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A B S T R A C T

Oil markets profoundly influence world economies through determination of prices of energy and trans-
ports. Using novel methodology devised in frequency domain, we study the information transmission
mechanisms in oil-based commodity markets. Taking crude oil as a supply-side benchmark and heating oil
and gasoline as demand-side benchmarks, we document new stylized facts about cyclical properties of the
transmission mechanism generated by volatility shocks with heterogeneous frequency responses. Our first
key finding is that shocks to volatility with response shorter than one week are increasingly important to
the transmission mechanism over the studied period. Second, demand-side shocks to volatility are becom-
ing increasingly important in creating short-run connectedness. Third, the supply-side shocks to volatility
resonating in both the long run and short run are important sources of connectedness.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Oil-based commodity markets are subject to continuous evolu-
tion because of permanent inflow of new technologies, ecological
pressures, and geopolitical importance of the control of oil supplies.
More importantly, oil-based commodities are of paramount impor-
tance to economic prosperity in both developed and developing
countries because they constitute the most widely used source of
energy; for illustration, in 2014, about 30% of US energy consump-
tion used petroleum-based fuels, of which about 70% was used in
transportation and the rest in industrial usage.1

� For estimation of the frequency dependent connectedness measures introduced
by this paper, we provide the package frequencyConnectedness in R software
that is available at CRAN. Support from the Czech Science Foundation (GAČR) under
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1 Lawrence Livermore National Laboratory, Energy Chart 2014: https://flowcharts.

llnl.gov/content/assets/docs/2014_United-States_Energy.pdf.

In this paper, we study cyclical properties of shocks to
volatility propagating through petroleum markets. Focusing on
the importance of modeling both overall (aggregate) and cyclical
(disaggregate) risk relations, we document that overall risk is highly
dynamic and that the connectedness measure provides an accurate
way of assessing it. Decomposing the risk into frequency domains,
we investigate the roles that various types of information with het-
erogeneous frequency responses play in creation of such risk. Specif-
ically, macroeconomic announcements constitute prime examples
with monthly frequency, while quarterly company results might
have a long-run effect. On the contrary, a weather forecast will
impact the system in the shorter run. In turn, these shocks will
propagate through the market with different frequency responses.
Frequency domain-based measures allow us to identify the impor-
tance of various types of such shocks in the creation of risk in the
system. Our results demonstrate new stylized facts about cyclical
properties of connectedness in petroleum-based products.

As a workhorse, we use a small vector autoregressive (VAR)
system of realized volatilities with three commodities: crude oil
(CO), heating oil (HO), and gasoline (HUXB). Crude oil is the raw
material that is used to produce the heating oil, gasoline, and
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other petroleum-based products. This is important in part of our
interpretation because shocks to the volatility of crude oil can help
us identify the supply-side shocks. As our framework is relatively
simplistic compared to the vastly specified VAR models that are
standard in the literature of oil-commodity modeling, we discuss
potential caveats in interpretation by relating our results to relevant
literature.

Our paper contributes to the literature by investigating the
volatility transmission mechanism, with an accent on cyclical prop-
erties of the transmission generated by shocks with heterogeneous
frequency responses. Our results hence shed light on long-run and
short-run patterns that emerge. Our key contribution is twofold.
First, we document several new stylized facts about information
transmission effects: a) we show the growing importance of
information transmission effects of up to one week and the overall
diminishing importance of the longer movements; b) the relative
contributions of supply-side and demand-side shocks are more
pronounced in the long run than in the short run; and c) various
geopolitical and economic events had different effects on short- or
long-run information transmission mechanisms. Second, from the
methodological point of view, we define and apply complementary
directional connectedness measures to the previous work of Baruník
and Křehlík (2015).

The rest of the paper is structured as follows. First, we review
the relevant literature in the following section. Then, we con-
tinue with the explanation of our methodology, continuing next
to the data, interpretation strategy, empirical results, and their
discussion.

2. Literature review

From a theoretical point of view, we employ the framework of
Ross (1989) who identifies the standard deviation of price to be
synonymous to the rate of information flow inside the standard
martingale-based price models. Hence, modeling the connection
between volatilities is synonymous with modeling connections
between information flows, sometimes called the information trans-
mission mechanism. We take this methodology a step further and
impose generally reasonable assumptions on our system, inducing
the information transmission mechanism to become synonymous
with the systemic risk. Such a model provides us with a practical
assessment of how risks depend upon each other.

