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a b s t r a c t 

This paper proposes a general computational framework for empirical estimation of finan- 

cial agent-based models, for which criterion functions have unknown analytical form. For 

this purpose, we adapt a recently developed nonparametric simulated maximum likelihood 

estimation based on kernel methods. In combination with the model developed by Brock 

and Hommes (1998), which is one of the most widely analysed heterogeneous agent mod- 

els in the literature, we extensively test the properties and behaviour of the estimation 

framework, as well as its ability to recover parameters consistently and efficiently using 

simulations. Key empirical findings indicate the statistical insignificance of the switching 

coefficient but markedly significant belief parameters that define heterogeneous trading 

regimes with a predominance of trend following over contrarian strategies. In addition, 

we document a slight proportional dominance of fundamentalists over trend-following 

chartists in major world markets. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

After the failure of traditional financial models in the major financial crisis of 20 07–20 08, agent-based approaches at-

tracted greater attention from both academicians and practitioners and hence have gradually replaced traditional financial

models in the recent literature. The financial agent-based models (FABMs) 1 in particular reflects the well-documented and

systematic human departure from the representative agent’s complete rationality towards reasonably realistically bounded

rationality ( Simon, 1957 ). An essential achievement of this field is the ability to replicate the stylised facts of financial data

and account for the emergence of asset market bubbles followed by sudden crashes. Recently, numerous projects have pro-

posed a courageous attempt to complement or even alternate current mainstream policy-making models with agent-based

approaches, which is possible only if one can estimate these models with empirical data. 
∗ Corresponding author at: Institute of Information Theory and Automation, The Czech Academy of Sciences, Pod Vodarenskou vezi 4, CZ-182 00 Prague 

8, Czechia. 

E-mail addresses: jiri.kukacka@fsv.cuni.cz (J. Kukacka), barunik@utia.cas.cz (J. Barunik). 
1 For a general overview of financial agent-based modelling and its development, Chen et al. (2012) ; Hommes (2006) , and LeBaron (2006) provide 

excellent surveys. 
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Although empirical estimation is an important part of the modelling cycle and is crucial for model validation, empiri-

cal estimation of FABMs is still in its nascence. Looking at the last fifteen years of financial literature, we observe neither

a general consensus on the estimation methodology nor conclusive results. Fagiolo et al. (2007 , pg. 202) even emphasise

that there is “no consensus at all about how (and if) agent-based models should be empirically validated.” Generally, there

are two critical challenges in the estimation. First, the highly nonlinear and complex nature of these systems prevents re-

searchers from using classical estimation methods, because the objective function often has no analytical expression. Second,

possible over-parametrisation, the high number of degrees of freedom, and optional model settings, as well as stochastic

dynamics, further escalate the complexity of the problem. The emerging properties of these models cannot be analytically

deduced, and a possible estimation via method of moments, “while fine in theory, might be too computationally costly to

undertake” ( LeBaron and Tesfatsion, 2008 , pg. 249). Thus, a considerable simulation capacity for the numerical analysis is

required. 

Literature focusing on the estimation of FABMs attempts to use several direct and indirect estimation methods. In terms

of direct estimation, the nonlinear least squares and quasi maximum likelihood are applied in most cases rather than the

classical ordinary least squares or maximum likelihood due to the complexity of the models. In these applications, the key

structural features of agent-based models are sometimes restrained to obtain a simplified approach that can be estimated

directly. However, for many models, the aggregation equation, which would contain all parameters of interest, cannot be

derived analytically and therefore the application of direct estimation techniques is not feasible. Hence, indirect estimation

based on the simulation of artificial data by the model through which the aggregation concepts such as moments are de-

rived is used instead. Simulation-based methods “are very applicable and may dramatically open the empirical accessibility

of agent-based models in the future,” as noted by Chen et al. (2012 , pg. 204). However, the use of these methods for valida-

tion of agent-based models in economics is relatively rare thus far. Simulation-based methods already used for estimation

include the method of simulated moments, or generally the simulated minimum distance ( Grazzini and Richiardi, 2015 ),

which are based on minimising the weighted distance between two sets of simulated and observed moments. However, as

noted by Fernández-Villaverde and Rubio-Ramírez (2010 , pg. 23), the main difficulty remains in the selection of proper mo-

ments characterising the parameters, because the selection of different moments may lead to considerably different point

estimates. Grazzini and Richiardi (2015 , pg. 151) further state that although simulation-based maximum likelihood esti-

mation is more complex, it could be used instead. This option has not yet been explored in the literature. Alternatively,

Grazzini et al. (2017) also propose simulated likelihood methods for agent-based models (ABMs), but from a Bayesian in-

ference perspective. They use non-parametric kernel density estimation for approximating the likelihood function and apply

their methodology to a simple stock market model with one parameter and to a behavioural macroeconomic model with

nine parameters. 

This paper takes a step forward and proposes a more general computational framework for empirical validation of

full-fledged FABMs utilising a non-parametric simulated maximum likelihood estimator (NPSMLE) recently developed by 

Kristensen and Shin (2012) . The main advantage of this framework is that under general conditions met by FABMs, it can

approximate the conditional density of the data-generating process from numerically simulated observations. Thus, the un-

known likelihood function can be replaced by the simulated likelihood in the estimation and parameters can be recovered

in a traditional manner. We extensively test the capability of this method for FABMs estimation purposes using a large

Monte Carlo study. We marry the customised estimation methodology with the most widely analysed model of Brock and

Hommes (1998) . The key feature of the model is the evolutionary switching of agents between simple trading strategies

based on previously realised profits, so called adaptive belief system, governed by the switching parameter of the intensity

of choice. This parameter is responsible for the high nonlinearity of the system and possibly even chaotic price motion. We

show that the NPSMLE successfully estimates the switching parameter in this generally challenging framework. We thus

presuppose that it is likely to be more generalisable and useful for estimation of other agent-based models in the future. 

2. The route to empirical estimation of FABMs: a short review of existing approaches 

The design of FABMs is to a large extent motivated by empirical evidence accumulated in the late 1980s and early 1990s

about the behaviour of real financial agents ( Allen and Taylor, 1990; Frankel and Froot, 1990 ). These studies conclude that

interactions between two main types of expectations control the dynamics of financial markets. Fundamental traders, who

believe that possible mispricing is likely to be corrected over short periods by arbitrageurs and thus the market price tends

to revert to its fundamental value, constitute a stabilising market force. Technical analysts, also called ‘noise traders’ or

chartists, believe that a currently observable trend will continue in the short-run; these analysts constitute a destabilising

market force that is responsible for the development of speculative bubbles. These two types of traders could be understood

as available trading strategies, because an intelligent market agent is likely to adapt his or her strategy over time based

on its relative historical performance. The time-varying evolution of market fractions between these two types of trading

strategies is thus the essence of many artificial markets. In the seminal ( Brock and Hommes, 1998 ) discrete-choice FABM,

this concept is embodied via the switching parameter of the intensity of choice, which defines the overall willingness of

market agents to switch between potential trading strategies. ‘N-type models’ comprise fundamentalists and several types

of chartists. These models, in which the autonomy of agents is constrained by a predetermined class of beliefs, have been

found to successfully mimic many financial stylised facts ( Chen et al., 2012 ). 
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By virtue of their relatively simple design, highly stylised 2-type and 3-type models that account for the most robust

heterogeneous features of real markets have been the subjects of empirical estimation in the literature. Therefore, such

models are the focus of this paper. Attempts to statistically estimate the parameters of various FABMs are summarized in

Tables 6, 7 , and 8 in Appendix A . From a bird’s-eye view, we observe a strong dominance of models derived from the

adaptive belief system in the tradition of the Brock and Hommes (1998) original framework. Eight models out of 47 are

based on interactive agent hypothesis ( Lux, 1995 ), and only three are based on the ant type of system ( Kirman, 1993 ).

The prevalence of the adaptive belief system in the recent literature is the principal reason why we analyse the original

( Brock and Hommes, 1998 ) model later in this study. 

Regarding estimation frameworks, three main frameworks prevail over the others: nonlinear least squares, quasi maxi-

mum likelihood, and the method of simulated moments. Further, we observe a general tendency to estimate parameters that

determine the heterogeneous behavioural rules of agents, such as belief coefficients that define individual trading strategies

and the intensity of choice or corresponding concepts (e.g., mutation, herding tendency, and switching thresholds). These

parameters are clearly important for the economic interpretation of given models, and authors strive to limit the set of

estimated coefficients to those that are the most relevant to model dynamics. However, surprisingly, no considerable curse

of dimensionality is directly observable; rather, studies with a relatively large number of estimated parameters also reveal

favourable results in terms of estimation performance and the ability to estimate switching parameters. 

It is important to note that almost one-half of these studies employ daily datasets comprising thousands of observations.

The availability of long historical daily-frequency datasets is one of the most important features that distinguishes financial

agent-based models from macroeconomic agent-based models. However, other studies use low-frequency data, ranging from

weekly to annual observations. The main reason for the use of low-frequency data is that dividends, earnings, and other

variables related to the fundamental value of stocks are only available at low frequencies, for example, quarterly or annually.

Among studies in which a fundamental value must be approximated, stock market and foreign exchange (FX) studies largely

prevail, followed by housing market data, commodities, and gold. 

Although literature estimating the intensity of choice is relatively scarce, the hypothetical existence of behavioural

switching receives significant attention. As aptly summarised by Chen et al. (2012 , pg. 202), “supposing that we are given

the significance of the intensity of choice in generating some stylized facts, then the next legitimate question will be: can

this intensity be empirically determined, and if so, how big or how small is it?”. However, it is important to emphasise here

that the magnitude of this unit-free variable cannot be directly rigorously compared across various models, assets, or time

periods, because it is conditional on the specific model design and the specific dataset. Nonetheless, the intensity of choice

is a crucial and very robust driver of the data-generating process behind switching FABMs and to a large extent determines

the behaviour of the system in a very consistent manner: zero intensity of choice fixes market fractions and does not allow

for any evolutionary switching, whereas high values imply a wild switching for the vast majority of model specifications,

assets, or periods. In the majority of relevant studies, the estimated values are primarily single digits but often close to zero

and statistically insignificant, which reflects an economic intuition of a potentially detectable but realistically low switching

frequency between major types of trading strategies. 

Looking at goodness-of-fit results, the vast majority of models exhibit almost suspiciously good fit, explaining between

70–97% of the variation in the data. However, it is important to add that these results are most often based on low-frequency

datasets and therefore relatively straightforward estimation methods might relatively easily find a well-fitting model for at

most several hundred observations. With respect to ordinary least squares and quasi maximum likelihood, these estimation

techniques provide generally biased estimates due to possible model misspecifications. For various methods of moments,

roughly one-half of models are rejected based on the specification test. Indeed, some of the most recent contributions

( Franke and Westerhoff, 2011; 2012; 2016 ) show acceptance of a particular model but only for selected datasets from sev-

eral options ( Chen and Lux, 2016; Ghonghadze and Lux, 2016 ). Although application of the method of simulated moments

offers a tool for direct mutual comparison of models, it struggles with practical technical issues that necessitate further de-

velopment of the method. The most recent contribution of Chen and Lux (2016 , pg. 17) explains the main problem prevent-

ing proper identification in all of these studies: “We have to cope with multiple local minima as well as with relatively flat

surfaces in certain regions of the parameter space. Any standard optimization algorithm could, thus, not be expected to con-

verge to a unique solution from different initial conditions”. Another closely related problem is a roughness of the surface of

the objective function, which further embarrasses standard methods of optimisation searches. Application of methods based

on the maximum likelihood principle exhibits a problem relatively similar to that of methods of moments: the objective

function is often very flat, typically in the direction of the intensity of choice. Problematic identification is then manifested

in large standard deviations that prevent contributive interpretation of the results. Recently, Bolt et al. (2014) report that

the likelihood is not very informative and the model accuracy is not sensitive for the switching parameter. The shape of

the objective function has not yet been sufficiently studied, with an exception being Hommes and Veld (2015) , who empha-

sise a very flat shape for the intensity of choice selection that hampers validity of the test to reject the null hypothesis of

switching, especially for small samples. In contrast, smoothness of the objective function does not seem to be an issue for

maximum likelihood methods. This important finding is further confirmed later in this study. 

To summarise, although simulation-based methods are generally applicable and not constrained by strict theoretical as-

sumptions, they are not yet developed enough to generate unambiguous conclusions. Future progress, especially via solving

related, rather technical issues, is likely to be largely encouraged and fostered by the recent rapid development of high-speed

computational facilities. In this regard, our paper is an important step forward. 
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3. Simulation-based estimation of FABMs via NPSMLE 

This section proposes a general computational framework for empirical estimation of full-fledged FABMs. As discussed in

the previous section, few authors apply simulation-based methods of moments to overcome the problem of unavailability

of the criterion functions. We take this a step further by adapting the simulated maximum likelihood estimator (MLE) based

on nonparametric kernel methods recently suggested by Kristensen and Shin (2012) . This methodology was developed for

dynamic models where no closed-form representation of the likelihood function exists and thus we cannot derive the usual

MLE. As we see later, NPSMLE constitutes an opportune estimation method for the general class of FABMs. 

3.1. Agent-based models 

The studied framework follows a common structure of (ABMs), naturally including FABMs. Grazzini and

Richiardi (2015) draw attention to a representation of (ABMs) in which an agent h ∈ { 1 , . . . , H} at time t ∈ { 1 , . . . , T } is

characterised completely by individual-specific state variables z h,t ∈ R 

j . The evolution of z h , t follows: 

z h,t = f h (z h,t−1 , Z ¬ h,t−1 , ξh,t ; θh ) , (1) 

where f h , h ∈ { 1 , . . . , H} define individual behavioural rules, Z ¬ h,t−1 = (z 1 ,t−1 , . . . z h −1 ,t−1 , z h +1 ,t−1 , . . . z n,t−1 ) represent state

variables of agents other than h , ξ h , t is an independent and identically distributed (i.i.d.) stochastic term, and θh , h ∈
{ 1 , . . . , H} , are vectors of unknown parameters. The data generating process is then specified by a system of H structural

equations defined according to Eq. (1) . This system can be compactly described in terms of a state equation: 

Z t = F (Z t−1 , ξt ; θ ) , (2) 

where Z t−1 = (z 1 ,t−1 , . . . z H,t−1 ) , vector of shocks ξt = (ξ1 ,t , . . . ξH,t ) , and vector of unknown parameters θ = (θ1 , . . . , θH ) . 

