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Abstract: This work studies wavelet-based Whittle estimator of the fractionally integrated exponential gen-
eralized autoregressive conditional heteroscedasticity (FIEGARCH) model often used for modeling long 
memory in volatility of financial assets. The newly proposed estimator approximates the spectral density 
using wavelet transform, which makes it more robust to certain types of irregularities in data. Based on an 
extensive Monte Carlo study, both behavior of the proposed estimator and its relative performance with 
respect to traditional estimators are assessed. In addition, we study properties of the estimators in presence 
of jumps, which brings interesting discussion. We find that wavelet-based estimator may become an attrac-
tive robust and fast alternative to the traditional methods of estimation. In particular, a localized version of 
our estimator becomes attractive in small samples.
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1  Introduction
During past decades, volatility has become one of the most extensively studied variables in finance. This enor-
mous interest has mainly been spurred by the importance of volatility as a measure of risk for both academ-
ics and practitioners. Despite numerous modeling and estimation approaches developed in the literature, 
there are many interesting aspects of estimation waiting for further research. One area of lively discussions 
is estimation of parameters in long memory models that capture persistence of volatility time series. This 
persistence belongs to the important stylized facts, as it implies that shock in the volatility will impact future 
volatility over a long horizon. The FI(E)GARCH extension (Bollerslev and Mikkelsen 1996) to the original  
(G)ARCH modeling framework (Engle 1982; Bollerslev 1986) was shown to capture this empirically observed 
correlation well. In our work, we contribute to the discussion with interesting alternative estimation frame-
work for the FIEGARCH model based on wavelet approximation of likelihood function.

Although traditional maximum likelihood (ML) framework for parameters estimation is desirable due 
to its efficiency, an alternative approach, Whittle estimator can be employed (Zaffaroni 2009). The Whittle 
estimator is obtained by maximizing frequency domain approximation of the Gaussian likelihood function, 
the so-called Whittle function (Whittle 1962), and although it can not attain better efficiency, it may serve as 
a computationally fast alternative to ML for complex optimization problems.

Traditionally, Whittle estimators use likelihood approximations based on Fourier transform. Whereas 
this is accurate alternative to be used in many applications, in finance, non-stationarities and significant 
time-localized patterns in data can emerge. Jensen (1999) provides an alternative type of estimation based on 
approximation of likelihood function using wavelets, which are time localized and can better approximate 
spectral density.
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2      L. Kraicová and J. Baruník: Estimation of long memory in volatility using wavelets

Favorable properties of wavelets has been increasingly used for estimation as well as testing strategies 
in economics and finance. Gençay and Gradojevic (2011) use wavelets to address error-in-variables problem 
in a classical linear regression setting, Tseng and Gençay (2014) further estimate linear models with a time-
varying parameter. Using spectral properties of time series, Gencay and Signori (2015) proposes a new family 
of portmanteau tests for serial correlation based on wavelet decomposition, and Fan and Gençay (2010) new 
wavelet approach to testing the presence of a unit root in a stochastic process. In a high frequency econo-
metrics literature, Fan and Wang (2007), Xue, Gençay, and Fagan (2014), and Barunik and Vacha (2015) use 
wavelets successfully in jump detection, and estimation of realized volatility at different scales. Barunik, 
Krehlik, and Vacha (2016) build a multi-scale model with jumps to forecast volatility, and Barunik and Vacha 
(2016) further the research in estimation of wavelet realized covariation as well as co-jumps.

Compared to the wide range of studies on semi-parametric Wavelet Whittle estimators [for relative per-
formance of local FWE and WWE of ARFIMA model see e.g. Faÿ et  al. (2009) or Frederiksen and Nielsen 
(2005) and related works], literature assessing performance of their parametric counterparts is not extensive. 
Though, results of the studies on parametric WWE completed so far are promissing. Jensen (1999) introduces 
wavelet Whittle estimation (WWE) of ARFIMA process, and compares its performance with traditional Fou-
rier-based Whittle estimator. He finds that estimators perform similarly, with an exception of MA coefficients 
being close to boundary of invertibility of the process. In this case, Fourier-based estimation deteriorates, 
whereas wavelet-based estimation retains its accuracy. Percival and Walden (2000) describe a wavelet-based 
approximate MLE for both stationary and non-stationary fractionally differenced processes, and demon-
strates its relatively good performance on very short samples (128 observations). Whitcher (2004) applies 
WWE based on a discrete wavelet packet transform (DWPT) to a seasonal persistent process and again finds 
good performance of this estimation strategy. Heni and Mohamed (2011) apply this strategy on a FIGARCH-
GARMA model, further application can be seen in Gonzaga and Hauser (2011).

Literature focusing on WWE studies various models, but estimation of FIEGARCH has not been fully 
explored yet with exception of Perez and Zaffaroni (2008) and Zaffaroni (2009). These authors success-
fully applied traditional Fourier-based Whittle estimators of FIEGARCH models, and found that Whittle 
estimates perform better in comparison to ML in cases of processes close to being non-stationary. Authors 
found that while ML is often more efficient alternative, FWE outperforms it in terms of bias mainly in case 
of high persistence of the processes. Hence Whittle type of estimators seem to offer lower bias at cost of 
lower efficiency.

In our work, we contribute to the literature by extending the study of Perez and Zaffaroni (2008) using 
wavelet-based Whittle estimator (Jensen 1999). The newly introduced WWE is based on two alternative approxi-
mations of likelihood function. Following the work of Jensen (1999), we propose to use discrete wavelet trans-
form (DWT) in approximation of FIEGARCH likelihood function, and alternatively, we use maximal overlap 
discrete wavelet transform (MODWT). Moreover, we also study the localized version of WWE. In an experi-
ment setup mirroring that of Perez and Zaffaroni (2008), we focus on studying small sample performance of 
the newly proposed estimators, and guiding potential users of the estimators through practical aspects of 
estimation. To study both small sample properties of the estimator and its relative performance to traditional 
estimation techniques under different situations, we run extensive Monte Carlo experiments. Competing esti-
mators are Fourier-based Whittle estimator (FWE), and traditional maximum likelihood estimator (MLE). In 
addition, we also study the performance of estimators under the presence of jumps in the processes.

Our results show that even in the case of simulated data, which follow a pure FIEGARCH process, and 
thus do not allow to fully utilize the advantages of WWE over its traditional counterparts, the estimator per-
forms reasonably well. When we focus on the individual parameters estimation, in terms of bias the perfor-
mance is comparable to traditional estimators, in some cases outperforming FWE. Localized version of our 
estimator using partial decomposition up to five scales gives the best results in small samples, whereas it is 
preferable to use the estimator with full information in large samples. In terms of forecasting performance, 
the differences are even smaller. The exact MLE mostly outperforms both of the Whittle estimators in terms of 
efficiency, with just rare exceptions. Yet, due to the computational complexity of the MLE in case of large data 
sets, FWE and WWE thus represent an attractive fast alternatives for parameter estimation.
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2  �Usual estimation frameworks for FIEGARCH(q, d, p)

2.1  �FIEGARCH(q, d, p) process

Observation of time variation in volatility and consecutive development of models capturing the conditional 
volatility became one of the most important steps in understanding risk in stock markets. Original auto
regressive conditional heteroskedastic (ARCH) class of models introduced in the seminal Nobel Prize winning 
paper by Engle (1982) spurred race in development of new and better procedures for modeling and forecast-
ing time-varying financial market volatility [see e.g. Bollerslev (2008) for a glossary]. The main aim of the 
literature was to incorporate important stylized facts about volatility, long memory being one of the most 
pronounced ones.

In our study we focus on one of the important generalizations capturing long memory. Fractionally inte-
grated exponential generalized autoregressive conditional heteroscedasticity, FIEGARCH(q, d, p) models log-
returns 1{ }Tt tε =  conditionally on their past realizations as:

	 1/2
t t tz hε = � (1)

	 1ln( ) ( ) ( )t th L g zω Φ −= + � (2)

	 ( ) [| | (| |)],t t t tg z z z E zθ γ= + − � (3)

where zt is an N(0, 1) independent identically distributed (i.i.d.) unobservable innovations process, εt is 
observable discrete-time real valued process with conditional log-variance process dependent on the past 
innovations 2

1( ) ,t t tE hε− =  and L is a lag operator Ligt = gt−i in Φ(L) =(1 − L)−d[1 + α(L)][β(L)]−1. The polynomials 
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− = − − − +∑  with Γ (.) being gamma function.