The observation that volatility plays an important proxy for
the information mechanism and systemic risk has been recently
applied in conjunction with the general connectedness/network
methodology of Diebold and Yilmaz (2009, 2012, 2015) to assess how
information transmissions work in various cases (Alter and Beyer,
2014; Awartani and Maghyereh, 2013; Baruník et al., 2015; Zhou
et al., 2012). An important extension of this framework by Baruník
and Křehlík (2015) studies the frequency properties of generalized
impulse response functions, providing a complementary picture of
the structure of the system. Specifically, Baruník and Křehlík (2015)
argue that frequency dynamics is insightful for studying connect-
edness, as shocks with heterogeneous frequency responses create
linkages with various degrees of persistence. Economically, this anal-
ysis allows us to study whether most of the future volatility will
happen in short-run movements or in one continuous long-run move.
Additionally, the methodology allows us to evaluate what type of
shocks are the most important for the risk of the system. In this
paper, we use the framework within a simple three variable VAR
that is fit locally to a system of volatilities following the assumption
of local stationarity as in Stărică and Granger (2005). Contributing
to the methodology of measuring information transmission mech-
anisms, we define the directional connectedness measures within
this frequency framework.

The previous literature has been greatly interested in oil com-
modity markets, perhaps because they play a prominent role and
hence are an important part of the US economy. Numerous studies
investigate the relationship between business cycles and the price
of crude oil. The beginning of this literature dates back to the work
of Hamilton (1983), who concentrated on an interplay between
the price surges of crude oil and macroeconomic crises in the US.
Since then, multiple authors have studied similar relations. Hamilton
(1996) revisited the macroeconomic relation that became quite
unstable after the year 1986. A subsequent work of Hamilton (2009)
compares and contrasts the oil shock of 2007–2008 and concludes
that in comparison with the previous oil shocks, this shock was
caused by strong demand meeting stagnating production.

Other aspects of the macroeconomic and oil relationship were
prominently investigated in the works of Kilian (2010). Kilian (2009)
suggests a decomposition of shocks affecting oil into three distinct
shocks: crude oil supply shocks, shocks to the global demand for all
industrial commodities, and demand shocks that are specific to the
global crude oil market. The author innovatively uses freight cargo
fares to benchmark the global economic activity and subsequently
uses this variable to clean the oil prices from the global economic
activity. Kilian and Murphy (2014) investigate the role of invento-
ries and speculative trading in crude oil. They refute claims that
the 2003–2008 surge in prices was caused mainly by speculations,
proposing instead that it was caused by the unexpected increase
in world oil consumption. Moreover, they claim that the short-run
price elasticity of oil demand is much higher than traditional esti-
mates from dynamic models would suggest because the models do
not account for the endogeneity of the price of oil.

Kilian (2010) studies interaction of the crude oil market with the
US retail gasoline market using five variables to structurally identify
all shocks. The variables are as follows: price of crude oil, price of
gasoline, global oil production, global real economic activity, and US
consumption of gasoline. Carrying out thorough impulse response
analysis, Kilian (2010) answers several questions: what is the struc-
ture of demand and supply shocks since March of 1974, how do the
prices respond to demand and supply shocks, how does the con-
sumption respond to the shocks, and how have price fluctuations
since 2002 happened? The approach is structurally more elaborate;
in particular, it disentangles a higher number of shocks that we
cannot underpin in our approach. The study shows that in the short
run, most of the price movements are caused by refining shocks.
However, in the long run, fluctuations are driven by demand shocks
and shocks to the business cycle. The refining shocks play only a very
small role in the long run. Regarding the consumption of crude oil,
most of it is driven by demand shocks.

Cashin et al. (2014) try to identify supply and demand shocks to
the oil price within a global VAR (GVAR) model that is estimated
for 38 countries. They include more countries inside the GVAR than
was previously done. However, they concentrate more on macroeco-
nomic effects than on the relations between the two commodities.

Another important strand of literature investigating petroleum
concentrates on the question of price elasticity. This issue is espe-
cially important because in recent literature, the elasticities tie the
increases in volatility to changes in prices. If the price elasticity is
relatively low, large movements of prices are needed to clear the
market. One of the most recent attempts Hughes et al. (2006) evalu-
ated the short-run price elasticities of gasoline demand. The derived
short-run gasoline demand elasticities are very close to zero in a
sample similar to ours. Güntner (2014) concentrates on demand-
driven price changes in the time span 1975–2011. The authors derive
consistent short-run country-specific price elasticity and conclude
that the supply elasticities seem to be indistinguishable from zero.
Most relevant for our paper, Baumeister and Peersman (2013) inves-
tigate the reason behind the increase in volatility since the second
half of the 1980s. They show that the likely explanation is that the
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price elasticities are very low and that both demand and supply
shocks have declined over time. On the one hand, they find that
since the invasion of Kuwait in 1990, exogenous supply shocks have
declined steadily. On the other hand, they confirm the finding from
Kilian and Murphy (2014) that the demand shocks were most prob-
ably the important force behind price fluctuations during the period
1974–2009. They use Bayesian TVP-VAR to explore their hypothesis.

An empirically interesting evolution of prices happened dur-
ing the period of 2007–2008 when the prices of oil spiked. The
proponents of the theory that speculative trading caused the evolu-
tion argue that the trading strategy is to buy in on near-term future
contracts and sell before expiry. If the prices trend upwards, the
proceeds can be invested in another round of trading without ever
touching the commodity itself. If more and more investors seek this
strategy, the artificial demand will drive up the prices of the futures,
inducing a speculative bubble in the oil price. Singleton (2013) and
Masters and White (2008) are the biggest proponents of the tangi-
ble involvement of hedge fund investments in the 2007–2008 boom
bust in oil prices.

