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Abstract. In the fall of 2011, iodine-131 (131I) was detected
at several radionuclide monitoring stations in central Europe.
After investigation, the International Atomic Energy Agency
(IAEA) was informed by Hungarian authorities that 131I was
released from the Institute of Isotopes Ltd. in Budapest, Hun-
gary. It was reported that a total activity of 342 GBq of 131I
was emitted between 8 September and 16 November 2011. In
this study, we use the ambient concentration measurements
of 131I to determine the location of the release as well as
its magnitude and temporal variation. As the location of the
release and an estimate of the source strength became even-
tually known, this accident represents a realistic test case for
inversion models. For our source reconstruction, we use no
prior knowledge. Instead, we estimate the source location
and emission variation using only the available 131I measure-
ments. Subsequently, we use the partial information about
the source term available from the Hungarian authorities for
validation of our results. For the source determination, we
first perform backward runs of atmospheric transport mod-
els and obtain source-receptor sensitivity (SRS) matrices for
each grid cell of our study domain. We use two dispersion
models, FLEXPART and Hysplit, driven with meteorologi-
cal analysis data from the global forecast system (GFS) and
from European Centre for Medium-range Weather Forecasts
(ECMWF) weather forecast models. Second, we use a re-
cently developed inverse method, least-squares with adap-
tive prior covariance (LS-APC), to determine the 131I emis-
sions and their temporal variation from the measurements
and computed SRS matrices. For each grid cell of our simula-
tion domain, we evaluate the probability that the release was
generated in that cell using Bayesian model selection. The

model selection procedure also provides information about
the most suitable dispersion model for the source term re-
construction. Third, we select the most probable location of
the release with its associated source term and perform a for-
ward model simulation to study the consequences of the io-
dine release. Results of these procedures are compared with
the known release location and reported information about its
time variation. We find that our algorithm could successfully
locate the actual release site. The estimated release period is
also in agreement with the values reported by IAEA and the
reported total released activity of 342 GBq is within the 99 %
confidence interval of the posterior distribution of our most
likely model.

1 Introduction

In the fall of 2011, 131I was detected in the atmosphere by
the European Trace Survey Stations Network for Monitor-
ing Airborne Radioactivity (Ring of 5, Ro5). The measured
values were very low, up to a few tens of µBq m−3, close
to the minimum detectable activity of the instruments. Af-
ter the first findings in Austria and their subsequent con-
firmation by Czech laboratories, it was clear that these de-
tections could not be explained by local sources. Hence,
the International Atomic Energy Agency (IAEA) was in-
formed on November 11 and launched an investigation. De-
tectable concentrations of 131I were afterwards also mea-
sured by other laboratories, mainly in central Europe (Inter-
national Atomic Energy Agency, 2011a). Based on the in-
formation provided by other Ro5 laboratories and a rough
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assessment of meteorological conditions, it was estimated
that the source was likely located east of Austria and the
Czech Republic. This was later confirmed when the IAEA
Incident and Emergency Centre (IEC) was informed by the
Hungarian Atomic Energy Authority (HAEA) (International
Atomic Energy Agency, 2011b) that 131I had been released
from the Institute of Isotopes (IoI) Ltd., Budapest, a facility
that produces 131I mainly for healthcare such as thyroid prob-
lems. It is thought that a failure in the dry distillation process
caused the emissions (Gitzinger et al., 2012). It was later re-
ported that between 8 September and 16 November 2011, a
total activity of 342 GBq of 131I had been released from the
institute, with a maximum release intensity between 12 Oc-
tober and 14 October of 108 GBq (International Atomic En-
ergy Agency, 2011b). The release is thought to have occurred
through the 80 m high stack of the institute. Since the re-
leased activity was below the institute’s authorized annual ra-
dioactive release limit and 131I concentrations in the air were
very low, IAEA stated that the situation did not pose a health
risk.

Although some ambient concentration measurements are
available for this case, they are quite sparse, poorly resolved
in time (typically sums over 7 days), and cover many orders
of magnitude. This makes an analysis of the impact of the
event based on measurement data alone very difficult. For
example, if no measurements are available in the area of
the largest impact, the severity of the event may be grossly
underestimated. Given accurate release information, atmo-
spheric transport models can simulate the radioiodine dis-
persion and give a more comprehensive view of the situation
than the measurements alone. For instance, simulations with
atmospheric transport models were used previously to study
the distribution of radioactive material after the Chernobyl
(e.g., Brandt et al., 2002; Davoine and Bocquet, 2007) and
Fukushima Dai-ichi nuclear accidents (e.g., Morino et al.,
2011; Stohl et al., 2012; Saunier et al., 2013). Simulations
were also already made for the 131I release from IoI in 2011
(Leelőssy et al., 2017). However, the agreement between the
results of simulations and real measurements needs to be
carefully evaluated since simulations often suffer from in-
accuracies in meteorological input data or model parameter-
izations. The largest errors in such simulations are arguably
caused by uncertainties in the source term of the release, i.e.,
the rate of emissions into the atmosphere as a function of
time. However, the release term is often not known and its
determination can be particularly difficult in case of a nu-
clear accident since the release can last for a long time and
its intensity can vary by orders of magnitude.

To our best knowledge, the exact source term in the case
of the Hungary iodine release in 2011 is unknown and only
approximate and vague information is available (Gitzinger
et al., 2012). For lack of information on the operating con-
ditions of the isotope production facility, we cannot use the
so-called bottom-up approach where the source term is quan-
tified based on understanding and modeling of the emission

process. Therefore, in this paper we use the so-called top-
down approach (Nisbet and Weiss, 2010), which combines
ambient concentration measurements with an atmospheric
transport model and an optimization algorithm to determine
the source term. This approach is also called inverse mod-
eling. The source term is typically estimated as a result of
optimization of the difference between the measurements
and corresponding simulated sensor readings predicted by
the atmospheric transport model. Due to insufficient infor-
mation provided by the measurement data, the problem has
to be regularized using a penalty function (Seibert, 2000;
Eckhardt et al., 2008), the maximum entropy principle (Boc-
quet, 2005), or a variational Bayesian approach (Tichý et al.,
2016). All these methods assume that the measurement vec-
tor can be described as a linear model with a source-receptor-
sensitivity (SRS) matrix (calculated using an atmospheric
dispersion model, e.g., Seibert and Frank, 2004) and un-
known source term vector.

The range of possible regularization techniques starts with
positivity constraint of the source, simple Tikhonov penalty
(see e.g., Davoine and Bocquet, 2007), and additional en-
forcement of temporal and/or spatial smoothness of the re-
lease (see e.g., Eckhardt et al., 2008). Interpretation of the
regularization as a prior covariance matrix allows its estima-
tion. Different methods exist for parameterizations of both
the measurements covariance matrix and source term covari-
ance matrix. Winiarek et al. (2012) parameterize each co-
variance matrix using one common parameter on its diag-
onal. A similar model was also studied by Michalak et al.
(2005) with different diagonal entries and by Berchet et al.
(2013) with full unknown covariance matrices, however, with
convergence issues since too many parameters need to be
estimated in this case. Therefore, non-diagonal matrix ele-
ments are often parameterized using autocorrelation parame-
ters that link covariance in space and/or time (Ganesan et al.,
2014; Henne et al., 2016). In this paper, we follow a pre-
viously developed approach (Tichý et al., 2016) where the
source term covariance matrix is adaptively estimated within
the estimating procedure using a variational Bayes method-
ology (Šmídl and Quinn, 2006) or Gibbs sampling (Ulrych
and Šmídl, 2017).

An application of the inverse modeling problem is the
source location problem. If the release site is unknown, the
inverse modeling is performed for many potential release
sites and their likelihood of being the correct site is com-
pared. The simplest scenarios assume a constant release rate
(Annunzio et al., 2012; Zheng and Chen, 2010; Ristic et al.,
2016) or even steady wind field (Liping et al., 2013). How-
ever, these are not very realistic assumptions, especially not
for complex emission scenarios with continental-scale im-
pacts.