The model is able to generate important stylized facts about real financial time series data including 
long memory, volatility clustering, leverage effect and fat tailed distribution of returns. While correct model 
specification is important for capturing all the empirical features of the data, feasibility of estimation of 
its parameters is crucial. Below, estimation methods are described together with practical aspects of their 
application.

2.2  �(Quasi) maximum likelihood estimator

As a natural benchmark estimation framework, maximum likelihood estimation will serve to us in the com-
parison exercise. For a general zero mean, stationary Gaussian process 1{ } ,T

t tx =  the maximum likelihood 
estimator (MLE) minimizes following (negative) log-likelihood function LMLE(ζ) with respect to vector of para-
meters ζ

	
ζ π Σ Σ−= + + ′ 1

MLE
1 1( ) ln(2 ) ln| | (  ),

2 2 2T t T t
T x xL

�
(4)

where ΣT is the covariance matrix of xt, |ΣT |  is its determinant and ζ is the vector of parameters to be estimated.
While MLE is the most efficient estimator in the class of available efficient estimators, its practical appli-

cability may be limited in some cases. For long memory processes with dense covariance matrices, it may be 
extremely time demanding, or even unfeasible with large datasets to deal with inversion of the covariance 
matrix. Moreover, solution may be even unstable in the presence of long memory [(Beran 1994), chapter 5], 
when the covariance matrix is close to singularity. In addition, empirical data often does not to have zero 
mean, hence the mean has to be estimated and deducted. The efficiency and bias of the estimator of the 
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mean then contributes to the efficiency and bias of the MLE. In case of long-memory processes it can cause 
significant deterioration of the MLE (Cheung and Diebold 1994). Both these issues have motivated construc-
tion of alternative estimators, usually formulated as approximate MLE and defined by an approximated log-
likelihood function (Beran 1994; Nielsen and Frederiksen 2005).

Most important, MLE can lead to inconsistent estimates of model parameters if the distribution of inno-
vation is misspecified. Alternatively, quasi-maximum likelihood estimator (QMLE) is often considered, as it 
provides consistent estimates even if the true distribution is far from Gaussian, provided existence of fourth 
moment. Under high-level assumptions, Bollerslev and Wooldridge (1992) studied the theory for GARCH(p, q), 
although asymptotic theory for FIEGARCH process is not available.

The reduced-form negative log-likelihood function assuming log-returns εt to follow a Gaussian, zero-
mean process of independent variables, ΣT being diagonal with conditional variances ht as its elements, and 
determinant reducing to a sum of its diagonal terms, can be written as:

	

2

(Q)MLE
1

( ) ln ( ) ,
( )

T
t

t
t t

h
h

ε
ζ ζ

ζ=

 
= + 

 
∑L

�
(5)

Then the (Q)MLE estimator is defined as (Q)MLE (Q)MLE
ˆ argmin ( ),

ζ Θ
ζ ζ∈= L  where Θ is the parameter space.

While QMLE is feasible estimator in case of short-memory processes, when long memory is present, rela-
tively large truncation is necessary to prevent a significant loss of information about long-run dependencies 
in the process declining slowly. In our Monte Carlo experiment, we follow Bollerslev and Mikkelsen (1996) 
and use sample volatility as pre-sample conditional volatility with truncation at lag 1000. Given the complex-
ity of this procedure, the method remains significantly time consuming.

2.3  �Fourier-based Whittle estimator

Fourier-based Whittle estimator (FWE) serves as spectral-based alternative, where the problematic terms in 
the log-likelihood function |ΣT |  and 1 ,t T tx xΣ−′  are replaced by their asymptotic frequency domain representa-
tions. Orthogonality of the Fourier transform projection matrix ensures diagonalization of the covariance 
matrix and allows to achieve the approximation by means of multiplications by identity matrices, simple 
rearrangements and approximation of integrals by Riemann sums [see e.g. Beran (1994)]. The reduced-
form approximated Whittle negative log-likelihood function for estimation of parameters under Gaussianity 
assumption is:

	 1
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where f(λj, ζ) is the spectral density of process xt evaluated at frequencies λj = j/T (i.e. 2πj/T in terms of angular 
frequencies) for j = 1, 2, … m* and m* = max{m ∈ Z; m ≤(T − 1)/2}, i.e. λj < 1/2, and its link to the variance-covar-
iance matrix of the process xt is:

	
1/2 1/22 ( ) 2 ( )
1/2 0
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t sx x f e d f e dπλ πλλ ζ λ λ ζ λ− −

−
= =∫ ∫ � (7)

see Percival and Walden (2000) for details. The I(λj) is the value of periodogram of xt at jth Fourier frequency:

	

2
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1
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and the respective Fourier-based Whittle estimator is defined as ˆ argmin ( ).W W
ζ Θ

ζ ζ
∈

= L 1

1 [For a detailed FWE treatment see e.g. Beran (1994)].
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It can be shown that the FWE has the same asymptotic distribution as the exact MLE, hence is asymptoti-
cally efficient for Gaussian processes (Fox and Taqqu 1986; Dahlhaus 1989, 2006). In the literature, FWE is 
frequently applied to both Gaussian and non-Gaussian processes (equivalent to QMLE), whereas even in the 
later case, both finite sample and asymptotic properties of the estimator are often shown to be very favorable 
and the complexity of the computation depends on the form of the spectral density of the process. Next to a 
significant reduction in estimation time, the FWE also offers an efficient solution for long-memory processes 
with an unknown mean, which can impair efficiency of the MLE. By elimination of the zero frequency coef-
ficient FWE becomes robust to addition of constant terms to the series, and thus in case, when no efficient 
estimator of the mean is available, FWE can become an appropriate choice even for time series where the MLE 
is still computable within reasonable time.

Concerning the FIEGARCH estimation, the FIEGARCH-FWE is, to the authors’ best knowledge, the only 
estimator, for which an asymptotic theory is currently available. Strong consistency and asymptotic nor-
mality are established in Zaffaroni (2009) for a whole class of exponential volatility processes, even though 
the estimator works as an approximate QMLE of a process with an asymmetric distribution, rather than an 
approximate MLE. This is due to the need to adjust the model to enable derivation of the spectral density of 
the estimated process. More specifically, it is necessary to rewrite the model in a signal plus noise form [for 
details see Perez and Zaffaroni (2008) and Zaffaroni (2009)]:

	

2 2
1

0

ln( ) ln( ) ( )t t t s t s
s

x z g zε ω Φ
∞

− −
=

= = + +∑
�

(9)

	 ( ) [| | (| |)]t t t tg z z z E zθ γ= + − � (10)

	 1
[2]( ) (1 ) [1 ( )][ ( )] .dL L L LΦ α β− −= − + � (11)

where for FIEGARCH(1, d, 2), it holds that α[2](L) = αL, and β(L) = 1 − βL. The process xt then enters the FWE 
objective function instead of the process εt. The transformed process is derived together with its spectral 
density in the on-line appendix.

3  �Wavelet Whittle estimation of FIEGARCH(q, d, p)
Although FWE seems to be a advantageous alternative for estimation of FIEGARCH parameters (Perez and 
Zaffaroni 2008), its use on real data may be problematic in some cases. FWE performance depends on the 
accuracy of the spectral density estimation, which may be impaired by various time-localized patterns in the 
data diverging from the underlying FIEGARCH process due to a fourier base. Motivated by the advances in the 
spectral density estimation using wavelets, we propose a wavelet-based estimator, the wavelet Whittle esti-
mator (WWE), as an alternative to FWE. As in the case of FWE, the WWE effectively overcomes the problem 
with the |ΣT |  and 1

t T tx xΣ−′  by means of transformation. The difference is that instead of using discrete Fourier 
transform (DFT), it uses discrete wavelet transform (DWT).2

3.1  �Wavelet Whittle estimator

Analogically to the FWE, we use the relationship between wavelet coefficients and the spectral density of 
xt to approximate the likelihood function. The main advantage is, compared to the FWE, that the wavelets 
have limited support, and thus, the coefficients are not determined by the whole time series, but by a limited 
number of observations only. This increases the robustness of the resulting estimator to irregularities in the 

2 For the reader’s convenience, the discrete wavelet transform (DWT) is briefly introduced in an on-line appendix.
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data well localized in time, such as jumps. These may be poorly detectable in the data, especially in the case 
of strong long memory that itself creates jump-like patterns, but at the same time, their presence can signifi-
cantly impair the FWE performance. On the other hand, the main disadvantages of using the DWT are the 
restriction to sample lengths 2j and the low number of coefficients at the highest levels of decomposition j.