There is, however, little literature that investigates the volatility
connectedness effects of oil-related markets. Li et al. (2016) inves-
tigate the (mean and volatility) information transmission using the
EGARCH model within VECM specification. They include exogenous
shocks such as the S&P 500, VIX, gold price, TED spread, and US dol-
lar. They make two important conclusions. First, they find evidence
that there is an important volatility transmission mechanism that
is moreover quite different before and after the crisis of 2008. Sec-
ond, they show that exogenous variables can have important effects
on the volatility transmission mechanism. Baruník et al. (2015)
study the same data as we do with similar methodology; however,
they concentrate on uncovering the asymmetric volatility connect-
edness effects. They find an asymmetric effect in the information
transmission mechanism that is dynamic over time. The asymmetry
measure is significantly higher during the pre-2008 crisis period than
afterwards. Lastly, Maghyereh et al. (2016) present a study of con-
nectedness between oil and equity markets. Using implied volatility
as a proxy for the latent volatility process, they find that the flow of
connectedness from the oil to the equity market strongly dominates
the other direction.

3. Methodology

There are multiple reasons one should believe that connectedness
in volatility systems and more generally in financial and commod-
ity markets should be different at different levels of persistence. The
general reason is that agents on financial markets are not all alike;
some have preferences in longer horizons, and some have short-term
preferences. This diversity of utility functions is necessarily lost in
aggregate measures that ignore it. Additionally, information might
have various frequencies by itself. As argued earlier, there are quar-
terly reports about financial earnings and yearly reports concerning
the whole economy. Much can be gained in terms of structural under-
standing of economic models when proper spectral tools are used to
construct models that can discern between different horizons.

The economic literature has recently recognized this shortcoming
and started to address it in multiple ways. Dew-Becker and Giglio
(2016) use spectral methods to show the implication of usage of var-
ious utility functions within asset pricing. Bandi and Tamoni (2015)
use local spectral methods to investigate the traditional finding of
Bansal and Yaron (2004) that long-run returns can be predicted
better than short-run returns. The methodology that follows is our
contribution to that literature; we investigate the spectral pat-
terns within the information transmission mechanisms and, in our
particular case, systemic risk.

3.1. Cyclical properties of shock responses

The measure of connectedness, much like any model-based mea-
sure, necessitates an assumption about the data-generating process.
Diebold and Yilmaz (2012) use probably the most general and ver-
satile assumption—the vector-autoregressive (VAR) model. Hence,
let us have vector Xt that holds volatilities of k assets at time t and
assume the dynamics of Xt follow

Xt = V(L)Xt + 4t , (1)

where V(L) is a lag polynomial generating stable VAR system,
and 4t ∼ N(0,S). The coefficients of this model can be estimated
equation-by-equation using ordinary least squares, which also cor-
responds to the maximum likelihood estimate.

The stationary system can be rewritten in a moving average
representation as

Xt = X(L)4t =
∞∑

i=1

Xi4t−i + 4t. (2)

Based on these estimates, using the generalized VAR identifi-
cation scheme of Pesaran and Shin (1998), we can compute the
generalized impulse responses to shock in variable j at time t + h as

GIRFj(h) =
√
Sj,jXhSej, (3)

where ej is a k-length vector with 1 at a position j and 0 otherwise, Xh

denotes the corresponding coefficients of Wold decomposition at the
lag h, and Sj,j is a jth diagonal element of S matrix. This generalized
impulse response can be further leveraged to construct a generalized
forecast error variance decomposition (GFEVD) given by

(hH)i,j =
S−1

j,j

∑H
h=0(XhS)2

i,j∑H
h=0 (XhS4X

′
h)i,i

, (4)

where H defines the horizon, i.e., how many periods ahead we are
cumulating. The relation gives the shares of forecast error variances
in variable i due to shock to variable j.

Inspired by similar approaches in the literature, Dew-Becker and
Giglio (2016), Stiassny (1996), and Baruník and Křehlík (2015) use
spectral methods to further investigate the implied unconditional
connectedness relations in the frequency domain. The decomposi-
tion is achieved by an observation that the spectral behavior of series
Xt can be described by its frequency response function

SX(y) =
∞∑

h=0

E(XtXt−h)e−ihy = X(e−ihy)SX(eihy), (5)

where X(e−ihy) =
∑∞

h=0 Xhe−ihy. These frequency response func-
tions can be used to decompose the generalized impulse response
functions.

Based on these observations, the authors derive the GFEVD on
frequency y as

(
h(y)

)
i,j

=
S−1

j,j

∞∑
h=0

(X(e−ihy)S)2
i,j

∑∞
h=0 (X(e−ihy)SX(eihy))i,i

. (6)

Note also that the horizon H does not play an important role, as
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we work with unconditional GFEVD, taking infinite horizon relations.
In a discrete setting, this is mimicked by taking sufficiently large H.

