sources of information, beyond I0, we set V = 10−6 I4,
to ensure invertibility (here, I4 is the 4× 4 identity matrix).

Finally, we return to the issue of weighting the external information via ν0,
which corresponds to finding the weighting probability w = ν0/(n + 7.05 + ν0)
(Section 4.2). For this purpose, we select 2 355 normalized data sequences from
the archive of 3 876 sequences (Section 4.2), each of which contains at least
four measurement pairs. For each sequence, the marginal distribution of a (7),
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via N iG(V3, 10.05 + ν0), using the first n = 3 measurements6, was maximized
over its support, A, by constrained optimization of the quadratic denominator.
This estimate, âMAP, was used to predict the log of the measured activity,
via (6), at the fourth measurement time, t4, in the sequence, which typically
follows after 1–3 days (Figure 1). The error in this predicted quantity, i.e.
ψ′t4 âMAP−αt4− ln dt4 , where dt4 is the available 4th measurement in each case,
was averaged over the 2 355 patient cases, and optimized with respect to ν0.
The value ν0 = 0.21995 was found to minimize this average prediction error and
was used as the weighting parameter for the external information, I0.
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[35] A. Quinn, M. Kárný, T. V. Guy, Fully probabilistic design of hierarchical
Bayesian models, Information Sciences 369 (2016) 532–547.
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