Typically, the inverse modeling problem is recast as an
optimization problem such as the weighted linear or nonlin-
ear least squares (e.g., Singh and Rani, 2014; Matthes et al.,
2005), simulated annealing (e.g., Thomson et al., 2007), or
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Table 1. List of the sampling sites from which 131I measurements were used in this study. NRIRR – National Research Institute for Radio-
biology and Radiohygiene (regular on-site radiological measurements in NRIRR, http://www.osski.hu), Hungary; AGES – Austrian Agency
for Health and Food Safety, Austria; SUJB – State Office for Nuclear Safety (data retrieved from the Monitoring of Radiation situation
database, MonRaS, http://www.sujb.cz/monras/aplikace/monras_en.html), Czech Republic; SURO – National Radiation Protection Institute,
Czech Republic; CLRP – Central Laboratory for Radiological Protection, Poland.

Measuring site Geographic coordinates Number of Laboratory
measurements

Budapest 47◦25′ N, 19◦20′ E 12 NRIRR
Alt-Prerau 48◦48′ N, 16◦28′ E 1 AGES
Retz 48◦45′ N, 15◦57′ E 1 AGES
Ústí nad Labem 50◦40′ N, 14◦02′ E 13 SUJB
Ostrava 49◦50′ N, 18◦17′ E 12 SURO
České Budějovice 48◦58′ N, 14◦28′ E 14 SUJB
Praha 50◦04′ N, 14◦27′ E 16 SURO
Gdynia 54◦31′ N, 18◦32′ E 12 CLRP
Sanok 49◦33′ N, 22◦12′ E 12 CLRP
Katowice 50◦16′ N, 19◦01′ E 12 CLRP
Zielona Góra 51◦56′ N, 15◦31′ E 12 CLRP
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Figure 1. Measurements of 131I activity concentrations in ambient
air made at the stations Budapest (a) and Praha (b) displayed via
their daily mean concentration.

pattern search method (e.g., Zheng and Chen, 2010). Cer-
vone and Franzese (2010) studied several error functions to
identify suitable measures and cost functions for optimiza-
tions and Kovalets et al. (2011) used a fluid dynamics model
to build up a cost function which could be optimized. These
methods can be inconvenient due to problematic conver-
gence and limited information on the uncertainty of the re-
sults. Often, they provide only point estimates. Full posterior
probability densities are provided using Bayesian techniques
where the prior model is typically constructed as an alterna-
tive to the cost function in the optimization approach. Very
popular Bayesian inference techniques are random search al-
gorithms such as Markov chain Monte Carlo (MCMC) meth-

ods. Examples for this type of approach are in Keats et al.
(2007) and Senocak et al. (2008) where wind field parame-
ters are also estimated along with the source term parameters,
or Delle Monache et al. (2008), who studied the Algeciras ac-
cidental release with the assumptions that the source geom-
etry and release time are known. Another Bayesian formula-
tion and inference using the maximum entropy principle was
proposed by Bocquet (2007) where the source term is mod-
eled as three-dimensional (area plus time); hence, the source
term integrated over time and area is obtained. This approach
was tested for both cases of the European Tracer EXperiment
(ETEX) (Krysta et al., 2008) and compared with the maxi-
mum posterior estimator by Bocquet (2008) with further non-
Gaussian assumptions such as positivity or boundedness. Re-
cently, a likelihood-free approximate Bayesian computation
method for the localization of a biochemical source was pro-
posed by Ristic et al. (2015) where multiple dispersion mod-
els can be used and even weighted using Bayesian model se-
lection. An extensive review of the source term estimation
and location is available in Hutchinson et al. (2017).

Recently, a Bayesian inverse method called least-squares
method with adaptive prior covariance (LS-APC) was pro-
posed (Tichý et al., 2016) using the variational Bayes (VB)
approximation. The method was validated on the basis of
the ETEX experiment and it was shown that the dependency
on manual selection of model parameters is lower than in
the case of its predecessors. The key advantage of the VB
approach is its fast evaluation, which makes it suitable for
calculation of many possible source locations. However, the
method is known to underestimate uncertainty; therefore, we
will also use a more accurate approximation of the posterior
distribution based on the Gibbs sampler (GS) (Ulrych and
Šmídl, 2017).
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In this paper, we use the LS-APC method for inversion
for the case of the iodine release in Hungary in 2011. More-
over, we derive the variational Bayesian model selection for
the LS-APC model. Using this methodology, we can com-
pare the reliability of each SRS matrix from the selected
spatial domain at a reasonable computational cost. The same
methodology can be used to quantify uncertainty in the eval-
uation of the SRS matrix. Specifically, if several possible
variants of the SRS matrix computation are available, the
Bayesian model selection can evaluate their posterior prob-
ability, providing an objective guideline for selection of the
most likely dispersion model or weather data. In this study,
we evaluate the probability of the SRS matrices obtained
using backward runs of the dispersion models FLEXPART
(Stohl et al., 2005) and Hysplit (Draxler and Hess, 1997),
which were based on meteorological input data from GFS
meteorological fields with resolution of 0.5◦× 0.5◦ in the
case of FLEXPART and from GFS meteorological fields with
resolutions of 0.5◦× 0.5◦ and 1◦× 1◦ and ECMWF meteo-
rological fields with a resolution of 0.5◦× 0.5◦ in the case
of HYSPLIT. We identify the most probable release location
and derive the corresponding estimated source term. With a
low number of selected locations, we run a more expensive
approximation of the model based on Gibbs sampling which
is more computationally demanding. Using this source infor-
mation, we perform a forward run and produce a 131I dose
map for Europe that can be used for impact assessment.

2 Measurement data

Iodine can exist in the atmosphere both as a gas and in the
aerosol phase. Measurements of particulate phase 131I were
made at several stations of the Ro5 network, which is an in-
formal information group established in 1983 for the purpose
of rapidly exchanging data on occasional enhanced concen-
trations of man-made radionuclides at trace levels. In total,
117 131I measurements from 11 different sampling sites in
central Europe (see details in Table 1) obtained from Septem-
ber to November 2011 were used in this study. As an exam-
ple, measurements for the whole period from the Budapest
and Praha stations are displayed in Fig. 1.

Atmospheric aerosol sampling was performed using var-
ious types of high-volume samplers with flow rates ranging
from 150 to 900 m3 h−1. In these devices, the air is filtered
through glass-fiber or polypropylene filters, which capture
the radioactive aerosol with a high efficiency. As the labo-
ratories operate under their own monitoring plans, sampling
intervals differ both in length and starting day. In general,
filters are changed every 3–7 days under normal conditions.
Only in case of an emergency situation, the sampling period
would be shortened.

After the sampling completion and decay of short-lived
radon decay products, the filters are measured without ad-
ditional chemical preparation in laboratories equipped with

a high-resolution gamma ray spectrometer. Since 131I emits
364 keV photons with an intensity of 81 %, it allows a rea-
sonably sensitive determination by a high-purity germanium
(HPGe) spectrometer. In such a measurement arrangement,
it is possible to achieve detection limits of several µBq m−3

but at the cost of a rather poor time resolution. Considering
the 8.02 day half-life of 131I, the resulting activity value has
to be decay corrected, which requires the assumption that the
concentration in the air was constant during sampling.

3 Inverse modeling

We follow the concept of linear modeling of the atmo-
spheric dispersion using a SRS matrix (e.g., see Seibert,
2001; Wotawa et al., 2003; Seibert and Frank, 2004). In this
approach, an atmospheric transport model is used to pro-
vide the linear relationship between sources and atmospheric
concentrations. By assuming a release xi from the release
site at time i, we can calculate the concentration response
at a receptor yj at time j . Notice that the simulated con-
centration response can be compared directly with measured
concentrations at the receptor. The ratio mij = yj/xi defines
the source-receptor sensitivity. Collecting all possible release
times in vector x ∈Rn and all possible receptor responses at
all measurement sites and times into vector y ∈Rp we obtain
a linear model

y =Mx+ ε, (1)

where M ∈Rp×n is a SRS matrix and ε ∈Rp is an obser-
vation error including both model and measurement errors,
where the model error contained in matrix M is projected
onto the observation vector. This concept of SRS is quite uni-
versal and can be applied with both Lagrangian and Eulerian
transport models in both forward and backward runs (Seib-
ert and Frank, 2004). However, the assumption of linearity
is justified only for passive tracers and substances which do
not undergo nonlinear chemical transformations – which is
largely the case for iodine, which is thought to have mainly
linear removal processes (radioactive decay and wet and dry
deposition to the surface).

