
SIAM REVIEW c© 2017 Society for Industrial and Applied Mathematics
Vol. 59, No. 4, pp. 703–766

Weak Lower Semicontinuity of
Integral Functionals and Applications∗

Barbora Benešová†
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Abstract. Minimization is a recurring theme in many mathematical disciplines ranging from pure
to applied. Of particular importance is the minimization of integral functionals, which is
studied within the calculus of variations. Proofs of the existence of minimizers usually rely
on a fine property of the functional called weak lower semicontinuity. While early stud-
ies of lower semicontinuity go back to the beginning of the 20th century, the milestones
of the modern theory were established by C. B. Morrey, Jr. [Pacific J. Math., 2 (1952),
pp. 25–53] in 1952 and N. G. Meyers [Trans. Amer. Math. Soc., 119 (1965), pp. 125–149]
in 1965. We recapitulate the development of this topic from these papers onwards. Spe-
cial attention is paid to signed integrands and to applications in continuum mechanics
of solids. In particular, we review the concept of polyconvexity and special properties of
(sub-)determinants with respect to weak lower semicontinuity. In addition, we empha-
size some recent progress in lower semicontinuity of functionals along sequences satisfying
differential and algebraic constraints that can be used in elasticity to ensure injectivity
and orientation-preservation of deformations. Finally, we outline generalizations of these
results to more general first-order partial differential operators and make some suggestions
for further reading.
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1. Introduction. Many tasks in the world surrounding us can be mathematically
formulated as minimization or maximization problems. For example, in physics we
minimize the energy, in economy one tries to minimize the cost and maximize the
profit, and entrepreneurs may try to minimize their investment risk. In addition,
minimization problems appear in many more specific tasks: in a fitting procedure, or
more generally in inverse problems, one tries to minimize the deviation of the model
prediction from the experimental observation, and the training of a neuronal network
is based on minimizing a suitable cost function.

In a very general manner, we may express these problems as

(1.1) minimize I over Y ,

where Y is a set over which the minimum is sought and I : Y → R is a functional which
might represent the energy, cost, risk, or loss, for instance. From the mathematical
point of view, two questions are immediate when inspecting problem (1.1): first,
whether (1.1) is solvable, that is, whether I possesses minimizers on Y, and second,
how to find a solution (i.e., a minimizer) of (1.1).

Calculus of variations is devoted to solving (1.1) when Y is (a subset) of an
infinite-dimensional vector space. Its starting point may have been the question of
Johann Bernoulli as to which curve a mass point will descend the fastest in a gravita-
tional field; the so-called brachistochrone problem. In the most typical situation (that
covers the brachistochone problem, in particular), I in (1.1) is an integral functional
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depending on functions u : Ω→ Rm with Ω ⊂ Rn and their derivatives. In the easiest
case, in which n = m = 1, Ω = [a, b], and f : Ω× R× R→ R is a suitable integrand,
the functional reads

(1.2) I(u) :=

∫ b

a

f(x, u(x), u′(x)) dx with u(a) = ua and u(b) = ub,

where ua and ub are given boundary data. The task is to either solve (1.1) or at least
prove existence of minimizers.

Foundations of the calculus of variations were laid down in the 18th century by
L. P. Euler and J. L. Lagrange, who also realized its important connections to physics
and mechanics. These early works quite naturally concentrated on the question of how
to find (candidates for) solutions of (1.1). The classical method to do so considers
so-called variations. Indeed, if u0 is a minimizer of I in (1.2), then

(1.3) I(u0) ≤ I(u0 + εϕ) for all ϕ ∈ C∞0 ([a, b]),

where εϕ is called a variation of the minimizer. Now, assume that f is twice contin-
uously differentiable and u0 ∈ C2([a, b]); then by the classical calculus (1.3) implies
that d

dεI(u0(x) + εϕ(x))
∣∣
ε=0

vanishes for all ϕ ∈ C∞0 ([a, b]). This is equivalent to
solving

(1.4)
∂f

∂r
(x, u0, u

′
0)− d

dx

∂f

∂s
(x, u0, u

′
0) = 0 on [a, b],

where ∂f
∂r and ∂f

∂s denote the partial derivatives of f with respect to the second and
third variable, respectively. Equation (1.4) is referred to as the Euler–Lagrange equa-
tion and solving it is the classical path to finding solutions of (1.1). Of course, any
critical point of I (and not only the minimizer) is a solution to (1.4), but solving (1.4)
is still an efficient approach to (1.1) at least in a situation in which all critical points
are minimizers, for example, if f is convex. For more details, see, for example, the
book by Bolza [46].

Nevertheless, solving the Euler–Lagrange equation naturally relies on smoothness
properties of f which might not be available. Therefore, it is often advantageous
to address existence of solutions to (1.1) in a nonconstructive way by using suitable
compactness properties of Y and continuity properties of I. For example, if Y is a
bounded closed interval of reals and I : Y → R is a function, then (1.1) has a solution
whenever I is continuous. This observation goes back to Bernard Bolzano, who proved
it in his work Function Theory in 1830, and it is called the extreme value theorem.
Later on, it was independently observed by Karl Weierstrass around 1860. The main
ingredient of the proof, namely, the fact that one can extract a convergent subsequence
from a closed bounded interval of reals, is nowadays known as the Bolzano–Weierstrass
theorem.

The results of Bolzano and Weierstrass easily extend to the situation where Y is a
bounded and closed set of a finite-dimensional vector space. However, they cannot be
generalized to the situation in which, for example, Y is a ball in an infinite-dimensional
vector space, since the Bolzano–Weierstrass theorem does not hold in this case. In
fact, being able to extract a convergent subsequence from a sequence of elements in
the unit ball of a normed vector space X is equivalent to X being finite-dimensional.
This is a classical result attributed to F. Riesz.

Thus, the only hope of transferring a variant of the Bolzano–Weierstrass theorem
to infinite-dimensional spaces is to seek compactness in a “weaker” topology than the
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one induced by the norm. This possibility was opened up by Riesz and Hilbert, who
used the weak topology on Hilbert spaces from the beginning of the 20th century, and
by Stefan Banach, who defined it on other normed spaces around 1929 [192, 237].

Definition 1.1. Let X be a Banach space and X ′ its dual. We say that a se-
quence {uk}k∈N ⊂ X converges weakly in X to u ∈ X if

ψ(uk)→ ψ(u) for all ψ ∈ X ′, and we write that uk ⇀ u.

Similarly, a sequence {vk}k∈N ⊂ X ′ converges weakly* in X ′ to v ∈ X ′ if

vk(ϕ)→ v(ϕ) for all ϕ ∈ X , and we write that vk
∗
⇀v.

A crucial property of the weak topology is that it allows for a generalization of
the Bolzano–Weierstrass theorem to infinite-dimensional vector spaces. Indeed, take
X ′ to be the dual to a Banach space X . Then, bounded subsets of X ′ are precompact
in the weak* topology by the Banach–Alaoglu theorem, even though they are not
generically compact if X ′ is infinite-dimensional. As an immediate consequence, we
have that bounded subsets of a reflexive Banach space X are precompact in the weak
topology.

Having the weak topology at hand, a generalization of the Bolzano extreme value
theorem becomes possible and is today known as the direct method of the calculus of
variations. This algorithm was proposed by David Hilbert around 1900 to show (in a
nonconstructive way) the existence of a solution to the minimization problem (1.1).
It consists of three steps:

1. Find a minimizing sequence along which I converges to its infimum on Y.
2. Show that a subsequence of the minimizing sequence converges to an element

of Y in some topology τ .
3. Prove that this limit element is a minimizer.

The first step of the direct method is easily handled if the infimum of I is finite.
For the second step, the appropriate choice of the topology τ is crucial. In the most
typical situation, the set Y is a subset of a Banach space or its dual and τ is either the
weak or the weak∗ topology. In this case, if Y is bounded, the existence of a converg-
ing subsequence of the minimizing sequence is immediate from the Banach–Alaoglu
theorem. If Y is not bounded, the usual remedy is to realize that the minimizer can
only lie in a bounded subset of Y due to coercivity of I. Coercivity refers to the prop-
erty of I that it takes arbitrarily large values if the norm of its argument is sufficiently
large. More precisely, we say that I is coercive if

lim
‖u‖→∞

I(u) =∞ .(1.5)

This allows us to say that all minimizers of I are contained in some closed ball centered
at the origin.

The third step of the direct method relies on suitable semicontinuity properties
of I; a sufficient and widely used condition is the (sequential) lower semicontinuity of
I with respect to the weak/weak* topology:

Definition 1.2. Let Y be a subset of a Banach space. We say that the functional
I : Y → R is (sequentially) weakly/weakly* lower semicontinuous on Y if for every
sequence {uk}k∈N ⊂ Y converging weakly/weakly* to u ∈ Y, we have that

I(u) ≤ lim inf
k→∞

I(uk).
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If I is not weak/weak* lower semicontinuous, solutions to (1.1) need not exist.
However, weak lower semicontinuity of I is not a necessary condition for the existence
of minimizers. These facts are demonstrated by the following example.

Example 1.1. Consider the following special case of (1.2):

I(u) =

∫ 1

0

(
1− (u′(x))2

)2
+ (u(x))2 dx(1.6)

with
Y := {u ∈W 1,∞(0, 1); −1 ≤ u′ ≤ 1, u(0) = u(1) = 0} .

We can see, for example, by the Lebesgue dominated convergence theorem, that I
is continuous on W 1,∞(0, 1) but is not weakly lower semicontinuous. To show this,
define

u(x) =

{
x if 0 ≤ x ≤ 1/2,

−x+ 1 if 1/2 ≤ x ≤ 1,

and extend it periodically to the whole R. Let uk(x) := k−1u(kx) for all k ∈ N and
all x ∈ R. Notice that {uk}k∈N ⊂ Y.

The sequence of “zig-zag” functions {uk}k∈N converges weakly* to zero in
W 1,∞(0, 1). It is not hard to see that I(uk)→ 0 for k →∞ but

1 = I(0) > lim
k→∞

I(uk) = 0,

so that I is not weakly* lower semicontinuous on W 1,∞(0, 1) and, in fact, no mini-
mizer exists in this case.

Indeed, 0 = infY I 6= minY I because I ≥ 0 and I(uk) → 0, so that 0 = infY I.
However, I(u) > 0 for every u ∈ Y, for otherwise we could find a Lipschitz function
whose derivative is ±1 a.e. on (0, 1) but whose function value is identically zero.

If, however, we consider a slight modification of Y by changing the boundary
condition at x = 1, and we consider

Y1 := {u ∈W 1,∞(0, 1); −1 ≤ u′ ≤ 1, u(0) = 0, u(1) = 1},

then minY1
I = 1/3 and the unique minimizer is u(x) = x for x ∈ (0, 1).

First, this shows that weak/weak* lower semicontinuity of I is not necessary for
the existence of a minimizer, and second, it stresses the influence of boundary condi-
tions on the solvability of (1.1). This phenomenon is even more pronounced in higher
dimensions.

Although the study of weak lower semicontinuity is motivated by the desire to
understand minimization problems, it has become an independent subject in mathe-
matical literature that is studied in its own right. In the case of integral functionals
as in (1.2), further properties of the integrand besides continuity are needed to assure
weak/weak* lower semicontinuity: the right additional property is always some type
of convexity of f . Indeed, notice that I in Example 1.1 is not convex.

The importance of convexity for weak/weak* lower semicontinuity for integral
functionals was discovered in 1920 by Tonelli [233], who pioneered the study of lower
semicontinuity of an integral functional rather than studying the associated Euler–
Lagrange equation. Tonelli considered a function f : Ω × R × R → R in (1.2) that
is twice continuously differentiable and showed that I is lower semicontinuous sub-
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ject to a “convergence of curves”1 if and only if f is convex in its last variable, i.e.,
in the derivative u′. Later, several authors generalized this result to functions in
W 1,∞(Ω;R) with Ω ⊂ Rn and n > 1; see, for example, Serrin [215], where differen-
tiability properties of f were removed from assumptions and f was only assumed to
be continuous, and Marcellini and Sbordone [168], who allowed for Carathéodory in-
tegrands.2 Similar to this one-dimensional situation, relaxing smoothness/continuity
assumptions of f will be a recurring theme throughout this review in which we focus
on the higher-dimensional case.

Let us now allow the function u to be vector-valued, i.e., u ∈W 1,∞(Ω;Rm) with
Ω ⊂ Rn and n > 1 as well as m > 1, and consider an integral functional of the form

I(u) :=

∫
Ω

f(x, u(x),∇u(x)) dx .(1.7)

In this case, the convexity hypothesis turns out to be sufficient for weak/weak* lower
semicontinuity, but unnecessary. A suitable condition, termed quasiconvexity, was
introduced by Morrey [178].

Definition 1.3. Let Ω ⊂ Rn be a bounded Lipschitz domain with the Lebesgue
measure Ln(Ω). A function f : Rm×n → R is quasiconvex at A ∈ Rm×n if for every
ϕ ∈W 1,∞

0 (Ω;Rm),

f(A)Ln(Ω) ≤
∫

Ω

f(A+∇ϕ(x)) dx .(1.8)

The function f is termed quasiconvex if it is quasiconvex in all A ∈ Rm×n.

Quasiconvexity is implied by convexity and can be understood as, roughly speak-
ing, convexity over gradients. Indeed, take a convex function f : Rm×n → R.
Then for some arbitrary A ∈ Rm×n fixed and every B ∈ Rm×n, we know that
f(A + B) ≥ f(A) + g(A)·B; i.e., we can find an affine function that touches f at
A and whose values are not greater than f (in fact, this can be found by taking
g(·) to be one element of the subdifferential of f). Let us now take some arbitrary
ϕ ∈W 1,∞

0 (Ω;Rm) and plug in ∇ϕ(x) for B and take an average of the inequality over
Ω to obtain that

1

Ln(Ω)

∫
Ω

f(A+∇ϕ(x)) dx ≥ 1

Ln(Ω)

∫
Ω

f(A) dx+
1

Ln(Ω)

∫
Ω

g(A)·∇ϕ(x) dx ,

where the last integral vanishes due to integration by parts because ϕ = 0 on ∂Ω, so
that we truly obtain (1.8). We also note that quasiconvex functions are continuous
[67].