When collecting empirical data on an economy, one unfortunately observes only a vector of aggregate variables Y t that

can be defined via an observation equation projecting from Z to Y as a function of the underlying state variables: 

Y t = Q(Z t , κt ; θ ) , (3) 

where κ t represents additional stochastic shocks (e.g., measurement errors) to the observables. 

Most importantly, in (ABMs), Eq. (2) does not have an explicit closed-form; rather, it is only implicitly defined by a

system of Eq. (1) . Moreover, Eq. (3) has no analytical formulation. Furthermore, a potential nonlinearity of f h and Q inhibits

exploitation of expectations to eliminate the effect of κ t . Therefore, “the only way to analyze the mapping of ( Z 0 , θ ) into Y t 
is by means of Monte Carlo analysis, by simulating the model for different initial states and values of the parameters, and

repeating each simulation experiment many times to obtain a distribution of Y t ” ( Grazzini and Richiardi, 2015 , pg. 153). 

3.2. Construction of the NPSMLE 

Having defined a general family of FABMs, we advance with the construction of an estimation technique based on

the simulated MLE proposed by Kristensen and Shin (2012) . Let us assume processes ( y t , x t ), y t : t �→ R 

k , x t : t �→ X t ,

t = 1 , . . . , ∞ . In general, the processes ( y t , x t ) can be non-stationary and x t contains exogenous explanatory variables, in-

cluding lagged dependent variables y t . Suppose that we have T realisations { (y t , x t ) } T t=1 
. Let us further assume that the time

series { y t } T t=1 
is generated by a fully parametric model: 

y t = q t (x t , ε t ; θ ) , t = 1 , . . . , T , (4)

where a function q t : { x t , ε t ; θ} �→ R 

k , θ ∈ � ⊆ R 

u is an unknown parameter vector (identical to θ in Eqs. (2) and (3) and εt 

is an i.i.d. sequence with known distribution F ε , which is (without a loss of generality) assumed not to depend on t or θ . 

Regarding the general ABM description in the previous section, realisations y t can either directly coincide with observ-

ables Y t or be latent variables, as we discuss further within a specific application of the estimation method on the Brock and

Hommes (1998) FABM in Section 3.3 . 

We further assume the model to have an associated conditional density p t ( y | x ; θ ), i.e., 

P (y t ∈ A | x t = x ) = 

∫ 
A 

p t (y | x ; θ ) dy, t = 1 , . . . , T , (5)

for any Borel set A ⊆ R 

k . 

Let us now suppose that p t ( y | x ; θ ) from Eq. (5) does not have a closed-form representation. In this situation, we are not

able to derive the exact likelihood function of the model from Eq. (4) . Thus, a natural estimator of θ , the maximiser of the

conditional log-likelihood 

˜ θML = argmax θ∈ �L T (θ ) , L T (θ ) = 

T ∑ 

t=1 

log p t (y t | x t ; θ ) (6) 

is not feasible. 
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However, we are still able to simulate observations from the model in Eq. (4) numerically. 2 The presented method allows

us to compute a simulated conditional density, which we use to gain a simulated version of the MLE. 

To obtain a simulated version of p t (y t | x t ; θ ) ∀ t ∈ { 1 , . . . , T } , y t ∈ R 

k , x t ∈ X t , and θ ∈ �, we first generate N ∈ N i.i.d. draws

from F ε , { ε i } N i =1 
, which are used to compute: 

y θt,i = q t (x t , ε i ; θ ) , i = 1 , . . . , N. (7)

These N simulated i.i.d. random variables, { y θ
t,i 

} N 
i =1 

, follow the target distribution by construction: y θ
t,i 

∼ p t (·| x t ; θ ) . There-

fore, they can be used to estimate the conditional density p t ( y | x ; θ ) with kernel methods. We define: 

̂ p t (y t | x t ; θ ) = 

1 

N 

N ∑ 

i =1 

K η(y θt,i − y t ) , (8)

where K η(ψ) = K(ψ/η) /ηk , K : R 

k �→ R is a generic kernel, and η > 0 is a bandwidth. Under regularity conditions on p t and

K ( Kristensen and Shin, 2012 , conditions A.2, A.4, K.1, and K.2, pg. 80–81), we get: 

̂ p t (y t | x t ; θ ) = p t (y t | x t ; θ ) + O P (1 / 
√ 

Nηk ) + O P (η
2 ) , N −→ ∞ , (9)

where the last two terms are o P (1) if η −→ 0 and Nηk −→ ∞ . 

Having obtained the simulated conditional density ̂ p t (y t | x t ; θ ) from Eq. (8) , we can now derive the simulated MLE of θ :

̂ θNPSMLE = argmax θ∈ � ̂ L T (θ ) , ̂ L T (θ ) = 

T ∑ 

t=1 

log ̂  p t (y t | x t ; θ ) . (10)

The same draws are used for all values of θ , and we may also use the same set of draws from F ε (·) , { ε i } N i 
, across t .

Numerical optimisation is facilitated if ̂ L T (θ ) is continuous and differentiable in θ . Considering Eq. (8) , if K and θ �→ q t ( x t , εt ;

θ ) are r ≥ 0 continuously differentiable, the same holds for ̂ L T (θ ) . 

Under the regularity conditions, the fact that ̂ p t (y t | x t ; θ ) 
P −→ p t (y t | x t ; θ ) implies that ̂ L T (θ ) 

P −→ L T (θ ) as N −→ ∞ for a

given T ≥ 1. Thus, the simulated MLE, ̂ θNPSMLE , retains the same properties as the infeasible MLE, ˜ θML , as T , N −→ ∞ , under

suitable conditions. 

3.2.1. Advantages and disadvantages 

As noted by Kristensen and Shin (2012) , one of the main advantages of the NPSML is its general applicability. In addition,

the estimator works whether the observations y t are i.i.d. or non-stationary because the density estimator based on i.i.d.

draws is not affected by the dependence structures in the observed data. In addition, the estimator does not suffer from

the curse of dimensionality, which is usually associated with kernel estimators. In general, high dimensional models (i.e.,

those with larger k ≡ dim (y t ) , because we only smooth over y t here) require a larger number of simulations to control the

variance component of the resulting estimator. However, the summation in Eq. (10) reveals an additional smoothing effect,

and the additional variance of ̂ L T (θ ) caused by simulations retains the standard parametric rate 1/ N . 

Conversely, the simulated log-likelihood function is a biased estimate of the actual log-likelihood function for fixed N

and η > 0. To obtain consistency, we need N −→ ∞ and η −→ 0 . Thus, the parameter η must be chosen properly for a given

sample and simulation size. In the stationary case, the standard identification assumption is: 

E [ log p(y t | x t ; θ )] < E [ log p(y t | x t ; θ0 )] ∀ θ � = θ0 . (11)

Under stronger identification assumptions, the choice of the parameter η might be less important, and one can prove the

consistency of the estimator for any fixed 0 < η < η̄ for some η̄ > 0 as N −→ ∞ ( Altissimo and Mele, 2009 ). In practice, this

approach still requires us to know the threshold level η̄ > 0 , but from a theoretical viewpoint, it ensures that parameters

can be well identified in large finite samples after a given η̄ > 0 is set. Moreover, it suggests that the proposed methodology

is fairly robust to the choice of η. Indeed, Kristensen and Shin (2012) show in their simulation study that NPSMLE performs

well with a broad range of bandwidth choices. 

3.2.2. Asymptotic properties 

As the theoretical convergence of the simulated conditional density towards the true density is met, we would expect

the ̂ θNPSMLE to have the same asymptotic properties as the infeasible ˜ θML for a properly chosen sequence N = N(T ) and

η = η(N) . Kristensen and Shin (2012) show that ̂ θNPSMLE is first-order asymptotic equivalent to ˜ θML under a set of general

conditions, even allowing for non-stationary and mixed discrete and continuous distribution of the response variable. Fur-

ther, using additional assumptions, including stationarity, they provide results for the higher-order asymptotic properties of
2 For cases in which the model in Eq. (4) is itself intractable and thus cannot be used to generate observations, Kristensen and Shin (2012) suggest a 

methodology for approximate simulations and define regularity conditions for the associated approximate NPSMLE ̂ θAP P ROX to have the same asymptotic 

properties as the simulated ̂  θNPSMLE defined in Eq. (10) . 
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̂ θNPSMLE and derive expressions of the bias and variance components of the ̂ θNPSMLE relative to the actual MLE due to kernel

approximation and simulations. 

A set of general conditions satisfied by most models must be verified so that ̂ p −→ p is sufficiently fast to ensure asymp-

totic equivalence of ̂ θNPSMLE and 

˜ θML . Kristensen and Shin (2012) define a set of regularity conditions on the model and

its associated conditional density that satisfy these general conditions for uniform rates of kernel estimators defined in

Kristensen (2009) . Moreover, kernel K from Eq. (8) must belong to a broad class of so-called bias high-order or bias re-

ducing kernels. Among others, the Gaussian kernel, which we use in Section 4 , satisfies this condition if s ≥ 2, where s is

the number of derivatives of p . Higher s increases the rate of convergence and determines the degree of ̂ p bias reduction.

Moreover, the general conditions typically required for consistency and well-defined asymptotic distribution (asymptotic 

normality) of MLEs in stationary and ergodic models are imposed on the actual log-likelihood function and the associated

MLE to ensure that the actual ˜ θML in Eq. (6) is asymptotically well behaved. 

3.3. The Brock and Hommes (1998) model 

Since its introduction, the seminal ( Brock and Hommes, 1998 ) model has remained one of the most widely analysed

FABMs. Nevertheless, there is no consensus on how to estimate the model parameters. The model represents a stylised

financial market application of the adaptive belief system —the endogenous evolutionary selection of heterogeneous ex-

pectation rules ( Lucas, 1978 ). Essentially, it is an expectation feedback system in which variables depend partly on known

values and partly on expectations about the future. The exact model specification we use to generate observations is a

stylised simple version that is compactly described in Hommes (2006 , pg. 1169) 3 and comprises three mutually dependent

equations: 

Ry t = 

H ∑ 

h =1 

n h,t−1 f h,t + ε t ≡
H ∑ 

h =1 

n h,t−1 (g h y t−1 + b h ) + ε t , (12) 

n h,t−1 = 

exp (βU h,t−1 ) ∑ H 
h =1 exp (βU h,t−1 ) 

, (13) 

U h,t−1 = (y t−1 − Ry t−2 ) 
f h,t−2 − Ry t−2 

aσ 2 

≡ (y t−1 − Ry t−2 ) 
g h y t−3 + b h − Ry t−2 

aσ 2 
. (14) 

Essentially, Eq. (12) is a heterogeneous market equilibrium risky asset pricing formula represented in deviations: 

y t = p t − p ∗t , (15) 

where p t denotes observable price level and p ∗t is the fundamental price. Next, a fixed gross rate R = 1 + r, i.e., r , represents

the constant risk-free interest rate. 

The fundamental price p ∗t provides an important benchmark for asset valuation under rational expectations based on

economic fundamentals. In a specific case of an i.i.d. stochastic risky asset dividend process d t , d t : t �→ R , expectation

E t { d t+1 } = d̄ is a constant and thus p ∗t can be derived using the simple formula for perpetuity: 

p ∗t = 

∞ ∑ 

i =1 

d̄ 

(1 + r) i 
= 

d̄ 

r 
. (16) 

Following the model specification above, we treat the fundamental price p ∗t as latent because Eq. (12) directly provides us

with deviations y t . Then, n h,t−1 denote fractions of agents of classes h ∈ { 1 , . . . , H} at time t − 1 that satisfy 
∑ H 

h =1 n h,t−1 = 1 ;

f h,t is a deterministic function that can differ across agent classes h and represents a simple linear ‘ h -type’ trading strategy

at time t ; and g h and b h denote the trend and bias parameters, respectively, of the trading strategy f h . Finally, εt is an i.i.d.

sequence with a given distribution representing market uncertainty and unpredictable market events. 

The original paper by Brock and Hommes (1998) analyses an artificial market comprising only a few simple trading

strategies. The authors argue that only very simple forecasting rules can have a real impact on equilibrium prices because

complicated strategies are unlikely to be understood and followed by a sufficient number of traders. The first agent class

comprises fundamentalists who constitute the special case with g h = b h = f h,t = 0 . They believe that asset prices are deter-

mined solely by economic fundamentals according to the efficient market hypothesis ( Fama, 1970 ) and thus always con-

verge to their fundamental values. Another agent class includes the chartists, who believe that asset prices can be partially

predicted based on various patterns observed in past data, e.g., by using simple technical trading rules and extrapolation

techniques. If b h = 0 , trader h is called a pure trend follower if 0 < g h ≤ R and is deemed a strong trend follower if g h > R .

Next, trader h is called a contrarian if −R ≤ g h < 0 and a strong contrarian if g h < −R . If g h = 0 , trader h is considered to be
3 Note that we changed the notation slightly to emphasize the general timing of updating beliefs, as in Brock and Hommes (1998) . 
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purely upward biased if b h > 0 and purely downward biased if b h < 0. Combined trading strategies with g h � = 0 and b h � = 0 are

also certainly possible. 

Eq. (13) defines market fractions n h,t−1 of agent classes h ∈ { 1 , . . . , H} that are derived under the discrete choice prob-

ability framework using the multinomial logit model. U h,t−1 denote profitability measures for strategies h ∈ { 1 , . . . , H} , and

β ≥ 0 is the intensity of choice parameter that measures how fast agents are willing to switch between different trading

strategies based on their past profitability. 