Standardizing as

(
h̃(y)

)
i,j

= (h(y))i,j/
k∑

j=1

(h(y))i,j, (7)

Baruník and Křehlík (2015) arrive at a connectedness table at cho-
sen frequency y. The table provides us very condensed information
about the system in the sense that it measures how the shock to
variable j influences variable i.

Because the connectedness tables at individual frequencies y are
both un-informative and infeasible in a discrete setting, Baruník and
Křehlík (2015) propose to accumulate tables over frequencies y in
such a manner that connectedness tables are formed at informative
frequency bands, e.g., all frequencies that correspond to movements
shorter than one week are accumulated into one connectedness
table. For that purpose, let us define the connectedness table on an
arbitrary frequency band d = (a, b) as

(
h̃d

)
i,j

=
∫ b

a

(
h̃(y)

)
i,j

dy. (8)

This entity allows us to proceed to the definition of connectedness
measures.

3.1.1. Connectedness measures in the frequency domain
Inspired by the measures defined by Diebold and Yilmaz (2012)

on the GFEVD, one has to contemplate carefully how to extend the
definitions to the frequency domain. Straightforwardly, we can apply
the measures on the connectedness tables corresponding to any arbi-
trary frequency band d as described in Eq. (8). Hence, for the OVERALL

connectedness, we have

Cd =

∑k
i=1,i�=j

(
h̃d

)
i,j∑

i,j

(
h̃d

)
i,j

= 1 −
∑k

i=1

(
h̃d

)
i,i∑

i,j

(
h̃d

)
i,j

, (9)

where d denotes the respective frequency band. These connected-
ness measures, however, only pertain to the movements happening
inside the spectral band, disregarding the aggregate nature of the
series. For example, Cd = 0.9 tells us that within the frequency
band, there are strong connections without any relation to the aggre-
gate connectedness measure, which can be relatively low. Therefore,
we call these measures within measures as in within spectral band
measures.

Similarly, we can define for each asset i a measure of variance
contributed by other variables i �= j that can be constructed as

Cd
i← • =

k∑
j=1,i�=j

(
h̃d

)
i,j

, (10)

the so-called within FROM connectedness on the spectral band d, and
contribution of asset i to variances of other variables as

Cd
i→ • =

k∑
j=1,i�=j

(
h̃d

)
j,i

, (11)

the so-called within TO connectedness on the spectral band d. These
two measures show how other assets contribute to the risk (in case
the modeled variables are variances) of asset i, and how the asset i

contributes to the riskiness of others on the frequency band d.
The third measure shows the discrepancy between how much of

the variance is received and how much is imposed. This so-called
within NET connectedness is computed as

Cd
i,net = Cd

• →i − Cd
i← • . (12)

In our case, the measure can be interpreted easily as whether the
asset induces more risk than it receives from the other elements of
the system. These three measures concisely describe the behavior of
the individual elements within the band d.

Apart from overall characteristics, we might be interested in pair-
wise relations of risk that can further be described by the PAIRWISE

connectedness

Cd
i,j =

(
h̃d

)
j,i

−
(
h̃d

)
i,j
. (13)

We will leverage this measure to describe more thoroughly the
relation of products and raw material in petroleum markets.

To reach a measure that shows us the contribution of the given
frequency band d to the aggregate measure, the within measures
need to be weighted. For a better illustration, it is helpful to think
about the following example.

Let us have two systems that both have very strong within con-
nections in the short term and no within connections in the long
term. However, the aggregate behavior of system number one is
characterized by long-term movements (as in an AR process with
very high coefficients), and the aggregate behavior of system number
two is characterized by short-term movements (as in an AR process
with negative coefficients). Because the variance in the first system
is created mostly by long-term movements that are unconnected,
the system will not be (or only slightly) connected in the aggregate
despite the strong within short-term connections. However, the sec-
ond system will show strong connectedness because the connected
short-term movements compose most of the behavior of the system.

This leads us to a straightforward extension of the measures. The
aggregate measure on the frequency band d is defined as

C̃d = Cd •C(d), (14)

where C(d) =
∑k

i,j=1

(
h̃d

)
i,j
/

∑k
i,j=1

(
h̃
)

i,j
= 1/k

∑k
i,j=1

(
h̃d

)
i,j

is the

contribution of frequency band d to the overall behavior of the
system, and Cd is the connectedness measure computed on the
connectedness table h̃d.

The frequency measures denoted with tildes have the property
that if we sum them up over disjointed intervals that give a range
of frequencies, the unconditional connectedness measure results, i.e.∑

dC̃d = C, where C is the total connectedness defined in Diebold
and Yilmaz (2012).

Both within-spectrum and overall measures are important in
investigating relations within the system because they demonstrate
change in the structure of the series versus change only where most
of the movements are concentrated.

Apart from the measures alone, the spectral weight C(d) can pro-
vide us with valuable information on how the within connectedness
is transformed into the absolute frequency connectedness on a given
frequency band d.