An estimate of the unknown vector x can be obtained
using minimization of the model error (Eq. 1). However, a
Bayesian approach provides more informative results since
it evaluates the full posterior density of the unknown. The
high computational cost of conventional Monte Carlo eval-
uation methods can be avoided by using an approximation
technique known as variational Bayes. This has been ana-
lyzed in detail by Tichý et al. (2016), where a computation-
ally efficient algorithm was presented. One of the key advan-
tages is that all parameters of the regularization are estimated
together with the source term. In this paper, we provide an
approximate formula for the evaluation of the marginal like-
lihood of the model, which is essential for Bayesian model
comparison (Bernardo and Smith, 2009). In effect, this tech-
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nique allows us to compare the likelihood of different ma-
trices M which could describe atmospheric dispersion from
different possible source locations or could originate from
different atmospheric dispersion models.

Before reviewing the full probabilistic model, we would
like to illustrate its relation to the conventional cost optimiza-
tion. Consider the quadratic norm of the residues of Eq. (1)

J = ω−2
0 (Mx− y)T (Mx− y) , (2)

with selected parameter ω0. The estimate 〈x〉 can be obtained
by minimizing the cost J (Eq. 2) plus additional regular-
ization terms. In probabilistic interpretation, minimization of
Eq. (2) is equivalent to maximization of the likelihood func-
tion

p(y|x)=N
(
Mx,ω−1

0 Ip

)
∝ exp

(
−

1
2
ω0(Mx− y)T (Mx− y)

)
, (3)

where N (µ,6) denotes a multivariate Gaussian distribution
with meanµ and covariance matrix 6, Ip is the p×p identity
matrix, and symbol ∝ denotes equality up to the normalizing
constant. In this case, 6 = ω−1

0 Ip and ω0 is known as the
precision parameter. The normalization constant is irrelevant
for maximization. However, it will become important for es-
timating the precision parameter ω0. Due to the requirement
of normalization, the Bayesian method allows us to estimate
parameters of the prior distributions (which define the regu-
larization terms in the cost formulation). To distinguish be-
tween selected and estimated parameters, we denote all pres-
elected parameters with subscript 0 and estimated model pa-
rameters without the subscript.

After reviewing the selected Bayesian inverse method, we
will derive a lower bound on its marginal likelihood which
will be used for selection of the most suitable model struc-
ture. Specifically, we will use this tool to select from multiple
SRS matrices arising from different settings of the disper-
sion model. Multiple SRS matrices may arise, for example
when multiple atmospheric transport models are available,
when varying model parameters, when multiple meteorolog-
ical input data are available, or when SRS matrices are com-
puted for each potential release site. The marginal likelihood
measure is able to select the most suitable model, with nat-
ural penalization for complex models due to the principle of
marginalization. Thus, the influence of the estimated tuning
parameters (hyper-parameters of the prior) is minimized.

3.1 Review of model LS-APC

The probabilistic model of Tichý et al. (2016) is briefly re-
viewed in this section. The likelihood function is considered
to be Gaussian (Eq. 3) with standard deviation ω being con-
sidered as unknown. Thus, we need to select its prior distri-
bution. We select the gamma distribution due to its conjugacy
with Gaussian likelihood (Tipping and Bishop, 1999):

p(y|x,ω)=N
(
Mx,ω−1Ip

)
, (4)

p(ω)= G (ϑ0,ρ0) , (5)

where ϑ0,ρ0 are chosen constants. These constants are
needed for numerical stability; however, they are set as low
as possible such as to 10−10 to provide a non-informative
prior.

The prior distribution of the source term x is designed to
encourage three properties: (i) non-negativeness of all ele-
ments of x, (ii) sparsity, i.e., the element is zero unless there
is sufficient information on the opposite, and (iii) smooth-
ness, i.e., that rapid changes in the temporal profile are pos-
sible but not frequent. These properties are encoded into a
hierarchical prior model

p(xj+1|xj , lj ,υj )= tN
(
−ljxj ,υ

−1
j+1, [0,∞]

)
,

for j = 1, . . .,n− 1, (6)
p(υj )= G (α0,β0) , for j = 1, . . .,n, (7)

p(lj |ψj )=N
(
−1,ψ−1

j

)
, for j = 1, . . .,n− 1, (8)

p(ψj )= G (ζ0,η0) , for j = 1, . . .,n− 1, (9)

where tN (µ,σ, [a,b]) denotes the truncated Gaussian dis-
tribution on support [a,b], lj is a parameter modeling the
smoothness, i.e., the relation between neighboring elements
of the source term, and υj is its precision parameter. The

prior for element x1 is p(x1|υ1)= tN
(

0,υ−1
1 , [0,∞]

)
. The

prior has constants α0,β0,ζ0,η0 that need to be selected.
Good performance of the prior was reported with a non-
informative choice of α0,β0, e.g., 10−10. The prior constants
ζ0 and η0 are selected as 10−2 to favor a smooth solution, see
discussion in Tichý et al. (2016).

3.2 Model uncertainty

The original LS-APC model (Eqs. 4–9) assumes uncertainty
only in the source term x and its hyper-parameters. How-
ever, in real scenarios, the uncertainty is also present in the
SRS matrix due to inaccurate meteorological data and/or in-
accurate parameters of the dispersion model. Exact mod-
eling of these uncertainties is too complex; therefore, we
use an approximation using discrete variables. Specifically,
we assume that we have a finite set of SRS matrices, M=
{M1,M2, . . .,Mr} obtained by different versions of the dis-
persion models and/or different meteorological data. Uncer-
tainty in the SRS matrix and the potential bias of the results is
thus reduced by estimating the probability that the data were
generated by each of the tested SRS matrices. The result is
thus a rational way to select the most likely dispersion model
and meteorology for a particular data set.
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3.3 LS-APC model inference

The LS-APC model is a hierarchical Bayesian model de-
signed to estimate its hyper-parameters from the data. For
a given model (SRS matrix)M , the task of the inference is to
use the Bayes rule to find the posterior distribution

p(x|y,M)=
p(y,x|M)

p(y|M)
, (10)

in which all nuisance parameters (i.e., ω,υ, l,ψ) have been
marginalized (integrated out). The denominator of Eq. (10)
is known as marginal likelihood and it is essential in evalua-
tion of the probability of the model represented by the SRS
matrix from the set M= {M1, . . .,Mr}. The probability that
the observed data were generated from the kth model, Mk ,
k = 1, . . ., r can be formally obtained from the Bayes rule

p(M =Mk|y)∝ p(M =Mk)p(y|Mk). (11)

Here, symbol ∝ denotes equality up to a multiplicative con-
stant, and p(M =Mk) denotes prior probability of the kth
model. In our case we assume that all models have equal
prior probability. Evaluation of Eqs. (10) and (11) is in-
tractable and will be approximated by the variational Bayes
and Gibbs sampling methods.

3.3.1 Variational Bayes inference

Under the VB approximation (Šmídl and Quinn, 2006), the
posterior distributions are found in the same form as their
priors (Eqs. 6–9) and their moments are determined by an
iterative algorithm which is available in Matlab code as a
supplement of Tichý et al. (2016). However, the value of
the marginal likelihood p(y|M) is not available analytically
and no approximation was presented in Tichý et al. (2016).
The method will be referred to here as the LS-APC-VB al-
gorithm.