Eq. (14) then derives the profitability measures U h,t−1 based on past realised profits, risk-aversion coefficient a > 0, and

beliefs about the conditional variance of excess returns σ 2 . 4 

It is now useful to comment on interconnections between a special ABM case of the Brock and Hommes (1998) FABM

and the general frameworks described above to specify the final estimation methodology and to clarify the applicability of

the NPSMLE in a situation typical for (ABMs) when certain state variables Z t can be latent or unobserved in practice, i.e.,

Y t � = Z t . 

First, we realistically set observables Y t equal to price level p t , Y t = p t because as the fundamental price p ∗t is considered

latent. The definition of deviations y t in Eq. (15) then relates Eqs. (3) and (12) and the respective stochastic shocks ξ h , t and

κ t with εt . 

Individual behavioural rules f h , h ∈ { 1 , . . . , H} are reflected in trading strategies f h via the trend and bias parameters, i.e.,

g h and b h , respectively. Eqs. (13) and (14) then specify the state Eq. (2) for state variables Z t and the functional form of F .

Finally, Eqs. (12), (15) , and (16) specifiy the observation Eq. 3 for Y t = p t and the functional form of Q . 

Importantly, processes y t , i.i.d. sequences εt , and unknown parameter vectors θ from Sections 3.2 and 3.3 fully coincide,

making the simulation analysis in Section 4 particularly convenient. However, we must address an approximation of y t
and the estimation of the distributional parameters of F ε within the empirical analysis in Section 5 . Although x t in Eq.

(4) contains not only lagged y t but also other (exogenous) variables specifying the dividend process, the fundamental price

p ∗t , and risk-free and risk-aversion rates, etc., the coincidence of y t , εt , and θ between the NPSMLE and the FABM completely

specifies the estimation process, which is determined by a sample time series { y t } T t=1 and distributional assumptions about

F ε . 

3.4. Overview of estimated parameters 

Within the simulation study in Section 4 , we first estimate the intensity of choice β (i.e., θ = β) while keeping the other

parameters fixed. In subsequent steps, we extend the unknown parameter vector by agents’ belief coefficients g 2 and b 2
(i.e., θ = { β, g 2 , b 2 } for the 2-type model) and g 3 and b 3 (i.e., θ = { β, g 2 , b 2 , g 3 , b 3 } for the 3-type model). In the empirical

Section 5 , we jointly estimate the intensity of choice β; agents’ belief coefficients g 2 , b 2 , and g 3 ; and the standard deviation

of the market noise represented by stochastic term εt denoted as noise intensity (i.e., θ = { β, g 2 , b 2 , noise intensity } for the 2-

type model and θ = { β, g 2 , g 3 , noise intensity } for the 3-type model). All other parameters are fixed or repeatedly randomly

generated from fixed distributions, as described in Section 4.1 . 

4. Simulation study 

Prior to estimating the parameters of such a complex model on real world data, we evaluate small sample performance

of the proposed estimation strategy on the simulated data from Brock and Hommes (1998) model. Sections 4.1 and 4.2 de-

scribe a general setup for all following estimation exercises if not explicitly stated otherwise. An extensive simulation study

will allow us to see the extent to which the estimation is able to recover the true values of parameters in the controlled

environment. 

Because of its conceptual importance, meticulous attention is devoted to the switching parameter of the intensity of

choice β . Due to the frequent statistical insignificance of the switching coefficient found in the literature, we properly focus

on a plausibility of zero β throughout the entire section. Hence, we always allow for the comparison of models estimated
4 Additional memory can be introduced into the profitability measure, e.g., as a weighted average of past realised values: 

U M,h,t−1 = U h,t−1 + δU M,h,t−2 − C h , (17) 

where 0 ≤ δ ≤ 1 denotes the ‘dilution parameter’ of past memory in the profitability measure, C h ≥ 0 is the cost to obtain market information for fundamen- 

talists, and C h = 0 is the cost to obtain market information for chartists. However, following ( Hommes, 2006 ) via Eq. (14) , neither the ‘dilution parameter’ 

of past memory δ nor the potential information cost C for fundamentalists are implemented into the basic model setup to keep the dynamics of the model 

and the impact of the analysed modification as clear as possible. Indeed, for the majority of examples, Brock and Hommes (1998) also suppose the case 

with δ = C = 0 to preserve the simplicity and analytical tractability of the analysis. 

Another approach to agents’ memories is suggested by Barunik et al. (2009) , who propose that the profitability measure in Eq. (14) is extended via memory 

parameters m h : 

U h,t−1 = 

1 

m h 

m h −1 ∑ 

j=0 

[
(y t−1 − j − Ry t−2 − j ) 

f h,t−2 − j − Ry t−2 − j 

aσ 2 

]
. (18) 

The memory for each individual trading strategy h ∈ { 1 , . . . , H} is then a randomly generated integer from the uniform distribution U (0, m h ). 
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with and without switching ( β > 0 vs. β = 0 ). β is not only the crucial parameter influencing model dynamics; we also

stress its conceptual importance because it represents the dominant approach to modelling the boundedly rational choices

of agents in the current literature. Despite the focus on a single estimated parameter, capturing the effect of the switching

coefficient β is generally challenging and requires robust performance of the optimisation algorithm. 

4.1. Model simulation setup 

We fix variables that are unimportant for model dynamics to support the estimation of key parameters. A daily constant

gross interest rate is set to R = 1 + r = 1 . 0 0 01 , representing a circa 2.5% annual risk-free interest rate. We believe this is

a reasonable approximation comparable to values commonly used in literature, and we also test for the robustness of our

results to variations of this parameter. The linear term 1/ a σ 2 is fixed to 1. It is important to note that a and σ 2 are only

scale factors for the profitability measure U not affecting relative proportions of U h , t and thus they do not influence the dy-

namics of model output; on the contrary, the dynamics of model output are usually characterised by time-varying variance.

Next, we use a relatively small number of possible trading strategies, H = 5 , for the general model setting. In Monte Carlo

simulation, behavioural parameters are randomly generated from fixed distributions to obtain statistically valid inferences.

Trend parameters g h , h ∈ {2, 3, 4, 5} are drawn from the normal distribution N (0, 0.4 2 ), and bias parameters b h , h ∈ {2, 3, 4,

5} are drawn from the normal distribution N (0, 0.3 2 ). A strict fundamental strategy in the sense of the original ( Brock and

Hommes, 1998 , pg. 1245) article appears in the market by default, i.e., the first trading strategy is defined as g 1 = b 1 = 0

and thus some proportion of fundamentalists are always present in the market. 

Our main focus is on the ability to recover the switching parameter of the intensity of choice β , which is typically found

to be a single digit and is often close to zero. Hence, we set a meaningful range of β = { 0 , 0 . 1 , 0 . 5 , 1 , 3 , 5 , 10 } . These values

resemble the economic intuition of a realistically low switching frequency between major types of trading strategies. Neg-

ative β does not make economic sense because it would cause inverse illogical switching towards less profitable strategies,

whereas high values of β would cause unrealistically fast switching, which can hardly be observed among market agents in

reality. 5 

Because the noise term significantly influences the model, its magnitude must be considered carefully. Noise represents

market uncertainty and unpredictable events but must not overshadow the effect of the variables under scrutiny. Although

theoretically the F ε from which the { ε i } N i =1 
are drawn to simulate { y θ

t,i 
} N 

i =1 
in Eq. (7) is a generic known distribution, assump-

tions about market noise can play a crucial role in the NPSMLE application to real-world data. Therefore, we test the model

sensitivity and robustness of the proposed methodology using an extensive range of noise specifications based on normal

distribution and considering ‘miniscule’ standard deviations SD = 10 −8 or 10 −6 [used by Hommes (2013 , pg. 170, 174, 177)],

‘small’ standard deviations such as SD = 0 . 01 [used by Hommes (2013 , pg. 171)], standard normal SD = 1 , and finally, a rela-

tively large ‘experimental’ standard deviation SD = 2 . A comprehensive list is provided in Table 9 in Appendix A . The normal

distribution of market noise seems reasonably realistic, and a similar assumption has already been used in related studies,

where “the non-linear models are fed with an exogenous stochastic process, but the noise process is ‘nice’, which in this

case means that it is normally distributed”, as noted by Amilon (2008 , pg. 344). We also utilise the favourable theoretical

properties of the Gaussian kernel ( Kristensen and Shin, 2012 , pg. 81) in Eq. (8) . 

4.2. NPSMLE simulation setup 

We combine three different levels of the kernel estimation precision N = { 10 0 , 50 0 , 10 0 0 } with five lengths of the time

series entering the algorithm t = { 10 0 , 50 0 , 10 0 0 , 50 0 0 , 10 0 0 0 } , and we always simulate 100 extra observations to be dis-

carded as an initial period in which the model dynamic is being established. To ensure the statistical validity of the results,

10 0 0 random runs are conducted. 6 Following the general principle of a preliminary rough search with unconstrained pa-

rameter space followed by fine-tuning on a considerably restricted subset of the parameter space ( Chen and Lux, 2016 ), we

restrict the parameter space to 〈−β, 3 β〉 for β > 0 and to 〈−0 . 5 , 0 . 5 〉 for β = 0 . We also allow for economically irrelevant

negative values to avoid upward bias of the simulated estimator, especially for β close to 0. To estimate the conditional

density p t ( y | x ; θ ), the Gaussian kernel and Silverman ’s 1986 rule of thumb for finding the optimal size of the bandwidth are

used: η = [4 / (3 N)] 1 / 5 ̂ σ , where ̂ σ denotes the standard deviation of { y θ
t,i 

} N 
i =1 

. 

4.3. Estimating intensity of choice β

We primarily verify how consistently and efficiently the estimator recovers β parameter in small samples. In Fig. 1 , we

depict a ‘snapshot’ of simulation results for three interesting values of the intensity of choice β ∈ {0, 0.5, 10} combined with
5 It is beyond the scope of this work to provide a deep analysis of the model behaviour, e.g., how the intensity of choice β influences the dynamics 

of the model that can under certain settings generate purely chaotic behaviour. Many studies have been devoted to this generally difficult issue in the 

past two decades. In this context, we refer the interested reader to the original paper of Brock and Hommes (1998) containing comprehensive model 

dynamics analysis; extensive studies by Hommes and Wagener (20 09) ; Hommes (20 06) and Chiarella et al. (20 09) ; or a recent book by Hommes (2013) that 

summarises two decades of research on the heterogeneous expectations hypothesis. 
6 We also experimented with smaller numbers of random runs, and the results confirm that the use of 500 runs performs sufficiently well. These results 

are available upon request from the authors. 
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Fig. 1. Simulation results for estimation of β ∈ {0, 0.5, 10}. Results are based on 10 0 0 random runs. Stochastic noises εt and { ε i } N i =1 
are drawn from given 

normal distribution. Black dotted lines with × depict the true β . Unbroken grey lines depict sample means of estimated β . Grey dashed lines depict 2.5% 

and 97.5% quantiles. The light grey colour represents results for N = 100 , normal grey represents results for N = 500 , and dark grey represents results for 

N = 10 0 0 . 

Fig. 2. Densities for selected ̂ β . Results are based on 10 0 0 random runs, t = 50 0 0 , and N = 10 0 0 . Stochastic noises εt and { ε i } N i =1 
are drawn from given 

normal distribution. Black dotted lines depict the true β . 

Table 1 

Simulation results for β estimation with Gaussian noise. 

β ̂ β

Median Mean SD LQ HQ μ

0 0.00 0.00 0.05 −0 .09 0.09 2 

.1 0.10 0.10 0.04 0 .00 0.19 2 

.5 0.50 0.51 0.13 0 .29 0.80 1 

1 0.99 1.00 0.19 0 .69 1.33 1 

3 3.00 3.02 0.40 2 .33 3.89 1 

5 5.00 5.00 0.57 3 .99 6.06 0.1 

10 10.00 9.97 0.73 8 .62 11.15 0.1 

Results are based on 10 0 0 random runs, t = 50 0 0 , and N = 10 0 0 . 

Stochastic noises εt and { ε i } N i =1 
are drawn from N (0, μ2 ). SD, LQ, and 

HQ stand for standard deviation, 2.5%, and 97.5% quantiles, respectively. 

Figures are rounded to 2 decimal digits. 

 

 

 

 

 

 

 

 

 

 

 

three distinct specifications of the stochastic noise, as specified above. This process also allows for the comparison of model

estimates with and without switching ( β > 0 vs. β = 0 ). The method clearly reveals the true value of β with increasing

precision as the number of observations increases and as kernel estimation precision N increases. Further, Fig. 1 reveals

an important result from an economic perspective, which is that we should be able to detect not only very weak signs

of behavioural switching in long-span daily financial data but also stronger signs of switching in macroeconomic data for

which lower-frequency time series of shorter durations are typically available. 

To limit the number of results reported in this paper, we report results for fixed length of generated time series t = 50 0 0

and kernel estimation precision N = 10 0 0 ; the rest of the results are available from the authors upon request. Fig. 2 and

Table 1 confirm the ability of the estimation framework to recover the true value of β very precisely, with narrow confidence

intervals. Hence, we are able to test the null hypothesis H 0 : β = 0 even for small values of β , which is crucial in empirical

estimation. 

Encouraged by these results, we study the robustness of the method with respect to various noises. These results, which

are summarised in Table 9 in Appendix A , suggest the estimation is robust to changing noise. Generally, lower values of
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Fig. 3. Shape of the simulated log-likelihood function. Results are based on 100 random runs, t = 5000 , and N = 1000 . Stochastic noise εt and { ε i } N i =1 
are 

drawn from given normal distribution. Black dotted vertical lines depict the true β . Unbroken bold black lines depict sample averages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the intensity of choice, β = { 0 . 1 , 0 . 5 , 1 } , are the most difficult to reveal and are most precisely estimated under extremely

small or fairly large noises. However, these values essentially represent the extreme case in which there is no switching

by agents among possible strategies, which restrains model dynamics because there is only a small difference between this

model behaviour and the agents’ absolute inertia case, where β = 0 . Conversely, higher values of the intensity of choice, β =
{ 5 , 10 } , require relatively small noises for the most precise detection of the switching effect [subparts (g) and (h) of Table 9 ].