Skipping the details of wavelet-based approximation of the covariance matrix and the detailed WWE 
derivation, which can be found e.g. in Percival and Walden (2000), the reduced-form wavelet-Whittle objec-
tive function can be defined as:

	 1
, ,( ) ln| | ( )WW T j k T j kW Wζ Λ Λ−= + ′L � (12)
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(13)

where Wj, k are the wavelet (detail) coefficients, and ΛT is a diagonal matrix with elements {C1, C1, …, C1, C2, 

…, CJ}, where for each level j, we have Nj elements )1

1/2

1/2
2 2 ( , ) ,

j

j

j
jC f dλ ζ λ

+

 = ∫  where Nj is the number of DWT 

coefficients at level j. The wavelet Whittle estimator can then be defined as ˆ argmin ( ).WW WW
ζ Θ

ζ ζ
∈

= L

Similarly to the fourier-based Whittle, the estimator is equivalent to a (Q)MLE of parameters in the prob-
ability density function of wavelet coefficients under normality assumption. The negative log-likelihood 
function can be rewritten as a sum of partial negative log-likelihood functions respective to individual levels 
of decomposition, whereas at each level, the coefficients are assumed to be homoskedastic, while across 
levels the variances differ. All wavelet coefficients are assumed to be (approximately) uncorrelated (the DWT 
approximately diagonalizes the covariance matrix), which requires an appropriate filter choice. Next, in our 
work the variance of scaling coefficients is excluded. This is possible due to the WWE construction, the only 
result is that the part of the spectrum respective to this variance is neglected in the estimation. This is optimal 
especially in cases of long-memory processes, where the spectral density goes to infinity at zero frequency, 
and where the sample variance of scaling coefficients may be significantly inaccurate estimate of its true 
counterpart due to the embedded estimation of the process mean.

3.2  �Full vs. partial decomposition: a route to optimal decomposition level

Similarly to the omitted scaling coefficients, we can exclude any number of the sets of wavelet coefficients at 
the highest and/or lowest levels of decomposition. What we get is a parametric analogy to the local wavelet 
Whittle estimator (LWWE) developed in Wornell and Oppenheim (1992) and studied by Moulines, Roueff, and 
Taqqu (2008), who derive the asymptotic theory for LWWE with general upper and lower bound for levels 
of decomposition {j ∈ 〈L, U〉; 1 ≤ L ≤ U ≤ J}, where J is the maximal level of decomposition available given the 
sample length.

Although, in the parametric context, it seems to be natural to use the full decomposition, there are 
several features of the WWE causing that it may not be optimal. To see this, let’s rewrite the WWE objective 
function as:

	

2
, ,DWT2
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ˆ
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WW j W j
j W j

N
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where 2
, ,DWT( )W jσ ζ  is the theoretical variance of jth level DWT coefficients and 2

, ,DWT
ˆ
W jσ  is its sample counter-

part, ζ is the vector of parameters in 2
, ,DWT( )W jσ ζ  and {Wj,DWT; j = 1, … J} are vectors of DWT coefficients used 

to calculate 2
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ˆ .W jσ  Using the definition of wavelet variance 1
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using the fact that the optimization problem does not change by dividing the right-hand side term by N*, the 
total number of coefficients used in the estimation, the LWW(ζ) above is equivalent to

	

2
, ,DWT2

, ,DWT 2
1 , ,DWT

ˆ
( ) ln ( ) ,

( )

J
j W j

WW W j
j W j

N
N

υ
ζ σ ζ
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∗

∗
=

 
= +   
∑L

�
(15)

where 2
, ,DWT( )W jυ ζ  is the theoretical jth level wavelet variance and 2

, ,DWTˆW jυ  is its estimate using DWT 
coefficients.

The quality of our estimate of ζ depends on the the quality of our estimates of 2
, ,DWT( )W jσ ζ  using sample 

variance of DWT coefficients, or equivalently, on the quality of our estimates of 2
, ,DWT( )W jυ ζ  using the rescaled 

sample variance of DWT coefficients, whereas each level of decomposition has a different weight (Nj/N*) in 
the objective function. The weights reflect the number of DWT coefficients at individual levels of decompo-
sition and, asymptotically, the width of the intervals of frequencies (scales) which they represent [i.e. the 
intervals (2−(j+1), 2−j)].

The problem, and one of the motivations for the partial decomposition, stems from the decreasing 
number of coefficients at subsequent levels of decomposition. With the declining number of coefficients, the 
averages of their squares are becoming poor estimates of their variances. Consequently, at these levels, the 
estimator is trying to match inaccurate approximations of the spectral density, and the quality of estimates 
is impaired. Then the full decomposition, that uses even the highest levels with just a few coefficients, may 
not be optimal. The importance of this effect should increase with the total energy concentrated at the lowest 
frequencies used for the estimation and with the level of inaccuracy of the variance estimates. To get a pre-
liminary notion of the magnitude of the problem in the case of FIEGARCH model, see Table 1, and Figure 2 in 
Appendix A, where integrals of the spectral density (for several sets of coefficients) over intervals respective 
to individual levels are presented, together with the implied theoretical variances of the DWT coefficients. 
By their nature, the variances of the DWT coefficients reflect not only the shape of the spectral density (the 
integral of the spectral density multiplied by two), but also the decline in their number at subsequent levels 
(the 2j term). This results in the interesting patterns observable in Figure 2, which suggest to think about both 
the direct effect of the decreasing number of coefficients on the variance estimates and about the indirect 
effect that changes their theoretical magnitudes. This indirect effect can be especially important in case of 
long-memory processes, where a significant portion of energy is located at low frequencies, the respective 
wavelet coefficients variances to be estimated become very high, while the accuracy of their estimates is poor. 
In general, dealing with this problem can be very important in case of small samples, where the share of the 
coefficients at “biased levels” is significant, but the effect should die out with increasing sample size.

One of the possible means of dealing with the latter problem is to use a partial decomposition, which 
leads to a local estimator similar to that in Moulines, Roueff, and Taqqu (2008). The idea is to set a minimal 
required number of coefficients at the highest level of decomposition considered in the estimation and discard 
all levels with lower number of coefficients. Under such a setting, the number of levels is increasing with the 
sample size, as in the case of full decomposition, but levels with small number of coefficients are cut off. 
According to Percival and Walden (2000), the convergence of the wavelet variance estimator is relatively fast, 
so that 128 (27) coefficients should already ensure a reasonable accuracy.3 Though, for small samples (such as 
29) this means a significant cut leading to estimation based on high frequencies only, which may cause even 
larger problems than the inaccuracy of wavelet variances estimates itself. The point is that every truncation 
implies a loss of information about the shape of the spectral density, whose quality depends on the accuracy 
of the estimates of wavelet variances. Especially for small samples, this means a tradeoff between inaccu-
racy due to poor variance estimation and inaccuracy due to insufficient level of decomposition. As far as 
our results for FIEGARCH model, based on partial decomposition suggest, somewhat inaccurate information 
may be still better than no information at all, and consequently, the use of truncation of six lags ensuring 128 

3 Accuracy of the wavelet variance estimate, not the parameters in approximate MLE.
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8      L. Kraicová and J. Baruník: Estimation of long memory in volatility using wavelets

coefficients at the highest level of decomposition may not be optimal. The optimal level, will be discussed 
together with the experiment results.

Next possible solution to the problem can be based on a direct improvement of the variances estimates 
at the high levels of decomposition (low frequencies). Based on the theoretical results on wavelet variance 
estimation provided in Percival (1995) and summarized in Percival and Walden (2000), this should be pos-
sible by applying maximal overlap discrete wavelet transform (MODWT) instead of DWT. The main difference 
between the two transforms is that there is no sub-sampling in the case of MODWT. The number of coef-
ficients at each level of decomposition is equal to the sample size, which can improve our estimates of the 
coefficients’ variance. Generally, it is a highly redundant non-orthogonal transform, but in our case this is not 
an issue. Since the MODWT can be used for wavelet variance estimation, it can be used also for the estimation 
of the variances of DWT coefficients, and thus, it can be used as a substitute for the DWT in the WWE. Using 
the definitions of variances of DWT and MODWT coefficients at level j and their relation to the original data 
spectral density f(λ, ζ) described in Percival and Walden (2000)
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where Nj = T/2j, it follows that
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Then the MODWT-based approximation of the negative log-likelihood function can thus be defined as
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and the MODWT-based WWE estimator as ,MODWT ,MODWT
ˆ argmin .WW WW
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According to Percival (1995), in theory, the estimates of wavelet variance using MODWT can never be 
less efficient than those provided by the DWT, and thus the approach described above should improve the 
estimates.