Approximation of the marginal likelihood (Eq. 11) using
variational Bayes methodology is computed as

p(M =Mk |y)∝ p(M =Mk)exp
(
LMk

)
, k = 1, . . ., r, (12)

whereLMk
is a variational lower bound on p(y|Mk) (Bishop,

2006) given as

LMk
=

∫
p(x,ϒ,L,ψ,ω|Mk)p (Mk)

ln
p(y,x,ϒ,L,ψ,ω,Mk)

p(x,ϒ,L,ψ,ω|Mk)p (Mk)
dxdϒdLdψdω, (13)

where x,ϒ,L,ψ = [ψ1, . . .,ψn−1],ω are variables of the
LS-APC model driven with the SRS matrix Mk (variables ϒ
andL are matrices defined in the Supplement). Equation (13)
can be seen as a term composed of expected values (denoted
as E[] with respect to distribution of the variable in its argu-
ment) so that

LMk
= E

[
lnp(y,x,ϒ,L,ψ,ω,Mk)

]
−E

[
ln p̃(ω)

]
−E

[
ln p̃(x)

]
−E

[
ln p̃(ϒ)

]
−E

[
ln p̃(L)

]
−E

[
ln p̃(ψ)

]
, (14)

where p(y,x,ϒ,L,ψ,ω,Mk) is the joint distribution of
likelihood (Eq. 4) and prior probability distributions (Eq. 6–
9), and p̃() are posterior probability distributions. These
terms are given in the Supplement.

3.3.2 Gibbs sampling inference

An alternative approximation of the posterior (Eq. 10) is ob-
tained using Gibbs sampling (GS). The method is closely re-
lated to the VB method (Ormerod and Wand, 2010) using the
same forms of posterior with different interpretation. While
the variational Bayes approximation is looking for a good
fit of parametric form, the Gibbs sampling generates samples
from the conditional distribution and approximates the poste-
rior by an empirical distribution on these samples. It has been
applied to the LS-APC model by Ulrych and Šmídl (2017).
In practical terms, the GS yields a more accurate approxi-
mation, however, at the cost of a much higher computational
burden. While the VB method converges in fewer than 100 it-
erations, the GS method needs about 1 000 000 samples to
obtain a reliable estimate (one sample takes roughly the same
CPU time as one iteration of VB). However, the main advan-
tage is that the GS method converges to the true posterior,
while the VB method may converge to a local approxima-
tion. The method will be referred to here as the LS-APC-GS
algorithm.

4 Atmospheric transport modeling

The SRS matrices in this work were computed using back-
ward runs of two alternative models, namely HYSPLIT
(Draxler and Hess, 1997) and FLEXPART (Stohl et al.,
2005). As the domain of interest we chose the region span-
ning from 5◦ E to 30◦ E in longitude and from 40◦ N to 65◦ N
in latitude covering most of Europe and parts of the Mediter-
ranean Sea. Horizontally, the domain was discretized into
2500 grid cells with resolution 0.5◦× 0.5◦, which approxi-
mately corresponds to 45 km× 55 km at the latitude of Bu-
dapest. Vertically, there is no discretization of the domain
and sensitivities are calculated for a layer 0–300 m above
ground, which allows for both ground and somewhat elevated
releases (e.g., through the stack of the isotope production fa-
cility). Mixing heights are often higher than 300 m, in which
case the result is not very sensitive to the choice of the depth
of this layer. Temporal resolution of the source was set to 1
day and we assume that the release occurred during a 91-day
time window starting on 1 September 2011.

As a result, the domain was discretized into
227500 spatio-temporal sources for which their possi-
ble contributions to all samples must be calculated. Since the

Atmos. Chem. Phys., 17, 12677–12696, 2017 www.atmos-chem-phys.net/17/12677/2017/



O. Tichý et al.: Inverse modeling of 131I release in Europe in 2011 12683

40◦ N

45◦ N

50◦ N

55◦ N

60◦ N

65◦ N

5◦ E 10◦ E 15◦ E 20◦ E 25 ◦ E 30 ◦ E

A

B
CD

E
F

G
H

I

J

K

Source location - LS-APC-VB with Flexpart-GFS-0.5

A - Budapest
B - Praha
C - Retz
D - Alt-Prerau
E - Usti nad Labem
F - Ostrava

G - Ceske Budejovice
H - Sanok
I - Gdynia
J - Katowice
K - Zielona Gora
IoI Budapest

165 180 195 210 225 240 255

40◦ N

45◦ N

50◦ N

55◦ N

60◦ N

65◦ N

5◦ E 10◦ E 15◦ E 20◦ E 25◦ E 30◦ E

A

B
CD

E
F

G
H

I

J

K

Source location - LS-APC-VB with Hysplit-GFS-0.5

A - Budapest
B - Praha
C - Retz
D - Alt-Prerau
E - Usti nad Labem
F - Ostrava

G - Ceske Budejovice
H - Sanok
I - Gdynia
J - Katowice
K - Zielona Gora
IoI Budapest

175 200 225 250 275 300 325 350 375

40◦ N

45◦ N

50◦ N

55◦ N

60◦ N

65◦ N

5◦ E 10◦ E 15◦ E 20◦ E 25◦ E 30◦ E

A

B
CD

E
F

G
H

I

J

K

Source location - LS-APC-VB with Hysplit-GFS-1.0

A - Budapest
B - Praha
C - Retz
D - Alt-Prerau
E - Usti nad Labem
F - Ostrava

G - Ceske Budejovice
H - Sanok
I - Gdynia
J - Katowice
K - Zielona Gora
IoI Budapest

165 180 195 210 225 240 255 270

40◦ N

45◦ N

50◦ N

55◦ N

60◦ N

65◦ N

5◦ E 10◦ E 15◦ E 20◦ E 25◦ E 30◦ E

A

B
CD

E
F

G
H

I

J

K

Source location - LS-APC-VB with Hysplit-ECMWF-0.5

A - Budapest
B - Praha
C - Retz
D - Alt-Prerau
E - Usti nad Labem
F - Ostrava

G - Ceske Budejovice
H - Sanok
I - Gdynia
J - Katowice
K - Zielona Gora
IoI Budapest

165 180 195 210 225 240 255 270

1

(a) (b)

(c) (d)

Figure 2. Source location via marginal log-likelihood where the observed data are explained by a release from a grid cell using the LS-
APC-VB algorithm for all four tested combinations of dispersion model and meteorological data: Flexpart-GFS-0.5 (a), Hysplit-GFS-0.5
(b), Hysplit-GFS-1.0 (c), and Hysplit-ECMWF-0.5 (d). The measuring sites (a list is given in Table 1) are displayed using green circles while
the location of the Institute of Isotopes (IoI) Ltd. is displayed using a red cross.

number of candidate sources is much higher than the number
of measurement samples, the SRS matrices were obtained
using backward runs of the model from the sampling sites.
One backward run was started exactly at the point location
of each measurement site and for each period corresponding
exactly to a measurement sample. Each of the 117 backward
runs corresponding to the 117 available measurements
provided a SRS matrix of a particular sample to all candidate
spatio-temporal sources in our domain. Since we a priori
assume that the release occurred from a point source (i.e., a
single horizontal grid cell), we can calculate SRS fields from
a single grid cell at once, which allows parallelization of the
computations. We end up with 2500 SRS matrices (one for

each of the 50× 50 model grid cells) of dimension 117× 91
from each transport model.

Radioiodine can be present in the atmosphere as molecular
I2, as organic iodide, or as iodide salts. The former two are
expected to exist as gases, while the latter is an aerosol. In
which form iodine is released to the environment from a nu-
clear facility depends on its operating conditions (Simondi-
Teisseire et al., 2013). Iodine chemistry in the atmosphere is
complex and can involve, for instance, chemical transforma-
tion of the different compounds and particle formation (Saiz-
Lopez et al., 2012). As every compound has its own scav-
enging efficiency, both with respect to dry and wet deposi-
tion, accurate modeling of iodine is complicated. We chose a
simple approach for our modeling, namely assuming that all
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released 131I was in particulate form, which most probably
dominated the release. This is also justified by the fact that
all of the measurements we have available were made for
particulate iodine only. Consequently, in both models, 131I
was simulated as an aerosol. In FLEXPART, parameters of
the dry and wet deposition were set to default values for 131I
in the FLEXPART 9.2 species library and radioactive decay
(ingrowth during backward runs) was calculated on the fly. In
HYSPLIT, parameters of the dry and wet deposition were set
to default values for aerosol 131I, except for predefined dry
deposition velocity which was set to 5.7 mm s−1 according
to measurements of Takeyasu and Sumiya (2014). HYSPLIT
calculated with an 131I radioactive decay half-life of 8 days.
Our inverse modeling would thus not capture gaseous 131I,
which may have been co-emitted, except indirectly if some
of this gaseous 131I condensed on or formed particles that
were subsequently measured. Our results are thus lower es-
timates of the total 131I release, but the bias is probably not
very large.