These are important findings that highlight the necessity of a proper noise specification within the empirical estimation

procedure. 

4.3.1. Behaviour of the simulated log-likelihood function 

Kristensen and Shin (2012 , pg. 80-81) define a set of regularity conditions A .1-A .4 for the model and its associated con-

ditional density that ensure sufficiently fast convergence of ̂ p −→ p and thus the asymptotic equivalence of ̂ θ and 

˜ θ . These

conditions basically impose restrictions on data-generating functions and the conditional density that is being estimated.

These assumptions are “quite weak and are satisfied by many models” ( Kristensen and Shin, 2012 , pg. 81). However, we

are not able to verify these conditions analytically for the Brock and Hommes (1998) and thus must rely on computational

tools. Therefore, we explore the smoothness condition, identification of parameters, and existence of a unique maximum by

observing the simulated log-likelihood functions. For these purposes, Fig. 3 depicts the simulated log-likelihood function for

the same three interesting values of the intensity of choice β ∈ {0, 0.5, 10}. We clearly observe the very smooth shape of

the functions over the entire domain and a unique maximum generally shared by all 100 random runs. Bold black unbroken

lines represent sample averages over these 100 runs. Based on the generally smooth shapes and unique optima of the sim-

ulated log-likelihood functions, we assume that the regularity conditions are met for the model and that the identification

of parameters is assured. 

4.3.2. Robustness checks 

For the estimation of the β parameter, it is important that the NPSMLE recovers the true parameter under different

beliefs that significantly impact model dynamics ( Barunik et al., 2009; Kukacka and Barunik, 2013; Vacha et al., 2012 ).

Table 10 in Appendix A reports results for different belief parameters g h and b h drawn randomly from the normal distribu-

tion centred at zero with variances {0.1 2 , 0.2 2 , 0.3 2 , 0.4 2 }. We observe a general ability of the method to accurately reveal

the true value of the intensity of choice β for the vast majority of combinations of the simulation grid. Increasing the vari-

ance of the belief distribution generally obtains richer model dynamics that can be estimated more efficiently, as evidenced

by the generally decreasing standard deviations of estimated β . We also experimented with different noise levels, but the

results are essentially the same. These results are available upon request. 

Another important issue is the extent to which the estimation methodology is robust to an assumption of inaccurate

stochastic noise. This inaccuracy can be manifested either by a correct distribution with incorrect parameters or through

a completely different distribution. This matter is especially important with respect to empirical application because we

are rarely able to ascertain proper assumptions about noise in real-world data. To analyse this situation, we present the

results of eight combinations of different distributions used for random generation of stochastic noises εt and { ε i } N i =1 
. In the

upper part of Table 2 , we report cases where stochastic noises εt and { ε i } N i =1 
are drawn from the same distributions with

different variances [subparts (a) and (b)], as well as from different distributions with same variances [subparts (c) and (d)].

Basically, we use combinations of normal and uniform distributions, and for different variances, we use specifications with

centupled values. The uniform distribution is selected for its simplicity and because it is the maximum entropy probability

distribution among its family of symmetric probability distributions. Conclusions for this robustness check are quite clear

and can be summarised as follows. 

When a distribution with lower variance is used [subparts (a) and (b)] to generate the stochastic noise εt , then for { ε i } N i =1 
to define the kernel approximation precision, the NPSMLE works but produces statistically insignificant estimates and very
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Table 2 

Results for β estimation with various combined noises. 

β (a) ̂ β, ε t ∼ N(0 , 0 . 1 2 ) , (b) ̂ β, ε t ∼ U 
(

−
√ 

12 
2 

× 10 −1 , 
√ 

12 
2 

× 10 −1 
)
, 

{ ε i } N i =1 
∼ N(0 , 1) { ε i } N i =1 

∼ U 
(

−
√ 

12 
2 

, 
√ 

12 
2 

)
Median Mean SD LQ HQ Med. Mean SD LQ HQ 

0 0.02 0.01 0.36 –.50 0.50 0.08 0.03 0.43 -.50 0.50 

.1 0.10 0.10 0.15 –.10 0.30 0.09 0.10 0.17 –.10 0.30 

.5 0.51 0.50 0.66 –.50 1.50 0.46 0.48 0.85 –.50 1.50 

1 0.98 1.01 1.14 –1.00 3.00 0.96 1.01 1.67 –1.00 3.00 

3 2.99 3.17 2.61 –2.99 9.00 2.81 2.95 4.77 –3.00 9.00 

5 4.97 5.40 4.02 –4.98 15.00 4.51 4.97 7.80 –5.00 15.00 

10 10.09 11.35 7.07 –2.83 30.00 9.38 10.56 15.21 –10.00 30.00 

(c) ̂ β, ε t ∼ N(0 , 0 . 1 2 ) , (d) ̂ β, ε t ∼ U(−
√ 

12 
2 

× 10 −1 , 
√ 

12 
2 

× 10 −1 ) , 

{ ε i } N i =1 
∼ U(−

√ 
12 
2 

× 10 −1 , 
√ 

12 
2 

× 10 −1 ) { ε i } N i =1 
∼ N(0 , 0 . 1 2 ) 

0 –.02 –.02 0.30 –.50 0.50 0.00 0.01 0.26 –.50 0.50 

.1 0.10 0.10 0.16 –.10 0.30 0.10 0.10 0.14 –.10 0.30 

.5 0.50 0.49 0.44 –.50 1.50 0.49 0.50 0.36 –.44 1.46 

1 1.01 1.02 0.55 –.27 2.38 0.99 0.98 0.46 –.10 1.93 

3 3.00 2.97 0.76 1.52 4.28 3.01 2.99 0.61 1.81 4.01 

5 4.99 4.99 0.79 3.51 6.35 5.00 5.01 0.67 4.09 6.17 

10 9.99 9.97 0.82 8.25 11.43 10.00 9.99 0.58 8.85 11.08 

(e) ̂ β, ε t = ζt − 0 . 1 ε t−1 (f) ̂ β, ε t = ζt − 0 . 1 ε t−1 

{ ε i } N i =1 
∼ N(0 , 0 . 1 2 ) { ε i } N i =1 

∼ N(0 , 1) 

0 –.50 –.46 0.09 –.50 –.19 –.11 –.16 0.16 –.50 0.03 

.1 –.10 –.10 0.01 –.10 –.10 –.01 –.01 0.08 –.10 0.14 

.5 –.48 –.29 0.26 –.50 0.27 0.38 0.32 0.22 –.33 0.61 

1 0.04 –.11 0.61 –1.00 0.75 0.81 0.76 0.29 0.03 1.21 

3 1.93 1.52 1.29 –2.65 2.76 2.56 2.51 0.56 1.26 3.53 

5 3.96 3.45 1.62 –1.91 4.85 4.33 4.28 1.02 2.24 6.30 

10 8.93 8.43 1.78 3.87 9.99 8.94 8.91 1.95 4.85 12.74 

(g) ̂ β, ε t = ζt + 0 . 1 ε t−1 (h) ̂ β, ε t = ζt + 0 . 1 ε t−1 

{ ε i } N i =1 
∼ N(0 , 0 . 1 2 ) { ε i } N i =1 

∼ N(0 , 1) 

0 0.50 0.48 0.07 0.26 0.50 0.13 0.18 0.19 –.09 0.50 

.1 0.30 0.30 0.00 0.30 0.30 0.23 0.21 0.09 0.03 0.30 

.5 1.50 1.33 0.24 0.78 1.50 0.66 0.74 0.29 0.39 1.50 

1 2.14 2.23 0.59 1.30 3.00 1.23 1.35 0.44 0.78 2.65 

3 4.21 4.68 1.44 3.26 9.00 3.54 3.71 0.86 2.49 6.02 

5 6.21 6.84 1.89 5.13 12.51 5.76 5.96 1.23 4.16 9.36 

10 11.12 11.82 2.46 9.97 18.63 10.98 11.47 2.52 7.96 17.45 

Results are based on 10 0 0 random runs, t = 50 0 0 , and N = 10 0 0 . Stochastic noises εt and { ε i } N i =1 
are drawn 

from the same distributions with different variances in (a) and (b) and from different distributions with the 

same variances in (c) and (d). In (e), (f), (g), and (h), εt follows an autocorrelated MA(1) process: ε t = ζt ±
0 . 1 ε t−1 , where ζ ∼ N (0, 
2 ), so that εt has the same variance as { ε i } N i =1 

drawn from normal distributions of 

given parameters. Sample medians, means, standard deviations (SD), and 2.5% (LQ) and 97.5% (HQ) quantiles 

are reported. Figures are rounded to 2 decimal digits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

uniformly distributed estimated values. Moreover, uniform distributions [subpart (b)] reveal inferior estimation precision,

which can be attributed mainly to their different shape compared to normal distributions. Conversely, when different dis-

tributions with the same variances are used [subparts (c) and (d)], we obtain more precise estimates with markedly lower

standard deviations, especially for higher β . These findings strongly confirm the need to properly specify the magnitude of

stochastic noise but suggest laxer requirements for accurate specification of the noise distribution in the empirical applica-

tion of NPSMLE. 

Moreover, subparts (e)-(h) study properties of the estimation methodology when stochastic noises are characterised

by negative and positive first-order autocorrelation. Negative autocorrelation is commonly assumed to be a feature of

the microstructure noise that affects market prices ( Bandi and Russell, 20 06; 20 08 ), 7 whereas positive autocorrelation

serves as an opposite effect check. We implement εt as a weak MA(1) process with a first-order autocorrelated structure:

ε t = ζt ± 0 . 1 ε t−1 , where ζ ∼ N (0, 
2 ), so that εt has the same variance as { ε i } N i =1 
drawn from normal distributions of given

parameters. It is important to highlight here that an autocorrelated noise does not follow the NPSMLE assumption that re-

quires εt to be an i.i.d. sequence (see Eq. 4 ). Nonetheless, this imperfection provides us with another interesting robustness

check with respect to application of the methodology to real data. Noises with negative autocorrelation cause a considerable
7 We would like to thank an anonymous referee for this valuable comment. 
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Table 3 

Results of 3-parameter estimation of a 2-type model. 

β , g 2 , b 2 (a) ̂ β (b) ̂ g 2 (c) ̂ b 2 

Median Mean SD Mean SD Mean SD 

.0, 0.4, 0.3 0.01 0.01 0.33 0.40 0.03 0.30 0.01 

.5, 0.4, 0.3 0.55 0.53 0.40 0.40 0.04 0.30 0.01 

3, 0.4, 0.3 2.98 2.99 0.42 0.40 0.03 0.30 0.01 

10, 0.4, 0.3 9.98 10.00 0.62 0.40 0.03 0.30 0.01 

.0, -.4, -.3 0.03 0.01 0.41 -.40 0.03 -.30 0.01 

.5, -.4, -.3 0.54 0.53 0.67 -.40 0.04 -.30 0.01 

3, -.4, -.3 3.02 3.01 0.86 -.40 0.04 -.30 0.01 

10, -.4, -.3 9.93 9.96 0.96 -.40 0.03 -.30 0.01 

.0, 0.4, -.3 0.04 0.02 0.32 0.40 0.04 -.30 0.01 

.5, 0.4, -.3 0.49 0.49 0.40 0.40 0.04 -.30 0.01 

3, 0.4, -.3 3.01 3.01 0.45 0.40 0.04 -.30 0.01 

10, 0.4, -.3 9.98 10.00 0.62 0.40 0.03 -.30 0.01 

.0, -.4, 0.3 0.07 0.02 0.41 -.40 0.03 0.30 0.01 

.5, -.4, 0.3 0.50 0.51 0.66 -.40 0.04 0.30 0.01 

3, -.4, 0.3 3.00 2.99 0.86 -.40 0.04 0.30 0.01 

10, -.4, 0.3 10.03 10.04 0.98 -.40 0.04 0.30 0.01 

Results are based on 10 0 0 random runs, t = 50 0 0 , and N = 10 0 0 . Stochastic noises εt and 

{ ε i } N i =1 
are drawn from normal distribution N (0, 0.1 2 ). Sample medians, means, and stan- 

dard deviations (SD) are reported. Figures are rounded to 2 decimal digits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downward bias of estimates [subparts (e) and (f)], whereas an upward bias effect is clearly observable for positive autocor-

relation [subparts (g) and (h)]. Precision is naturally lower compared to Table 1 with assumptions met, and interestingly,

the bias markedly decreases as stochastic noise variance increases [subparts (f) and (h)]. These results could have important

consequences for empirical application—if the true market noise is autocorrelated, NPSMLE can be suspected to generate

biased results. 

4.4. 2-type and 3-type model estimation 

An important advantage of FABMs is that their dynamics are driven primarily by a small number of crucial parameters.

Hence, as a natural subsequent step, we might attempt to simultaneously estimate all essential coefficients in the simplest

2-type and 3-type models for which both theoretical and empirical rationales exist in the recent literature ( Chen et al.,

2012 ). With reference to Biondi et al. (2012 , pg. 5534), “it has been advocated that the two broad categories of chartism and

fundamentalism account for most possible investment strategies”. Estimated parameters are selected consistently with the 

findings in Tables 6 and 7 , i.e., we jointly estimate the intensity of choice β and agents’ behavioural belief coefficients g h 
and b h . 

The main differences com pared with the previous setup are that the number of trading strategies is lower, H = { 2 , 3 } ,
and that belief coefficients g h and b h are no longer drawn from distributions but rather kept fixed for all 10 0 0 Monte Carlo

runs. Other parameters follow the previous setup, and we define bounds for the parameter space of belief coefficients for the

2-type model as 〈−3 | g 2 | , 3 | g 2 |〉 and 〈−3 | b 2 | , 3 | b 2 |〉 , respectively. For the 3-type model, it is also necessary to limit bounds

for belief coefficients by zero from one side to avoid problems with insufficient specification of the model, for instance, 〈 0,

3| g 2 | 〉 and 〈 0, 3| b 2 | 〉 for a trend following an upward-biased strategy. 