4. Empirical results

Further, we describe the evidence about the supply and demand
shocks through the lens of the connectedness measures devised in
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the previous section. We restrict ourselves to presentation of the
frequency decomposed results and their implications.

4.1. Data and estimation procedure

For the inquiry, we use futures prices of three commodities: crude
oil (CO), heating oil (HO), and gasoline (HUXB). The gasoline futures
contract is composed of two data series that are connected together
because in 2006, the NYMEX changed the contracts for gasoline and
substituted the unleaded gasoline (HU) contracts with the reformu-
lated gasoline blendstock for oxygen blending (XB). For computation
purposes, we use HU before 2006 and XB after 2006.

From the high-frequency irregularly spaced data2, we extract
5-minute returns and compute a bi-power realized measure
(Barndorff-Nielsen and Shephard, 2004) of volatility that more-
over disentangles jumps from underlying volatility. We exclude
trades executed on Saturdays and Sundays, U.S. federal holidays,
December 24 to 26, and December 31 to January 2 because of low
activity on these days that could lead to estimation bias. The sam-
ple spans September 1, 1987, to February 12, 2014. Table 1 reports
summary statistics for the realized volatility, and Fig. 5 depicts the
logarithmic volatility used in the estimation procedure.

The computation of connectedness necessitates use of the under-
lying model. We use the standard VAR with two lags and a constant
that is fit on logarithmic volatilities. The use of logarithms is
preferred in this case, as we are looking for relationships that are
modeled through coefficients within the VAR system, and the trans-
formed series better underpins these relations. We experimented
with other settings of the VAR model, such as various lags and
inclusion of trend or constant terms, and found that the presented
specification is robust for interpretation purposes. In our view, the
presented model is the most parsimonious approximation of reality.3

The model is fit to the series on a rolling window basis. Such a pro-
cedure approximates the statistical properties of locally stationary
series as argued in Stărică and Granger (2005).

We decompose the resulting connectedness measure into two
frequency bands: (p, p

5 ), ( p
5 , 0), that correspond to movements up to

five days and movements of five days and longer. In our case, the
latter is constrained by the length of the moving window, i.e., 500
observations, meaning two years.

In each of the figures presented later, we include grid lines that
denote important geopolitical events that might have influenced
the volatility and in many cases did. In chronological order, the
events are Iraq invasion of Kuwait, Asian Crisis, Russian Flu, Terrorist
attacks on 9/11, US invasion of Iraq, fall of Lehman Brothers, and Arab
Spring.

4.2. Possible sources of shocks in volatility

As noted in the introduction, the singular shocks to volatility of
the commodities are not synonymous with demand shocks in the
case of gasoline or heating oil, or supply shocks in the case of crude
oil. In this brief section, we investigate possible causes of volatility
shocks and relate them to possible effects on the respective shocks
within our system.

The oil-commodity market is subject to many influences. First,
exogenous shocks to supply, such as wars in places of drilling sites,
political pressures such as OPEC agreements, or revolutions in oil
producing countries, will likely have a significant effect on prices

2 The data were obtained from Tick Data, Inc., which uses data from Globex.
3 The results for other specifications are available from the authors upon request.

Table 1
Descriptive statistics of the BPV.

CO HO HUXB

Mean 0.015 0.015 0.016
Median 0.014 0.014 0.015
s 0.007 0.006 0.007
Skewness 1.799 1.430 1.725
Kurtosis 5.812 5.950 5.992

of crude oil and hence its volatility. Similar shocks may influence
the demand of oil products, mainly the bursts of economic bubbles,
subsequent crises, or local or international regulations of fossil fuels
(Kilian, 2009).

Second, elements that are endogenous to oil derivatives produc-
tion and the nature of such production may cause changes in demand
volatility. Namely, the amount of inventory will likely smooth out
oil prices, as with sufficient inventories, refineries can wait until the
short-term price changes disappear from the market, hence decreas-
ing the short-term swings in volatility. Weather-related events
might influence the functioning of refineries as well, as shown during
the hurricane seasons in the US (Kilian and Murphy, 2014).

Third, part of the literature suggests that there is an increased
involvement of financial institutions within the oil commodity
market. Supposing the involvement is tangible, the volatility of oil
commodity prices will be affected any time the financial institutions
start heavily rebalancing their portfolios. Thus, any economic shock
will propagate to the system (Kilian and Murphy, 2014; Singleton,
2013).

Lastly, demand of oil products is dependent on how the world
economy fares. Higher world growth means higher demand for
energy fuels and in turn higher volatility of oil and its products.
This commonality that influences both supply and demand, however,
should only emerge in spectral weights of the series and not change
the fundamental connections within the system, i.e., not change the
systemic risk (Hamilton, 1983, 1996; Kilian, 2010).

In the subsequent results, we refer to the ensemble of shocks as
either supply-side or demand-side shocks. We allow ourselves this
comfort, as the purpose of the paper is not to uncover the precise
sources of the shocks but to underpin the dynamic changes in the
fundamental connections between the oil markets over time. The lit-
erature on the issue of identifying the precise sources of shocks has
been presented in the literature review.