Next interesting question related to the optimal level of decomposition concerns the possibility to make 
the estimation faster by using a part of the spectrum only. The idea is based on the shape of the spectral 
density determining the energy at every single interval of frequencies. As can be seen in Table 1 and Figure 
2 in Appendix A, for FIEGARCH model, under a wide range of parameter sets most of the energy is concen-
trated at the upper intervals. Therefore, whenever it is reasonable to assume that the data-generating process 
is not an extreme case with parameters implying extremely strong long memory, estimation using a part of 
the spectrum only may be reasonable. In general, this method should be both better applicable and more 
useful in case of very long time-series compared to the short ones, especially when fast real-time estimation 
is required. In case of small samples the partial decomposition can be used as a simple solution to the inaccu-
rate variance estimates at the highest levels of decomposition, but in most cases it is not reasonable to apply 
it just to speed up the estimation.

At this point the questions raised above represent just preliminary notions based mostly on common 
sense and the results of Moulines, Roueff, and Taqqu (2008) in the semi-parametric setup. To treat them 
properly, an asymptotic theory, in our case for the FIEGARCH-WWE, needs to be derived. This should enable 
to study all the various patterns in detail, decompose the overall convergence of the estimates into conver-
gence with increasing sample size and convergence with increasing level of decomposition and to optimize 
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L. Kraicová and J. Baruník: Estimation of long memory in volatility using wavelets      9

the estimation setup respectively. Yet, leaving this for future research, we study the optimal decomposition 
with Monte Carlo simulations to see if we can provide any guidelines.

3.3  �Fourier vs. wavelet approximation of spectral density

Since the relative accuracy of the Fourier- and wavelet-based spectral density estimates determine the relative 
performance of the parameters estimators, it is interesting to see how the sample Fourier- and wavelet-based 
approximations of the spectral density match its true shape. Figure 1 shows the true shape of a FIEGARCH 
spectral density under three different parameter sets, demonstrating the smoothness of this function and 
the importance of the long memory. Figure 1, then provides the wavelet-based approximations based on the 
simple assumption that the spectral density is constant over the whole intervals, equal to the estimated aver-
ages. Using this specification is relevant given the definition of the WWE. Wavelet-based approximations are 
compared with the respective true spectral densities, true averages of these spectral densities over intervals 
of frequencies, as well as with two Fourier-based approximations, one providing point estimates and the 
second estimating the averages over whole intervals. The figures show a good fit of both Fourier-based and 
wavelet-based approximations at most of the intervals, some problems can be seen at the lowest frequencies, 
which supports the idea of partial decomposition. In general, the wavelet-based approximation works well 
especially for processes with well behaved spectral densities without significant patterns well localized in the 
frequency domain, when the average energy over the whole intervals of frequencies represents a sufficient 
information about the shape of the true spectral density. For these processes, the wavelet transform can be 
effectively used for visual data analysis and both parametric and semi-parametric estimation of parameters 
in the spectral density function. More figures for the spectral density approximation are available in the 
online appendix.

4  �Monte Carlo study: optimal decomposition
In order to study how the WWE performs compared to the two benchmark estimators (MLE and FWE), 
we have carried out a Monte Carlo experiment. Each round consisted of 1000 simulations of a FIEGARCH 
process at a fixed set of parameters, and estimation of these parameters by all methods of interest. To main-
tain coherency with previous results, our experiment setup mirrors that of Perez and Zaffaroni (2008). 
In addition, we need to make several choices concerning the WWE application, and we extend the setup 
with longer data sets as it may bring interesting insights [Jensen (1999), Percival and Walden (2000)]. Most 
importantly, we focus on studying the estimators that use partial decomposition to see, if we can gain some 
advantage from it.

4.1  �Practical considerations for WWE application

First, using WWE, the same transformation of the data as in the case of the FWE is necessary. Second, due 
to the flexibility of the DWT, important choices have to be made before the WWE can be applied. The filters 
chosen for the Monte Carlo experiment in our work are the same as those chosen in Percival and Walden 
(2000), i.e. Haar wavelet, D4 (Daubechies) wavelet and LA8 (Least asymmetric) wavelet, but the need of a 
detailed study focusing on the optimal wavelet choice for FIEGARCH WWE is apparent. The only property of 
the filters that was tested before the estimation was their ability to decorrelate the FIEGARCH process, that 
is important for the WWE derivation and its performance [see Percival and Walden (2000), Jensen (1999), 
Jensen (2000) or Johnstone and Silverman (1997)]. Further, we assess the quality of the DWT-based decor-
relation based on the dependencies among the resulting wavelet coefficients. We study estimates of auto-
correlation functions (ACFs) of wavelet coefficients respective to FIEGARCH processes for (T = 211; d = 0.25, 
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10      L. Kraicová and J. Baruník: Estimation of long memory in volatility using wavelets

d = 0.45, d = −0.25) and filters Haar, D4 and LA8. Both sample mean and 95% confidence intervals based on 
500 FIEGARCH simulations are provided for each lag available.4 Next, to avoid the problem with boundary 
coefficients, they are excluded from the analysis; sample sizes considered are: 2k; k = 9, 10, 11, 12, 13, 14 and 
concerning the level of decomposition, both full and partial decomposition are used, the respective results 
are compared. Making all these choices, the WWE is fully specified and the objective function is ready for 
parameters estimation.

4.2  �Results for partial decomposition

A look at comparison of the MLE, FWE and DWT-based WWE using Haar, D4 and LA8  wavelets and full 
decomposition tells us that WWE works fairly well in all setups, with smaller bias in comparison to FWE, 
although small loss in efficiency in terms of RMSE. The overall performance of the wavelet-based estimators 
(WWE using various filters) in the experiment suggests using D4 for 210 and 211 and switching to LA8 for 29 
and {2j; j > 11} in case of long memory in the data (a simple ACF analysis before estimation should reveal this 
pattern). For negative dependence the optimal choice seems to be Haar for 29 and D4 otherwise (with possible 
shift to LA8 for samples longer than 214). While our aim is mainly in studying estimator with partial decompo-
sition, we deffer these results to an online appendix.

Encouraged by the overall performance, we focus on varying number of levels used for the estimation. 
For all sample lengths of (2M, M = 9, 10, …, 14) experiments for levels J ∈(4, 5, … M) have been carried out. 
Results are available for both processes with long memory (d = 0.25 and d = 45), which are of the most inter-
est for practical applications, the case of d = − 0.25 is omitted to keep the extent of simulations reasonable. 
Figures 4–6 show the main results. For the results including mean estimates, respective levels of bias and 
RMSE see tables in online appendix.

As the results suggest, for small samples with length of 29–210, estimation under the restriction to first five 
levels of decomposition leads to better estimates of both d = 0.25 and d = 0.45 in terms of both bias and RMSE 
in comparison to situation when full decomposition is used. With increasing sample size the performance of 
the estimator under partial decomposition deteriorates relatively to that using full decomposition. WWE also 
works better relatively to FWE for all filter specifications.

Comparing the performance of individual filters, in most cases LA8 provides the best sets of estimates 
for both d = 0.25 and d = 0.45, except for the case of 210–213 sample sizes with d = 0.25, where D4 seems to be 
preferred.

We conclude that the results well demonstrate the effects mentioned when discussing the partial 
decomposition in 3.2. We can see how the partial decomposition helps in the case of short samples and how 
the benefits from truncation (no use of inaccurate information) decrease relative to the costs (more weight 
on the high-frequency part of the spectra and no information at all about the spectral density shape at lower 
frequencies) as the sample size increases, as the long-memory strengthens and as the truncation becomes 
excessive. Moreover, the effect becomes negligible with longer samples, as the share of problematic coef-
ficients goes to zero. This is highlighted by Figure 3, where the approximation of the spectral density by 
wavelets is compared to fourier transform. In small samples, approximation is more precise supporting our 
findings.

Yet, the optimal setup choice for small samples is a non-trivial problem that cannot be reduced to a 
simple method of cutting a fixed number of highest levels of decomposition to ensure some minimal number 
of coefficients at each level. Although in case of long samples a nice convergence with both sample size and 
level of decomposition can be seen for all specifications, the results for small samples are mixed. In this latter 
case the convergence with sample size still works relatively well, but the increase in level of decomposition 
does not always improve the estimates.