We first study a simple 2-type system consisting of two trading strategies and in which the fundamental strategy appears

in the market again by default, i.e., g 1 = b 1 = 0 . A discrete grid of the true intensity of choice β and chartistic beliefs g 2 and

b 2 is defined to cover a purposeful set of values. To keep the number of combinations at a reasonable level, we opt for

β = { 0 , 0 . 5 , 3 , 10 } and cover all combinations of trend-following ( g 2 > 0), contrarian ( g 2 < 0), upward-biased ( b 2 > 0), and

downward-biased ( b 2 < 0) strategies. We refer the reader to the first column of Table 3 for a complete specification. We

report only one specification of noise, namely, εt ∼ N (0, 0.1 2 ), because the results, e.g., for εt ∼ N (0, 1) essentially do not

change. 

In a nutshell, Table 3 confirms all main findings from the simulation analysis of the single parameter β estimation.

The method is also generally able to accurately reveal the true values of estimated parameters in the 3-parameter joint

estimation case. In addition, belief coefficients g 2 and b 2 , which are of central importance in this section, are estimated

as significant overall and with markedly high precision. Because of the altered setup, the estimation precision of the β
parameter is not directly comparable to previous results; however, we still get generally conformable figures. 

To verify smoothness conditions and the identification of parameters with multiple parameter estimation, Fig. 4 visualises

3D simulated sub-log-likelihood functions in a global shape when imaginarily combined in a 4D object. One can think of

these functions as transversal cuts or profiles of the likelihood function in the planes of given parameters, keeping the

remaining parameter fixed at β = 0 . 5 , g = 0 . 4 , b = 0 . 3 . We clearly observe very smooth shapes of the surface, and regions
2 2 
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Fig. 4. Simulated sub-log-likelihood functions in 3D. Results are averaged over 30 random runs, t = 50 0 0 , and N = 10 0 0 . The complete set of true param- 

eters: β = 0 . 5 , g 2 = 0 . 4 , b 2 = 0 . 3 . Stochastic noises εt and { ε i } N i =1 
are drawn from normal distribution N (0, 0.1 2 ). L denotes log-likelihood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of possible maxima are easily detectable. Parameters g 2 and b 2 are well identified, which confirms the previous results.

The most challenging part is the identification of the β coefficient in the direction of which the surface is very flat for

a large interval of the domain. These findings are largely in accord with the conclusions of Bolt et al. (2014 , pg. 15) and

Hommes and Veld (2015) , who claim that “the other parameters can to a large extent compensate for changes in β” and

similarly report a very flat shape of the likelihood function. We can generally assume that the regularity conditions are met

and that the identification of parameters is assured for the 2-type model estimation as well. 

Finally, the results of a joint estimation of 5 parameters in the 3-type model are provided in Table 11 in Appendix A . We

continue the strategy of defining a grid of chartistic beliefs and the conclusions are generally in accord with the results of

the 2-type model estimation. The difference is mainly in the efficiency of estimates, which is by nature lower for the 3-type

model than for the 2-type model. 

5. Estimation on empirical data 

Equipped with the performance study of the proposed methodology, we broaden the topic with an empirical application,

estimating the Brock and Hommes (1998) model using a cross-section of world stock markets. We analyse S&P500 and

NASDAQ for the U.S., DAX and FTSE for Europe, and NIKKEI 225 and HSI for Japan and Hong Kong, respectively. 

5.1. The estimation setup 

The setup of the empirical estimation algorithm follows the findings of the simulation study regarding the sufficient

setting of the NPSMLE. We compute results for 10 0 0 random runs and number of observations t = 50 0 0 , and the kernel

approximation precision is set to N = 500 . Because of a potential problem with the numerical stability of the model and

the fairly rough shapes of the simulated log-likelihood functions when real data are introduced, we increase the number

of randomly generated starting points to eight, which increases the computational burden considerably. The other setting

remains the same as defined earlier. As we show in Section 4.3.2 , a proper specification of stochastic market noise is crucial

for estimation performance. Because noise intensity for various real markets is a rarely anticipated variable, we eschew

the grid strategy here. Instead, we define noise intensity as a fraction of the standard deviations of the noise term and

the data and add this new coefficient, denoted as noise intensity , to the list of estimated parameters. We thus apply a joint

unconstrained multivariable function estimation of four interesting parameters: agents’ belief coefficients g h and b h , intensity

of choice β , and market noise intensity . 

We start with the estimation of the 2-type model, which includes one chartistic strategy represented by g 2 and b 2 , which

are to be estimated. Then, we estimate the 3-type model, which includes two different chartistic strategies. Based on the

results of the 2-type model estimation, we assume a zero bias for both strategies, i.e., b 2 = b 3 = 0 . Moreover, to properly

identify the two different strategies, we need to constrain the trend-following coefficient g 2 > 0 and the contrarian coefficient

g 3 < 0. 

5.2. Fundamental price approximation 

Approximation of the fundamental price is inevitably the most challenging piece of the entire empirical estimation. In

this process, we follow the existing literature, which approximates the fundamental price based on a moving average ( ter

Ellen and Zwinkels, 2010; Huisman et al., 2010; Winker et al., 2007 ). For example, Winker et al. (2007) use moving average

(MA) over the last 200 observations of the DM/USD exchange rate time series for the period 1991/11/11 to 20 0 0/11/9 as a

proxy for the fundamental price. ter Ellen and Zwinkels (2010) use the MA of the Brent and WTI-Cushing monthly oil prices

in USD over 24 months, i.e., from 1984/1 to 2009/8. Huisman et al. (2010) employ the MA of European forward electricity
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daily historical prices over three years for the base-load calendar year 2008 forward contracts and set the MA window to 3

as a calibration result of the optimal length. 8 

Long-term and short-term MA is also commonly used by practicing traders to extrapolate divergence from the funda-

mental value in technical analysis. Because the fundamental value of stocks is essentially unknown, market practitioners

often tend to at least estimate whether the stock is over- or under-valued, whether possible mispricing is small or large,

and whether the gap is going to increase or a rapid correction is more likely. Because the Brock and Hommes (1998) model

is also formulated in deviations from the fundamental price, the MA approach to approximation seems reasonable. The MA

filtering is a cornerstone of technical analysis and is therefore widely used by active traders: Allen and Taylor (1990 , pg.

50) present empirical evidence on the perceived importance of technical analysis among London foreign exchange dealers

and refer to prevalent mechanical indicators, including trend-following rules: “buy when a shorter MA cuts a longer MA

from below”. Taylor and Allen (1992) survey chief foreign exchange dealers operating in London and report that 64.3% of

organisations use MA and/or other trend-following analytical techniques. Brock et al. (1992 , pg. 1735) refer to MA technical

rules as one of the two simplest and most widely used techniques: “when the short-period MA penetrates the long-period

MA, a trend is considered to be initiated”. Lui and Mole (1998 , pg. 541, 535) repeat the largely analogical survey conducted

by Taylor and Allen (1992) among Hong Kong foreign exchange dealers and report the same conclusion about the useful-

ness of MA at intraday, intramonth, and > 1 month horizons. Goldbaum (1999 , pg. 70, 71) describes how the MA trading

rules translate into buy-sell indicators in practice, and Sullivan et al. (1999 , pg. 1656) state that “MA cross-over rules…are

among the most popular and common trading rules discussed in the technical analysis literature”. Closely related to our

work, Chiarella et al. (2006 , pg. 1748) propose a model in which the demand of chartists is determined by the difference

between a long-term MA and the current market price. 

In our empirical estimation, we keep the strategy of using a wide range of possible settings to ensure the robustness

of our findings. We present results for two specific MA window lengths, namely, 61 (MA61) and 241 (MA241) days. For

the robustness check, we also tested other variants ranging from one month to two years, namely, 21, 121, and 481 days,

and obtained comparable results. These results are available from the authors upon request. Instead of the usual ‘historical’

MA, which considers only past information for a given time, we use the ‘centred’ MA. Both MA versions were analysed

and found to produce largely comparable results. The centred MA is therefore suggested to reduce the delay in information

flow. Moreover, the centred MA incorporates a convenient property—that the price by definition converges to it—which

is precisely the type of feature one would expect from the fundamental value. Although undoubtedly our fundamental

price approximation differs from the true fundamental value, the MA filter produces a series of anticipated structures to be

modelled. However, it is important to emphasise here that if the MA is a poor proxy for true fundamental value, bias may

result in the subsequent empirical sections. 

5.3. Data description 

We use the daily close prices of six world stock market indices retrieved from Yahoo Finance as the base of our empirical

dataset. For S&P500, the dataset covers the period from 1994/02/23 to 2013/12/31, i.e., 50 0 0 observations in total. For the

other indices, only the starting dates of the datasets vary due to different public holidays and calendar configurations around

the world, i.e., 1994/04/22 for DAX, 1994/11/02 for FTSE, 1994/02/23 for NASDAQ, 1993/09/03 for NIKKEI 225, and 1994/06/13

for HSI. The fundamental price is simultaneously calculated as the centred MA and subtracted from the actual price; hence,

for each index, we obtain a comparable number of 50 0 0 deviations y t with the same end date (2013/12/31) that are the

subject of further estimation. Descriptive statistics of y t series for all indices and two MA lengths for the fundamental value

approximation are summarised in Table 12 and in Appendix A . 

5.4. Full sample estimates of the 2-type model 

We start with the full sample estimation summarised in Table 4 . We observe broad similarities across all indices and

notably statistically significant estimates of a positive belief parameter g 2 , revealing the superiority of trend following over

contrarian strategies in financial markets. In contrast, estimates of the intensity of choice β and the bias parameter b 2 are

largely statistically insignificant. Although this is the expected result for the bias, because there is no obvious reason why

trend-following strategies should be somehow biased in the long term, the insignificance of ̂ β is an important and interest-

ing result. We thus conflict with a subpart of the FABM estimation literature (see Section 2 ) but confirm the main results

of, e.g., Bolt et al. (2014) ; Boswijk et al. (2007) ; ter Ellen et al. (2013) ; de Jong et al. (2009b ); Westerhoff and Reitz (2005) .

Because the heterogeneity in trading regimes is confirmed by the significance of g 2 , this outcome might not be cause for

concern, as discussed in Boswijk et al. (2007 , pg. 1995) and Hommes (2013 , pg. 203), who emphasise that “this is a com-

mon result in non-linear switching regression models, where the parameter in the transition function is difficult to estimate
8 In contrast, another class of FABMs of FX markets successfully utilises the purchasing power parity between two countries to approximate the fun- 

damental value of the currency exchange rate [see e.g. Goldbaum and Zwinkels (2014) ; Manzan and Westerhoff (2007) ; Verschoor and Zwinkels (2013) ; 

Vigfusson (1997) ; Wan and Kao (2009) ; Westerhoff and Reitz (2003) ]. Boswijk et al. (2007) and de Jong et al. (2009a ) employ the static growth model 

proposed by Gordon (1962) for equity valuation, but this approach is infeasible for empirical validation of the original ( Brock and Hommes, 1998 ) model. 

Several other papers simply use a random walk formula to drive the fundamental price ( De Grauwe and Grimaldi, 20 05; 20 06; Franke, 20 09; Winker et al., 

2007 ). 
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Table 4 

Empirical results of the 2-type switching model estimation. 

Data, MA period (a) ̂ β (b) ̂  g 2 (c) ̂  b 2 (d) ̂ noise intensity (e) L 

Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD 

SP500, 61 0.015 0.040 0.122 1.567 1.587 0.233 0.009 0.003 0.121 0.653 0.656 0.108 −1.486 −1.491 0.074 

NASDAQ, 61 0.002 0.006 0.146 1.717 1.715 0.166 −.005 −.003 0.092 0.609 0.609 0.079 0.117 0.115 0.038 

DAX, 61 0.001 0.018 0.112 1.640 1.646 0.215 0.008 0.001 0.117 0.590 0.601 0.099 −1.259 −1.264 0.081 

FTSE, 61 −.0 0 0 0.008 0.113 1.671 1.668 0.201 0.001 0.004 0.117 0.597 0.602 0.092 −.988 −.995 0.059 

HSI, 61 −.004 −.002 0.150 1.724 1.727 0.164 −.003 −.001 0.098 0.566 0.570 0.069 −.145 −.147 0.036 

N225, 61 0.008 0.021 0.100 1.601 1.619 0.210 0.011 0.007 0.121 0.593 0.601 0.103 −1.544 −1.546 0.085 

SP500, 241 −.021 −.009 0.195 1.878 1.875 0.127 0.007 0.001 0.111 0.388 0.397 0.064 0.029 0.019 0.074 

NASDAQ, 241 0.038 0.047 0.189 1.882 1.869 0.152 −.009 −.003 0.105 0.423 0.419 0.078 0.422 0.424 0.111 

DAX, 241 0.014 0.012 0.247 1.932 1.928 0.109 0.007 0.003 0.103 0.292 0.315 0.070 0.328 0.309 0.096 

FTSE, 241 0.010 0.012 0.162 1.871 1.858 0.143 0.008 0.004 0.114 0.408 0.409 0.071 −.153 −.157 0.085 

HSI, 241 0.008 0.006 0.204 1.914 1.908 0.130 0.004 0.002 0.103 0.351 0.366 0.080 0.369 0.363 0.118 

N225, 241 0.003 0.012 0.147 1.865 1.850 0.165 −.0 0 0 −.0 0 0 0.125 0.394 0.392 0.101 −.793 −.793 0.160 

Robustness check 

SP500 monthly, 13 −.016 −.031 0.272 0.886 0.891 0.238 0.006 0.002 0.121 0.863 0.869 0.104 −3.660 −3.666 0.054 

SP500 weekly, 13 −.085 −.103 0.228 0.953 0.971 0.224 −.003 −.001 0.121 0.865 0.869 0.098 −2.336 −2.349 0.057 

SP500 weekly, 49 0.044 0.089 0.146 1.119 1.168 0.241 0.005 0.002 0.118 0.724 0.720 0.103 −2.626 −2.615 0.073 

SP50 0 R = 1.0 01, 61 0.016 0.035 0.112 1.585 1.607 0.241 0.004 0.004 0.121 0.656 0.654 0.110 −1.480 −1.485 0.073 

SP50 0 R = 1.0 01, 241 0.001 −.001 0.196 1.889 1.880 0.134 0.005 0.002 0.111 0.393 0.397 0.062 0.029 0.019 0.073 

SP500 m h = 40, 61 −.032 −.041 0.149 1.659 1.673 0.173 −.002 −.002 0.114 0.584 0.587 0.075 −1.393 −1.402 0.038 

SP500 m h = 40, 241 −.028 −.020 0.298 1.908 1.905 0.107 −.004 −.003 0.099 0.338 0.355 0.056 0.100 0.086 0.054 

SP500 m h = 80, 61 −.047 −.054 0.177 1.644 1.664 0.182 0.003 0.003 0.115 0.573 0.576 0.065 −1.385 −1.392 0.032 

SP500 m h = 80, 241 −.036 −.014 0.309 1.908 1.906 0.105 −.002 −.004 0.097 0.335 0.352 0.054 0.106 0.091 0.056 

Results are based on 10 0 0 random runs, t = 50 0 0 , and N = 50 0 draws from normal distribution. Sample medians, means, and standard deviations (SD) are reported. L denotes log-likelihoods of estimated 

models representing statistical fits. Figures are rounded to 3 decimal digits. 