Morrey showed, under strong regularity assumptions on f , that I from (1.7) is
weakly lower semicontinuous in W 1,∞(Ω;Rm) if and only if f is quasiconvex in the
last variable (i.e., in the gradient). To see how quasiconvexity is used in the proof of
lower semicontinuity, let us consider the following simplified example.

Example 1.2. Assume that {uk}k∈N ⊂ W 1,∞(Ω;Rm) is such that uk
∗
⇀u with

u(x) = Ax for some fixed matrix A ∈ Rm×n. We show how in this case weak* lower
semicontinuity on W 1,∞(Ω;Rm) is obtained for

Ĩ(u) :=

∫
Ω

f(∇u(x))dx

1Notice that the notion of weak topology was invented later than Tonelli’s studies.
2In other words, f(x, ·, ·) is continuous for almost all x ∈ Ω and f(·, s, A) is measurable for all

(s,A) ∈ R× R.
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for f : Rm×n → R quasiconvex. To this end, let us take a smooth cut-off function
η` : Ω → R such that η` = 1 on Ω` and η` = 0 on ∂Ω, where Ω` ⊂ Ω is a Lipschitz
domain satisfying Ln(Ω \ Ω`) ≤ 1

` . We may find η` in such a way that |∇η`| ≤ C`
uniformly on Ω, where C is a constant that depends only on Ω. Let us now define

uk,`(x) = η`uk+(1−η`)Ax so that ∇uk,`(x) = η`∇uk+(1−η`)A+(uk−Ax)⊗∇η`;

notice that uk,` coincides with uk on Ω`. Now, since uk → u strongly in L∞(Ω;Rm),
we may choose a subsequence of k’s, labeled k(`), such that (uk(`) − Ax)⊗∇η` stays
uniformly bounded (whence uk(`),` is bounded in W 1,∞(Ω;Rm)). Due to the fact that
uk(`),`(x) = Ax on ∂Ω we find from (1.8) that

f(A)Ln(Ω) ≤
∫

Ω

f(∇uk(`),`(x))dx

=

∫
Ω

f(∇uk(`)(x))dx+

∫
Ω\Ω`

f(∇uk(`),`(x))− f(∇uk(`)(x))dx.(1.9)

As f is continuous and {∇uk(`),`}`∈N is uniformly bounded on Ω, so is f(∇uk(`),`)−
f(∇uk(`)), and thus the last integral in (1.9) vanishes as ` → ∞. Therefore, taking
the limit `→∞ yields the claim.

The results of Morrey were generalized more than fifty years ago, in 1965, by
Norman G. Meyers in his seminal paper [171]. Taking k ∈ N and 1 ≤ p ≤ +∞
he investigated the W k,p-weak (weak* if p = +∞) lower semicontinuity of integral
functionals of the form

I(u) :=

∫
Ω

f(x, u(x),∇u(x), . . . ,∇ku(x)) dx ,(1.10)

where Ω ⊂ Rn is a bounded domain and u : Ω→ Rm is a mapping possessing (weak)
derivatives up to the order k ∈ N. The function f was supposed to be continuous
in all its arguments. Since higher gradients (and not only the first ones) are now
considered, the definition of quasiconvexity also needs to be generalized accordingly;
see section 3 for details.

Moreover, more generally than in Morrey’s work, the function f is not necessarily
bounded from below in [171]. This leads to additional difficulties and, in fact, quasi-
convexity is no longer a sufficient condition for weak lower semicontinuity (cf. section
3). In addition, the regularity assumptions on the integrand in (1.10) were weakened
in Meyers’ work.

The motivation for studying functionals of the type (1.10) is twofold: from the
point of view of applications in continuum mechanics it is reasonable to let f depend
also on higher-order gradients since their appearance in the energy usually models
interfacial energies or multipolar elastic materials [111]. Another reason might be
to consider deformation gradient dependent surface loads [19]. On the other hand,
not assuming a constant lower bound on f is an important consideration for mathe-
matical completeness. Additionally, integrands of the type f(A) := detA, which are
unbounded from below, are of crucial importance in continuum mechanics.

Meyers’ main results are necessary and sufficient conditions on f so that I is
weakly lower semicontinuous on W k,p(Ω;Rm). We review these results in section 3.
He first discusses the problem on W k,∞(Ω;Rm), where quasiconvexity in the highest-
order gradient (cf. Theorem 3.2) turns out to be a necessary and sufficient condition for
weak*-lower semicontinuity. Lower semicontinuity on W k,p(Ω;Rm) with 1 < p < +∞
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is, however, much more subtle, and an additional condition (cf. Theorem 3.4 and
section 3.1) is needed.

Since the appearance of Meyers’ work, significant progress has been achieved with
respect to the characterization of weak lower semicontinuity of functionals of the type
(1.10). In particular, for k = 1 in (1.10) the additional condition for sequential weak
lower semicontinuity was characterized more explicitly and results relaxing Meyers’
continuity assumptions were obtained for functionals bounded from below; cf. sec-
tion 3.

Moreover, those functions f whose functional I in (1.10) is even weakly continuous
(see section 4) have been identified: the so-called null Lagrangians; this knowledge
led to the notion of polyconvexity (see section 6) that is sufficient for weak lower
semicontinuity and is of particular importance in mathematical elasticity. In fact,
quasiconvexity, which is, for a large class of integrands, the necessary and sufficient
condition for weak lower semicontinuity, is not well suited for elasticity. We explain
this issue in section 7 and review some recent progress in this field. Null Lagrangians
have also been identified for functionals defined on the boundary (see section 5).
Finally, we review weak lower semicontinuity results for functionals depending on
maps that satisfy general differential constraints in section 8 and conclude with some
suggestions for further reading in section 9.

2. Notation. In this section, we summarize the notation that is used throughout
the article. It largely coincides with that in [19]. In what follows, Ω ⊂ Rn is a bounded
domain whose boundary is Lipschitz or smoother. This domain is mapped to a set in
Rm by means of a mapping u : Ω→ Rm.

Let N be the set of natural numbers and N0 := N∪ {0}. If J := (j1, . . . , jn) ∈ Nn0
and K := (k1, . . . , kn) ∈ Nn0 are two multi-indices, we define J±K := (j1±k1, . . . , jn±
kn); further, |J | =

∑n
i=1 ji, J ! := Πn

i=1ji! and we say that J ≤ K if ji ≤ ki for all i.

We also define
(
J
K

)
:= J!

K!(K−J)! , ∂u
j
K := ∂k1 ...∂kn

∂x
k1
1 ...∂xkn

n

uj , xK = xK := xk11 . . . xknn , and

(−D)K := (−∂)k1 ...(−∂)kn

∂x
k1
1 ...∂xkn

n

.

We will work with the space of higher-order matrices X = X(n,m, k) with the
dimension m

(
n+k−1

k

)
. This space consists of (higher-order) matrices M = (M i

K) for
1 ≤ i ≤ m and |K| = k. Similarly, Y = Y (n,m, k) is the space of (higher-order)
matrices M = (M i

K) for 1 ≤ i ≤ m and |K| ≤ k. Its dimension is m
(
n+k
k

)
. We

denote the elements of X(n,m, k) by Ak, while A[k] = (A,A2, . . . , Ak) is an element
of Y (n,m, k). We use an analogous notation for gradients; thus, if x ∈ Ω, then
∇ku(x) ∈ X(n,m, k), while ∇[k]u(x) ∈ Y (n,m, k).

Integrands which define the integral functional will be denoted by f . They will
depend on x, u, and (higher-order) gradients of u, in general. Occasionally, we will
work with integrands independent of u or x; however, this will be clear from the
context and will not cause any ambiguity. We denote by B(x0, r) the ball of origin
x0 with the radius r, while D%(x0, r) is the half-ball with % being the normal of the
planar component of its boundary; i.e.,

D%(x0, r) := {x ∈ B(x0, r) : (x− x0) · % < 0},

and we write D% := D%(0, 1).
For this review, we will assume that the reader is familiar with functional analysis

and measure theory, in particular, the theory of Lebesgue and Sobolev spaces, and we
refer, for example, to the books by Evans and Gariepy [84], Rudin [205], Leoni [162],
and Roub́ıček [204], for an introduction. We shall use the standard notation for the



WEAK LOWER SEMICONTINUITY AND APPLICATIONS 711

Lebesgue spaces Lp(Ω;Rm) and Sobolev spaces W k,p(Ω;Rm). Moreover, BV(Ω;Rm)
is the space of functions of a bounded variation. If m = 1, we may omit the target
space. If Ω is a bounded open domain, we denote by M(Ω) the space of Radon mea-
sures on Ω and by Ln(Ω) the n-dimensional Lebesgue measure of Ω; cf., e.g., Halmos
[116]. Further, M1

+(Rm×n) is the set of probability measures on Rm×n. Moreover,
D(Ω) is the space of infinitely differentiable functions with compact support in Ω and
its dual D′(Ω) is the space of distributions.

If n = m = 3 and F ∈ R3×3, the cofactor matrix CofF ∈ R3×3 is a matrix
whose entries are signed subdeterminants of 2 × 2 submatrices of F . More pre-
cisely, [CofF ]ij := (−1)i+j detF ′ij , where F ′ij for i, j ∈ {1, 2, 3} is a submatrix of
F obtained by removing the ith row and jth column. If F is invertible, we have
CofF = (detF )F−>. Rotation matrices with determinants equal to one are denoted
SO(n), while orthogonal matrices with determinants ±1 are denoted O(n). Additional
notation needed locally in the text will be explained as necessary.

3. A Review of Meyers’ Results. Within this section we review the results of
Meyers’ seminal paper [171] and give generalizations of his results that have been
proved since the appearance of his work. As highlighted above, Meyers generalized
Morrey’s results [178] in two particular respects: First, he considers integral function-
als of the type (1.10)

I(u) :=

∫
Ω

f(x, u(x),∇u(x), . . . ,∇ku(x)) dx ,

i.e., those that also depend on higher gradients, and second, he allows for f to be
unbounded from below. Now if (1.10) depends on higher gradients, the definition of
quasi-convexity also needs to be generalized accordingly.

Definition 3.1. Let Ω ⊂ Rn be a bounded Lipschitz domain. We say that a
function f : X(n,m, k) → R is k-quasiconvex3 if for every A ∈ X(n,m, k) and any

ϕ ∈W k,∞
0 (Ω;Rm),

f(A)Ln(Ω) ≤
∫

Ω

f(A+∇kϕ(x)) dx .(3.1)

Thus, more precisely, k-quasiconvexity of f (i.e., quasiconvexity with respect
to the kth gradient) means that Ak 7→ f(x,A[k−1], Ak) is quasiconvex for all fixed
(x,A[k−1]) ∈ Ω× Y (m,n, k − 1); cf. section 2 for notation.

Remark 3.1. In fact, it was shown in [70] that if k = 2 and if f satisfies a
(slightly) stronger version of 2-quasiconvexity, then 2-quasiconvexity coincides with
1-quasiconvexity. See [58] for an analogous result with general k.

With this definition at hand, Meyers proves an analogous result to the one found
in the original work of Morrey for k = 1 [178].

Theorem 3.2 (from [171]). Let Ω be a bounded domain and f a continuous func-
tion. Then I from (1.10) is weakly∗ lower semicontinuous on W k,∞(Ω;Rm) if and
only if it is k-quasiconvex in the last variable.

Nevertheless, when it comes to the case of W k,p(Ω;Rm) with 1 < p < +∞, the sit-
uation is substantially more involved, particularly because the considered integrands
are not from below. In fact, as can be seen from the definition of the class Fp(Ω)

3In the original paper [171], quasiconvexity with respect to the kth gradient is also referred to
as quasiconvexity.
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below, Meyers studies weak lower semicontinuity of (1.10) on a fairly general class of
integrands including those with critical negative growth.

Definition 3.3 (class Fp(Ω)). Let Ω ⊂ Rn be a bounded domain. A continuous
integrand f : Ω× Y (n,m, k)→ R is said to be in the class Fp(Ω) for 1 ≤ p < +∞ if
(C > 0 is a constant depending only on f)

(i) f(x,A[k]) ≤ C
(
1 + |A[k]|

)p
,

(ii) |f(x,A[k] + B[k]) − f(x,A[k])| ≤ C
(
1 + |A[k]| + |B[k]|

)p−γ |B[k]|γ for some
0 < γ ≤ 1,

(iii) |f(x + y,A[k]) − f(x,A[k])| ≤ (1 + |A[k]|)pη(|y|) with η : [0; +∞) → [0; +∞)
continuous, increasing, and vanishing at zero.

Remark 3.2 (class Fp(Ω) for k = 1). Let us, for clarity, repeat the conditions
given in Definition 3.3 for the case k = 1. In this case, the notation is much simpler
so that the important features of functions in the class Fp(Ω) can be seen more easily.

We say that f : Ω× Rm × Rm×n → R is in the class Fp(Ω) for 1 ≤ p < +∞ if
(i) f(x, s,A) ≤ C

(
1 + |s|+ |A|

)p
,

(ii) |f(x, s + r,A + B) − f(x, s,A)| ≤ C
(
1 + |s| + |r| + |A| + |B|

)p−γ
(|r| + |B|)γ

for some 0 < γ ≤ 1,
(iii) |f(x+y, s, A)−f(x, s,A)| ≤ (1 + |s|+ |A|)pη(|y|) with η : [0; +∞)→ [0; +∞)

continuous, increasing, and vanishing at zero.
Above, C > 0 is a constant depending on f .