4 These results can be found in the online appendix.
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5  �Monte Carlo study: jumps and forecasting
Although WWE does not seem to significantly outperform other estimation frameworks in the simple simula-
tion setting, we should not make premature conclusions. Wavelets have been used successfully in detection 
of jumps in the literature (Fan and Wang 2007; Xue, Gençay, and Fagan 2014; Barunik and Vacha 2015, 2016; 
Barunik, Krehlik, and Vacha 2016), hence we assume more realistic scenario for data generating process 
including jumps. Since the evaluation based on individual parameters estimation only may not be the best 
practice when forecasting is the main concern, we analyze also the relative forecasting performance.

5.1  �FIEGARCH-jump model

Jumps are one of the several well known stylized features of log-returns and/or realized volatility time series 
and there is a lot of studies on incorporating this pattern in volatility models [for a discussion see e.g. Mancini 
and Calvori (2012)].

To test the performance of the individual estimators in the case of FIEGARCH-Jump processes, an addi-
tional Monte Carlo experiment has been conducted. The simulations are augmented by additional jumps, 
which do not enter the conditional volatility process, but the log-returns process only. This represents the sit-
uation, when the jumps are not resulting from the long memory in the volatility process, which can produce 
patterns similar to jumps in some cases, as well as they do not determine the volatility process in any way. 
The log-return process is then specified as:

	 1/2 ( ),t t t tz h Jε λ= + � (20)

where the process ht remains the same as in the original FIEGARCH model (Eq. 1) and Jt;t = 1, 2, …, T is a 
Jump process modeled as a sum of intraday jumps, whereas the number of intraday jumps in 1 day follows 
a Poisson process with parameter λ = 0.028 and their size is drawn from a normal distribution N(0, 0.2). The 
Jump process is based on Mancini and Calvori (2012), with parameters slightly adjusted [originally λ = 0.014 
and sizes follow N(0, 0.25)] based on analysis of resulting simulations and comparison with real data. More-
over, unlike in the previous Monte Carlo experiment, a non-zero constant is assumed. Since we would like to 
keep consistency in the research (keep the parameters the same throughout this paper) and at the same time 
to simulate time series as close to the real ones as possible, we have compared our simulated time series with 
real data and found a good match.

5.2  �Forecasting

For each simulation the fitted values and a 1 day ahead forecast per each estimator are calculated. We present 
the mean error, mean absolute deviation and root mean squared error for both the in-sample and out-of-
sample forecasts from 1000 simulations.

Before we report the results, there are two important issues to be discussed. First, one needs to note that 
the process entering the estimation is transformed by logarithm, hence the magnitute of jumps became very 
small relative to the process. Second, to obtain unbiased parameter estimates, we need to first detect and 
extract the jumps from the process. To deal with the jumps we apply one of the well performing wavelet-based 
jump estimators that is based on a universal threshold of Donoho and Johnstone (1994) and that is described 
in detail and successfully applied in Fan and Wang (2007), and Barunik and Vacha (2015) to detect jumps in 
high frequency data, and further utilized in Barunik, Krehlik, and Vacha (2016) in forecasting and Barunik 
and Vacha (2016) in co-jumps detection. When detected, the jumps are replaced by average of the two adja-
cent values. This, of course, is not the best practice in case of large double-jumps, where this transforma-
tion leads to two smaller jumps instead of getting rid of them. Yet, in case of long memory that can produce 
jump-like patterns, which are usually clustered in high volatility intervals, getting rid of the multiple jumps 
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12      L. Kraicová and J. Baruník: Estimation of long memory in volatility using wavelets

may not be the best alternative. So we use this simple transform for our data with moderate jumps. Thus, it is 
important to distinguish between the jump detection and model estimation as two separable tasks.

5.3  �Results: FIEGARCH-Jump

The results of the Monte Carlo experiment with adding jumps to the process are summarized in Tables 2–8. 
Tables 2 and 3 compare MLE, FWE and MODWT-based WWE in terms of individual parameters estimation 
performance. Note we report MODWT instead of DWT in forecasting excercise, as the overall performance of 
the MODWT-WWE is better than that of the DWT-WWE both in terms of bias and RMSE and considering also 
the loss of sample size limitation, the MODWT-WWE is preferred.

Next, focusing on the MLE, FWE and MODWT-WWE relative performance in terms of RMSE for jumps and 
d = 0.25, the MLE, despite being affected by the residual jump effects remains the best estimator followed by 
the two Whittles, which perform comparably, with FWE delivering slightly better results. Yet, the bias of the 
MLE is significant and we would prefer the use of FWE considering both the bias and the RMSE. Moreover, 
in case of longer time series, WWE seems to be the best option due to the faster bias decay. Next, for d = 0.45, 
the MLE performance is very poor and the use of WE is preferable. As expected, the bias and RMSE in case of 
individual parameters estimates as well as the mean absolute deviation and RMSE of the out-of-sample fore-
casts decline and the overall in-sample fit improves with sample size increase and long memory weakening. 
Next, the constant term estimation performance is worth mentioning, since it is very poor in the case of MLE 
and strong long memory, and therefore an ex ante estimation as in the case of FWE and WWE is appropriate.

On the other hand, when we look at the forecasting performance, the results are much more clear. The 
best in all scenarios and by all indicators is the MLE, followed by the FWE and a little less accurate WWE. The 
impact of jumps depends, of course, on the jump estimator performance and in our case, for forecasting, it is 
very limited, although the same cannot be said about the impact on individual parameters estimates.

6  �Conclusion
In this paper, we introduce a new, wavelet-based estimator (wavelet Whittle estimator, WWE) of a FIEGARCH 
model, ARCH-family model allowing for long-memory and asymmetry in volatility, and study its properties. 
Based on several Monte Carlo experiments its accuracy and empirical convergence are examined, as well as 
its relative performance with respect to two traditional estimators: Fourier-based Whittle estimator (FWE) 
and maximum likelihood estimator (MLE). It is shown that even in the case of simulated pure FIEGARCH 
processes, which do not allow to fully utilize the advantages of the WWE, the estimator can work reason-
ably well. In terms of bias, it often outperforms the FWE, while in terms of RMSE the FWE is better. Yet, the 
absolute differences are usually small. As expected, MLE in most casest performs best in terms of efficiency. 
The Whittle estimators outperform the MLE in some cases, usually in situations with negative memory. The 
forecasting performance analysis has a similar conclusion, yielding the differences across estimators even 
smaller. Yet, since the Whittle estimators are significantly faster and the differences in the performance are 
small, they are an attractive alternative to the MLE for large samples. Concerning the optimal WWE settings 
studied, the strength of long memory, sample size and parameter concerned seem to be important for the 
optimal filter (wavelet) choice.

Next, practical aspects of the WWE application are discussed. The main focus is on the problem of 
declining number of wavelet coefficients at subsequent levels of decomposition, which impairs the estimates 
accuracy. Two solutions to this problem are suggested. One is based on a partial decomposition (parametric 
counterpart to local WWE) the other applies an alternative specification of the WWE (using maximal overlap 
discrete wavelet transform, MODWT). We show that the partial decomposition can improve the estimates in 
case of short samples, and make the WWE superior to the FWE (and to the MLE for negative memory), while 
in case of large samples, full decomposition is more appropriate. Yet, the second solution (MODWT-WWE) 
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is argued to be better. Compared to the former method, it ensures the number of coefficients at every level 
equal to the sample size and does not lead to any decline in the share of spectrum used in the estimation 
(information loss). The only cost to bear is a somewhat longer estimation time. As our results suggest, using 
the MODWT instead of the DWT improves the WWE performance in all scenarios.

In addition, we study the properties of estimators under the presence of jumps in the processes. The 
accuracy of individual parameters estimates using MLE is significantly impaired, even if we apply a simple 
data correction; the FWE and the WWE are superior. Yet, based on the forecasting performance, MLE should 
be preferred in all scenarios at least in case of small samples, where it can be computed in reasonable time; 
FWE and WWE can be recommended only as faster alternatives.

It can be concluded that after optimization of the estimation setup, the WWE may become a very attrac-
tive alternative to the traditional estimation methods. It provides a robust alternative to time-localized irreg-
ularities in data. In small samples, due to more precise approximation of spectral density, wavelet-based 
Whittle estimation delivers better parameter estimates.