36 J. Kukacka, J. Barunik / Journal of Economic Dynamics & Control 85 (2017) 21–45 

Fig. 5. Simulated sub-log-likelihood functions for single parameters. Results are based on 100 random runs, S&P500 data, and N = 500 draws from normal 

distribution. Upper part (a-d) depicts results based on MA61 fundamental price approximation, bottom part (e-h) based on MA241. Black dotted vertical 

lines depict estimated parameters (see Table 4 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and has a large standard deviation, because relatively large changes in β∗ cause only small variation of the fraction n t .

Teräsvirta (1994) argues that this should not be worrisome as long as there is significant heterogeneity in the estimated

regimes”. Furthermore, as noted by Huisman et al. (2010 , pg. 17, 20), “the significance of the intensity of choice is not a

necessary condition for the switching to have added value to the fit of the model” and “the non-significant intensity of

choice…indicates that the switching does not occur systematically”. The magnitudes of trend parameter estimates ̂ g 2 , which

stay roughly between 1.6 and 1.9, might seem large, but it is important to note that they influence the price change only

from the circa 50% implied by the insignificance of the intensity of choice β , keeping the population ratio of the two strate-

gies relatively stable around 0.5/0.5. We also observe that the larger the MA window is, the larger the estimates ̂ g 2 , but

the smaller the standard deviations. Our explanation is that the longer period of the MA filter suggesting a longer funda-

mental trend, the more various short-term trends remain in the time series of price deviations y t , that are likely to refine

the estimate of the trend following coefficient g 2 and consequently reduce the standard error. However, we stress that the

respective ̂ g 2 estimates based on MA61 and MA241 are generally statistically indistinguishable based on reported sample

standard deviations considering usual significance levels. 

Certain differences across markets can be seen in the (d) column of Table 4 between efficiently estimated values of

the ̂ noise intensity . It is worth mentioning that the highest stock market noise intensity is estimated for the U.S. indices,

specifically, S&P500 in case of MA61-based fundamental value and NASDAQ in case of MA241. Conversely, the lowest values

are estimated for DAX and the difference is circa 30% for MA241. The level difference in values between the upper part of

Table 4 , which depicts results for the MA61 fundamental price approximation, and the middle part, which shows results

for the MA241, is perhaps again a technical consequence induced by different lengths of MA windows. Nevertheless, the

main results also demonstrate considerable robustness with respect to the choice of the fundamental value specification.

The lower values of the ̂ noise intensity might be explained by a better fundamental value approximation using a bigger MA

window. 

5.4.1. Behaviour of the simulated log-likelihood function 

We also verify the smoothness conditions and unique maxima of the simulated log-likelihood functions within the em-

pirical application to show how the parameters are identified. Fig. 5 draws partial 2D shapes of sub-log-likelihood functions

in the direction of given parameters, assuming that the other parameters are fixed at estimated values from Table 4 . Gen-

erally, we observe slightly rough shapes in the detail but a very consistent performance of the estimation method over all

100 random runs, leading to unique maxima consistent with the full sample estimates in all cases. Interestingly, based on

visual inspections of subfigures (d) and (h), we suspect a small potential upward bias of the ̂ noise intensity . 

5.4.2. Robustness check of the 2-type model 

For the robustness check, we consider two modifications of the estimation setup and different data frequencies. Equipped

with the knowledge obtained from the previous empirical analysis, we compute results only for S&P500. In addition to

weekly and monthly datasets, we estimate the model using an unrealistically high daily risk-free interest rate R = 1 . 001 and

a nontrivial agent memory defined via parameters m h = { 40 , 80 } ∀ h ∈ { 1 , . . . , H} in Eq. 18 for an average memory length

resembling 20 or 40 days. Three new datasets cover the same span, i.e., we use weekly data from 1994/02/28 to 2013/12/30

(1035 observations) and monthly data from 1994/03/01 to 2013/12/02 (238 observations). The MA lengths are selected to
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resemble the 61 and 241 days as closely as possible, i.e., 13 and 49 weeks and 13 months. The assumed market risk-free

rate is adjusted to reflect the modified data periodicity, that is, to R = 1 . 0 0 05 and R = 1 . 002 . 

Results reported in the bottom section of Table 4 confirm that the important findings of the preceding empirical anal-

ysis remain unaffected under the robustness burden. Differences are mainly observable at the level of trend parameters ̂ g 2

and 

̂ noise intensity , but the behaviour keeps the detected patterns within the original analysis. Results based on monthly

and weekly data show considerably lower ̂ g 2 —the values even fall below 1 for the monthly MA13 fundamental value

specification—indicating a weak trend-following strategy. In other words, the lower the frequency of data, the lower the

estimates ̂ g 2 . This effect of a lower data frequency associated with more average aggregated dynamics of the price deviation

series y t is expected as monthly data are naturally smother than the corresponding weekly or daily time series. Memory

increases the model fit only slightly; as the interconnected effect, it simultaneously decreases the ̂ noise intensity . 

We also check that our estimation results are robust towards imposing under- or over-smoothing of the bandwidth size

η. As another robustness check, we estimate the model on yearly rolling windows to uncover possible dynamics in time. The

rolling approach particularly strongly supports the stability of model behaviour over time and thus confirms the validity of

the full sample estimation results. Our empirical findings thus prove robustness to various data frequencies and subperiods

and to modifications of interesting parameters in the model. 

5.5. Full sample estimates of the 3-type model 

Estimation of a more-flexible 3-type model reveals a strikingly similar big picture: the estimate of intensity of choicê β maintains its statistical insignificance, and the trend-following strategy coefficient ̂ g 2 retains its positive sign and high

statistical significance. Estimated parameters for S&P500 are reported in Table 13 in Appendix A . The only new conclusion is

a statistical insignificance of the contrarian strategy represented by coefficient ̂ g 3 . Although its reported point estimates are

negative, this is merely an effect of the enforced g 3 < 0 constraint. The real distribution mass of the estimates concentrates

close to 0. The likelihood function is likely to be very flat in the dimension of the g 3 parameter because the effect of a very

weak contrarian strategy is overshadowed if it is combined with a very strong trend-following strategy. The absolute value

of ̂ g 2 is naturally higher because the trend-following strategy now impacts the price only via the 1/3 weight in the 3-type

model (compared to 1/2 weight in the 2-type model), conditional on insignificant ̂ β . Taking those weights into account, we

obtain very similar impacts of the trend-following strategy in both models. 

5.6. Estimation of market fractions 

A statistically insignificant intensity of choice parameter ̂ β implies that any systematic evolutionary switching between

trading strategies cannot be detected. It also implies a relatively stable population ratio of trading strategies n 1, t / n 2, t � 0.5/0.5

in time, which means that the populations of different trading strategies are forced to maintain nearly the same magnitudes

throughout the entire data span. Thus, the model almost boils down to a simple weighted AR(1) process and different types

of trading strategies cannot be well identified because agents do not switch over time. We thus face a problem of nuisance

parameters, i.e., ̂ g 2 and 

̂ b 2 might to some extent lose their original model interpretations and we cannot fully trust their

estimated magnitudes. Moreover, because the ̂ β and 

̂ g 3 coefficients are statistically insignificant, contrarians in the 3-type

model behave as fundamentalists in terms of their price impact. These findings imply two important conclusions. First, the

3-type model does not really help us to capture additional features of the data-generating process; in contrast, it deviates

the implied market fractions. Second, the 3-type model suggests that there might be more fundamentalists than chartists

in real markets and therefore the nearly fixed population ratio of trading strategies n 1, t / n 2, t � 0.5/0.5 in the 2-type model

estimation does not likely capture real market population proportions. 

Therefore, we trivialise the model by disabling evolutionary switching behaviour and fixing the population ratio of trad-

ing strategies at n 1 ,t /n 2 ,t = const . Eqs. (13) and (14) are replaced by Eq. (20) , and the coefficient n 1 (which we also call the

percentage fraction of fundamentalists) is to be estimated instead of the switching coefficient β: 

Rx t = 

H ∑ 

h =1 

n h f h,t + ε t ≡
H ∑ 

h =1 

n h (g h x t−1 + b h ) + ε t , (19)

n 1 = 1 − n 2 , (20)

where H = 2 for the 2-type model. The modified setup does not distort the structure of the original model, but the popula-

tion ratio of trading strategies n 1 / n 2 and implied percentage fraction of fundamentalists ( g 1 = b 1 = 0 ) in the market are now

direct subjects of estimation. The other setup stays the same. 

5.6.1. Full sample estimates of the 2-type fraction model and a robustness check 

Outcomes of the full sample estimation of six stock market indices are reported in Table 5 , and the main interest now

lies in the behaviour of the new variable fraction . The behaviour of all other variables is on average very similar to their be-

haviour in the 2-type β model estimation; moreover, we no longer observe considerable distinctions caused by the MA win-

dow length for the fundamental value approximation. The ̂ f raction coefficient is strongly statistically significant, with values

closely around 0.56, leaving 44% of the market population to chartistic strategies. The fraction model therefore suggests
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Table 5 

Empirical results of the 2-type fraction model estimation. 

Data, MA period (a) ̂ f raction (b) ̂ g 2 (c) ̂ b 2 (d) ̂ noise intensity (e) L 

Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD 

SP500, 61 0.569 0.555 0.088 1.963 1.986 0.362 0.006 0.003 0.121 0.559 0.558 0.044 −4.022 −4.023 0.013 

NASDAQ, 61 0.555 0.541 0.086 1.972 1.985 0.344 −.001 −.001 0.117 0.565 0.566 0.054 −5.118 −5.119 0.019 

DAX, 61 0.559 0.547 0.090 2.006 2.021 0.387 0.008 0.005 0.123 0.489 0.490 0.035 −5.733 −5.733 0.011 

FTSE, 61 0.556 0.545 0.085 1.980 1.997 0.357 −.009 −.007 0.121 0.519 0.520 0.037 −5.507 −5.507 0.011 

HSI, 61 0.559 0.549 0.082 1.993 2.020 0.344 −.006 −.001 0.120 0.531 0.531 0.045 −6.999 −7.0 0 0 0.016 

N225, 61 0.562 0.553 0.084 1.995 2.023 0.361 0.005 0.001 0.124 0.482 0.484 0.032 −6.700 −6.701 0.010 

SP500, 241 0.562 0.556 0.084 2.161 2.228 0.425 0.002 −.001 0.133 0.331 0.348 0.053 −4.073 −4.088 0.049 

NASDAQ, 241 0.562 0.556 0.086 2.191 2.244 0.434 −.002 −.001 0.133 0.311 0.345 0.077 −5.195 −5.231 0.089 

DAX, 241 0.565 0.559 0.088 2.219 2.275 0.455 0.013 0.003 0.137 0.256 0.279 0.069 −5.782 −5.814 0.086 

FTSE, 241 0.562 0.554 0.087 2.179 2.227 0.445 −.002 0.003 0.133 0.322 0.339 0.053 −5.547 −5.563 0.045 

HSI, 241 0.562 0.554 0.084 2.204 2.253 0.446 −.009 −.006 0.137 0.276 0.304 0.070 −7.057 −7.095 0.091 

N225, 241 0.570 0.562 0.087 2.232 2.281 0.460 −.012 −.005 0.138 0.255 0.272 0.058 −6.744 −6.767 0.069 

Robustness check 

SP500 monthly, 13 0.606 0.592 0.114 1.429 1.451 0.306 −.0 0 0 0.0 0 0 0.116 0.806 0.801 0.064 −5.150 −5.153 0.014 

SP500 weekly, 13 0.635 0.616 0.128 1.404 1.422 0.309 −.011 −.004 0.115 0.853 0.848 0.063 −4.598 −4.603 0.028 

SP500 weekly, 49 0.485 0.483 0.093 1.591 1.624 0.292 0.012 0.006 0.117 0.606 0.606 0.057 −4.721 −4.722 0.017 

SP50 0 R = 1.0 01, 61 0.566 0.553 0.089 1.967 1.984 0.368 −.004 −.004 0.121 0.557 0.557 0.044 −4.022 −4.022 0.013 

SP50 0 R = 1.0 01, 241 0.570 0.557 0.085 2.220 2.239 0.430 0.003 −.001 0.132 0.332 0.349 0.054 −4.074 −4.089 0.047 

Results are based on 10 0 0 random runs, t = 50 0 0 , and N = 50 0 draws from normal distribution. Sample medians, means, and standard deviations (SD) are reported. L denotes log-likelihoods of estimated 

models representing statistical fits. Figures are rounded to 3 decimal digits. 
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overall proportional dominance of the fundamental strategy in the investigated world stock markets. Estimates of the trend-

following coefficient g 2 are generally higher compared to the values from the 2-type switching model, but one must realise

that here the trend-following strategy is relatively weaker in terms of market price impact because its proportion is lower

than 0.5. If we consider estimates incorrectly implied by the 2-type switching model and compare it to ̂ f raction and related̂ g 2 estimated in this section according to Eq. 12 , we deduce an almost similar impact. This result confirms our suspicion of

an improper model specification with insignificant ̂ β, and we correct for this misspecification by introducing ̂ f raction speci-

fication via Eq. 20 . Evolutionary switching can be now captured through changes in the ̂ f raction coefficient in a smooth form

by using the rolling approach, as asserted by Teräsvirta (1994 , pg. 217): “if one assumes that agents make only dichotomous

decisions or change their behaviour discretely, it is unlikely that they do this simultaneously. Thus, if only an aggregated

process is observed, then the regime changes in that process may be more accurately described as being smooth rather

than discrete.” Nonetheless, the rolling approach does not reveal any significant dynamics in the behaviour of ̂ f raction ,

which confirms the validity of the full sample estimation results. The rolling sample estimates are available upon request. 