When setting A[k] = 0 in (ii) in Definition 3.3 (or alternatively s = 0 and A = 0 in
(ii) of Remark 3.2) we find that |f(x,B[k])| ≤ C(1 + |B[k]|)p and thus the class Fp(Ω)
also contains noncoercive integrands and, in particular, those which decay as A 7→
−|A|p. Quasiconvexity is not sufficient to prove sequential weak lower semicontinuity
for such integrands. We shall devote section 3.1 to a detailed discussion of this issue
and we state at this point Meyers’ original theorem, which handles the noncoercivity
of f by introducing an additional condition (item (ii) in Theorem 3.4).

Theorem 3.4. Let Ω be a bounded domain and f ∈ Fp(Ω). Then I from (1.10)
is weakly lower semicontinuous on W k,p(Ω;Rm) with 1 ≤ p < ∞ if and only if the
following two conditions hold simultaneously:

(i) f(x,A[k−1], ·) is k-quasiconvex for all values of (x,A[k−1]);
(ii) lim infj→∞ I(uj ,Ω

′) ≥ −µ(Ln(Ω′)) for every subdomain Ω′ ⊂ Ω and every
sequence {uj}j∈N ⊂ W k,p(Ω;Rm) such that uj = u on Ω \ Ω′ and uj⇀u in
W k,p(Ω;Rm). Here, µ is an increasing continuous function with µ(0) = 0
which only depends on u and on lim supj→∞ ‖uj‖Wk,p(Ω;Rm).

Above, I(·,Ω′) denotes the functional I when the integration domain Ω is replaced
by Ω′. We immediately see that condition (ii) is satisfied if f has a lower bound;
for example, if f ≥ 0. This is a very common case, in which Theorem 3.4 can be
sharpened; we refer to section 3.2 where this situation is handled in detail.

Remark 3.3 (Theorem 3.4 for k = 1). If k = 1 and f : Ω × Rm × Rm×n → R
is in Fp(Ω) in the sense of Remark 3.2, then Theorem 3.4 assures that the functional
I from (1.7) is lower semicontinuous in W 1,p(Ω;Rm) if f is quasiconvex in the last
variable and condition (ii) in Theorem 3.4 is fulfilled with k = 1.

3.1. Understanding Condition (ii) in Theorem 3.4. Condition (ii) in Theorem
3.4 is rather implicit and thus hard to verify. Nevertheless, in this section, we will
suggest and demonstrate that it should be linked to concentrations on the boundary
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of the domain. To our best knowledge, this link has been fully developed only in the
case k = 1 and for integrands f(x, u,∇u) := f(x,∇u) in (1.7). Thus, we will limit
our scope to this particular case and then describe some possible extensions at the
end of the section.

In essence, (ii) in Theorem 3.4 must cope with the potential nonequi-integrability
of the negative part of the integrand f . To explain this statement in more detail, let
us start with the definition of equi-integrability.

Definition 3.5. We say that a sequence of functions {ϕk}k∈N ⊂ L1(Ω) is equi-
integrable if for every ε > 0 there is δ > 0 such that for every ω ⊂ Ω with Ln(ω) ≤ δ
it holds that

sup
k∈N

∫
ω

|ϕk(x)|dx ≤ ε.

As L1(Ω) is not reflexive, a bounded sequence in L1(Ω) does not necessarily
contain a weakly convergent subsequence in L1(Ω) (though it will always contain a
subsequence weakly* convergent in measures), but it follows from the Dunford–Pettis
criterion [79, 92] that this measure is an L1 function and the convergence improves
from weak* in measures to the weak one in L1 if and only if the sequence is equi-
integrable. Since the failure of equi-integrability is caused by concentrations of the
sequence {ϕn}n∈N, we say that a sequence bounded in L1(Ω) is concentrating if it
converges weak* in measures but not weakly in L1(Ω).

Recall that two effects may cause a sequence {un}n∈N ⊂ W 1,p(Ω;Rm) to con-
verge weakly but not strongly to some limit function u: oscillations and concentra-
tions. Here, concentrations are understood in the sense that |un|p is a concentrating
sequence. In fact, it can be seen by Vitali’s convergence theorem that if |un|p is equi-
integrable (i.e., concentrations are excluded) and un → u a.e. in Ω (i.e., oscillations
are excluded), {un}n∈N actually converges strongly to u in W 1,p(Ω;Rm).

Concentrations and oscillations in a sequence {un}n∈N ⊂ W 1,p(Ω;Rm) can be
separated from each other by the so-called decomposition lemma due to Kristensen
[144] and Fonseca, Müller, and Pedregal [93].

Lemma 3.6 (decomposition lemma). Let 1 < p < +∞ and Ω ⊂ Rn be an open
bounded set and let {uk}k∈N ⊂W 1,p(Ω;Rm) be bounded. Then there is a subsequence
{uj}j∈N and a sequence {zj}j∈N ⊂W 1,p(Ω;Rm) such that

lim
j→∞

Ln({x ∈ Ω; zj(x) 6= uj(x) or ∇zj(x) 6= ∇uj(x)}) = 0(3.2)

and {|∇zj |p}j∈N is relatively weakly compact in L1(Ω).

This lemma, proved by means of the notion of maximal functions [220], al-
lows us to find, for a general sequence bounded in W 1,p(Ω;Rm), another one, called
{zj} ⊂ W 1,p(Ω;Rm), whose gradients are p-equi-integrable, i.e., for which {|∇zj |p}
is relatively weakly compact in L1(Ω), making it a purely oscillating sequence. Thus,
we decompose uj = zj + wj and {|∇wj |p}j∈N tends to zero in measure for j → ∞;
i.e., it is a purely concentrating sequence. Roughly speaking, this means that for every
weakly converging sequence in W 1,p(Ω;Rm), p > 1, we can decompose the sequence
of gradients into a purely oscillating and a purely concentrating sequence. Note, how-
ever, that due to (3.2), this decomposition is very special. Notice that Lemma 3.6 is
named after this decomposition.

Moreover, for quasiconvex integrands in (1.7) the effect of concentrations and
oscillations also splits additively for the (nonlinear) functional I; i.e., we find for
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(nonrelabeled) subsequences that

lim
j→∞

∫
Ω

f(x,∇uj(x)) dx = lim
j→∞

∫
Ω

f(x,∇zj(x)) dx+ lim
j→∞

∫
Ω

f(x,∇wj(x)) dx,

(3.3)

with {uj}, {wj}, and {zj} as introduced in Lemma 3.6 and the discussion thereafter.
Relation (3.3) can be proved by exploiting the so-called p-Lipschitz continuity of
quasiconvex functions by a straightforward technical calculation (see, e.g., [149]). The
p-Lipschitz continuity asserts that if f : Rm×n → R is quasiconvex and |f | ≤ C(1+|·|p)
for some C > 0 and 1 ≤ p < +∞, then there is a constant α ≥ 0 such that for all
A,B ∈ Rm×n,

|f(A)− f(B)| ≤ α(1 + |A|p−1 + |B|p−1)|A−B| .(3.4)

Remark 3.4. The p-Lipschitz continuity holds even if f is only separately convex,
i.e., convex along the Cartesian axes in Rm×n. Various variants of this statement are
proven, e.g., in [101, 167] and in [67]; an analogous result for k-quasiconvex functions
also holds and can be found, e.g., in [113, 207]. It follows from (3.4) that quasiconvex
functions satisfying the mentioned bound are locally Lipschitz.

Owing to the decomposition lemma and the split (3.3), we may inspect lower
semicontinuity of I in (1.7) along a sequence {uj}j∈N separately for the oscillating
and the concentrating parts. Roughly speaking, the oscillating part is handled by
quasiconvexity itself, while additional conditions are needed for the concentrating
part. This statement is formalized via the following theorem.

Theorem 3.7 (adapted from Ka lamajska and Kruž́ık [132]). Let f ∈ C(Ω ×
Rm×n), |f | ≤ C(1 + | · |p), C > 0, f(x, ·) quasiconvex for all x ∈ Ω, and 1 < p < +∞.
Then the functional

I(w) :=

∫
Ω

f(x,∇w(x)) dx(3.5)

is sequentially weakly lower semicontinuous on W 1,p(Ω;Rm) if and only if for ev-
ery bounded sequence {wj} ⊂ W 1,p(Ω;Rm) such that ∇wj → 0 in measure we have
lim infj→∞ I(wj) ≥ I(0).

Thus, let us study weak lower semicontinuity of I only along purely concentrating
sequences, i.e., along a sequence {wj}j∈N ⊂ W 1,p(Ω;Rm) such that ∇wj⇀0 and
Ln(x ∈ suppwj) → 0 as j → ∞. For simplicity, we set f(·, 0) = 0. Then, we can
write ∫

Ω

f(x,∇wj)dx =

∫
Ω

f+(x,∇wj)dx−
∫

Ω

f−(x,∇wj)dx

≥
∫

Ω

f(x, 0)dx−
∫

Ω

f−(x,∇wj)dx,

where f− and f+ are the negative and the positive part of f , respectively. So,
we see that lower semicontinuity of I along the sequence {wj}j∈N is obtained if∫

Ω
f−(x,∇wj)dx → 0. Recall from Definition 3.5 that this is always the case once

the sequence {f−(·,∇wj)}j is equi-integrable and we conclude that for quasiconvex
integrands only the fact that {f−(·,∇wj)}j∈N is a concentrating sequence might harm
weak lower semicontinuity. Notice that equi-integrability of {f−(·,∇uj)}j∈N can, for
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example, be achieved if the negative part of f is of subcritical growth (cf. Theorem 3.8
below).

However, not all concentrations of {|∇uj |p}j∈N affect the weak lower semiconti-
nuity of I. In fact, we show in Remark 3.7 that concentrations inside the domain Ω
are ineffectual for weak lower semicontinuity of I in (3.5) if f(x, ·) is quasiconvex for
all x ∈ Ω and f(·, A) is continuous for all A ∈ Rm×n. Therefore, only concentrations
at the boundary need to be excluded by further requirements, since along concentrat-
ing sequences of gradients, energy may be gained and hence the lower semicontinuity
might be destroyed. The following examples show that such a situation does occur.

Example 3.5 (following [148], [12]). Choose Ω = (0, 1) and a smooth, nonnega-

tive function Φ : R→ R with compact support in (0, 1) and such that
∫ 1

0
Φ(y)dy = 1.

Let us now define the sequence {un}n∈N ⊂W 1,1(0, 1) through

un(x) = 1−
∫ x

0

nΦ (nt) dt so that u′n(x) = −nΦ (nx) .

It can be seen that {un}n∈N is a concentrating sequence that converges to 0 pointwise
and in measure on (0, 1). Further, let us choose f(x, r, s) := s in (1.2); i.e., f is a
linear function and so quasiconvex. Then the functional (1.2) fulfills I(un) = −1 for

all n, but u′n
∗
⇀ 0 in measure and I(0) = 0 > −1.

The example illustrates the above-mentioned effect that a sequence concentrating
on the boundary (such as {un}n∈N) may actually lead to an energy gain in the limit.
However, the failure of weak lower semicontinuity is shown with respect to the weak
topology in measure for the derivative and not the weak convergence in W 1,1(0, 1).
The reason is that this allows us to take a linear, and thus a particularly easy, inte-
grand in (1.7), which is, however, of critical negative growth only in W 1,1(0, 1). But
any sequence converging weakly in W 1,1(0, 1) is also equi-integrable, so the concen-
tration effect could not be seen. Let us point to Example 3.6 below for appropriate
nonlinear integrands that lead to the same effect in W 1,p(Ω;Rm) with p > 1.

Let us also mention that the above example allows an easy adaptation to BV(0, 1)
that avoids the mollification kernel Φ. Take a sequence {un}n∈N ⊂ BV(0, 1) defined
through un := χ(0, 1n ), i.e., the characteristic function of (0, 1

n ) in (0, 1), so that Dun =
−δ 1

n
. Then

I(u) =

∫
(0,1)

dDu(x),

which is a BV-equivalent of (1.2) with f(x, r, s) := s, is not weakly* lower semi-

continuous on BV(0, 1) because I(un) = −1 for all n, but un
∗
⇀ 0 in BV(0, 1) and

I(0) = 0 > −1.

Example 3.6 (see [25]). Let n = m = p = 2, 0 < a < 1, Ω := (0, a)2, and for
x ∈ Ω define

uj(x1, x2) =
1√
j

(1− |x2|)j
(

sin(jx1), cos(jx1)
)
.

We see that {uj}j∈N converges weakly in W 1,n(Ω;R2) as well as pointwise to zero.
Moreover, we calculate for j →∞∫ a

0

∫ a

0

det∇uj(x) dx→ −a
2
< 0 .

Hence, we see that I(u) :=
∫

Ω
det∇u(x) dx is not weakly lower semicontinuous

in W 1,n(Ω;R2). This example can be generalized to arbitrary dimensions m = n ≥ 2.
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Indeed, take u ∈ W 1,n
0 (B(0, 1);Rn) and extend u by zero to the whole Rn. We find

that
∫
B(0,1)

det∇u(x) dx = 0 because of the zero Dirichlet boundary conditions on

∂B(0, 1). Take % ∈ Rn, a unit vector, such that
∫
D%

det∇u(x) dx < 0; here recall

from section 2 that D% := {x ∈ Rn; x · % < 0}. Notice that this condition can be
fulfilled if we define u suitably.

Denote uj(x) := u(jx) for all j ∈ N; then uj⇀0 in W 1,n(B(0, 1);Rn) but also∫
D%

det∇uj(x) dx→
∫
D%

det∇u(x) dx < 0 by construction. The same conclusion can

be drawn if we take Ω ⊂ Rn with arbitrarily smooth boundary and such that 0 ∈ ∂Ω.
Let % be the outer unit normal to ∂Ω at zero. Then we have for the same sequence as
before,

lim
j→∞

∫
Ω

det∇uj(x) dx = lim
j→∞

∫
B(0,1)∩Ω

det∇uj(x) dx

= lim
j→∞

∫
B(0,1)∩Ω

jn det∇u(jx) dx =

∫
D%

det∇u(y) dy < 0 .