4.3. Interpretation strategy

In the interpretation that follows, one of the tacit assumptions is
that positive shock to volatility in one of the assets in our systems
cannot have a negative impact on the volatility of other assets, i.e.,
if there is a shock that increases the volatility of crude oil, the same
shock cannot be a cause for decreased volatility in the other two
assets.

This is important mainly because patiently observing the con-
nectedness measure alone does not imply per se that increased
connectedness also means higher average volatility. On the contrary,
if we had two assets connected in complementary fashion, meaning
that increases in one asset’s volatility would be outweighed by
decreases in the second asset’s volatility, the average volatility in
the system could be lower than for non-connected series. The mea-
sure evaluates the importance of cross coefficients in the VAR system
whether negative or positive. To properly address this issue, we need
theoretical assumptions that elicit meaning from the measure.
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For this reason, let us look at how prices can be obtained for the
individual assets in our case. Suppose that the prices of the three
commodities are functions as follows:

pCO =f (drilling cost, transportation cost, storage cost,

demand gasoline + demand heating oil + demand other,

external shocks)

pHO =f (pCO, refinement cost, transportation cost, storage cost,

demand heating oil)

pGO =f (pCO, refinement cost, transportation cost, storage cost,

demand gasoline).

We are heavily inspired by the previous literature in the field that
addressed the issues of the structure of the oil market.

Assuming the linearity of the price function, the derivation of
the volatility of price is straightforward. Hence, the only way one
might obtain lower volatility in one asset through shock to the
other asset would be through covariance of elements of the pricing
equation. However, we suggest that the increase in costs of one type
never directly decreases the price of other components. This leads to
non-negative covariances.

In this framework, a positive shock to the variance of one asset
must have a positive impact. Therefore, we interpret the following
results bearing in mind that increased connectedness in volatilities
also means increased overall exposure to volatility and hence higher
systemic risk.

4.4. Overall frequency connectedness

We start the empirical findings by the interpretation of the over-
all frequency decomposed connectedness. The rightmost picture in
Fig. 1 shows how the overall connectedness effect is decomposed
into two parts. The short-term connectedness ranges from 10% to
30%, and in most, part of the sample is less important than the long-
term connectedness that ranges from 20% to 50%. Before the crisis, a
pattern emerges, where the short-run connectedness of the system

is steadily increasing in importance, while the long-run connected-
ness decreases in importance. This, however, rapidly changes within
the crisis period.

During the crisis period, the long-run connectedness surges,
while the short-run connectedness decreases. It would be tempting
to conclude that the fundamental connectedness within the system
changes; however, looking at the other two pictures falsifies that
hypothesis. Observing the within frequency band spillovers, we see
that during the crisis, both long-term and short-term within connec-
tions actually increased. The weights decomposition then comple-
ments this picture, showing where such dynamics originate. It is not
that the within connectedness would completely change during the
crisis; it is the importance of the respective parts of the spectra that
change. Because crisis periods are characterized by long slumps, the
importance in the long run becomes prevailing during those periods.

Economically, the frequency decomposed connectedness is most
important, as economic actors have to account for the nature of
the series and the system connectedness as shown by the within-
frequency connectedness. For qualitative insights into the behavior
of the oil-products market and risk transmission within it, it is of
paramount importance to look at the within-frequency connected-
ness, as it shows the fundamental risk transmission and the weights
that show which part of the risk transmissions are important.

In the within connectedness, we can see then that the risk con-
nectedness increases over time in the short run, i.e., holding positions
that are shorter than one week are becoming more and more risky
from the systemic risk point of view. Said otherwise, a singular
increase in volatility in one of the elements in the series induces
volatility in the other series in the short run more and more over
time. However, disregarding crisis, there is a decreasing tendency
in the amount of risk taken in the long positions over the long run.
Moreover, as intuition would suggest, the systemic risk increases
rapidly during the crisis; as uncertainty accumulates, any informa-
tion is being scrutinized and processed more carefully, thus inducing
increased connectedness.

4.5. Directional frequency spillovers

In Fig. 2, we present the disaggregated directional effects of
information shocks TO and FROM other elements of the system.

Fig. 1. Overall connectedness of crude oil, heating oil, and gasoline. The respective parts correspond to parts of Eq. (14). The left figure shows the within connectedness measure
(Cd), the middle figure shows spectral weights (C(d)), and the right figure shows the frequency connectedness (C̃d). The top lines denoted as a) show the measures on the frequency
band of up to a week (one to five days). The bottom lines denoted as b) show the measure on the frequency band from one week to two years (six and more days to 500 days). The
shaded 10% confidence bands are based on parametric bootstrap.



214 T. Křehlík, J. Baruník / Energy Economics 65 (2017) 208–218

Fig. 2. Directional connectedness of crude oil (CO), heating oil (HO), and gasoline (HUXB). The left figure shows the within connectedness measure, and the right figure shows
the frequency connectedness. The top lines denoted as a) show the measures on the frequency band of up to a week (one to five days). The bottom lines denoted as b) show the
measure on the frequency band from a week to two years (six and more days to 500 days). The shaded 10% confidence bands are based on parametric bootstrap.