For the fraction model, we employ a similar (but now irrelevant effect of memory) robustness check and report the results

in the bottom section of Table 5 . Basic conclusions are identical to the previous findings: the ̂ f raction , ̂ g 2 , and 

̂ noise intensity

generally reveal strong statistical significance, and the bias parameter ̂ b 2 shows the opposite behaviour. Differences are again

observable at the level of trend parameters ̂ g 2 and 

̂ noise intensity based on monthly and weekly data, whereas the results

show lower ̂ g 2 and higher ̂ noise intensity for daily data. The shapes of simulated log-likelihood functions are similar to those

of previous models. 

6. Conclusion 

This paper proposes an innovative computational framework for empirical estimation of FABMs. Motivated by the lack of

general consensus on estimation methodology, the paucity of examples of structural estimation of FABMs, and inconclusive

results in recent FABM literature, we aim to customise and test a more general method for the estimation of FABMs that

significantly reduces the importance of restrictive theoretical assumptions. 

In a large simulation and estimation exercise, we show that the recently developed NPSMLE ( Kristensen and Shin, 2012 )

married with the Brock and Hommes (1998) model generally estimates the parameters of various versions of the model

precisely. We confirm that simulated MLE constitutes a flexible method to estimate complicated nonlinear models that are

incompatible with traditional estimation approaches and have historically largely remained inestimable. Employing NPSMLE,

we are generally able to estimate models for which the closed-form solution or theoretical approximation of the objec-

tive function does not exist. We also prove that by using simulation-based non-parametric methods, the parameters of

such systems can be recovered reasonably well. Together with the rapidly increasing computational capabilities of personal

computers, server clusters, and supercomputers, we anticipate a bright future and rapid development of simulation-based

methods in the near future. 

The crucial result of the empirical analysis is the statistical insignificance of the switching coefficient across major world

market indices. Although this result is common in the existing literature, it conflicts with a segment of the estimation

literature on FABMs that reports significant switching coefficients for various specific markets. Specifically, our estimation

results of the 2-type model reveal markedly statistically significant belief parameters that define heterogeneous trading

regimes with an absolute superiority of trend following over contrarian strategies. Our findings further indicate robustness

with respect to the fundamental value specification and remain largely unaffected under the robustness burden of data

frequencies other than daily, jumps in the market risk-free rate, and the introduction of agent memory. Graphical inspection

of simulated log-likelihood functions reveals a slightly rough surface but a very consistent performance of the estimation

method over all random runs leading to unique maxima. However, the adapted computational algorithm ably addresses the

not-completely-smooth surface of the simulated log-likelihood function and thus the important identification feature is also

verified for empirical application. 
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Table 6 

Estimation methods of FABMs I. 

Model Origin Method Parameters estimated # Data Type Fit |IOC| 

Alfarano et al. (2005) IAH ML Herding tendency 2 d:5034–9761 o. s,fx,g - - 

Alfarano et al. (2006) IAH ML Herding tendency 2 d:5495,6523 o. s,fx - - 

Alfarano et al. (2007) IAH ML Herding tendency 2 d:1975–2001 s - - 

Amilon (2008) ABS EMM/ML Intensity of choice a 15 d:1980–20 0 0 s p − v = 0% 1.99(i),1.91(s) 

Boswijk et al. (2007) ABS NLS Belief coefficients/Intensity of choice 3 a:132 o. s R 2 = . 82 10.29(i),7.54(i) 

de Jong et al. (2009b ) ABS NLS Belief coefficients/Intensity of choice 5 w:102 o. fx adjR 2 = . 14 1.52(i) 

de Jong et al. (2010) ABS QML Belief coefficients/Intensity of choice 7 m:238 o. fx - 0.0 0 07(i)–6.29(s) 

Diks and Weide (2005) ABS ML (G)ARCH relations/Sign of MA(1) c. 3 d:3914 o. fx - - 

Ecemis et al. (2005) AA IEC Market fractions/Behavioural rules 3 - s - - 

Gilli and Winker (2003) ANT MSM Mutation/Conviction rate 3 d:1991–20 0 0 fx NA - 

Manzan and Westerhoff (2007) ABS OLS Reaction c./Switching threshold 4 m:1/74–12/98 fx NA - 

Reitz and Westerhoff (2007) ABS QML Behavioural rules/Intensity of choice 6 m:365 o. c - 0.17(s)–.47(s) 

Westerhoff and Reitz (2003) ABS QML Behavioural rules/Intensity of choice 7 d:4431 o. fx - 0.02(s)–.17(s) 

Winker and Gilli (2001) ANT MSM Mutation/Conviction rate 2 d:1991–20 0 0 fx NA - 

Winker et al. (2007) ANT MSM Mutation/Conviction rate 3 d:1991–20 0 0 fx p − v < 1% b - 

This table is adopted from Chen et al. (2012 , pg. 203) and amended by the authors. Authors of the articles are alphabetised. The full meaning of the acronyms under “Origin”: AA stands for autonomous 

agents, ABS for adaptive belief system, ANT for the ant type of system, and IAH for interactive agent hypothesis. The full meaning of the acronyms under “Methods”: ML stands for maximum likelihood, 

EMM for efficient method of moments, NLS for nonlinear least squares, QML for quasi maximum likelihood, OLS for ordinary least squares, IEC for interactive evolutionary computation, and MSM 

(SMM) for method of simulated moments. “#” displays the total number of estimated parameters; “Data” describes data frequency (“d/w/m/q/a” for daily/weekly/monthly/quarterly/annual) and the 

number of observations (where no specific figure is provided, we report the starting and final years); “Type” shows the type of data(“s/fx/c/g/re” for stock markets/FX/commodity markets/gold/real 

estate); “Fit” reports the statistical fit of the estimation ( R 2 , its alternatives, p-value of the J-test of overidentifying restrictions to accept the model as a possible data generating process); and, where 

relevant, “|IOC|” displays the absolute estimated value of the switching parameter of the intensity of choice and “s”/“i” denotes its statistical significance/insignificance at the 5% level. Figures are 

rounded to 2 decimal digits. 
a Chen et al. (2012) do not report other important parameters estimated, namely, belief coefficients, intensities of exogenous noises, risk aversion, information costs for fundamentalists, forgetting 

factors, and memory in the fitness measure. 
b While p-val for GARCH(1,1) model > 5%. 
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Table 7 

Estimation methods of FABMs II. a). 

Model Origin Method Parameters estimated 

Barunik and Vosvrda (2009) Cusp ML Asymmetry and bifurcation factors/Location and scale coefficient 

Barunik and Kukacka (2015) Cusp RV/ML Asymmetry and bifurcation factors/Polynomial data approximation 

Berardi et al. (2016) ABS calibration Belief coefficient/Intensity of choice/Risk aversion/Fundamental value 

Bolt et al. (2011) ABS NLS(?) Expectations’ bias/Discount factor/Belief coefficients/Intensity of choice 

Bolt et al. (2014) ABS NLS Belief coefficients/A-synchronous updating ratio/Intensity of choice 

Cornea et al. (2013) ABS VAR/NLS Fundamentalists’ belief coefficient/Intensity of choice 

Chen and Lux (2016) IAH MSM Standard deviation of innovations/Herding tendency 

Chiarella et al. (2014) ABS QML Belief & market maker coefficients/Memory decay rate/Intensity of choice 

Chiarella et al. (2015) ABS QML Belief coefficients/Variance risk premium/Intensity of choice 

de Jong et al. (2009a ) ABS ML Belief coefficients/Intensity of choice 

Diks and Wang (2016) Cusp ML Asymmetry and bifurcation factors/Scale coefficient 

ter Ellen and Zwinkels (2010) ABS QML Belief coefficients/Intensity of choice 

ter Ellen et al. (2013) ABS OL S/NL S Behavioural rules/Intensity of choice 

Franke (2009) ABS MSM Reaction coefficients/Switching threshold 

Frijns et al. (2010) ABS EMS Local volatility/Belief coefficients/Intensity of choice 

Franke and Westerhoff (2011) IAH MSM Behavioural rules/Flexibility/Predisposition coefficients 

Franke and Westerhoff (2012) ABS/IAH MSM Behavioural rules/Wealth/Predisposition/Misalignment coefficients 

Franke and Westerhoff (2016) IAH MSM Behavioural rules and noises/Predisposition/Herding/Misalignment 

coefficients 

Ghonghadze and Lux (2016) IAH GMM Standard deviation of innovations/Herding tendency 

Grazzini et al. (2013) Bass (1969) ML, MSM Probability of independent adoption/Peer pressure/Population size 

Grazzini and Richiardi (2015) - SMD - 

Grazzini et al. (2017) - Bayesian inference Behavioural parameter 

Goldbaum and Zwinkels (2014) ABS OLS (iterative) Belief coefficients 

Hommes and Veld (2015) ABS NLS(?) Belief coefficients/A-synchronous updating ratio(?)/Intensity of choice 

Huisman et al. (2010) ABS QML Belief coefficients/Intensity of choice 

Kouwenberg and Zwinkels (2014) ABS QML Belief coefficients/Intensity of choice 

Kouwenberg and Zwinkels (2015) ABS QML Price elasticity/Belief coefficients/Intensity of choice 

Lof (2012) ABS NLS Belief coefficients/Intensity of choice 

Lof (2015) ABS VAR/NLS Discount factors/Belief coefficients/Intensity of choice 

Reitz and Slopek (2009) ABS QML GARCH coefficients/Belief coefficients/Transition parameter 

Recchioni et al. (2015) ABS calibration Belief coefficient/Intensity of choice/Risk aversion/Fundamental value 

Verschoor and Zwinkels (2013) ABS ML Belief coefficients/Intensity of choice 

This table follows the logic of Table 6 and summarises recent research not covered there. Authors of articles are alphabetised. The full meaning of the 

acronyms under “Origin”: Cusp stands for the cusp catastrophe model, ABS for adaptive belief system, and IAH for interactive agent hypothesis. The full 

meaning of the acronyms under “Methods”: ML stands for maximum likelihood, RV for realised volatility, NLS for nonlinear least squares, VAR for vector 

autoregression, MSM (SMM) for method of simulated moments, QML for quasi maximum likelihood, OLS for ordinary least squares, EMS for empirical 

martingale simulation by Duan and Simonato (1998) , GMM for generalized method of moments, and SMD for simulated minimum distance. “?” means 

that the given information is unclear to the authors. 

Table 8 

Estimation methods of FABMs II. b). 

Model # Data Type Fit |IOC| 

Barunik and Vosvrda (2009) 8 & 17 d:1987–1988, 

20 01–20 02 

s pseudo − R 2 up to 0.8 - 

Barunik and Kukacka (2015) 10 d:6739,409 o. s pseudo − R 2 = . 8 , . 86 - 

Berardi et al. (2016) 4 d:5579 o. b - 1.64(s),1.75(s),1.56(s) 

Bolt et al. (2011) 5 q:164 o. re NA 2716(i),12420(i) 

Bolt et al. (2014) 4 q:178 o. re NA 795(i)–26333(i) 

Cornea et al. (2013) 2 q:204 o. U.S. inflation R 2 = . 78 , . 94 4.78(s) 

Chen and Lux (2016) 3 d:1/1980–12/2010 s/fx/g p − v ∈ 〈 4.6%, 45.5% 〉 - 

Chiarella et al. (2014) 6 m:502,251 o. s - 0.44(s),.54(s),.69(s) 

Chiarella et al. (2015) 5 w:2007–4/2013 CDS spreads - 0.74(i)–6.84(s) 

de Jong et al. (2009a ) 10 q:112 o. s - 1.03(s),2.87(s) 

Diks and Wang (2016) 3 & 5 q:1970-2013 re - - 

ter Ellen and Zwinkels (2010) 7 m:295,319 c (crude oil) - 1.19(s),1.36(s) 

ter Ellen et al. (2013) 2–5 w:1/20 03–2/20 08 fx adjR 2 up to 0.7 7.72(i)–454.4(i) 

Franke (2009) 6 d:4115–6867 o. s,fx p − v ∈ 〈 0%, 2% 〉 - 

Frijns et al. (2010) 5 d:01–12/20 0 0 s (index options) - 107.34(i) 

Franke and Westerhoff (2011) 6 d:6 866,6 861 o. s,fx p − v = 12 . 8% , 27 . 7% - 

Franke and Westerhoff (2012) 9 d:6866 o. s p − v = 12 . 7% –32.6% - 

Franke and Westerhoff (2016) 7 d:6866 o. s p − v = 17 . 3% - 

Ghonghadze and Lux (2016) 3 d:1/1980–12/2009 s/fx/g p − v ∈ 〈 0 . 3% , 67% 〉 - 

Grazzini et al. (2013) 3 - - - - 

Grazzini and Richiardi (2015) 1 d:400 o. s - - 

Grazzini et al. (2017) 1 d:1500 o. s - - 

( continued on next page ) 
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Table 8 ( continued ) 

Model # Data Type Fit |IOC| 

Goldbaum and Zwinkels (2014) 4 m:2825–2941 o. fx (experts’ forecasts) adjR 2 = . 55 –.79 - 

Hommes and Veld (2015) 4 q:252 o. re R 2 = . 95 2.44(i) 

Huisman et al. (2010) 4 d:694,753,1038 o. c (electricity futures) - 1.06(s),1.77(s),15.87(i) 

Kouwenberg and Zwinkels (2014) 4 q:127,198 o. re - 2.98(s),1.36(s) 

Kouwenberg and Zwinkels (2015) 5 q:204 o. re - 2.18(s) 

Lof (2012) 7 q:208 o. s R 2 = . 97 7.45(s), 4.74(s) 

Lof (2015) 5 a:140 o. s R 2 = . 55 type-specific: 0.8(i), 

1.13(s),5.18(i) 

Reitz and Slopek (2009) 6 m:252 o. c (crude oil) - - 

Recchioni et al. (2015) 4 d:245 o. s - 2.14(s),.59(i),.03(s),.36(i) 

Verschoor and Zwinkels (2013) 5 m:107 o. fx - 2.64(i),14.51(i) 

This table complements information in Table 7 , following the logic of Table 6 . Authors of articles are alphabetised. “#” describes the total number of 

estimated parameters; “Data” describes data frequency (“d/w/m/q/a” for daily/weekly/monthly/quarterly/annual) and number of observations (where 

no specific figure is provided, we report starting and final years); “Type” shows the type of data (“s/fx/c/g/re/b” for stock markets/FX/commodity 

markets/gold/real estate/banking indices); “Fit” reports the statistical fit of the estimation ( R 2 , its alternatives, p-value of the J-test of overidentifying 

restrictions to accept the model as a possible data generating process); and, where relevant, “|IOC|” displays the absolute estimated value of the 

switching parameter of the intensity of choice and “s”/“i” denotes its statistical significance/insignificance at the 5% level. Figures are rounded to 2 

decimal digits. 