Remark 3.7. In this remark, we indicate why quasiconvexity is capable of pre-
venting concentrations in the domain Ω from breaking weak lower semicontinuity.
Indeed, let ζ ∈ D(Ω), 0 ≤ ζ ≤ 1 and take a quasiconvex function f : Rm×n → R such
that |f(A)| ≤ C(1 + |A|p) for some C > 0 and all A ∈ Rm×n with p > 1. Moreover,
let {wj}j∈N be a purely concentrating sequence. From Definition 1.3 for A := 0, we
have that

Ln(Ω)f(0) ≤
∫

Ω

f(∇(ζ(x)wj(x))) dx

and by using the chain rule, the p-Lipschitz property (3.4), and the facts that wj → 0
strongly in Lp(Ω;Rn) and {∇wj}k∈N is bounded in Lp(Ω;Rm×n), we find that

Ln(Ω)f(0) ≤ lim inf
j→∞

∫
Ω

f(ζ(x)∇wj(x)) dx .(3.6)

Let |∇wj |p
∗
⇀ σ in M(Ω) for a (nonrelabeled) subsequence. Given the assumption

that all concentrations appear inside the domain Ω, we have that σ(∂Ω) = 0, whence
we continue with the estimate

lim
j→∞

∫
Ω

f(ζ(x)∇wj(x)) dx

≤ lim
j→∞

∫
Ω

f(∇wj(x)) + α(1− ζ(x))(1 + ζp−1(x))|∇wj(x)|p + α(1− ζ(x))|∇wj(x)|dx

= lim
j→∞

∫
Ω

f(∇wj(x)) dx+ α

∫
Ω

(1− ζ(x))(1 + ζp−1(x))σ(dx),

(3.7)

where we have again used the p-Lipschitz property. Now, we choose a sequence
{ζj}j∈N ⊂ D(Ω), satisfying 0 ≤ ζj ≤ 1 that tends pointwise to the characteristic
function of Ω, χΩ, σ-a.e. Taking into account (3.6) and (3.7), we have by Lebesgue’s
dominated convergence theorem,

Ln(Ω)f(0) ≤ lim
j→∞

∫
Ω

f(∇wj(x)) dx .

Hence, weak lower semicontinuity is preserved.
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The reasoning of Remark 3.7, however, clearly breaks down if ∂Ω is not a σ-null
set, hence concentrations at the boundary appear. Nevertheless, not every boundary
concentration is fatal for weak lower semicontinuity. Arguing heuristically, concentra-
tions at ∂Ω are influenced by interior concentrations coming from Ω and exterior ones
coming from the complement. If exterior concentrations can be excluded, then the
interior ones cannot spoil weak lower semicontinuity, which is, roughly speaking, why
Dirichlet boundary conditions suffice to ensure (ii) in Theorem 3.4 at least if k = 1.
If periodic boundary conditions are applicable, then they will do, as well, because
exterior and interior concentrations mutually compensate due to periodicity.

The next theorem formalizes the discussion concerning equi-integrability of the
negative part of f and Dirichlet boundary conditions.

Theorem 3.8 (taken from Ka lamajska and Kruž́ık [132]). Let the assumptions
of Theorem 3.7 hold. Further, let {uj} ⊂W 1,p(Ω;Rm), uj ⇀ u in W 1,p(Ω;Rm), and
let at least one of the following conditions be satisfied:

(i) for every subsequence of {uj}j∈N (not relabeled) such that |∇uj |p
∗
⇀σ in M(Ω),

where σ ∈M(Ω) depends on the particular subsequence, it holds that σ(∂Ω) = 0;

(ii) lim|A|→∞
f−(x,A)
1+|A|p = 0 for all x ∈ Ω, where f− := max{0,−f};

(iii) uj = u on ∂Ω for every j ∈ N and Ω is Lipschitz.
Then I(u) ≤ lim infj→∞ I(uj).

Notice that (ii) is satisfied, for example, if f ≥ 0 or if f− ≤ C(1 + | · |q) for some
1 ≤ q < p, in which case −C(1 + |A|q) ≤ f(x,A) ≤ C(1 + |A|p), C > 0, and x ∈ Ω.
This result can be found, e.g., in [67].

It follows from the discussion in this section that condition (ii) in Theorem 3.4 is
connected with concentrations on the boundary. This must have been clear to Meyers,
who conjectured [171, p. 146] that it can be dropped if ∂Ω is “smooth enough” or a
“smooth enough” function is prescribed on the boundary as the datum. The second
part of the conjecture turned out to be true in the following special cases: for k = 1
in (1.10) (see [171, Thm. 5] and Thm. 3.8) or if the integrand in (1.10) depends only
on the highest gradient (see the end of section 8). However, the general case is still
an open problem.

Open Problem 3.9. Is the functional (1.10) weakly lower semicontinuous along
sequences with fixed Dirichlet boundary data if f is a general function in the class
Fp(Ω) that is k-quasiconvex?

The first part of the conjecture of Meyers turned out not to hold, as is illustrated
by Example 3.6 in which weak lower semicontinuity breaks down independently of the
smoothness of ∂Ω.

Let us return to the issue of making condition (ii) in Theorem 3.4 more explicit.
It was identified in [149] that a suitable growth from below of the whole functional
in (1.10) (which does not necessarily imply a lower bound on the integrand f it-
self) equivalently replaces this condition. First, let us illustrate that some form of
boundedness from below is indeed necessary for weak lower semicontinuity.

Example 3.8. Take u ∈ W 1,p
0 (B(0, 1);Rm) (1 < p < ∞) and extend it by zero

to the whole of Rn. Define, for x ∈ Rn and j ∈ N, uj(x) = j
n−p
p u(jx) and consider

a smooth domain Ω ⊂ Rn such that 0 ∈ ∂Ω; denote by % the outer unit normal
to ∂Ω at 0. Notice that uj ⇀ 0 in W 1,p(Ω;Rm) and {|∇uj |p}j∈N concentrates at
zero. Moreover, take a function f : Rm×n → R that is positively p-homogeneous, i.e.,
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f(αξ) = αpf(ξ) for all α ≥ 0. If

I(u) =

∫
Ω

f(∇u(x)) dx

is weakly lower semicontinuous on W 1,p(Ω;Rm), then

0 = I(0) ≤ lim inf
j→∞

∫
Ω

f(∇uj(x)) dx = lim inf
j→∞

∫
B(0,1/j)∩Ω

f(∇uj(x)) dx(3.8)

= lim inf
j→∞

∫
B(0,1/j)∩Ω

jnf(∇u(jx)) dx =

∫
D%

f(∇u(y)) dy .

Thus, we see that

(3.9) 0 ≤
∫
D%

f(∇u(y)) dy

for all u ∈ W 1,p
0 (B(0, 1);Rm) forms a necessary condition for weak lower semiconti-

nuity of I whenever f is positively p-homogeneous.

For functions that are not p-homogeneous, S. Krömer [149] generalized (3.9) as
follows.

Definition 3.10 (following [149]4). Assume that Ω ⊂ Rn has a smooth boundary
and let %(x) be the unit outer normal to ∂Ω at x. We say that a function f : Ω ×
Rm×n → R is of p-quasi-subcritical growth from below if for every x ∈ ∂Ω and for
every ε > 0, there exists Cε ≥ 0 such that∫

D%(x)(x,1)

f(x,∇u(z))dz ≥ −ε
∫
D%(x)(x,1)

|∇u(z)|pdz − Cε(3.10)

for all u ∈W 1,p
0 (B(0, 1);Rm).

It was proved in [149] that the p-quasi-subcritical growth from below of the func-
tion f := f(x,∇u) equivalently replaces (ii) in Theorem 3.4.

Notice that (3.10) is expressed only in terms of f and that it is local in x. More-
over, it shows again that, at least in the case when f depends only on the first gradient
of u but not on u itself, only concentrations at the boundary may interfere with weak
lower semicontinuity of functionals involving quasiconvex functions.

Remark 3.9. Let us realize that (3.10) implies (3.9) if it holds that f is positively
p-homogeneous and independent of x. To this end, we use, for t ≥ 0, u = tũ in (3.10)
to show that

0 ≤ 1

tp

(∫
D%(x0,1)

f(t∇ũ(x)) dx+ ε|t∇ũ(x)|pdx+ Cε

)
.

Letting t→∞ gives that Cε = 0; we may also let ε→ 0 to obtain (3.9).

Since only concentration effects play a role for (ii) in Theorem 3.4, it is natural
to expect that weak lower semicontinuity can be linked to properties of the so-called

4In [149] this condition is actually not referred to as p-quasi-subcritical growth from below, but
is introduced in Theorem 1.6 (ii).
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recession function of the function f , if it admits one. Recall that we say that the
function f∞ : Ω× Rm×n → R is a recession function for f : Ω× Rm×n → R if for all
x ∈ Ω,

lim
|A|→∞

f(x,A)− f∞(x,A)

|A|p
= 0.

Thus, informally speaking, the recession function describes the behavior of f at “in-
finitely large matrices.” Note that f∞ is necessarily positively p-homogeneous; i.e.,
f∞(x, λA) = λpf∞(x,A) for all λ ≥ 0, all x ∈ Ω, and all A ∈ Rm×n.

It follows from Remark 3.9 in [149] that if f admits a recession function, then
quasi-subcritical growth from below is equivalent to (3.9) for f∞.

Since weak lower semicontinuity is connected to quasiconvexity and to condition
(ii) in Theorem 3.4, which is connected to effects at the boundary, it is reasonable to
ask whether the two ingredients can be combined. Indeed, so-called quasiconvexity at
the boundary was introduced by Ball and Marsden [22] to study necessary conditions
satisfied by local minimizers of variational problems—we also refer the reader to [108,
109, 174, 219, 222] where this condition is analyzed. In order to define quasiconvexity
at the boundary, we put for 1 ≤ p ≤ +∞

W 1,p
∂D%\Γ%

(D%;Rm) := {u ∈W 1,p(D%;Rm); u = 0 on ∂D% \ Γ%} ,(3.11)

where Γ% is the planar part of ∂D%.

Definition 3.11 (taken from [174]5). Let % ∈ Rn be a unit vector. A function
f : Rm×n → R is called quasiconvex at the boundary at the point A ∈ Rm×n with
respect to % if there is q ∈ Rm such that for all ϕ ∈W 1,∞

∂D%\Γ%
(D%;Rm) it holds that∫

Γ%

q · ϕ(x) dS + f(A)Ln(D%) ≤
∫
D%

f(A+∇ϕ(x)) dx .(3.12)

Let us remark that, analogously to quasiconvexity, we may generalize quasicon-
vexity at the boundary to W 1,p-quasiconvexity at the boundary (for 1 < p < ∞)
by using all ϕ ∈ W 1,p

∂D%\Γ%
(D%;Rm) as test functions in (3.12). For functions with

p-growth these two notions coincide.

Remark 3.10. Let us give some intuition on the above definition. Take a convex
function f : Rm×n → R and ϕ ∈W 1,∞

∂D%\Γ%
(D%;Rm); then we know that

f(A+∇ϕ(x)) ≥ f(A) + g(A) · ∇ϕ(x),

where g(A) is a subgradient of f evaluated at A; see, e.g., Rockafellar and Wets [202]
for details about this notion. Integrating this expression over Ω then gives∫

Ω

f(A+∇ϕ(x))dx ≥
∫

Ω

(
f(A) + g(A) · ∇ϕ

)
dx = Ln(Ω)f(A) +

∫
∂Ω

(
g(A)%

)
· ϕdS,

where % is the outer normal to ∂Ω. Now, when setting q := g(A)% we obtain the
definition of the quasiconvexity at the boundary.

Remark 3.11. It is possible to work with more general domains than half-balls
in Definition 3.11, namely, with so-called standard boundary domains. We say that
D̃% is a standard boundary domain with the normal % if there is a ∈ Rn such that

5The original definition in [22] considers the case q := 0.
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D̃% ⊂ Ha,% := {x ∈ Rn; %·x < a} and the (n−1)-dimensional interior of ∂D̃%∩∂Ha,%,

called Γ%, is nonempty. Roughly speaking, this means that the boundary of D̃% should
contain a planar part.

As with standard quasiconvexity, if (3.12) holds for one standard boundary do-
main, it holds for other standard boundary domains, too.

Remark 3.12. If p > 1, and f : Rm×n → R is positively p-homogeneous, contin-
uous, and W 1,p-quasiconvex at the boundary at (0, %), then q = 0 in (3.12). Indeed,
we have f(0) = 0 and suppose, by contradiction, that

∫
D%
f(∇ϕ(x)) dx < 0 for some

ϕ ∈W 1,∞
∂D%\Γ%

(D%;Rm). By (3.12), we must have for all λ > 0

0 ≤ λp
∫
D%

f(∇ϕ(x)) dx− λ
∫

Γ%

q · ϕ(x) dS .

However, this is not possible for λ > 0 large enough and therefore for all ϕ ∈
W 1,∞
∂D%\Γ%

(D%;Rm) it has to hold that
∫
D%
f(∇ϕ(x)) dx ≥ 0. Thus, we can take q = 0.

From the above remark and from (3.9), we have the following lemma.

Lemma 3.12. If a function f : Rm×n → R is W 1,p-quasiconvex at the bound-
ary at zero and every % ∈ Rn, a unit normal vector to ∂Ω, then it is also of p-
subcritical growth from below. The two notions become equivalent if f is positively
p-homogeneous. Here Ω must have a smooth boundary, so that the outer unit normal
to it is defined everywhere.