Acknowledgments: We would like to express our gratitude to Ana Perez, who provided us with the code for 
MLE and FWE estimation of FIEGARCH processes, and we gratefully acknowledge financial support from the 
the Czech Science Foundation under project No. 13-32263S. The research leading to these results has received 
funding from the European Unions Seventh Framework Programme (FP7/2007-2013) under grant agreement 
No. FP7-SSH- 612955 (FinMaP).

A Appendix: Tables and Figures

Table 1: Energy decomposition.

Coefficients   d  ω  α  β  θ  γ

(a) Coefficient sets
 A   0.25  0  0.5  0.5  −0.3  0.5
 B   0.45  0  0.5  0.5  −0.3  0.5
 C   −0.25  0  0.5  0.5  −0.3  0.5
 D   0.25  0  0.9  0.9  −0.3  0.5
 E   0.45  0  0.9  0.9  −0.3  0.5
 F   −0.25  0  0.9  0.9  −0.3  0.5
 G   0.25  0  0.9  0.9  −0.9  0.9
 H   0.45  0  0.9  0.9  −0.9  0.9

  A  B  C  D  E  F  G  H

(b) Integrals over frequencies respective to levels for the coefficient sets from Table 1
 Level 1   1.1117  1.1220  1.0897  1.1505  1.1622  1.1207  1.1261  1.1399
 Level 2   0.5473  0.5219  0.6274  0.4776  0.4691  0.5306  0.6187  0.6058
 Level 3   0.3956  0.3693  0.4330  0.3246  0.3056  0.3959  1.1354  1.3453
 Level 4   0.3029  0.3341  0.2425  0.5559  0.7712  0.3528  2.9558  4.8197
 Level 5   0.2035  0.2828  0.1175  1.0905  2.1758  0.3003  6.0839  13.2127
 Level 6   0.1279  0.2297  0.0550  1.4685  3.9342  0.1965  8.2136  23.4144
 Level 7   0.0793  0.1883  0.0259  1.3523  4.7975  0.0961  7.6026  28.4723
 Level 8   0.0495  0.1584  0.0123  1.0274  4.8302  0.0408  5.8268  28.7771
 Level 9   0.0313  0.1368  0.0059  0.7327  4.5720  0.0169  4.1967  27.3822
 Level 10   0.0201  0.1206  0.0029  0.5141  4.2610  0.0071  2.9728  25.6404
 Level 11   0.0130  0.1080  0.0014  0.3597  3.9600  0.0030  2.0977  23.9192
 Level 12   0.0086  0.0979  0.0007  0.2518  3.6811  0.0013  1.4793  22.2986
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Table 2: Monte Carlo No jumps: d = 0.25/0.45; MLE, FWE, MODWT(D4), 2: Corrected using Donoho and Johnstone threshold.

PAR   True  Method  
 

No jumps; N = 2048 
 

No jumps; N = 16,384  PAR 
 

No jumps; N = 2048

Mean  Bias  RMSE Mean  Bias  RMSE Mean  Bias  RMSE

d̂   0.250  WWE MODWT   0.165  −0.085  0.225  0.253  0.003  0.042  0.450  0.362  −0.088  0.170
    WWE MODWT 2  0.168  −0.082  0.227  –  –  –    –  –  –
    FWE   0.212  −0.038  0.147  0.251  0.001  0.036    0.415  −0.035  0.087
    FWE 2   0.213  −0.037  0.146  –  –  –    –  –  –
    MLE   0.220  −0.030  0.085  –  –  –    0.433  −0.017  0.043
    MLE 2   0.228  −0.022  0.086  –  –  –    –  –  –

ω̂   −7.000  MLE   −7.076  −0.076  0.174  –  –  –    −7.458  −0.458  0.739
    MLE 2   −7.083  −0.083  0.182  –  –  –    –  –  –
    OTHER   −7.002  −0.002  0.197  −7.003  −0.003  0.074    −6.999  0.001  0.696
    OTHER 2   −7.015  −0.015  0.198  –  –  –    –  –  –

α2ˆ   0.500  WWE MODWT   0.434  −0.066  0.349  0.328  −0.172  0.229    0.324  −0.176  0.395
    WWE MODWT 2  0.426  −0.074  0.358  –  –  –    –  –  –
    FWE   0.527  0.027  0.343  0.512  0.012  0.168    0.475  −0.025  0.348
    FWE 2   0.521  0.021  0.333  –  –  –    –  –  –
    MLE   0.503  0.003  0.121  –  –  –    0.487  −0.013  0.128
    MLE 2   0.464  −0.036  0.136  –  –  –    –  –  –

β1
ˆ   0.500  WWE MODWT   0.559  0.059  0.249  0.523  0.023  0.078    0.610  0.110  0.178

    WWE MODWT 2  0.561  0.061  0.253  –  –  –    –  –  –
    FWE   0.520  0.020  0.199  0.499  −0.001  0.065    0.554  0.054  0.135
    FWE 2   0.517  0.017  0.214  –  –  –    –  –  –
    MLE   0.529  0.029  0.101  –  –  –    0.527  0.027  0.063
    MLE 2   0.537  0.037  0.109  –  –  –    –  –  –

θ̂   −0.300  WWE MODWT   −0.283  0.017  0.180  −0.337  −0.037  0.078    −0.314  −0.014  0.146
    WWE MODWT 2  −0.261  0.039  0.182  –  –  –    –  –  –
    FWE   −0.244  0.056  0.182  −0.279  0.021  0.077    −0.242  0.058  0.158
    FWE 2   −0.222  0.078  0.189  –  –  –    –  –  –
    MLE   −0.301  −0.001  0.026  –  –  –    −0.301  −0.001  0.024
    MLE 2   −0.282  0.018  0.031  –  –  –    –  –  –

γ̂   0.500  WWE MODWT   0.481  −0.019  0.196  0.489  −0.011  0.085    0.504  0.004  0.218
    WWE MODWT 2  0.472  −0.028  0.193  –  –  –    –  –  –
    FWE   0.509  0.009  0.175  0.504  0.004  0.083    0.526  0.026  0.202
    FWE 2   0.497  −0.003  0.174  –  –  –    –  –  –
    MLE   0.499  −0.001  0.045  –  –  –    0.507  0.007  0.044
    MLE 2   0.491  −0.009  0.048  –  –  –    –  –  –

  A   B   C   D   E   F   G   H

(c) Sample variances of DWT Wavelet Coefficients for the coefficient sets from Table 1
 Level 1   4.4468   4.4880   4.3588   4.6020   4.6488   4.4828   4.5044   4.5596
 Level 2   4.3784   4.1752   5.0192   3.8208   3.7528   4.2448   4.9496   4.8464
 Level 3   6.3296   5.9088   6.9280   5.1936   4.8896   6.3344   18.1664   21.5248
 Level 4   9.6928   10.6912   7.7600   17.7888   24.6784   11.2896   94.5856   154.2304
 Level 5   13.0240   18.0992   7.5200   69.7920   139.2512   19.2192   389.3696   845.6128
 Level 6   16.3712   29.4016   7.0400   187.9680   503.5776   25.1520   1051.3408   2997.0432
 Level 7   20.3008   48.2048   6.6304   346.1888   1228.1600   24.6016   1946.2656   7288.9088
 Level 8   25.3440   81.1008   6.2976   526.0288   2473.0624   20.8896   2983.3216   14733.8752
 Level 9   32.0512   140.0832   6.0416   750.2848   4681.7280   17.3056   4297.4208   28039.3728
 Level 10   41.1648   246.9888   5.9392   1052.8768   8726.5280   14.5408   6088.2944   52511.5392
 Level 11   53.2480   442.3680   5.7344   1473.3312   16220.1600   12.2880   8592.1792   97973.0432
 Level 12   70.4512   801.9968   5.7344   2062.7456   30155.5712   10.6496   12118.4256   182670.1312

Table 1 (continued)
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Table 3: Monte Carlo jumps: d = 0.25/0.45; Poisson lambda = 0.028; N(0; 0.2); FWE, MODWT (D4), 2: Corrected using Donoho 
and Johnstone threshold.