4.1 FLEXPART

FLEXPART (FLEXible PARTicle dispersion model) is a sci-
entific model used worldwide by many research groups and
also operationally, e.g., at the Comprehensive Nuclear-Test-
Ban Treaty Organization for routine atmospheric backtrack-
ing (Kalinowski et al., 2008). In this work we used version
9.2 (Stohl et al., 2005). Runs were forced with GFS meteo-
rological fields with 0.5◦×0.5◦ horizontal resolution and 26
vertical layers and temporal resolution of 3 h. During all cal-
culations, the convection scheme was enabled in FLEXPART
for more realistic simulation of vertical air mass fluxes when
convective conditions are encountered (Forster et al., 2007).

Simulations in FLEXPART can be carried out on two dif-
ferent output grids in a single run. The so-called mother
grid is usually a global grid with coarser resolution, whereas
the nested grid is a smaller subdomain with higher horizon-
tal resolution (vertical resolution must be the same for both
grids). Our domain of interest was a nested output grid with
horizontal resolution 0.5◦× 0.5◦, whereas the global grid
with resolution 1◦× 1◦ was the mother grid. The simula-
tions accounted for dry deposition using a resistance method.
Wet scavenging was accounted for with a scheme that distin-
guishes between in-cloud and below-cloud scavenging.

4.2 HYSPLIT

The HYSPLIT (HYbrid Single-Particle Lagrangian Inte-
grated Trajectory) model is a model widely used to simu-
late atmospheric transport and dispersion on various levels
of complexity. Its applications range from simple estimation
of forward and backward trajectories of air parcels, to ad-
vanced modeling of transport, dispersion and deposition of
air masses on large domains. HYSPLIT adopts a hybrid ap-
proach combining the Lagrangian (moving frame of refer-

ence for diffusion and advection) and Eulerian (fixed model
grid for calculation of air concentration) model methodolo-
gies. In this study we applied HYSPLIT model version 4
(Draxler and Hess, 1997, 1998; Draxler and Rolph, 2003;
Stein et al., 2015).

The model was forced with GFS analyses with horizon-
tal resolution of 0.5◦× 0.5◦, 26 vertical layers and 6-hourly
temporal resolution. The model domain covered most of the
European continent. The HYSPLIT model was also forced
with GFS analyses with a horizontal resolution of 1◦× 1◦,
26 vertical layers, and 6-hourly temporal resolution to test
the sensitivity of the source re-construction to meteorolog-
ical input data resolution. This data set was only available
in a format suitable for HYSPLIT but not for FLEXPART.
The resolution of the output grid was the same as used with
FLEXPART, i.e., 0.5◦×0.5◦. The HYSPLIT model was also
forced with the ERA-Interim reanalysis (Dee et al., 2011)
data from the European Centre for Medium-range Weather
Forecast (ECMWF) with 0.5◦× 0.5◦ horizontal resolution,
36 vertical layers, and temporal resolution of 6 hours.

5 Results and discussion

In this section, we apply the Bayesian inverse modeling
method introduced in Sect. 3 to iodine measurements de-
scribed in Sect. 2 and computed SRS matrices from Sect.
4 for all four cases: (i) FLEXPART driven with the GFS
analyses with the resolution 0.5◦× 0.5◦ (Flexpart-GFS-0.5),
(ii) HYSPLIT driven with the GFS analyses with the reso-
lution 0.5◦× 0.5◦ (Hysplit-GFS-0.5), (iii) HYSPLIT driven
with the GFS analyses with the resolution 1◦× 1◦ (Hysplit-
GFS-1.0), and (iv) HYSPLIT driven with the ECMWF analy-
ses with resolution 0.5◦×0.5◦ (Hysplit-ECMWF-0.5). First,
we will study the problem of source location and after that
we will discuss the source term as a function of time for the
most probable source location.

5.1 Source location

The LS-APC-VB inversion method, described in Sect. 3, was
applied to each grid cell in our domain (notice that each
grid cell is a candidate source location) for each combina-
tion of atmospheric transport model and meteorological in-
put data. Hence, our set of SRS matrices is defined as M=
{M(i,j,m); i = 1, . . .,50, j = 1,50, m= 1, . . .,4}, where i,j
are coordinates of the (i,j)th tile on the map and m is
the number of specific combination of atmospheric transport
model driven with meteorological input data. For each SRS
matrix from the set M, the method also provides the varia-
tional lower bound LM(i,j,m)

, Eq. (14), which correspond to
the probability that the release happened in grid cell (i,j)
for the given atmospheric model. Note that no prior informa-
tion on source location, p

(
M(i,j,m) =M

)
in Eq. (12), is used

which is equal to omitting of this term due to proportional
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Figure 3. Estimated source terms at locations selected by the marginal likelihood method, shown in Fig. 2, using the LS-APC-VB algorithm
for all four tested combinations of dispersion models and meteorological data: Flexpart-GFS-0.5 (a), Hysplit-GFS-0.5 (b), Hysplit-GFS-1.0
(c), and Hysplit-ECMWF-0.5 (d). The estimated source terms are accompanied by the 95 % uncertainty regions (gray filled regions). The
estimated activity for the whole period is reported inside each plot with its associated uncertainty bounds.
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Figure 4. Scatter plots of the measurements y and the reconstructed
signal Mx using the LS-APC-VB algorithm with Flexpart-GFS-
0.5 (a), Hysplit-GFS-0.5 (b), Hysplit-GFS-1.0 (c), and Hysplit-
ECMWF-0.5 (d). The reconstructions are given for the estimated
source locations, shown in Fig. 2, and the mean values of the esti-
mated source terms, shown with blue lines in Fig. 3.

equality in the equation. The results are presented in Fig. 2
for Flexpart-GFS-0.5 (a), Hysplit-GFS-0.5 (b), Hysplit-GFS-
1.0 (c), and Hysplit-ECMWF-0.5 (d).

In all four cases, the source location mechanism of the
LS-APC-VB method works very well and the maxima of the
variational lower boundLM(i,j,m)

are close to the true location
of the IoI. Note that the exact location of the IoI is 18.96◦ E
and 47.49◦ N, which is in the corner of a grid cell in the case
of 0.5◦ resolution; hence, we assume all results close to this
point to be very good. In the case of Flexpart-GFS-0.5, the
estimated release site is on the edge and southeast of the ac-
tual release site. For both Hysplit-GFS cases with resolutions
of 1.0 and 0.5, respectively, the release site is found on the
edge and northwest of the actual release site, while when us-
ing Hysplit-ECMWF-0.5, the estimated release site is north-
east and on the edge of the actual release site. In summary,
the release site was well estimated using all atmospheric
models in tandem with the LS-APC-VB algorithm. In all four
cases, some uncertainty remains especially to the south of the
IoI where no measured data are available while in the north,
the uncertainty is very small because the relatively dense
measurement network there effectively excludes the possi-
bility of a source in this region. This is a typical problem of
inverse methods when the geometry of the sampling network
is sub-optimal and the source location is not surrounded by
stations. This situation is similar to tomographic reconstruc-
tions, e.g., in medical applications, where the reconstruction
quality is always best when measurements can be taken all
around the phantom. Nonetheless, we conclude that the LS-
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Figure 5. Estimated source terms at locations selected by the marginal likelihood method, shown in Fig. 2, using the LS-APC-GS algorithm
for all four tested combinations of dispersion models and meteorological data: Flexpart-GFS-0.5 (a), Hysplit-GFS-0.5 (b), Hysplit-GFS-
1.0 (c), and Hysplit-ECMWF-0.5 (d). The estimated source terms are accompanied by the 95 % uncertainty regions (gray filled regions). The
estimated activity for the whole period is reported inside each plot with its associated uncertainty bounds.
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Figure 6. Maps of daily concentrations of 131I for selected days (dates are reported at the top of each panel, 14 September in a, 14 October
in b, and 14 November in c) using the HYSPLIT model with GFS input data with 0.5◦ resolution and with the source term computed using
the LS-APC-VB algorithm given in Fig. 3, top right.