The most interesting are the relevant figures that investigate the
contribution of shocks FROM other elements to crude oil and TO the
derivatives from crude oil, as they show how demand-side shocks
influence the supply side and how the supply side influences the
demand side, respectively.

Starting with the shocks FROM the products of crude oil to crude
oil, depicted in the upper left part of Fig. 2a, it is apparent that within
the frequency band of up to one week, the crude oil volatility is
increasingly influenced by the shocks from the demand side (from
the volatility of the other two assets). Numerically, this results in
an increase in within connectedness from 8% to 20% over the course
of 20 years. This picture is consistent with possible financialization

supporting Singleton (2013) and Masters and White (2008), as big
financial institutions are much more zsensitive to movements in
volatility and also willing to rebalance their positions more often.
Long-term connectedness, however, remains relatively stable until
the economic crisis of 2008. As gasoline and heating oil are prod-
ucts of oil and signify demand after products that are produced in
the same production process over many years, it would be surprising
if the long-term impact of shocks should be significantly changing
under conditions of a stable economy. With the advent of crisis,
however, the demand shocks become an important signal about the
state of economy for the supply side, hence the increased within
connectedness in both the short and long runs.
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Fig. 3. Pairwise within connectedness of crude oil (CO), heating oil (HO), and gasoline (HUXB). The left column shows the within connectedness measure, and the right column
shows the frequency connectedness. The top lines denoted as a) show the measures on the frequency band of up to a week (one to five days). The bottom lines denoted as b) show
the measure on the frequency band from a week to two years (six and more days to 500 days). The shaded 10% confidence bands are based on parametric bootstrap.
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Fig. 4. Ratio of within connectedness with superimposed linear fit. The first row contains the TO connectedness, and the second line contains the FROM connectedness.

These findings are complemented by the figure describing how
the shock TO crude oil influences the other two assets in total,
depicted as the upper right picture of Fig. 2b; there is only a slight
increase in connectedness over the pre-2008 period, with a high
increase during the crisis in the short run. This means that any infor-
mation shocks into crude oil get transmitted to the products of crude
oil very quickly. On the contrary, in the long run, the connectedness
trends downward, most probably signifying that the economies are
nowadays better able to offset any long-run effects of shocks to oil
by switching to other fuels.

The rest of the plots support the previous findings. Shocks FROM

the other two assets to heating oil and gasoline in the short run move
around without a significant trend over the pre-crisis period. This
means that neither the crude oil nor the complementary products
affect the given asset in profoundly different ways over time. The
overall changes are hence mostly caused by the amount of variance
that is concentrated on various parts of the spectra. Shocks TO the
crude oil and complementary asset are significantly tending upwards
in the short run, reflecting the increase in the influence of product
volatility for the volatility of the crude oil.

4.6. Supply side vs. demand side shocks

As suggested earlier, the system is useful for showing the cyclical
properties of supply and demand shocks. In particular, using the
pairwise connectedness, we can concentrate on pairs of variables and
see which of the two shocks is more important at a given time. All
the PAIRWISE connectedness is depicted in Fig. 3.

We start with the pair of crude oil and heating oil. If the pairwise
connectedness from this pair is negative, it means that the shock
to crude oil influences heating oil more than shock to heating oil
influences crude oil. In the short term, while slightly significant, the
within connectedness is very close to zero, meaning that both shocks
to heating oil (demand side) and to crude oil (supply side) have simi-
lar effects on each other. However, the within connections in the long
run are much more pronounced. During the period of 1992–1996, the
shocks to crude oil (the supply side) influence the demand side much

more than vice versa. The same is true but less pronounced during
the period of 2000–2004.

Turning to the crude oil and gasoline pair, in the beginning of the
sample, the supply side shocks are more important for the volatility
of gasoline than vice versa. However, during the period of 2006–
2009, the gasoline shock becomes more important in the short run,
and this is followed in the period 2009–2011 by dominance of the
gasoline shocks in the pair in the long run.

The last pair including heating oil and gasoline reveals yet
another dependence pattern. From the beginning of the sample until
year 1996, the relative importance of the shocks is mostly non-
distinguishable from zero. In the period 1996–2000, both in the long
run and in the short run, the heating oil dominates in terms of the
importance of the shocks in the pair. Another important peak is in
the long run in the period 2009–2011.

The absolute connectedness of the system is in most cases only an
amplified version of the within connectedness, as a brief glance at the
right column warrants. Hence, in relative terms, the structure of the
within connectedness is the driving force behind the time dynamics.