PAR   True  Method  
 

Jump [0.028, N(0, 0.2)]; 
N = 2048

 
 

Jump [0.028, N(0, 0.2)]; 
N = 16,384

 
 

PAR 
 

Jump [0.028, N(0, 0.2)] 
N = 2048

Mean  Bias  RMSE Mean  Bias  RMSE Mean  Bias  RMSE

d̂   0.250  WWE MODWT   0.145  −0.105  0.214  –  –  –  0.450  –  –  –
    WWE MODWT 2   0.154  −0.096  0.225  0.235  −0.015  0.042    0.347  −0.103  0.179
    FWE   0.195  −0.055  0.142  –  –  –    –  –  –
    FWE 2   0.206  −0.044  0.143  0.231  −0.019  0.038    0.403  −0.047  0.091
    MLE   0.018  −0.232  0.353  –  –  –    –  –  –
    MLE 2   0.099  −0.151  0.251  –  –  –    0.187  −0.263  0.314

ω̂   −7.000  MLE   −5.662  1.338  1.450  –  –  –    –  –  –
    MLE 2   −6.282  0.718  0.801  –  –  –    −5.529  1.471  1.662
    OTHER   −6.887  0.113  0.221  –  –  –    –  –  –
    OTHER 2   −6.942  0.058  0.203  −6.941  0.059  0.096    −6.946  0.054  0.677

α2ˆ   0.500  WWE MODWT   0.475  −0.025  0.437  –  –  –    –  –  –
    WWE MODWT 2   0.492  −0.008  0.402  0.557  0.057  0.243    0.390  −0.110  0.447
    FWE   0.561  0.061  0.454  –  –  –    –  –  –
    FWE 2   0.582  0.082  0.400  0.731  0.231  0.297    0.535  0.035  0.428
    MLE   0.667  0.167  0.385  –  –  –    –  –  –
    MLE 2   0.652  0.152  0.287  –  –  –    0.605  0.105  0.308

β1
ˆ   0.500  WWE MODWT   0.592  0.092  0.290  –  –  –    –  –  –

    WWE MODWT 2   0.578  0.078  0.264  0.535  0.035  0.087    0.636  0.136  0.203
    FWE   0.546  0.046  0.266  –  –  –    –  –  –
    FWE 2   0.529  0.029  0.231  0.519  0.019  0.068    0.579  0.079  0.164
    MLE   0.406  −0.094  0.452  –  –  –    –  –  –
    MLE 2   0.503  0.003  0.250  –  –  –    0.619  0.119  0.240

θ̂   −0.300  WWE MODWT   −0.491  −0.191  0.272  –  –  –    –  –  –
    WWE MODWT 2   −0.385  −0.085  0.189  −0.398  −0.098  0.108    −0.384  −0.084  0.174
    FWE   −0.455  −0.155  0.246  –  –  –    –  –  –
    FWE 2   −0.348  −0.048  0.175  −0.356  −0.056  0.065    −0.324  −0.024  0.153
    MLE   −0.214  0.086  0.130  –  –  –    –  –  –
    MLE 2   −0.211  0.089  0.104  –  –  –    −0.176  0.124  0.137

γ̂   0.500  WWE MODWT   0.203  −0.297  0.365  –  –  –    –  –  –
    WWE MODWT 2   0.322  −0.178  0.271  0.287  −0.213  0.231    0.276  −0.224  0.322
    FWE   0.257  −0.243  0.315  –  –  –    –  –  –
    FWE 2   0.365  −0.135  0.231  0.313  −0.187  0.202    0.317  −0.183  0.291
    MLE   0.287  −0.213  0.256  –  –  –    –  –  –
    MLE 2   0.340  −0.160  0.180  –  –  –    0.347  −0.153  0.179

Table 4: Forecasting: N = 2048; No jumps; MLE, FWE, MODWT(D4), DWT(D4), 2: Corrected using Donoho and Johnstone threshold.

Cat   Method  
 

Main stats 
 

MAD quantiles

Mean err   MAD   RMSE 0.50   0.90  0.95  0.99

In   WWE MODWT   6.1308e−05   0.00039032   0.0052969  –   –  –  –
  WWE MODWT 2   2.2383e−05   0.00040778   0.0034541  –   –  –  –
  WWE DWT   8.3135e−05   0.00044932   0.011577  –   –  –  –
  WWE DWT 2   2.363e−05   0.00043981   0.0050438  –   –  –  –
  FWE   5.9078e−05   0.00037064   0.00087854  –   –  –  –
  FWE 2   1.4242e−05   0.00038604   0.0011961  –   –  –  –
  MLE   6.0381e−06   9.3694e−05   0.00019804  –   –  –  –
  MLE 2   −3.3242e−05   0.00011734   0.00028776  –   –  –  –
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Cat   Method  
 

Main stats 
 

MAD quantiles

Mean err   MAD   RMSE 0.50   0.90  0.95  0.99

Out   WWE MODWT   105.3851   105.3856   3277.1207  0.00015361  0.0010525  0.0019431  0.0060853
  WWE MODWT 2   −7.6112e−05   0.00058276   0.0020436  0.00016482  0.0010512  0.0020531  0.0072711
  WWE DWT   0.00013817   0.00066928   0.0031579  0.00017219  0.0012156  0.0020541  0.0065611
  WWE DWT 2   0.00087082   0.0015663   0.027558  0.00017181  0.0012497  0.0022271  0.0072191
  FWE   2.9498e−05   0.00050763   0.0015745  0.00014566  0.0010839  0.0018926  0.005531
  FWE 2   0.00038499   0.0010395   0.014191  0.00015425  0.0011351  0.001989  0.0081017
  MLE   −1.5041e−06   0.00012211   0.00035147  4.0442e−05   0.00024483  0.00043587  0.001595
  MLE 2   −0.00010455   0.00024125   0.0015605  4.3599e−05   0.00030553  0.00063378  0.0038043

    Error quantiles A    
 

Error quantiles B

  0.01   0.05   0.10 0.90   0.95  0.99

Out   WWE MODWT   −0.0033827   −0.0010722   −0.0004865    0.00063385  0.0010345  0.0048495
  WWE MODWT 2   −0.0045312   −0.0013419   −0.00062698    0.00053531  0.00089684  0.0051791
  WWE DWT   −0.0040691   −0.001223   −0.00059588    0.00065501  0.0012118  0.004838
  WWE DWT 2   −0.003994   −0.0013952   −0.00071166    0.00059679  0.0010616  0.0050457
  FWE   −0.0035752   −0.0010712   −0.00053169    0.00061822  0.001086  0.004636
  FWE 2   −0.0042148   −0.00129   −0.00063194    0.0005657   0.0010577  0.0048622
  MLE   −0.00079412   −0.00024382   −0.00013312    0.00010297  0.00026481  0.0013195
  MLE 2   −0.0019587   −0.00046351   −0.00021734    7.5622e−05   0.00018216  0.00077541

Not corrected: Mean of N-next true values to be forecasted: 0.0016845; Total valid = 967, i.e. 96.7% of M fails-MLE = 0%, fails-
FWE = 0.8%, fails-MODWT = 2.1%, fails-DWT = 1.5%, Corrected: Mean of N-next true values to be forecasted: 0.0016852; Total 
valid = 959, i.e. 95.9% of M fails-MLE = 0%, fails-FWE = 1.3%, fails-MODWT = 1.7%, fails-DWT = 2.7%.

Table 5: Forecasting: N = 16,384, No Jumps; MLE, FWE, MODWT(D4), DWT(D4), 2: Corrected using Donoho and Johnstone 
threshold.

Cat   Method  
 

Main stats 
 

MAD quantiles

Mean err   MAD  RMSE 0.50   0.90  0.95  0.99

In   WWE MODWT   7.522e−06   0.00015889  0.00032423  –   –  –  –
  WWE DWT   8.5378e−06   0.00017736  0.00038026  –   –  –  –
  FWE   6.3006e−06   0.00014367  0.00032474  –   –  –  –
  MLE   –   –  –  –   –  –  –

Out   WWE MODWT   9.3951e−06   0.00018394  0.00054618  7.1556e−05   0.00040438  0.0007369  0.0015565
  WWE DWT   2.1579e−05   0.0002107  0.00084705  7.1483e−05   0.00041876  0.00074376  0.0018066
  FWE   −3.3569e−06   0.00017794  0.00067805  5.6684e−05   0.00035132  0.0005922  0.001811
  MLE   –   –  –  –   –  –  –

    Error quantiles A   
 

Error quantiles B

  0.01  0.05  0.10 0.90  0.95  0.99

Out   WWE MODWT   −0.0011566  −0.00040454  −0.00021569    0.00021003  0.0004025  0.0013515
  WWE DWT   −0.0011033  −0.00038209  −0.00018247    0.00023587  0.00049025  0.0016387
  FWE   −0.00087002  −0.00034408  −0.00018571    0.00018593  0.00035741  0.0010787
  MLE   –  –  –    –  –  –

Not corrected: Mean of N-next true values to be forecasted: 0.0015516; Total valid = 1000, i.e. 100% of M fails-MLE = 0%, fails-
FWE = 0%, fails-MODWT = 0%, fails-DWT = 0%.