APC-VB method provides reasonable source locations in all
studied cases, even with the sub-optimal distribution of mea-
surement stations.

We would like to point out that the Bayesian model selec-
tion allows us to compare the likelihood of models for any set
of matrices M(i,j,m), even if they are from different disper-
sion models and meteorological input data. The global max-
imum of the model likelihood for all cases is achieved with
the Hysplit-GFS-0.5 configuration (see color bars in Fig. 2).

The Gibbs sampling is computationally too expensive to
run it for the full set of potential source locations. However,
we ran it for a very small neighborhood around the best lo-
cation identified with the LS-APC-VB method. The results
closely correspond to those of the VB approximation, with
occasional changes between the best and second best loca-
tion. The differences in log-likelihood between models are
smaller than in the case of the VB method. The main differ-
ence from VB is that the GS approach selects the most likely
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Figure 7. 131I total dose for the whole 3-month studied interval. (a) Simulation using the HYSPLIT model with GFS input data with 0.5◦

resolution and with the source term computed using the LS-APC-VB algorithm given in Fig. 3, top right. (b) Simulation using the HYSPLIT
model with GFS input data with 1.0◦ resolution and with the source term computed using the LS-APC-GS algorithm given in Fig. 5, bottom
left.

release to be that of the best location for the Hysplit-GFS-1.0
model.

5.2 Source term estimation

With selected location of the release, we proceed to estimate
the release profile using both approximations, the VB method
and the GS method. Source term estimates for the most likely
locations obtained by the VB approximation for each disper-
sion model are given in Fig. 3. Full posterior densities are
reported via their mean value (denoted by blue lines) and
95 % highest posterior density regions (gray filled region).
Notice that the computed total sums of activity with 2σ un-
certainty bounds are also reported in Fig. 3. Hysplit-GFS-
0.5 is the most likely of the four models according to the
VB approximation. This can be understood from the scat-
ter plots between measured data y and reconstructed signal
Mx in Fig. 4 for Flexpart-GFS-0.5 (a), Hysplit-GFS-0.5 (b),
Hysplit-GFS-1.0 (c), and Hysplit-ECMWF-0.5 (d). Note that
significantly lower marginal log-likelihoods of the Flexpart-
GFS-0.5, Hysplit-GFS-1.0, and Hysplit-ECMWF-0.5 mod-
els reported in Fig. 2 and subsequent differences in source
terms are due to only two measurements that are not ex-
plained well in the reconstruction. All other measurements
are explained well.

The same data were processed using the LS-APC-GS
method, which provides results in the form of samples from
the posterior distribution of the source term. The best val-
ues of the marginal likelihood for this approximation was

obtained for model Hysplit-GFS-1.0. The posterior distribu-
tions of the source term for each of the tested models is dis-
played in Fig. 5 in the same layout as for the VB approxi-
mation. The result is a superposition of 106 samples of the
source terms. Due to a low amount of data, all scale param-
eters have posterior distributions with long tails resulting in
a high number of samples with large release amounts which
can be considered as outliers. The outliers have a strong im-
pact on the mean value and, therefore, we will report the re-
sults in terms of the median (50th percentile) and uncertainty
bounds in the form of 5th and 95th percentiles. Selection of
a single source term, e.g., for computation of the scatter plot
is problematic.

With respect to the time variation of the release, all source
terms estimated by the VB method have an emission activ-
ity peak around the reported maximum activity period from
12 to 14 October, confirming this aspect of the official re-
port. The main difference between the VB and GS approx-
imations of the source term estimation is that the results of
the VB approach are concentrated around a selected mode of
the posterior distribution, while the GS approach considers
all possible modes. Therefore, the GS results are a collection
of many possible profiles. The posterior distribution in the
period of 12 to 14 October is not so narrow but contains a
smooth bump. This is due to low informativeness of the data
at temporal resolution, since the sampling period of the mea-
surements is 7 days for the majority of the data. The estimates
provided by the GS method also provide higher values of the
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Figure 8. Sensitivity study of the source location using measurements without the Budapest station. Marginal log-likelihood that the observed
data are explained by a release from a grid cell using the LS-APC-VB algorithm for each tested combination of dispersion model and
meteorological data: Flexpart-GFS-0.5 (a), Hysplit-GFS-0.5 (b), Hysplit-GFS-1.0 (c), and Hysplit-ECMWF-0.5 (d). The measuring sites
(see Table 1) are displayed using green circles while the location of the Institute of Isotopes (IoI) Ltd. is displayed using a red cross and the
excluded measuring station Budapest (denoted by A) is displayed using a black circle.

total release amount than the VB method. We conjecture that
this is due to the property of the VB approximation to yield
a zero source term when the measurements are insensitive
to its choice. The posterior distribution of the Gibbs sampler
has also maximum at zero, but the median is positive. See
Ulrych and Šmídl (2017) for discussion.

5.3 Discussion of the source terms

The officially reported total release activity was 342 GBq
with a maximum release intensity between 12 and 14 Octo-

ber of 108 GBq and a total release period from 8 September
until 16 November (International Atomic Energy Agency,
2011b). Compared to the official estimate, all VB and GS
estimates (except for the VB solution for Hysplit-GFS-1.0)
overestimate the total released activity but are of the same or-
der of magnitude as the official estimate. The reported value
is around the first percentile of the Gibbs sampling results for
the most likely model. Since these values are based on mea-
surements of particulate iodine only, the estimates are lower
bounds for the total release which may also have included
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radioiodine gas. Moreover, the results are subject to many
unmodeled uncertainties which are now discussed.

First, one has to consider uncertainty due to the long sam-
pling period of the measurements, mostly 7 days. This may
lead to a large uncertainty in estimated source terms since the
inversion method tries to capture a source term with resolu-
tion of one day from such a time-insensitive measurement.
The second source of uncertainty is the relatively coarse dis-
cretization of the studied domain and the proximity of the
IoI facility and the measuring station Budapest (approxi-
mately 10 km). Since concentration gradients cannot be re-
solved within one grid cell, the inversion may try to com-
pensate this by overestimation of the source term to fit the
Budapest measurements. The third source of uncertainty of
the source term is the selected atmospheric dispersion mod-
els (and their parameterizations). For example, both atmo-
spheric transport models may simulate too short a lifetime of
particulate iodine. This, as for many other models, was found
for Cs-137 attached to particles after the Fukushima Dai-ichi
accident (Kristiansen et al., 2016). The inversion would prob-
ably try to compensate a too strong loss of mass by increas-
ing the emitted amount. The fourth source of uncertainty is
the input data from meteorological reanalysis. As shown by
Leelőssy et al. (2017), the example meteorological situation
on 4 November in 2011 in central Europe was very complex
with low-level inversion where the winds below the inver-
sion level were significantly different than the winds above.
Subsequently, if boundary layer heights were systematically
too high, simulated ground-level concentrations may be sys-
tematically too low. This would be probably compensated by
the inversion with a too large emitted amount. In these and
other complex situations, different models may provide very
different performances (Leelőssy et al., 2017).

Given all these uncertainties and also the fact that in our
study different atmospheric transport models driven with
different meteorological reanalyses provide different source
terms, one should be cautious in comparing the total esti-
mated release with the reported release amount. An agree-
ment of the total amount of released 131I within one order
of magnitude may be the maximum which can be expected.
This is reflected by the large uncertainty ranges obtained with
our method. A positive result is that the models selected by
the marginal likelihood provide results closer to the reported
values than the other models. Our model ensemble is too
small to fully capture the uncertainty related to the choice
of the dispersion model or meteorological input data. Never-
theless, our small ensemble shows that the results are quite
sensitive to the choice of the model. Particularly noteworthy
is the large difference between Hysplit-GFS-1.0 and Hysplit-
GFS-0.5, since these use the same dispersion model and me-
teorological input data, except for the resolution of the latter.

This high sensitivity is at least partly related to the small
number of available 131I measurements. The inversion may
take advantage of certain model features to fit the model
results to the few measurements. Such “overfitting” by ex-

ploiting particular model characteristics is less likely to be
successful for a larger measurement data set. Clearly, more
measurements are needed for a more reliable source term
estimation. Nevertheless, the estimated source terms are of
the right order of magnitude and the estimated release peri-
ods between early September and mid-November correspond
well with the reported probable release period of 8 Septem-
ber to 16 November (International Atomic Energy Agency,
2011b).