Table 9 

Simulation results for β estimation with Gaussian noise. 

β (a) ̂ β, N(0 , 10 −16 ) (b) ̂ β, N(0 , 10 −14 ) 

Median Mean SD LQ HQ Median Mean SD LQ HQ 

0 0.00 0.00 0.03 −.02 0.01 −.00 −.00 0.07 −.14 0.12 

.1 0.10 0.10 0.02 0.08 0.12 0.10 0.10 0.05 −.05 0.21 

.5 0.50 0.50 0.06 0.48 0.52 0.50 0.50 0.11 0.34 0.62 

1 1.00 1.00 0.02 0.98 1.01 1.00 1.00 0.12 0.87 1.13 

3 3.00 3.00 0.03 2.98 3.02 3.00 2.99 0.30 2.81 3.11 

5 5.00 5.00 0.03 4.98 5.02 5.00 5.00 0.36 4.80 5.21 

10 10.00 10.02 0.24 9.92 10.16 10.00 10.00 0.25 9.73 10.28 

(c) ̂ β, N(0 , 10 −12 ) (d) ̂ β, N(0 , 10 −10 ) 

0 −.00 −.00 0.19 −.50 0.50 −.00 −.00 0.28 −.50 0.50 

.1 0.10 0.10 0.11 −.10 0.30 0.11 0.10 0.15 −.10 0.30 

.5 0.50 0.50 0.24 −.13 1.07 0.49 0.48 0.39 −.50 1.45 

1 1.00 1.00 0.35 0.34 1.65 1.01 1.02 0.54 −.26 2.48 

3 3.00 3.00 0.39 2.33 3.61 2.99 2.98 0.55 1.89 4.10 

5 5.00 4.99 0.50 4.31 5.64 5.00 4.99 0.60 3.66 6.12 

10 10.00 9.95 0.94 8.89 10.68 9.99 9.99 1.10 8.36 11.43 

(e) ̂ β, N(0 , 10 −8 ) (f) ̂ β, N(0 , 10 −6 ) 

0 0.01 0.01 0.26 −.50 0.50 0.00 0.00 0.25 −.50 0.50 

.1 0.10 0.10 0.15 −.10 0.30 0.10 0.10 0.15 −.10 0.30 

.5 0.50 0.50 0.35 −.49 1.49 0.50 0.49 0.35 −.47 1.48 

1 0.99 0.98 0.50 −.40 2.07 1.00 0.98 0.48 −.25 2.14 

3 3.00 3.00 0.65 1.95 3.99 3.00 2.97 0.66 1.90 3.89 

5 5.01 5.02 0.68 3.78 6.27 4.99 4.98 0.65 3.91 6.02 

10 10.02 10.01 0.88 8.74 11.26 10.01 9.99 0.87 8.81 11.32 

(g) ̂ β, N(0 , 0 . 01 2 ) (h) ̂ β, N(0 , 0 . 1 2 ) 

0 −.01 −.01 0.25 −.50 0.50 0.00 −.00 0.25 −.50 0.50 

.1 0.11 0.10 0.14 −.10 0.30 0.10 0.10 0.15 −.10 0.30 

.5 0.50 0.50 0.36 −.39 1.47 0.50 0.49 0.35 −.49 1.41 

1 0.98 0.97 0.46 −.20 1.88 1.00 0.99 0.44 0.00 1.86 

3 2.99 3.04 0.71 2.09 4.18 3.00 3.02 0.62 2.04 4.04 

5 5.01 5.01 0.66 3.74 6.01 5.00 5.00 0.57 3.99 6.06 

10 10.00 10.01 0.83 8.84 11.05 10.00 9.97 0.73 8.62 11.15 

(i) ̂ β, N(0 , 1) (j) ̂ β, N(0 , 2 2 ) 

0 −.00 −.00 0.10 −.21 0.22 0.00 0.00 0.05 −.09 0.09 

.1 0.10 0.11 0.08 −.10 0.30 0.10 0.10 0.04 0.00 0.19 

.5 0.50 0.51 0.13 0.29 0.80 0.50 0.50 0.09 0.35 0.73 

1 0.99 1.00 0.19 0.69 1.33 1.00 1.02 0.18 0.75 1.40 

3 3.00 3.02 0.40 2.33 3.89 3.01 3.12 0.72 2.06 4.81 

5 4.97 5.05 0.70 3.82 6.64 5.01 5.12 1.15 3.14 7.87 

10 9.94 10.07 1.54 7.47 13.54 9.83 9.23 1.95 4.87 12.23 

Results are based on 10 0 0 random runs, t = 50 0 0 , and N = 10 0 0 . Stochastic noises εt and { ε i } N i =1 
are drawn from given normal distribution. Sample 

medians, means, standard deviations (SD), and 2.5% (LQ) and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. 
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Table 10 

Results for β estimation w.r.t. various distributions of g h & b h . 

β (a) ̂ β, g h & b h ∼ N(0 , 0 . 1 2 ) (b) ̂ β, g h & b h ∼ N(0 , 0 . 2 2 ) 

Median Mean SD LQ HQ Med. Mean SD LQ HQ 

0 −.02 −.01 0.44 −.50 0.50 0.02 0.02 0.36 −.50 0.50 

.1 0.08 0.10 0.18 −.10 0.30 0.10 0.10 0.17 −.10 0.30 

.5 0.58 0.53 0.82 −.50 1.50 0.51 0.50 0.54 −.50 1.50 

1 1.00 0.98 1.39 −1.00 3.00 1.01 1.01 0.76 −.92 2.98 

3 3.02 3.06 2.64 −2.99 8.98 2.99 2.96 1.08 0.70 5.08 

5 5.06 5.22 3.51 −4.84 14.68 5.00 5.01 1.25 2.44 7.37 

10 10.04 10.07 4.44 −.69 19.63 10.00 10.00 1.58 7.57 12.39 

(c) ̂ β, g h & b h ∼ N(0 , 0 . 3 2 ) (d) ̂ β, g h & b h ∼ N(0 , 0 . 4 2 ) 

0 0.00 0.01 0.25 −.50 0.50 0.01 0.00 0.20 −.49 0.50 

.1 0.09 0.09 0.14 −.10 0.30 0.10 0.10 0.12 −.10 0.30 

.5 0.50 0.51 0.35 −.40 1.48 0.50 0.50 0.24 −.07 1.05 

1 1.00 1.00 0.45 0.06 1.93 1.00 1.01 0.30 0.52 1.67 

3 2.99 3.02 0.70 1.81 4.08 3.01 2.99 0.34 2.40 3.54 

5 5.01 5.01 0.71 4.05 6.03 5.01 5.01 0.30 4.49 5.54 

10 10.01 10.04 0.59 8.84 11.25 10.00 9.99 0.41 9.23 10.67 

Results are based on 10 0 0 random runs, t = 50 0 0 , and N = 10 0 0 . Belief parameters g h and b h are drawn from various normal distributions 

of the given parameter; stochastic noises εt and { ε i } N i =1 
are drawn from normal distribution N (0, 0.1 2 ). Sample medians, means, standard 

deviations (SD), and 2.5% (LQ) and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. 

Table 11 

Results of 5 −parameter estimation of a 3 −type model. 

β , g 2 , b 2 , g 3 , b 3 (a) ̂ β (b) ̂ g 2 (c) ̂ b 2 (d) ̂ g 3 (e) ̂ b 3 

Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD 

.5, 0.8, 0.6, 0.4, 0.3 0.50 0.50 0.16 0.85 0.76 0.45 0.64 0.62 0.25 0.34 0.44 0.45 0.28 0.28 0.25 

3, 0.8, 0.6, 0.4, 0.3 3.00 2.96 0.42 0.81 0.80 0.16 0.60 0.59 0.10 0.39 0.40 0.16 0.30 0.31 0.10 

10, 0.8, 0.6, 0.4, 0.3 10.01 10.01 0.22 0.79 0.61 0.20 0.59 0.45 0.15 0.43 0.59 0.20 0.32 0.44 0.15 

.5, -.8, −.6, 0.4, 0.3 0.33 0.65 0.58 −.79 −.87 0.39 −.72 −.74 0.29 0.40 0.46 0.40 0.42 0.44 0.29 

3, −.8, −.6, 0.4, 0.3 3.00 3.44 2.52 −.80 −.92 0.33 −.60 −.70 0.27 0.41 0.52 0.33 0.30 0.40 0.26 

10, −.8, −.6, 0.4, 0.3 10.00 10.00 0.90 −.80 −.80 0.03 −.60 −.60 0.02 0.40 0.40 0.05 0.30 0.30 0.02 

.5, −.8, 0.6, 0.4, −.3 0.26 0.60 0.58 −.84 −.89 0.40 0.76 0.76 0.29 0.44 0.49 0.41 −.47 −.46 0.29 

3, −.8, 0.6, 0.4, −.3 3.15 3.55 2.55 −.80 −.91 0.32 0.59 0.69 0.26 0.41 0.51 0.32 −.30 −.39 0.26 

10, −.8, 0.6, 0.4, −.3 10.01 9.92 1.27 −.80 −.80 0.03 0.60 0.60 0.04 0.40 0.41 0.08 −.30 −.30 0.03 

Results are based on 10 0 0 random runs, t = 50 0 0 , and N = 10 0 0 . Stochastic noises εt and { ε i } N i =1 
are drawn from normal distribution N (0, 0.1 2 ). Sample 

medians, means and standard deviations (SD) are reported. Figures are rounded to 2 decimal digits. 

Table 12 

Descriptive statistics of deviations from fundamental prices. 

Data, MA period Mean Median Min. Max. SD Skew. Kurt. LQ HQ AC AC x 2 t 

SP500, 61 −.03 2.0 −145.2 113.0 26.5 −.65 5.5 −61.4 50.7 0.87 0.73 

NASDAQ, 61 −.10 2.4 −753.5 639.0 81.8 0.03 13.6 −170.7 147.9 0.89 0.81 

DAX, 61 −.28 10.1 −939.6 716.1 163.2 −.50 5.4 −361.8 311.6 0.89 0.80 

FTSE, 61 −.12 7.5 −702.5 404.6 122.7 −.58 5.1 −275.4 235.7 0.88 0.73 

HSI, 61 0.35 24.3 −4253.2 3463.5 562.2 −.29 6.7 −1186.7 1130.0 0.90 0.74 

NIKKEI 225, 61 0.16 6.8 −2249.8 1900.2 434.7 −.30 4.2 −953.8 799.4 0.89 0.77 

SP500, 241 −.60 2.8 −252.9 160.1 48.4 −.64 4.5 −112.7 85.7 0.96 0.90 

NASDAQ, 241 −1.78 1.6 −756.4 1253.7 168.1 1.01 11.3 −350.9 322.0 0.97 0.96 

DAX, 241 −3.35 1.4 −1531.3 1242.6 330.4 −.21 4.5 −728.0 669.1 0.97 0.94 

FTSE, 241 −.73 11.9 −1072.4 721.0 210.6 −.56 4.4 −479.4 388.5 0.96 0.90 

HSI, 241 2.26 −5.5 −6505.5 7099.5 1177.6 0.18 5.7 −2424.1 2282.0 0.98 0.94 

NIKKEI 225, 241 −6.38 −22.6 −3497.8 2872.4 860.0 −.20 3.3 −1821.4 1581.3 0.97 0.92 

Sample means, medians, minima, maxima, standard deviations (SD), skewnesses, kurtoses, 2.5% (LQ) and 97.5% (HQ) quantiles, and autocorrelations 

(AC) are reported. Figures are rounded to 1 or 2 decimal digits. 
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Table 13 

Empirical results of the 3-type switching model estimation. 

Data, MA p. (a) ̂ β (b) ̂ g 2 (c) ̂ g 3 (d) ̂ noise i. (e) L 

Med. SD Med. SD Med. SD Med. SD Med. SD 

SP500, 61 −.003 0.082 2.502 0.175 −.123 0.111 0.550 0.047 −.127 0.022 

SP500, 241 0.007 0.050 2.674 0.217 −.032 0.142 0.403 0.045 −.289 0.094 

Results are based on 500 random runs, t = 50 0 0 , and N = 500 draws from normal distribution. Sample medians and standard deviations (SD) are 

reported. L denotes log-likelihoods of estimated models representing statistical fits. Figures are rounded to 3 decimal digits. 
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