4.7. Short term and long term importance

Interestingly, in all the observed measures, the importance of the
short-term component, i.e., movements up to a week, considerably
increase over time both in the within connectedness and in the fre-
quency connectedness. We demonstrate this in Fig. 4 that shows
the ratios for within FROM and within TO connectedness for all three
commodities with superimposed linear regression over the whole
sample.4

Hence, a singular shock to either one of the oil-commodities is
more prone to causing movements that clear within one week’s time.
With the weights following a similar pattern, this is good news for
long-term investors, as their exposure to systemic risk over the long
term has decreased. We may only hypothesize over the sources of

4 The ratios in the non-within measure suggest the same qualitative interpretation.
The reader can refer to Fig. 6.
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Fig. 5. Logarithmic bi-power variation.

the profound change. The market may have become more efficient in
realizing and quickly clearing the price changes, which would anec-
dotally point to higher involvement of financial institutions. Should
the world economy become less dependent on oil in the long run or
experience less uncertainty about the sufficiency of future supplies
of oil, shocks to volatilities will have lower long-term effects than
they would have otherwise.

Despite concentrating on the within frequency connectedness, as
it pertains more to the fundamental understanding of the risk trans-
mission regardless of the frequency properties within the window,
our conclusions would only be stronger. Because the spectral weights
of the system increase pre-crisis, we would obtain even steeper
estimates of the growth of relevance pre-crisis. During the period

2008–2014, the results would be hazier because of the extreme
weights on the long-term movements.

5. Conclusions

The oil commodity markets are currently one of the most impor-
tant commodity markets, as they hugely influence economies in
terms of determining a big share of the prices of transport and
energy. In this paper, we illustrate how the energy volatility markets
have changed their spectral properties over the last 25 years. Why do
we care about cyclical properties of volatility spillovers, and what are
the implications for investors, regulators, and facility operators? As
volatility is directly translated to risk, substantial changes in volatil-
ity and its spillovers across oil-related products are able to negatively
impact risk-averse investors. Hence, knowledge about the volatility
connectedness at different frequencies has important implications
for investors and financial institutions in terms of portfolio con-
struction and risk management at various investment horizons.
Additionally, frequency dynamics may be important for accurate
asset pricing models and hedging strategies (Dew-Becker and Giglio,
2016). Because volatility is directly tradable using swaps and futures,
it is of direct interest for investors and practitioners to be able to
reduce risks with help of diversification. Furthermore, connected-
ness of volatility is closely related to market co-movements, and this
phenomenon becomes pronounced during periods of high uncer-
tainty when an unusually sharp increase in market volatility spills
across other markets. Analyzing and measuring the connectedness
of volatility due to shocks with heterogeneous frequency responses
can provide an “early warning system” for crises and map the
development of existing crises (Diebold and Yilmaz, 2012). Proper
knowledge of volatility transmission mechanisms then becomes a
segment of information that is useful for regulators, operators, and
policy makers that may lead to the introduction of regulatory and
institutional rules to reduce the cross-market impact of excessive
price movements.

In terms of material results, we document increasing importance
of the effects of shocks up to one week in overall connectedness, both
in the within frequency band and in absolute terms. This increase
correlates with the financialization of the commodity markets (Tang
and Wei, 2012; Büyükşahin and Michel, 2014). An increased partic-
ipation of financial institutions in the commodity markets should
cause faster reactions to price shocks because of the exploitation of
possible arbitraging opportunities arising from deviations of prices
that arise because of the shocks. Such behavior would increase short-
term volatility and hence short-term connectedness of the markets.

The long-run effects (one week to two years) of shocks are slowly
losing importance over the last two decades, with the exception of
the crisis period in 2008 and several subsequent years. Understand-
ably, during the crisis, uncertainty emerges, and any information is
processed more carefully. In absolute terms, the connectedness in
the short run decreased in the crisis primarily because of long-run
changes in the levels of volatility. This finding has an important bear-
ing for systemic risk in cases where oil and its products are involved,
as it is more and more important to model the high-frequency
aspects of the volatility.

Moreover, we document this trend of growing importance of
movements of up to one week across all the directional measures.
Hence, this finding not only applies to the system connectedness
as a whole but also to how individual assets process risk from the
demand or supply side of the market. The change to shorter-run
connectedness is proved to be profound and present in all aspects
of the system. Finally, we demonstrate that the supply-side shocks
dominate in terms of how strong the elicited responses are only in
several cases in the dataset, and it is only on rare occasions that
demand-side shocks dominate the supply-side shocks. Such occur-
rence only happened during the period 2006–2008 in the short term,
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Fig. 6. Ratio of absolute connectedness to superimposed linear fit. The first row contains the TO connectedness, and the second row contains the FROM connectedness.

confirming the findings of Kilian and Murphy (2014) that demand
signals were driving the market during that period.

While the methodology is flexible enough, it inherits the limits
of the classical vector autoregression framework; hence, one should
carefully treat the estimation procedure before blindly interpret-
ing the resulting connectedness index. Nevertheless, an applied
econometrician aware of the classical time series procedures may
enjoy new developments waiting for discovery, as it is tempting to
look at the important problems discussed in the previous paragraphs
of the conclusion with the lens of the frequency tools provided in this
paper. In this respect, our work opens many interesting avenues to
be explored.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.eneco.2017.05.003.
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