5.4 Forward modeling of the iodine release

Using the estimated source location and source term, we can
perform a forward run of the model and study the simulated
consequences of the accidental release. For this purpose, we
identify the most probable location of the release from all
cases evaluated by the LS-APC-VB method (Fig. 2), which
is the location with center at 18.75◦ E and 47.75◦ N obtained
with the Hysplit-GFS-0.5 configuration with log-likelihood
up to 340. Therefore, we perform a forward run with the
HYSPLIT model and GFS input data with 0.5◦ resolution
with the corresponding source term shown in the top right
panel of Fig. 3. The forward model run was set up in the
same manner as the backward runs. The output concentra-
tions presented in Fig. 6 are mean values in the layer between
the surface and 100 m above ground level. The results for the
most likely location selected by the LS-APC-GS method are
analogous.

The computed concentrations of 131I are displayed in
Fig. 6 for selected days, which are 14 September (a), 14 Oc-
tober (b), and 14 November (c). The first two maps illustrate
challenges for inverse modeling, since the aerosol was trans-
ported to areas where no measurement data are available,
which corresponds well with reported measurements from
Budapest and Praha in Fig. 1 where no measured activity is
reported in Praha for the first half of the studied period. This
also implies that the results may be very sensitive to the mea-
surements from the station Budapest (denoted by the letter A
in Fig. 6), which is the only station influenced in this case.
This sensitivity will be studied in the next section.

The cumulated gamma dose for the whole 3-month period
is computed for the most probable source terms computed us-
ing LS-APC-VB and LS-APC-GS methods. The cumulated
gamma dose for the LS-APC-VB estimate is displayed in
Fig. 7a, for the Hysplit-GFS-0.5 model with the same set-
tings as in the case of concentrations and for the LS-APC-
GS estimate is displayed in Fig. 7b, for the Hysplit-GFS-1.0
model. Results show that gamma dose amounts were largest
in Hungary and Slovakia, while in the rest of Europe they
were about 2 orders of magnitude smaller. However, Fig. 7
also shows that most of Europe was affected to some extent
by the release. Notably, the simulation also shows that both
the concentrations and dose amounts were very low even
close to the release site. The maximum dose from the 131I
release during the studied 3-month period is approximately
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Figure 9. Estimated source terms at locations selected by the marginal likelihood method, shown in Fig. 8, with excluded measurements
from Budapest using the LS-APC-VB algorithm for all four tested combinations of dispersion models and meteorological data: Flexpart-
GFS-0.5 (a), Hysplit-GFS-0.5 (b), Hysplit-GFS-1.0 (c), and Hysplit-ECMWF-0.5 (d). The estimated source terms are accompanied by the
95 % uncertainty regions (gray filled regions). The estimated activity for the whole period is reported inside each plot with its associated
uncertainty bounds.
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Figure 10. Estimated source terms at locations selected by the marginal likelihood method, shown in Fig. 8, with excluded measurements
from Budapest using the LS-APC-GS algorithm for all four tested combinations of dispersion models and meteorological data: Flexpart-
GFS-0.5 (a), Hysplit-GFS-0.5 (b), Hysplit-GFS-1.0 (c), and Hysplit-ECMWF-0.5 (d). The estimated source terms are accompanied by the
uncertainty regions of the 5th and 95th percentile (gray filled regions). The estimated activity for the whole period is reported inside each
plot with its associated uncertainty bounds.

0.001 mSv which is negligible, e.g., in comparison with the
Czech natural radiation background of 3 mSv per year.

5.5 Sensitivity study

Since the distance between the measuring site in Budapest
(denoted by the letter A in Fig. 2) and the IoI is only approx-
imately 10 km, the measured values at this station are often
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1 order of magnitude higher than those from the other sta-
tions. Determining the source location and source strength
could be thus dominated by the measurements from Bu-
dapest. However, simulating the concentrations at such a
short distance is inaccurate since the meteorological input
data are much coarser than the distance from the source to the
station, and also the SRS calculations are done on a coarser
grid. Thus, the errors of the source-location sensitivity can
be relatively large, which may influence the estimated source
term.

To test the sensitivity of the results to the values from the
Budapest station, we run the source location excluding those
measurements. The results are given in Fig. 8. The data in
this case are much less informative hence the uncertainty in
source location is much higher. Nevertheless, the maximum
is mostly reached relatively close to the IoI facility. The max-
ima for individual dispersion models are 17.75◦ E, 47.25◦ N
for Flexpart-GFS-0.5; 18.75◦ E, 48.25◦ N for Hysplit-GFS-
0.5; 19.25◦ E, 46.75◦ N for Hysplit-GFS-1.0; and 16.25◦ E,
48.25◦ N for Hysplit-ECMWF-0.5; while the exact location
of the IoI is approximately 18.96◦ E, 47.49◦ N. Thus, even in
this poorly informative case, the location is identified with
very good accuracy. In all four cases, the uncertainty in-
creased significantly to the south of the IoI where no mea-
sured data are available.

Source term estimates done without using Budapest data
for the most likely locations for each dispersion model are
given in Fig. 9. Full posterior densities are reported via their
mean value (denoted by blue lines) and 95 % highest poste-
rior density regions (gray filled region). The source terms are
accompanied by the computed total sum of activity with 95 %
uncertainty bounds. Overall, the total activities of estimated
Flexpart-GFS-0.5, Hysplit-GFS-1.0, and Hysplit-ECMWF-
0.5 source terms are on the same level as in the previous
case where measurements from Budapest are included while
the Hysplit-GFS-0.5 result is reduced approximately 6 times;
however, note that the maximum of the log-likelihood is
no longer reached by Hysplit-GFS-0.5 but by Hysplit-GFS-
1.0 where the total activity of the source term is estimated
as 526 GBq with uncertainty bounds [444,608]GBq, which
is of the same order of magnitude as the reported amount
342 GBq. Notice in particular that the reported peak related
to the period 1 to 14 October is well captured by the LS-
APC-VB algorithm with Hysplit-GFS-1.0 while this is not
the case for the other models. Moreover, the release time pro-
files are different, with some peaks missing due to very low
responses to these releases at the distant sensors especially
in the first half of the studied period. This can be understood
when considering concentrations in Fig. 6 and measurements
from Budapest and Praha in Fig. 1. It can be seen that on
the example day 14 September, the whole released activity
is transported southeast of the release site where no mea-
surement stations are available except the Budapest station,
which is not used in this sensitivity study. Notice in particular
that station Praha did not measure any activity during this pe-

riod (Fig. 1). This was the case also on many other days and
explains why the LS-APC-VB algorithm does not produce
any releases in September and the first half of October in all
FLEXPART and HYSPLIT model runs when the Budapest
station is excluded.

Similar results are obtained using the GS method, Fig. 10.
The estimated profiles correspond well with those obtained
by the VB method; however, the associated uncertainty
bounds are more realistic.

6 Conclusions

Low concentrations of iodine 131I were detected in the at-
mosphere over central Europe in the fall of 2011. After in-
vestigation, it was reported that 131I was released from the
IoI, Budapest, Hungary. In this study, the measurements of
131I concentrations from several countries in central Europe
from fall 2011 were analyzed using two state-of-the-art dis-
persion models, FLEXPART and HYSPLIT driven with three
different meteorological input data sets (four model config-
urations in total), and latest Bayesian techniques of source
term estimation and source location. We used these tech-
niques to retrieve both the source location as well as the
magnitude and temporal variation of the release, assuming
that neither the release location nor the source strength was
known. The results correspond well with the true location of
the source where all four estimates are within one grid cell
from the true location. The retrieved total emissions of 131I
have large error bounds and also deviate between the differ-
ent models and methods of source term estimation (varia-
tional Bayes versus Gibbs sampling). The most likely esti-
mate of the source term was 636 GBq with 90 % confidence
interval [365,1434]GBq. The reported total released dose
342 GBq is near the first percentile of the most likely pos-
terior distribution. The time variation of the estimated source
term is also in agreement with all aspects of the official re-
port. Forward model simulations using the retrieved source
term showed that large areas of Europe were affected by the
release, but air concentrations and total dosages of 131I were
well below regulatory limits everywhere and the situation did
not pose a health risk.