Table 4 (continued)
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Table 6: Forecasting: N = 2048; d = 0.45; No jumps; MLE, FWE, MODWT(D4), DWT(D4), 2: Corrected using Donoho and Johnstone 
threshold.

Cat Method Main stats MAD quantiles

Mean err MAD RMSE 0.50 0.90 0.95 0.99

In WWE MODWT 0.00026281 0.0010841 0.02023 – – – –
WWE DWT 0.00022639 0.0011206 0.013151 – – – –
FWE 0.00027127 0.0010458 0.005243 – – – –
MLE 5.7279e−05 0.00026995 0.0012167 – – – –

Out WWE MODWT Inf Inf Inf 0.00016653 0.0024597 0.005308 0.040031
WWE DWT 924.8354 924.8375 28648.7373 0.00017788 0.0024428 0.0049679 0.040403
FWE −0.00010684 0.0015807 0.0078118 0.00016022 0.0025471 0.0057388 0.031548
MLE 0.0002289 0.0004843 0.0039972 4.2589e−05 0.00052307 0.0010187 0.0078509

Error quantiles A Error quantiles B

0.01 0.05 0.10 0.90 0.95 0.99

Out WWE MODWT −0.013427 −0.0024269 −0.00087296 0.0010521 0.0026019 0.013128
WWE DWT −0.013075 −0.0025811 −0.0010018 0.00089545 0.0023095 0.0165
FWE −0.012356 −0.002209 −0.00081063 0.0010042 0.002777 0.014773
MLE −0.0016025 −0.00044789 −0.0002568 0.00017179 0.00056713 0.0051968

Not corrected: Mean of N-next true values to be forecasted: 0.0064152; Total valid = 962, i.e. 96.2% of M fails-MLE = 0%, fails-
FWE = 1%, fails-MODWT = 1.9%, fails-DWT = 2.1%.

Table 7: Forecasting: N = 2048; Jumps lambda = 0.028, N(0, 0.2); MLE, FWE, MODWT(D4), DWT(D4), 2: Corrected using Donoho 
and Johnstone threshold.

Cat Method Main stats MAD quantiles

Mean err MAD RMSE 0.50 0.90 0.95 0.99

In WWE MODWT 0.0024292 0.0027027 0.031109 – – – –
WWE MODWT 2 0.00049847 0.00088238 0.010266
WWE DWT 0.0022873 0.0025833 0.029094 – – – –
WWE DWT 2 0.00051788 0.00092081 0.013946
FWE 0.0024241 0.0026398 0.030474 – – – –
FWE 2 0.00046896 0.00080786 0.01562
MLE 0.00099962 0.0013136 0.0022127 – – – –
MLE 2 0.00021708 0.0005767 0.0011708

Out WWE MODWT Inf Inf Inf 0.00027911 0.0019584 0.0043937 0.074726
WWE MODWT 2 12837.4644 12837.4647 361761.8976 0.00020755 0.0012984 0.0021954 0.064956
WWE DWT 0.010776 0.010967 0.14233 0.00032328 0.0020108 0.0048951 0.086811
WWE DWT 2 Inf Inf Inf 0.00019516 0.0013594 0.002609 0.08235
FWE 0.0098899 0.010026 0.15737 0.00025416 0.0019525 0.0047286 0.073048
FWE 2 1.4046 1.4048 36.7106 0.00017622 0.0012063 0.0024169 0.057823
MLE 0.0014788 0.0017573 0.0066777 0.00099906 0.001951 0.0027302 0.019721
MLE 2 0.0022114 0.0025386 0.053463 0.00034636 0.00094187 0.0016393 0.0082677
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Table 8: Forecasting: N = 16,384, Jumps lambda = 0.028, N(0, 0.2); MLE, FWE, MODWT(D4), DWT(D4), 2: Corrected using Donoho 
and Johnstone threshold.

Cat Method Main stats MAD quantiles

Mean err MAD RMSE 0.50 0.90 0.95 0.99

In WWE MODWT 0.00079621 0.0010536 0.019562 – – – –
WWE DWT 0.00074677 0.0010165 0.018346 – – – –
FWE 0.00052705 0.00074759 0.0094745 – – – –
MLE – – – – – – –

Out WWE MODWT Inf Inf Inf 0.0002394 0.0015 0.0037696 0.088609
WWE DWT Inf Inf Inf 0.00022172 0.0016482 0.0039952 0.043464
FWE 0.010034 0.010249 0.23919 0.00017951 0.0014685 0.0037604 0.04528
MLE – – – – – – –

Error quantiles A Error quantiles B

0.01 0.05 0.10 0.90 0.95 0.99

Out WWE MODWT −0.0025009 −0.0006746 −0.00028513 0.0011776 0.0033089 0.088609
WWE DWT −0.0025573 −0.00057909 −0.00028814 0.0012299 0.0033547 0.043464
FWE −0.0018013 −0.00048645 −0.00022585 0.0011465 0.0030639 0.04528
MLE – – – – – –

Corrected: Mean of N-next true values to be forecasted: 0.0016747; Total valid = 948, i.e. 94.8% of M fails-MLE = − %,  
fails-FWE = 0.4%, fails-MODWT = 3.1%, fails-DWT = 2.5%.

Error quantiles A Error quantiles B

0.01 0.05 0.10 0.90 0.95 0.99

Out WWE MODWT −0.0014262 −0.00061569 −0.00023517 0.0018119 0.0043937 0.074726
WWE MODWT 2 −0.002004 −0.0007648 −0.00033609 0.0010397 0.0018978 0.064956
WWE DWT −0.0014902 −0.00065937 −0.00028371 0.0018904 0.0048951 0.086811
WWE DWT 2 −0.002635 −0.00076962 −0.00031466 0.00099973 0.0020434 0.08235
FWE −0.00097176 −0.00039409 −0.00021056 0.0019269 0.0047286 0.073048
FWE 2 −0.0019851 −0.00057545 −0.00025878 0.00087435 0.0020268 0.057823
MLE −0.0033888 −0.0004285 0.00016064 0.0018323 0.0023536 0.019688
MLE 2 −0.0030739 −0.00075814 −0.00029836 0.00066214 0.00099507 0.0059062

Corrected: Mean of N-next true values to be forecasted: 0.001324; Total valid = 801, i.e. 80.1% of M fails-MLE = 0%, fails-
FWE = 7%, fails-MODWT = 13.4%, fails-DWT = 12.5% Not Corrected: Mean of N-next true values to be forecasted: 0.001324; Total 
valid = 45.1, i.e. % of M fails-MLE = 0%, fails-FWE = 35.2%, fails-MODWT = 43.4%, fails-DWT = 41.6%.

Table 7 (continued)
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Figure 1: Spectral density estimation (d = 0.25/0.45/ − 0.25), T = 2048 (211), level = 10, zoom. (A) d = 0.25. (B) d = 0.45. 
(C) d = −0.25.
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Figure 2: Energy decomposition: (A) Integrals of FIEGARCH spectral density over frequency intervals, and (B) true variances of 
wavelet coefficients respective to individual levels of decomposition, assuming various levels of long memory (d = 0.25, d = 0.45, 
d = −0.25) and the coefficient sets from Table 1.
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Figure 3: Spectral density estimation in small samples: Wavelets (Level 5) vs. Fourier. (A) T = 512 (29), level = 5(D4). (B) T = 2048 
(211), level = 5(D4).
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Figure 5: 3D plots: Partial decomposition: ˆ :d  Bias and RMSE. (A) Bias of d̂  (LA8, d = 0.25). (B) Bias of d̂  (LA8, d = 0.45. 
(C) RMSE of d̂  (LA8, d = 0.25. (D) RMSE of d̂  (LA8, d = 0.45).
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(1) Keeping the sample length constant, we see the effect of increasing the
level of decomposition [estimation using increasing number of intervals
respective to lower and lower frequencies]. At each level ( j ), N( j ) = M/2^( j )
coefficients is available, where M is the sample length. 

(2) Keeping the level of decomposition constant, we see the effect of
increasing the sample size [increasing the number of DWT coefficients
available at each level ( j ): N( j ) = M/2^( j )]. E.g. for two samples for which
M* = 2M, we have N( j )* = 2 N( j ).

Figure 4: 3D plots guide.
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