All the results presented so far just concern the case k = 1 and integrands f =
f(x,∇u) in (1.7). In fact, in the general case in which f = f(x, u,∇u) only a few
results are available. One of them is, of course, Meyers’ original Theorem 3.4 that
applies to a general class of integrands. Another result is due to Ball and Zhang [27],
who considered the following bound on a Carathéodory integrand f :

|f(x, s,A)| ≤ a(x) + C(|s|p + |A|p) ,(3.13)

where C > 0 and a ∈ L1(Ω). Under (3.13), we cannot expect weak lower semi-
continuity of I along generic sequences. Indeed, they proved the following weaker
result.

Theorem 3.13 (Ball and Zhang [27]). Let 1 ≤ p < +∞, uk ⇀ u in W 1,p(Ω;Rm),
let f(x, s, ·) be quasiconvex for all s ∈ Rm and almost all x ∈ Ω, and let (3.13) hold.
Then there exists a sequence of sets {Ωj}j∈N ⊂ Ω satisfying Ωj+1 ⊆ Ωj for all j ≥ 1
and limj→∞ Ln(Ωj) = 0 such that for all j ≥ 1,∫

Ω\Ωj

f(x, u(x),∇u(x)) dx ≤ lim inf
k→∞

∫
Ω\Ωj

f(x, uk(x),∇uk(x)) dx .(3.14)

The sets {Ωj} that must be removed (or bitten off) from Ω are sets where possible
concentration effects of the bounded sequence {|f(x, uk,∇uk)|}k∈N ⊂ L1(Ω) take
place. Thus, {Ωj} depends on the sequence {uk} itself and Ωj are not known a priori.
Nevertheless, in fact, Ωj depends just on the sequence of gradients. Indeed, (3.13) and
the strong convergence of {uk}k∈N in Lp(Ω;Rm) imply that whenever {|∇uk|p}k∈N is
equi-integrable, then the same holds for {|f(x, uk(x),∇uk(x))|}k∈N. The main tool of
the proof of Theorem 3.13 is the biting lemma due to Chacon [55, 26].
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Lemma 3.14 (biting lemma). Let Ω ⊂ Rn be a bounded measurable set. Let
{zk}k∈N ⊂ L1(Ω;Rm) be bounded. Then there is a (nonrelabeled) subsequence of
{zk}k∈N, z ∈ L1(Ω;Rm), and a sequence of sets {Ωj}j∈N ⊂ Ω, Ωj+1 ⊂ Ωj, j ∈ N,
with Ln(Ωj)→ 0 for j →∞, such that zk⇀z in L1(Ω\Ωj ;Rm) for k →∞ and every
j ∈ N.

Finally, let us remark that concentration effects do not appear if we study lower
semicontinuity of functionals with linear growth with respect to the weakW k,1(Ω,Rm)-
topology (see Remark 3.13 below). Nevertheless, this topology is too strong when it
comes to the study of the existence of minimizers for such functionals; cf. the discus-
sion at the end of section 3.2.

Remark 3.13 (case p = 1). Let us remark that if examining weak lower semicon-
tinuity of integral functionals with linear growth along sequences converging weakly in
W k,1(Ω,Rm), condition (ii) in Theorem 3.4 is also satisfied automatically. This fol-
lows from the fact that such sequences are already equi-integrable.

3.2. Integrands Bounded from Below. In the previous section, we saw that
characterizing weak lower semicontinuity of integral functionals with the integrand
unbounded from below brings along many peculiarities if the negative part of the
integrand is not equi-integrable. Naturally, all difficulties disappear if the integrand
is bounded from below; notice, for example, that condition (ii) in Theorem 3.4 is
automatically satisfied. Thus, all the results from the previous section are readily
applicable in this situation, too. Yet, as the case f ≥ 0 for an integrand in (1.10) is
the most typical one found in applications, it is worth studying it independently. In
fact, it is natural to expect that if f in (1.10) has a lower bound, one can strengthen
Theorem 3.4 by relaxing the continuity assumptions stated in Definition 3.3. We
review the available results in this section.

In the case k = 1 in (1.10), the following result due to Acerbi and Fusco [1] shows
that the continuity assumption on the integrand can be replaced by the Carathéodory
property.

Theorem 3.15 (Acerbi and Fusco [1]). Let k = 1, Ω ⊂ Rn be an open, bounded
set, and let f : Ω×Rm×Rm×n → [0; +∞) be a Carathéodory integrand, i.e., f(·, s, A)
is measurable for all (s,A) ∈ Rm × Rm×n and f(x, ·, ·) is continuous for almost all
x ∈ Ω. Further, let f(x, s, ·) be quasiconvex for almost all x ∈ Ω and all s ∈ Rm, and
suppose that for some C > 0, 1 ≤ p < +∞, and a ∈ L1(Ω), we have that6

0 ≤ f(x, s,A) ≤ a(x) + C(|s|p + |A|p) .(3.15)

Then I : W 1,p(Ω;Rm) → [0; +∞) given in (1.10) is weakly lower semicontinuous on
W 1,p(Ω;Rm).

Interestingly, the paper by Acerbi and Fusco [1] implicitly contains a version of
the decomposition lemma, Lemma 3.6.

Marcellini [167] proved, by a different technique of constructing a suitable non-
decreasing sequence of approximations, a very similar result to Theorem 3.15 allowing
also for a slightly more general growth,

(3.16) − c1|A|r − c2|s|t − c3(x) ≤ f(x, s,A) ≤ g(x, s)
(
1 + |A|p

)
,

where c1, c2 ≥ 0, c3 ∈ L1(Ω); g is an arbitrary Carathéodory function and the expo-

6This bound is often called “natural growth conditions.”
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nents satisfy that p ≥ 1, 1 ≤ r < p (but r = 1 if p = 1), and 1 ≤ t < np/(n − p) if
p < n and t ≥ 1 otherwise.

Note that the growth condition (3.16) actually allows for integrands unbounded
from below, but the exponent r determining this growth is strictly smaller than p.
Such integrands are of subcritical growth and for integrands of the class Fp(Ω) weak
lower semicontinuity under this growth also follows from Theorem 3.8(ii).

Acerbi and Fusco [1, p. 127] remarked that “using more complicated notations
as in [19], [171], our results can be extended to the case of functionals of the type
(1.10).” This extension was considered by Fusco [101] for the case p = 1 and later by
Guidorzi and Poggilioni [113], who rewrote functional (1.10) as (using the notation
from section 2)

(3.17) I(u) =

∫
Ω

f(x,∇[k−1]u(x),∇ku(x))dx

and proved the following proposition.

Proposition 3.16 (Guidorzi and Poggilioni [113]). Let f : Ω× Y (n,m, k − 1)×
X(n,m, k) → R be a Carathéodory k-quasiconvex function satisfying, for all H ∈
Y (n,m, k − 1) and all A ∈ X(n,m, k),

0 ≤ f(x,H,A) ≤ g(x,H)(1 + |A|)p,
|f(x,H,A)− f(x,H,B)| ≤ C(1 + |A|p−1 + |B|p−1)|A−B|,

where g is a Carathéodory function and C ≥ 0. Then the functional from (3.17) is
weakly lower semicontinuous in W k,p(Ω;Rn) for 1 ≤ p <∞ and k ∈ N.

Note that in this result the continuity of the integrand in the space variable x
could be omitted, which is, roughly speaking, due to the fact that quasiconvexity
is sufficient to handle the concentration effects. On the other hand, the continuity
assumption from Definition 3.3(ii) still remains (with γ = 1). A similar result can be
drawn from the more general setting of A-quasiconvexity (which we review in section 8
below) considered in [52].

Let us end this section with some remarks on weak lower semicontinuity of integral
functionals on W k,1(Ω;Rm). We refer, e.g., to [102, 132] as well as section 9 for various
further weak lower semicontinuity results with integrands bounded from below. While
the above results also handle weak lower semicontinuity on W k,1(Ω;Rm) with respect
to the standard weak convergence in this space, it is more suitable to investigate
lower semicontinuity with respect to the strong convergence in W k−1,1(Ω;Rm). This
is due to the fact that W k,1(Ω;Rm) is not reflexive and therefore coercivity of (1.10)
does not allow us to select a minimizing sequence that would be weakly convergent
in W k,1(Ω;Rm), but the strong convergence in W k−1,1(Ω;Rm) can be assured.

The case for k = 1 was treated by Fonseca and Müller [90], who considered
continuous integrands under mild growth conditions. The result was later generalized
by Fonseca et al. [89] with respect not only to the continuity of the integrand that
could be partially dropped, but also to arbitrary k. We give the result for k = 1 in
Theorem 3.17, while the general case is given in Theorem 3.18.

Theorem 3.17 (due to Fonseca et al. [89]). Let f in (1.7) be a Borel integrand
that is continuous in the following sense: For all ε > 0 and (x0, s0) ∈ Ω × Rm there
exist δ > 0 and a modulus of continuity ω with the property that, for some C > 0,
ω(t) ≤ C(1 + t), t > 0, such that

f(x0, s0, A)− f(x, s,A) ≤ ε(1 + f(x, s,A)) + ω(|s0 − s|)
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for all x ∈ Ω satisfying |x − x0| ≤ δ and for all s ∈ Rm and all A ∈ Rm×n. Suppose
further that f is quasiconvex and satisfies

0 ≤ f(x0, s, A) ≤ c(1 + |A|) ∀A ∈ Rm×n

for some c > 0 or that f is convex in the last variable. Then, (1.7) is lower semicon-
tinuous with respect to the strong convergence in L1(Ω;Rm).

Theorem 3.18 (due to Fonseca et al. [89]). Let f in (1.10) be a Borel integrand
that is continuous in the following sense: For all ε > 0 and (x0, H0) ∈ Ω×Y (n,m, k−
1) there exist δ > 0 and a modulus of continuity ω with the property that, for some
C > 0, ω(s) ≤ C(1 + s), s > 0, such that

f(x0, H0, A)− f(x,H,A) ≤ ε(1 + f(x,H,A)) + ω(|H0 −H|)

for all x ∈ Ω satisfying |x − x0| ≤ δ and for all H ∈ Y (n,m, k − 1) and all A ∈
X(n,m, k). Suppose further that f is k-quasiconvex and satisfies

1

c
|A| − c ≤ f(x0, H0, A) ≤ c(1 + |A|),

for some c > 0 and all A ∈ X(n,m, k). Then (1.10) is lower semicontinuous with
respect to the strong convergence in W k−1,1(Ω;Rm).

For the functions f : X(m,n, k) → R, i.e., those depending only on the highest
gradient, an analogous result has been obtained in [4]. We point the reader to the
suggested further reading on integrals with linear growth in section 9.

4. Null Lagrangians. Having studied weak lower semicontinuity, let us turn our
attention to conditions under which the functional (1.10) is actually weakly continuous
on W k,p(Ω;Rm). As it will turn out, (1.10) is weakly continuous only for a small,
special class of integrands f , the so-called null Lagrangians (cf. Theorem 4.3 below).
Null Lagrangians are known explicitly and consist of, roughly speaking, minors of
the highest-order gradient; we review their characterization in this section. Null
Lagrangians play an important role in the calculus of variations, and notably they
are at the heart of the definition of polyconvexity that is sufficient for weak lower
semicontinuity (cf. section 6 for more details).

We start the discussion by presenting definitions of null Lagrangians of the first
and higher orders.

Definition 4.1. We say that a continuous map L : Rm×n → R is a null La-
grangian of the first order if for every u ∈ C1(Ω;Rm) and every ϕ ∈ C1

0 (Ω;Rm) it
holds that ∫

Ω

L(∇u(x) +∇ϕ(x)) dx =

∫
Ω

L(∇u(x)) dx .(4.1)

Notice that the definition is independent of the particular Lipschitz domain Ω. In
fact, if (4.1) holds for one domain Ω, it also holds for all other (Lipschitz) domains.

Remark 4.1. The name “null Lagrangians” comes from the fact that if L is
smooth enough that the variations of J(u) :=

∫
Ω
L(∇u(x)) dx can be evaluated, it

easily follows from (4.1) that J satisfies J ′(u) = 0 for all u ∈ C1(Ω;Rm). In other
words, the Euler–Lagrange equations of J are fulfilled identically in the sense of dis-
tributions.
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Remark 4.2. Notice that if L is a null Lagrangian, the value of J(u) =∫
Ω
L(∇u(x)) dx is only dependent on the boundary values of u. This can be seen from

(4.1) as the value remains unchanged even if we add arbitrary functions vanishing on
the boundary.

It is straightforward to generalize (4.1) to higher-order problems.

Definition 4.2. Let k ≥ 2. We say that L : X(n,m, k)→ R is a (higher-order)
null Lagrangian if ∫

Ω

L(∇ku(x) +∇kϕ(x)) dx =

∫
Ω

L(∇ku(x)) dx(4.2)

for all u ∈ Ck(Ω;Rm) and all ϕ ∈ Ck0 (Ω;Rm).

Similar to the first-order gradient case, the definition is independent of the partic-
ular (Lipschitz) domain Ω. In the same way as in the first-order case, given sufficient
smoothness, it follows that the Euler–Lagrange equations∑

|K|≤l

(−D)K
∂L

∂uiI
(∇lu) = 0(4.3)

are satisfied identically in the sense of distributions for arbitrary u ∈ Ck(Ω;Rm).

Remark 4.3. It is natural to generalize the notion of null Lagrangians to func-
tionals of the type (1.10), i.e., those depending also on lower-order gradients, in the
following way: We say that the function L : Ω× Y (n,m, k)→ R is a null Lagrangian
for the functional (1.10) if for all u ∈ Ck(Ω;Rm) and all ϕ ∈ Ck0 (Ω;Rm) it holds that

J(u+ ϕ) = J(u) and J(u) =

∫
Ω

L(x, u(x),∇u(x), . . . ,∇ku(x)) dx.

We shall see at the end of this section that null Lagrangians for these types of func-
tionals are actually determined by null Lagrangians at least if k = 1.