The performance of the Bayesian methodology was also
tested when using less informative data. For this, we re-
moved the most informative measurements from the nearest
measurement station. Even in this case, the algorithm was
able to locate the source with high accuracy but with signifi-
cantly higher uncertainty, and the source strength was partic-
ularly uncertain. The main reason for this large uncertainty
was that all available measurement data (except for those
taken at the one close-by station) were collected to the north
of the release location. Therefore, releases could not be de-
tected by this network during periods with northerly winds.
This demonstrates the importance of the spatial distribution
of measurement stations.
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Data availability. Since not all of the laboratories agreed with pub-
lication of the used measurement data, the data are available upon
request to the corresponding author (for academic purposes).
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Appendix A: Truncated Gaussian distribution

Truncated normal distribution, denoted as tN , of a scalar
variable x on interval [a;b] is defined as

tNx(µ,σ, [a,b])=

√
2exp((x−µ)2)

√
πσ(erf(β)− erf(α))

χ[a,b](x), (A1)

where α = a−µ
√

2σ
, β = b−µ

√
2σ

, function χ[a,b](x) is a character-
istic function of interval [a,b] defined as χ[a,b](x)= 1 if
x ∈ [a,b] and χ[a,b](x)= 0 otherwise. erf() is the error func-
tion defined as erf(t)= 2

√
π

∫ t
0 e
−u2

du.

The moments of truncated normal distribution are

〈x〉 = µ−
√
σ

√
2[exp(−β2)− exp(−α2)]
√
π(erf(β)− erf(α))

, (A2)

〈
x2
〉
= σ +µx̂−

√
σ

√
2[bexp(−β2)− a exp(−α2)]
√
π(erf(β)− erf(α))

. (A3)

For the multivariate case, see Tichý and Šmídl (2016).
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Dyer, K. M., Aines, R. D., Chow, F. K., Belles, R. D., Hanley, W.
G., Larsen, S. C., Loosmore, G. A., Nitao, J. J., Sugiyama, G. A.,
and Vogt, P. J.: Bayesian inference and Markov chain monte carlo
sampling to reconstruct a contaminant source on a continental
scale, J. Appl. Meteorol. Clim., 47, 2600–2613, 2008.

Draxler, R. R. and Hess, G. D.: Description of the HYSPLIT_4
modeling system, NOAA Technical Memorandum ERL ARL-
224, NOAA, 1997.

Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4
modelling system for trajectories, Aust. Meteorol. Mag., 47,
295–308, 1998.

Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle
Lagrangian Integrated Trajectory) model access via NOAA ARL
READY website, available at: http://www.arl.noaa.gov/ready/
hysplit4.html (last access: 5 October 2016), 2003.

Eckhardt, S., Prata, A. J., Seibert, P., Stebel, K., and Stohl, A.: Esti-
mation of the vertical profile of sulfur dioxide injection into the
atmosphere by a volcanic eruption using satellite column mea-
surements and inverse transport modeling, Atmos. Chem. Phys.,
8, 3881–3897, https://doi.org/10.5194/acp-8-3881-2008, 2008.

Forster, C., Stohl, A., and Seibert, P.: Parameterization of convec-
tive transport in a Lagrangian particle dispersion model and its
evaluation, J. Appl. Meteorol. Clim., 46, 403–422, 2007.

Ganesan, A. L., Rigby, M., Zammit-Mangion, A., Manning, A. J.,
Prinn, R. G., Fraser, P. J., Harth, C. M., Kim, K.-R., Krummel,
P. B., Li, S., Mühle, J., O’Doherty, S. J., Park, S., Salameh,
P. K., Steele, L. P., and Weiss, R. F.: Characterization of un-
certainties in atmospheric trace gas inversions using hierarchi-
cal Bayesian methods, Atmos. Chem. Phys., 14, 3855–3864,
https://doi.org/10.5194/acp-14-3855-2014, 2014.

Gitzinger, C., Henrich, E., and Ryan, A.: Verification under the
terms of article 35 of the EURATOM treaty, HU-12/01, Euro-
pean commision, 2012.

Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W.,
Bamberger, I., Meinhardt, F., Steinbacher, M., and Emmeneg-
ger, L.: Validation of the Swiss methane emission inventory
by atmospheric observations and inverse modelling, Atmos.
Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-
3683-2016, 2016.

Hutchinson, M., Oh, H., and Chen, W.-H.: A review of source
term estimation methods for atmospheric dispersion events us-
ing static or mobile sensors, Inform. Fusion, 36, 130–148, 2017.

International Atomic Energy Agency: Low levels of iodine
detected in Europe, International Atomic Energy Agency
(IAEA), https://www.iaea.org/newscenter/pressreleases/
low-levels-iodine-detected-europe (last access: 24 Octo-
ber 2017), 2011a.

International Atomic Energy Agency: Source of Iodine-
131 in Europe Identified, International Atomic Energy
Agency (IAEA), https://www.iaea.org/newscenter/pressreleases/

Atmos. Chem. Phys., 17, 12677–12696, 2017 www.atmos-chem-phys.net/17/12677/2017/

https://doi.org/10.5194/acp-17-12677-2017-supplement
https://doi.org/10.5194/acp-17-12677-2017-supplement
https://doi.org/10.5194/acp-13-7115-2013
https://doi.org/10.5194/acp-2-397-2002
https://doi.org/10.5194/acp-7-1549-2007
http://www.arl.noaa.gov/ready/hysplit4.html
http://www.arl.noaa.gov/ready/hysplit4.html
https://doi.org/10.5194/acp-8-3881-2008
https://doi.org/10.5194/acp-14-3855-2014
https://doi.org/10.5194/acp-16-3683-2016
https://doi.org/10.5194/acp-16-3683-2016
https://www.iaea.org/newscenter/pressreleases/low-levels-iodine-detected-europe
https://www.iaea.org/newscenter/pressreleases/low-levels-iodine-detected-europe
https://www.iaea.org/newscenter/pressreleases/source-iodine-131-europe-identified


O. Tichý et al.: Inverse modeling of 131I release in Europe in 2011 12695

source-iodine-131-europe-identified (last access: 24 Octo-
ber 2017), 2011b.

Kalinowski, M. B., Becker, A., Saey, P. R. J., Tuma, M. P., and
Wotawa, G.: The complexity of CTBT verification. Taking noble
gas monitoring as an example, Complexity, 14, 89–99, 2008.

Keats, A., Yee, E., and Lien, F.: Bayesian inference for source de-
termination with applications to a complex urban environment,
Atmos. Environ., 41, 465–479, 2007.

Kovalets, I. V., Andronopoulos, S., Venetsanos, A. G., and Bartzis,
J. G.: Identification of strength and location of stationary point
source of atmospheric pollutant in urban conditions using com-
putational fluid dynamics model, Math. Comput. Simulat., 82,
244–257, 2011.

Kristiansen, N. I., Stohl, A., Olivié, D. J. L., Croft, B., Søvde, O. A.,
Klein, H., Christoudias, T., Kunkel, D., Leadbetter, S. J., Lee,
Y. H., Zhang, K., Tsigaridis, K., Bergman, T., Evangeliou, N.,
Wang, H., Ma, P.-L., Easter, R. C., Rasch, P. J., Liu, X., Pitari,
G., Di Genova, G., Zhao, S. Y., Balkanski, Y., Bauer, S. E., Falu-
vegi, G. S., Kokkola, H., Martin, R. V., Pierce, J. R., Schulz, M.,
Shindell, D., Tost, H., and Zhang, H.: Evaluation of observed and
modelled aerosol lifetimes using radioactive tracers of opportu-
nity and an ensemble of 19 global models, Atmos. Chem. Phys.,
16, 3525–3561, https://doi.org/10.5194/acp-16-3525-2016, 2016

Krysta, M., Bocquet, M., and Brandt, J.: Probing ETEX-II data
set with inverse modelling, Atmos. Chem. Phys., 8, 3963–3971,
https://doi.org/10.5194/acp-8-3963-2008, 2008.
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