The following result highlights some of the remarkable properties of null La-
grangians L of first and higher order. In particular, it shows that null Lagrangians,
are the only integrands for which u 7→

∫
Ω
L(∇ku(x)) dx is continuous in the weak

topology of suitable Sobolev spaces. It is due to Ball, Curie, and Olver [19].

Theorem 4.3 (characterization of (higher-order) null Lagrangians). Let L : X(n,
m, k)→ R be continuous. Then the following statements are mutually equivalent:

(i) L is a null Lagrangian;
(ii)

∫
Ω
L(A + ∇kϕ(x)) dx =

∫
Ω
L(A) dx for every ϕ ∈ C∞0 (Ω;Rm), every A ∈

X(n,m, k), and every open subset Ω ⊂ Rn;
(iii) L is continuously differentiable and (4.3) holds in the sense of distributions;
(iv) the map u 7→ L(∇ku) is sequentially weakly* continuous from W k,∞(Ω;Rm)

to L∞(Ω). This means that if uj
∗
⇀u in W k,∞(Ω;Rm), then L(∇kuj)

∗
⇀L(∇ku)

in L∞(Ω);
(v) L is a polynomial of degree p and the map u 7→ L(∇ku) is sequentially

weakly continuous from W k,p(Ω;Rm) to D′(Ω). This means that if uj ⇀ u
in W k,p(Ω;Rm), then L(∇kuj) ⇀ L(∇ku) in D′(Ω).

While Theorem 4.3 provides us with very useful properties of null Lagrangians, it
is interesting to note that they are known explicitly in the first as well as the higher
order. In fact, null Lagrangians are formed by minors or subdeterminants of the
gradient entering the integrand in J .
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4.1. Explicit Characterization of Null Lagrangians of the First Order. Let us
start with the first-order case: If A ∈ Rm×n, we denote by Ti(A) the vector of all
subdeterminants of A of order i for 1 ≤ i ≤ min(m,n). Notice that the dimension
of Ti(A) is d(i) :=

(
m
i

)(
n
i

)
, hence the number of all subdeterminants of A is σ :=(

m+n
n

)
− 1. Finally, we write T := (T1, . . . ,Tmin(m,n)). For example, if m = 1 or

n = 1, then T(A) consists only of entries of A; if m = n = 2, then T(A) = (A,detA);
and for m = n = 3 we obtain T(A) = (A,CofA,detA).

Clearly, linear maps are weakly continuous, yet it has been known at least since
[178, 199, 14] that minors also have this property (see Theorem 4.4 below). This
result, usually called (sequential) weak continuity of minors, is unexpected because if
i > 1, then A 7→ Ti(A) is a nonlinear polynomial of the ith degree. As is well known,
weak convergence generically does not commute with nonlinear mappings.

Theorem 4.4 (weak continuity of minors (see, e.g., [67])). Let Ω ⊂ Rn be a
bounded Lipschitz domain. Let 1 ≤ i ≤ min(m,n). Let {uk}k∈N ⊂ W 1,p(Ω;Rm) be
such that uk⇀u in W 1,p(Ω;Rm) for p > i. Then Ti(∇uk)⇀Ti(∇u) in Lp/i(Ω;Rd(i)).

The proof of Theorem 4.4 uses the structure of null Lagrangians, namely that
they can be written in the divergence form. To explain this idea briefly, we restrict
ourselves to m = n = 2. We have for u ∈ C2(Ω;R2)

det∇u =
∂u1

∂x1

∂u2

∂x2
− ∂u1

∂x2

∂u2

∂x1
=

∂

∂x1

(
u1
∂u2

∂x2

)
− ∂

∂x2

(
u1
∂u2

∂x1

)
.(4.4)

Hence, if ϕ ∈ D(Ω) is arbitrary we obtain∫
Ω

det∇u(x)ϕ(x) dx = −
∫

Ω

(
u1
∂u2

∂x2

)∂ϕ(x)

∂x1
−
(
u1
∂u2

∂x1

)∂ϕ(x)

∂x2
.(4.5)

If uk⇀u in W 1,p(Ω;Rm) for p > 2, then the right-hand side of (4.5) written for uk in
the place of u allows us to pass easily to the limit for k →∞ to obtain Theorem 4.4
for m = n = i = 2. Notice that the right-hand side of (4.5) is defined in the sense of
distributions even if p ≥ 4/3; however, the integral identity (4.5) fails to hold if p < 2.
Inspired by a conjecture of Ball [14], Müller [182] showed that if u ∈ W 1,p(Ω;R2),
p ≥ 4/3, then the distributional determinant

Det∇u :=
∂

∂x1

(
u1
∂u2

∂x2

)
− ∂

∂x2

(
u1
∂u2

∂x1

)
belongs to L1(Ω) and det∇u = Det∇u. Generalizations to higher dimensions are
possible, defining the distributional determinant with the help of the cofactor matrix.
We refer the reader to [182] for details.

Minors are the only mappings depending exclusively on ∇u which are weakly
continuous, and thus in view of Theorem 4.3 they are the only null Lagrangians of
the first order. We make the statement more precise in the following theorem.

Theorem 4.5 (see [19] or [67]). Let L ∈ C(Rm×n). Then L is a null Lagrangian
if and only if it is an affine combination of elements of T, i.e., for every A ∈ Rm×n,

L(A) = c0 + c · T(A) ,(4.6)

where c0 ∈ R and c ∈ Rσ are arbitrary constants.
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Let us note, however, that it has been realized independently in, e.g., [81, 82]
that minors are the only maps for which the Euler–Lagrange equation of J(u) =∫

Ω
L(∇u)dx is satisfied identically.
As we saw in Example 3.6, Theorem 4.4 fails if p = i. Nevertheless, the results

can be much improved if we additionally assume that, for every k ∈ N, Ti(∇uk) ≥ 0
(elementwise) a.e. in Ω. Indeed, Müller [180, 181] proved the following result.

Proposition 4.6 (higher integrability of determinant). Assume that ω ⊂ Ω ⊂
Rn is compact, u ∈W 1,n(Ω;Rn), and that det∇u ≥ 0 a.e. in Ω. Then

‖(det∇u) ln(2 + det∇u)‖L1(ω) ≤ C(ω, ‖u‖W 1,n(Ω;Rn))(4.7)

for some C(ω, ‖u‖W 1,n(Ω;Rn)) > 0 a constant depending only on ω and the Sobolev
norm of u in Ω.

This proposition results in the following corollary:

Corollary 4.7 (uniform integrability of determinant). If {uk}k∈N ⊂W 1,n(Ω;Rn)
is bounded and det∇uk ≥ 0 a.e. in Ω for all k ∈ N, then det∇uk ⇀ det∇u in L1(ω)
for every compact set ω ⊂ Ω.

A related statement was made by Kinderlehrer and Pedregal in [134]. It says that
under the assumptions of Corollary 4.7, and if uk = u on ∂Ω for all k ∈ N, the claim
of Corollary 4.7 holds for ω := Ω. See also [239].

Remark 4.4. Proposition 4.6 can be strengthened if det∇u of a mapping u ∈
W 1,n(Ω;Rn) is nonnegative and, additionally, the following inequality is valid for
some K ≥ 1:

(4.8) |∇u(x)|n ≤ K det∇u(x) a.e. in Ω.

Such mappings are called quasiregular (and if u is additionally a homeomorphism,
quasiconformal) and we shall encounter them again in section 7. In the case of
quasiregular mappings, we even have that det∇u ∈ L1+ε(Ω) with ε > 0 depending
only on K and the dimension n (see, e.g., [119], where generalizations of this result
for K depending on x are also discussed). In the quasiconformal case in dimension
2, this observation goes back to Bojarski [45]; in this case even the precise value of
ε < 1

K−1 was established by Astala [6].

4.2. Explicit Characterization of Null Lagrangians of Higher Order. Null La-
grangians of higher order are of the same structure as those of the first order. In-
deed, they also correspond to minors. In order to make the statement more pre-
cise, we assume that K := (k1, . . . , kr) is such that 1 ≤ ki ≤ n and denote α :=
(ν1, J1; ν2, J2; . . . ; Jr, νr) with |Ji| = k − 1 and where 1 ≤ νi ≤ m. We define the
kth-order Jacobian determinant JαK : X → R by the formula

JαK(∇u) = det

(
∂uνiJi
∂xkj

)
.

Then any null Lagrangian of higher order is just an affine combination of JαK , i.e.,
we have the following theorem.

Theorem 4.8 (see Ball, Currie, and Olver [19]). Let L ∈ C(X(n,m, k)). Then
L is a null Lagrangian if and only if it is an affine combination of kth-order Jacobian
determinants, i.e.,

L = C0 +
∑
α,K

CαKJ
α
K

for some constants C0 and CαK .
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4.3. Null Lagrangians with Lower-Order Terms. As is pointed out in Remark
4.3, the notion of null Lagrangians can also be generalized to functionals of the type
(1.10), i.e., those also containing lower-order terms. A characterization of these null
Lagrangians is due to Olver and Sivaloganathan [190], who considered the first-order
case, i.e., null Lagrangians for those functionals which can also depend on x and u.
Based on Olver’s results [189], they showed in [190] that such null Lagrangians are
given by the formula

L(x, u,∇u) = C0(x, u) +
∑
i

Ci(x, u) · Ti(∇u) ,

where C0 and C1 are C1-functions. This means that null Lagrangians with lower-
order terms are determined by the already known null Lagrangians of the first order.
Let us remark that it is noted in [190] that the result generalizes analogously to the
higher-order case.

5. Null Lagrangians at the Boundary. We have seen that null Lagrangians of
the first order are exactly those functions that fulfill (1.8) in the definition of quasi-
convexity with an equality. This, of course, ensures that null Lagrangians are weakly*
continuous with respect to the W 1,∞(Ω;Rm) weak* topology; in addition, due to The-
orem 4.4, they are weakly continuous with respect to the W 1,p(Ω;Rm) weak topology
if p > min(m,n) with Ω ⊂ Rn.

However, in the critical case when p = min(m,n), the weak continuity fails. In
fact, as we have seen in Example 3.6, for n = m = p = 2 the functional (1.10) with
k = 1 and f(x, u,∇u) = det(∇u) is not even weakly lower semicontinuous, even
though the determinant itself is definitely a null Lagrangian. Once again, the reason
for the failure of weak continuity is concentrations on the boundary combined with
the fact that null Lagrangians are unbounded from below.

Nevertheless, as we have seen in section 3.1, at least for p-homogeneous functions,
weak lower semicontinuity can be assured for functionals with integrands that are
quasiconvex at the boundary, i.e., fulfill (3.12). Thus, a proper equivalent of null
Lagrangians in this case is those functions that fulfill (3.12) with an equality—these
functions are referred to as null Lagrangians at the boundary. We study them in this
section.

Clearly, null Lagrangians at the boundary form a subset of null Lagrangians of
the first order. Moreover, they have exactly the sought properties: We know from
Theorem 4.3 that if N is a null Lagrangian at the boundary, then it is a polynomial
of degree p for some p ∈ [1,min(m,n)]. If, additionally, {uk}k∈N ⊂ W 1,p(Ω;Rm)
converges weakly to u ∈W 1,p(Ω;Rm), then {N (∇uk)}k∈N ⊂ L1(Ω) weakly* converges
to N (∇u) in M(Ω), i.e., in measures on the closure of the domain. This means that
the L1-bounded sequence {N (∇uk)} converges to a Radon measure whose singular
part vanishes. Thus, functionals with integrands that are null Lagrangians at the
boundary are weakly continuous even in the critical case. Null Lagrangians at the
boundary can also be used to construct functions quasiconvex at the boundary; cf.
Definition 3.11.

We first give a formal definition of null Lagrangians at the boundary.

Definition 5.1. Let % ∈ Rn be a unit vector and let L : Rm×n → R be a given
function.

(i) L is called a null Lagrangian at the boundary at given A ∈ Rm×n if both
L and −L are quasiconvex at the boundary of A in the sense of Defini-
tion 3.11; cf. [222]. This means that there is q ∈ Rm such that for all
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ϕ ∈W 1,∞
D%\Γ%

(D%;Rm) it holds that∫
Γ%

q · ϕ(x) dS + L(A)Ln(D%) =

∫
D%

L(A+∇ϕ(x)) dx .(5.1)

(ii) If L is a null Lagrangian at the boundary at every F ∈ Rm×n, we call it a
null Lagrangian at the boundary.

The following theorem explicitly characterizes all possible null Lagrangians at
the boundary. It was first proved by Sprenger in his thesis [219, Satz 1.27]. Later,
the proof was slightly simplified in [131]. Before stating the result we recall that
SO(n) := {R ∈ Rn×n; R>R = RR> = I , detR = 1} denotes the set of orientation-
preserving rotations and that if we write A = (B|%) for some B ∈ Rn×(n−1) and
% ∈ Rn, then A ∈ Rn×n, its last column is %, and Aij = Bij for 1 ≤ i ≤ n and
1 ≤ j ≤ n− 1. We also recall that Ti(A) denotes the vector of all subdeterminants of
A of order i.

Theorem 5.2. Let % ∈ Rn be a unit vector and let L : Rm×n → R be a given
continuous function. Then the following three statements are equivalent:

(i) N satisfies (5.1) for every F ∈ Rm×n;
(ii) N satisfies (5.1) for F = 0;

(iii) there are constants β̃s ∈ R(m
s )×(n−1

s ), 1 ≤ s ≤ min(m,n− 1), such that for all
H ∈ Rm×n,

N (H) = N (0) +

min(m,n−1)∑
i=1

β̃i · Ti(HR̃),(5.2)

where R̃ ∈ Rn×(n−1) is a matrix such that R = (R̃|%) belongs to SO(n);
(iv) N (F + a⊗ %) = N (F ) for every F ∈ Rm×n and every a ∈ Rm.

If m = n = 3, the only nonlinear null Lagrangian at the boundary with the
normal % is

N (F ) = Cof F · (a⊗ %) = a · Cof F%,

where a ∈ R3 is some fixed vector; see Šilhavý [222].
In the following theorem, we let % freely move along the boundary, which in-

troduces an x-dependence to the problem. Then the vector a may depend on x as
well.

Theorem 5.3 (due to [152]). Let Ω ⊂ R3 be a smooth bounded domain. Let
{uk} ⊂ W 1,2(Ω;R3) be such that uk ⇀ u in W 1,2(Ω;R3). Let L̃(x, F ) := Cof F ·
(a(x)⊗%(x)), where a, % ∈ C(Ω;R3) and % coincides at ∂Ω with the outer unit normal
to ∂Ω. Then for all g ∈ C(Ω),

lim
k→∞

∫
Ω

g(x)L̃(x,∇uk(x)) dx =

∫
Ω

g(x)L̃(x,∇u(x)) dx .(5.3)

If, moreover, for all k ∈ N, L̃(·,∇uk) ≥ 0 a.e. in Ω, then L̃(·,∇uk) ⇀ L̃(·,∇u) in
L1(Ω).

Notice that even though {L̃(·,∇uk)}k∈N is bounded merely in L1(Ω), its weak*
limit in measures is N (·,∇u) ∈ L1(Ω), i.e., a measure which is absolutely continuous
with respect to the Lebesgue measure on Ω. This holds independently of {∇uk}.
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Therefore, the fact that L̃ is a null Lagrangian at the boundary automatically im-
proves regularity of the limit measure, namely, its singular part vanishes. In order
to understand why this happens, denote by P(x) := I − %(x) ⊗ %(x) the orthogonal
projector on the plane with the normal %(x), i.e., a tangent plane to ∂Ω at x ∈ ∂Ω.
Then

Cof(FP) = CofFCofP = (CofF )(%⊗ %) .

Consequently,
Cof(FP)% = (CofF )% ,

and if we plug in ∇u for F , we see that L̃(x, ·) only depends on the surface gradient of
u. In other words, concentrations in the sequence of normal derivatives, {∇uk · (%⊗
%)}k∈N, are filtered out.

The following two statements describing weak sequential continuity of null La-
grangians at the boundary can be found in [131]. Here, an effect similar to the one in
Theorem 4.6 and Corollary 4.7 is observed: the nonnegativity of the null Lagrangian
allows us to prove weak continuity.

Theorem 5.4 (see [131]). Let m,n ∈ N with n ≥ 2, let Ω ⊂ Rn be open and
bounded with a boundary of class C1, and let L : Ω × Rm×n → R be a continuous
function. In addition, suppose that for every x ∈ Ω, L(x, ·) is a null Lagrangian and
for every x ∈ ∂Ω, L(x, ·) is a null Lagrangian at the boundary with respect to %(x),
the outer normal to ∂Ω at x. Hence, by Theorem 5.2, L(x, ·) is a polynomial, the
degree of which we denote by dL̃(x). Finally, let p ∈ (1,∞) with p ≥ df (x) for every
x ∈ Ω and let {uk} ⊂W 1,p(Ω;Rm) be a sequence such that uk ⇀ u in W 1,p. If

L(x,∇uk(x)) ≥ 0 for every k ∈ N and a.e. x ∈ Ω,

then L(·,∇un) ⇀ L(·,∇u) weakly in L1(Ω).

The above theorem allows us to prove a weak lower semicontinuity result for
convex functions of null Lagrangians at the boundary which relates to the concept of
polyconvexity introduced in section 6.

Theorem 5.5 (see [131]). Let h : Ω × R → R ∪ {+∞} be such that h(·, s) is
measurable for all s ∈ R and h(x, ·) is convex for almost all x ∈ Ω. Let L and dL be
as in Theorem 5.4. Then

∫
Ω
h(x, L(x,∇u(x))) dx is weakly lower semicontinuous on

the set {u ∈W 1,p(Ω;Rm);L(·,∇u) ≥ 0 in Ω}.
Let us finally point out that A 7→ h(L(x,A)) for a convex function h is quasiconvex

at the boundary with respect to the normal %(x). Therefore, null Lagrangians at the
boundary allow us to construct functions which are quasiconvex at the boundary.

6. Polyconvexity and Applications to Hyperelasticity. We have seen that, at
least for integrands bounded from below and satisfying (i) in Definition 3.3, quasi-
convexity is an equivalent condition for weak lower semicontinuity. This presents an
explicit characterization of the latter since it is not necessary to examine all weakly
converging sequences. Nevertheless, in practice quasiconvexity is almost impossible to
verify since, in a sense, its verification calls for solving a minimization problem itself.
Therefore, it is desirable to find at least sufficient conditions for weak lower semicon-
tinuity that can be easily verified. Such a notion, called polyconvexity, was introduced
by J.M. Ball and can be designed by employing the null Lagrangians introduced in
the last section.

We start with the definition of polyconvexity suitable for first-order functionals.
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Definition 6.1 (due to Ball [14]). We say that f : Rm×n → R ∪ {+∞} is poly-
convex if there exists a convex function h : Rσ → R∪{+∞} such that f(A) = h(T(A))7

for all A ∈ Rm×n.

Remark 6.1. Interestingly, Morrey in [178, Thm. 5.3] proved that 1-homogeneous
convex functions depending on minors are quasiconvex.

If h is affine in the above definition, we call f polyaffine. In this case, f(A)
is a linear combination of all minors of A plus a real constant. Consequently, any
polyconvex function is bounded from below by a polyaffine function. Similarly, as
in the convex case, a polyconvex function is found by forming the supremum of all
polyaffine functions lying below it; see, e.g., [67, Rem. 6.7]; i.e., we have the following
lemma.

Lemma 6.2. The function f : Rm×n → R is polyconvex if and only if

f(A) = sup{ϕ(A);ϕ polyaffine and ϕ ≤ f}.

It is straightforward to generalize polyconvexity to higher-order variational prob-
lems, i.e., those that depend on higher-order gradients of a mapping. The attrac-
tiveness of such problems for applications is clear. Suitably chosen terms depending
on higher-order gradients allow for compactness of a minimizing sequence in some
stronger topology on W 1,p(Ω;Rm), which enables us to pass to a limit in lower-order
terms without restrictive assumptions on their convexity properties. Thus, for exam-
ple, models of shape memory alloys (see section 7) can be treated by this approach;
cf., e.g., [183, 184].

We extend the notion of polyconvexity to higher-order problems (1.10) by em-
ploying the notion of null Lagrangians of higher order due to Ball, Currie, and Olver
[19].

Definition 6.3 (higher-order polyconvexity). Let 1 ≤ r ≤ n. Let U ⊂ X(n,m, k)
be open. A function G : U → R is r-polyconvex if there exists a convex function
h : Co(J [r](U)) → R such that f(A) = h(J [r](A)) for all A ∈ U ; here, Co(J [r](U))
is the convex hull of J [r](U). G is polyconvex if it is R-polyconvex. Here, Jr(H) :=
(Jr,1(H), . . . , Jr,Nr (H)) is an Nr-tuple with the property that any Jacobian determi-
nant of degree r can be written as a linear combination of elements of Jr. Conse-
quently, J [r] := (J1, . . . , Jr). If h is affine, then we call f r-polyaffine.

Since polyconvexity implies quasiconvexity, we may deduce by the results in sec-
tion 3 that integral functions with polyconvex functions in the class Fp(Ω) (from
Definition 3.3) are weakly lower semicontinuous. However, weak lower semicontinu-
ity can be proved for a wider class of polyconvex functions than those in Fp(Ω); in
particular, the functions do not have to be of p-growth. This is of great importance
in elasticity as is explained later in this section.

The proof of weak lower semicontinuity of polyconvex functions can be actually
based on convexity and weak continuity of null Lagrangians. Thus, because weak lower
semicontinuity can be shown for arbitrarily growing convex functions, this generalizes
to polyconvex ones, too. The following result for convex functions can be found in
[19, Thm. 5.4] and is based on results by Eisen [80], who proved this theorem for Φ
finite-valued.

Theorem 6.4 (weak lower semicontinuity). Let Φ : Ω × Rs × Rσ → R ∪ {+∞}
satisfy the following properties:

7Recall that T(A) denotes the vector of all minors of A.
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(i) Φ(·, z, a) : Ω→ R ∪ {+∞} is measurable for all (z, a) ∈ Rs × Rσ;
(ii) Φ(x, ·, ·) : Rs × Rσ → R ∪ {+∞} is continuous for almost every x ∈ Ω;
(iii) Φ(x, z, ·) : Rσ → R ∪ {+∞} is convex.

Assume further that there is φ ∈ L1(Ω) such that Φ(·, z, a) ≥ φ for all (z, a) ∈
Rs × Rσ. Let {zk}k∈N ⊂ L1(Ω;Rs), {ak}k∈N ⊂ L1(Ω;Rσ), and let zk → z a.e. in Ω
as well as ak⇀a in L1(Ω;Rσ). Then∫

Ω

Φ(x, z(x), a(x)) dx ≤ lim inf
k→∞

∫
Ω

Φ(x, zk(x), ak(x)) dx .

Using this theorem, we may easily deduce weak lower semicontinuity of polyconvex
functions. For the sake of clarity, let us start with first-order problems. Then, consider
uk⇀u in W 1,p(Ω;Rm) as k → ∞ where p > min(m,n). Then uk → u in Lp(Ω;Rm),
so, for a (nonrelabeled) subsequence, even uk → u a.e. in Ω. Hence, we can apply
Theorem 6.4 with zk := uk, ak := T(∇uk) and f(x, u,∇u) := Φ(x, u,T(∇u)) to obtain
the following corollary.

Corollary 6.5. Let f : Ω × Rm × Rm×n → R ∪ {+∞} satisfy the following
properties:

(i) f(·, r, A) : Ω→ R ∪ {+∞} is measurable for all (r,A) ∈ Rm × Rm×n;
(ii) f(x, ·, ·) : Rm × Rm×n → R ∪ {+∞} is continuous for almost every x ∈ Ω;
(iii) f(x, r, A) = Φ(x, r,T(A)), where Φ satisfies (i)–(iii) from Theorem 6.4.

If uk⇀u in W 1,p(Ω;Rm) as k →∞ where p > min(m,n), then∫
Ω

f(x, u(x),∇u(x)) dx ≤ lim inf
k→∞

∫
Ω

f(x, uk(x),∇uk(x)) dx .

Similarly as in the case of first-order problems, we can exploit (v) of Theorem 4.3
and Theorem 6.4 to show the existence of minimizers to energy functionals (1.10).
Let us present the result just for functionals (1.10) with k = 2; generalizations for
higher k are straightforward and can be found in [19].

Corollary 6.6 (after [19]). Assume that Ω ⊂ Rn is a bounded smooth domain
and that 1 ≤ r ≤ n. Let f : Ω× Y (n,m, 2)→ R ∪ {+∞} and

I(u) =

∫
Ω

f(x, u,∇u,∇2u)dx

satisfy the following assumptions:
(i) f(x,H,A) = h(x,H, J [r](A)), where h(x, ·, ·) : (Rm×Rm×n)×J [r](X(n,m, 2))
→ R ∪ {+∞} is continuous for almost every x ∈ Ω;

(ii) h(·, H, J [r](A)) : Ω → R ∪ {+∞} is measurable for all (H,J [r](A)) ∈ (Rm ×
Rm×n)× J [r](X(n,m, 2));

(iii) h(x,H, ·) : J [r](X) → R ∪ {+∞} is convex for almost all x ∈ Ω and all
H ∈ (Rm × Rm×n);

(iv) f(x,H,A) ≥ C(−1 + |A|p) for some C > 0, p > n, almost all x ∈ Ω, and all
A ∈ Rm×n.

Then I is weakly lower semicontinuous on W 2,p(Ω;Rm).

It cannot be stressed enough that the main strength of polyconvexity consists in
the fact that convexity in subdeterminants can be advantageously combined with the
Mazur lemma to show weak lower semicontinuity in a similar way to the proof for mere
convex and lower semicontinuous integrands. This contrasts with proofs available for
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quasiconvex integrands, where manipulations with boundary conditions are needed
to prove the result. This was already clearly visible in Meyers’ paper [171]. These
manipulations typically destroy any pointwise constraints on the determinant of ∇y,
which, however, are crucial in elasticity. We shall return to this issue in section 7.

It is well known that minimizers of integral functionals with strictly convex in-
tegrands are unique. However, the same is not true for variational problems with
polyconvex integrands, even if h in Definition 6.1 is strictly convex. Examples were
provided by Spadaro [218] if m = n = 2.

6.1. Rank-One Convexity. Since polyconvexity is an explicit sufficient condition
for quasiconvexity, we might ask if a simpler necessary condition can be similarly
found. This is indeed so, and the resulting notion of convexity is the so-called rank-
one convexity :

Definition 6.7 (due to [179]). We say that f : Rm×n → R is rank-one convex if

(6.1) f(λA1 + (1− λ)A2) ≤ λf(A1) + (1− λ)f(A2)

for all λ ∈ [0, 1] and all A1, A2 such that rank(A1 −A2) ≤ 1.

The relations among the introduced notions of convexity are as follows:

convexity⇒ polyconvexity⇒ quasiconvexity⇒ rank-one convexity;

however, none of the converse implications holds if f : Rm×n → R and m ≥ 3 and
n ≥ 2. To see that polyconvexity does not imply convexity (even for m,m > 1), just
consider the function f(F ) := det(F ), which is even polyaffine but not convex. Also,
quasiconvexity does not imply polyconvexity even for m,n > 1, as was shown in,
e.g., [2, 232]. Šverák’s important counterexample [228] is a construction of a function
that is rank-one convex, but not quasiconvex, and it holds for m ≥ 3 and n ≥ 2. For
m = 2 and n ≥ 2 the question of equivalence between quasiconvexity and rank-one
convexity is still unsolved (see Open Problem 6.8). Notice that if m = 1 or n = 1, all
the generalized notions of convexity trivially coincide with standard convexity itself.

Open Problem 6.8. Let m = 2 and n ≥ 2. Does rank-one convexity imply
quasiconvexity for f : Rm×n → R?

Many attempts can be found in the literature at the solution of Open Problem
6.8 and indications in both the positive and the negative exist. Morrey conjectured
in his original paper [178] that the solution to Open Problem 6.8 is negative. On
the other hand, in several special cases it has been shown that rank-one convexity
indeed implies quasiconvexity. For example, if f is a quadratic form, i.e., if there
exists C ∈ Rm×n×m×n such that f(A) = CA · A :=

∑
ijkl CijklAijAkl, then f is

rank-one convex if and only if it is quasiconvex [236]. Additionally, if min(m,n) =
2, then any quasiconvex (or rank-one convex) quadratic form is even polyconvex
[166, 214, 232]. Also, as has been realized by Müller [185], rank-one convexity is
equivalent to quasiconvexity on diagonal matrices. Very recently, Open Problem 6.8
has been answered positively for isotropic, objective, and isochoric elastic energies
[169]. On top of that, even in the case m ≥ 3 and n ≥ 2 only very few examples
of functions that are rank-one convex but not quasiconvex are known. Besides the
already mentioned Šverák’s counterexample, Grabovsky [107] very recently provided
a new example of a rank-one convex function which is not quasiconvex in dimensions
m = 8 and n = 2.
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On the other hand, let us also mention that if m = n = 2, a necessary condition for
the equivalence of rank-one convexity and quasiconvexity is that every f : R2×2 → R
quasiconvex satisfies the inequality

f(A) ≤
∫

(0,1)2
f(A+ (∇ϕ(x))>) dx for every ϕ ∈W 1,∞

0 ((0, 1)2;R2)

and every A ∈ R2×2.

An analogous implication for m = n > 2 turns out to be false [151, 186]; however, the
two-dimensional case remains open.

Before continuing to higher-dimensional equivalents of rank-one convexity, let us
point out one important function that may form a counterexample to Open Problem
6.8: the so-called Burkholder function

Bp(A) =
p

2
det(A)|A|p−2 +

(
1− p

2

)
|A|p with p ≥ 2,

with the | · | denoting the operator norm. The Burkholder function emerged in the
study of stochastic integrals and martingales [56, 57], and is rank-one concave [126]
(which means that −Bp is rank-one convex). Nevertheless, it is a standing problem
whether it is also quasiconcave (i.e., −Bp quasiconvex).

Open Problem 6.9. Is the Burkholder function Bp(·) quasiconcave?

Naturally, Open Problem 6.9 is answered affirmatively if the answer to Open
Problem 6.8 is “yes.” However, Open Problem 6.9 is interesting in its own right due
to its implications for harmonic and quasiconformal analysis. In fact, if one could
prove that the Burkholder function is quasiconcave, this would give a precise bound
on the operator norm of the Beurling–Ahlfors transform S : Lp(C)→ Lp(C) (here C
denotes the complex plane), which plays an important role in complex analysis since
it converts the complex partial derivative ∂z̄ into ∂z. Indeed, the standing conjecture
due to Iwaniec [125] is that this norm is equal to p?−1 := max{p−1, 1/(p−1)}; cf. the
reviews [28, 11]. It is classical that p? − 1 is the lower bound for the norm of S [161];
as for the upper bound, the attempts in the literature have come progressively closer
to the number p? − 1 (see the review [28] and also, e.g., the current improvements
[29, 48]), but it has not been reached as of today. Reaching this upper bound would,
for example, imply the distortion result by Astala mentioned in Remark 4.4.

In the context of Open Problems 6.9 and 6.8 let us also point to the recent
work of Astala et al. [8] in which the authors show that the Burkholder function is
quasiconcave in the identity for quasiconform perturbations8; in other words, in the
language of section 7, the Burkholder function is quasiconformally quasiconcave at
the identity.

An equivalent to rank-one convexity can also be defined for higher-order problems:
the corresponding notion is called Λ-convexity. Following [19], we define a nonconvex
cone Λ ⊂ X(n,m, k) as Λ := {a ⊗k b : a ∈ Rm, b ∈ Rn}, where (a ⊗k b)iK = aibK .
Here, recall from section 2 that bK = (b1)k1(b2)k2 . . . (bn)kn and K = (k1, . . . , kn) with
1 ≤ ki ≤ k for i = 1, . . . , n is a multi-index.

Definition 6.10. A function f : X → R is called Λ-convex if t 7→ f(A + tB) :
R→ R is convex for every A ∈ X(n,m, k) and any B ∈ Λ.

8By a perturbation we mean the function ϕ in Definition 1.3.
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Notice that for k = 1 Λ-convexity coincides with rank-one convexity. If f is twice
continuously differentiable, then Λ-convexity is equivalent to the Legendre–Hadamard
condition

m∑
j,i=1

∑
|J|=|K|=k

∂2f(A)

∂AjJ∂A
i
K

ajaibJbK ≥ 0

for all A ∈ X(n,m, k), a ∈ Rm, and b ∈ Rn.

Proposition 6.11 (see [19]). Continuous and k-quasiconvex functions f : X(n,
m, k)→ R are Λ-convex.

Hence, Λ-convexity forms a necessary condition for k-quasiconvexity. This propo-
sition was first proved by Meyers [171, Thm. 7] for smooth functions and then gener-
alized by Ball, Currie, and Olver [19] to the continuous case. The opposite assertion
does not hold. Indeed, if n = k = 2 and m = 3, then we have the following example
due to Ball, Currie, and Olver for f : X(2, 3, 2)→ R:

f(∇2u) =

3∑
i,j,l=1

εijk
∂2ui

∂x2
1

∂2uj

∂x1∂x2

∂2ul

∂x2
2

,

where εijk is the Levi-Civita symbol. This function is even Λ-affine (i.e., both ±f are
Λ-convex) but not a null Lagrangian and not quasiconvex. As Λ-convexity replaces
rank-one convexity in the current setting, we see that this example is reminiscent of
Šverák’s example mentioned above.

6.2. Applications to Hyperelasticity in the First-Order Setting. In elasticity,
one is interested in modeling the response of a rubber-like material exposed to the
action of applied forces. This response is obtained by solving a minimization problem;
to be more specific, we are to minimize the free energy of the material. We will see
that polyconvexity is perfectly fitted to the elasticity setting and that existence of
minimizers can be assured for polyconvex energies. We give a short introduction to
this matter in this section and refer the reader, e.g., to the monographs [114, 115, 222]
for more details on the physical modeling.

Take a bounded Lipschitz domain Ω ⊂ Rn which, for n = 3, plays the role of a
reference configuration of an elastic material. For given applied loads, we search for
a mapping u : Ω → Rm, the deformation of the material, which describes the new
“shape” u(Ω) of the body. The mapping u is found by solving the following system
of equations:

− div S = b in Ω,(6.2)

S% = g on ΓN,(6.3)

u = u0 on ΓD.(6.4)

Here, (6.2) is the reduced version of Newton’s law of motion for the (quasi)static case,
and b is the applied volume force. Further, (6.3) represents the action of applied
surface forces g (% denotes the outer unit normal vector to ΓN) and (6.4) models that
the body may be clamped at some part of the boundary to a prescribed shape u0.
We shall require that ΓD ⊂ ∂Ω is disjoint from ΓN ⊂ ∂Ω and of positive (n − 1)-
dimensional Lebesgue measure.

The material properties of the specimen are encoded in the first Piola–Kirchhoff
stress tensor S : Ω → Rm×n in (6.2) and (6.3). The form of the Piola–Kirchhoff
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stress tensor cannot be deduced from first principles within continuum mechanics
but has to be prescribed phenomenologically. The prescription for S is called the
constitutive relation of the given material. In the easiest case, we assume the form
S(x) = Ŝ(x,∇u(x)) for some given Ŝ. Materials for which this assumption is adequate
are sometimes referred to as simple materials as opposed to nonsimple materials for
which Ŝ may depend also on higher gradients of u. Later, in section 6.3, we will also
consider these sophisticated constitutive relations.

Hyperelasticity is a part of elasticity where an additional assumption is made;
namely, that S has a potential W : Rm×n → [0; +∞] such that

Sij(x) =
∂W (F )

∂Fij
|F=∇u(x) .

This assumption emphasizes the idea that there are no energy losses in elasticity and
all work, made by external forces and/or Dirichlet boundary conditions, stored in the
material can be fully exploited.

In what follows, let us restrict our attention to deformations of bulks, i.e., we do
not treat plates and rods, and thus set m = n. In order to fulfill the basic physical
requirements, W has to satisfy the following relations:

W (RF ) = W (F ) for all F ∈ Rn×n and for all R ∈ SO(n),(6.5)

W (F ) = +∞ if detF ≤ 0, and(6.6)

W (F )→ +∞ if detF → 0+.(6.7)

Indeed, assumption (6.5) is a consequence of the axiom of frame indifference [62];
in other words, the assumption ensures that material properties are independent of
the position of the observer. Conditions (6.6) and (6.7) ensure, respectively, that the
material does not locally penetrate itself and that compression of a finite volume of
the specimen into zero volume is not possible. These conditions, however, do not
yet ensure that the body does not penetrate itself, which is also natural to assume
from a physical point of view. Nevertheless, we shall see at the end of this section
that with additional assumptions on the growth of the energy and, e.g., the boundary
conditions, even complete noninterpenetration can be assured.

The assumptions (6.5)–(6.7) rule out the possibility that W can be convex. In-
deed, there are matrices A,B ∈ Rn×n, both with positive determinants, such that the
line segment [A,B] contains a matrix C with zero determinant. However, no convex
function can be finite at A,B and infinite at C.

Moreover, due to (6.6)–(6.7), even if W was quasiconvex, we could not apply
theorems in section 3 since W cannot be an element of the class Fp(Ω). Nevertheless,
polyconvexity is fully compatible with these assumptions.

The mechanical model is that stable states of the system are found by minimizing
the overall free energy

(6.8) E(y) =

∫
Ω

W (∇u(x)) dx−
∫

Ω

b(x) · u(x) dx−
∫

ΓN

g(x) · u(x) dS,

subject to (6.4). Smooth minimizers fulfill the balance equations (6.2)–(6.3); how-
ever, even in the smooth case there might exist solutions to (6.2)–(6.3) that are not
minimizers of (6.8). Nevertheless, such solutions are thought to be metastable and
are hence left after a small perturbation. Thus, minimizing (6.8) is indeed the proper
way to find stable states.
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Remark 6.2. Let us note that since the minimizers of (6.8) might be non-smooth,
it is not guaranteed that they will satisfy the Euler–Lagrange equations in either strong
or weak form. Indeed, in [23] even one-dimensional examples of smooth W were given
such that the minimizer does not fulfill the Euler–Lagrange equation.

One of the reasons why deducing the Euler–Lagrange equation might be difficult is
that even the calculation of the variation of E itself can pose difficulties. Indeed, due
to (6.6), the minimizer y might be such that E(y+ tϕ) is infinite for all small enough
t > 0 and a large class of ϕ. Let us refer to [23] for explicit examples in which this
situation occurs.

Remark 6.3. The method of deriving Euler–Lagrange equations by taking varia-
tions of the energy functional is not completely appropriate for elasticity. In particu-
lar, if two subsequent deformations are applied to an elastic body, they are not added
to each other but are rather composed in order to obtain the final deformation of the
body.

Remark 6.4. Let us notice that the condition (6.6) is really necessary to be stated
explicitly. Indeed, from the physical point of view, the frame-indifference (6.5) requires
that W (F ) := W̃ (C), where C := F>F is the so-called right Cauchy–Green strain
tensor. Note that F>Q>QF = F>F for every orthogonal matrix Q. Hence, pointwise
minimizers of the energy density W contain the set {QF0 : Q ∈ O(n)} for some
given matrix F0 with detF0 > 0, which is itself a pointwise minimizer. Besides the
physically acceptable energy wells {RF0 : R ∈ SO(n)}, other minimizers live on wells
{RF0 : R ∈ O(n) \ SO(n)} which are not mechanically admissible. Those wells are
excluded by (6.6).

In order to prove existence of stable states, that is, minimizers of (6.8), we assume
suitable coercivity of the energy density:

(6.9) W (F ) ≥ c(−1 + |F |p) for all F ∈ Rn×n and for some c > 0.

The existence theorem then follows directly from Corollary 6.5, where we replace
f by W .

Theorem 6.12. Let Ω ⊂ R3 be a Lipschitz bounded domain, p > 3, u0 ∈W 1,p(Ω;
R3), and let ΓD ⊂ ∂Ω have a finite two-dimensional Lebesgue measure. Let W satisfy
the assumptions (i)–(iii) from Corollary 6.5 posed on f with m = n = 3. Further, let
(6.5)–(6.7) and (6.9) hold. If

Y := {u ∈W 1,p(Ω;R3) : u = u0 on ΓD,det∇u > 0} 6= ∅

is such that infY I < +∞, then there is a minimizer of E on Y.

This result can be generalized for different coercivity conditions like the one con-
sidered in (6.13) below. Even more general settings can be found in [62], where various
additional requirements on minimizers, such as, e.g., conditions ensuring a frictionless
contact (Signorini problem), are also included.

Let us mention a few important examples of polyconvex stored energy densities.
Contrary to nontrivial examples of quasiconvex functions, it is relatively easy to design
a polyconvex function. For ease of notation we only define the densities for matrices of
positive determinant. Otherwise, the energy density is implicitly extended by infinity.
We refer to [211, 212, 213] for examples of polyconvex functions with various special
symmetries.
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Example 6.5 (compressible Mooney–Rivlin material). This material has a stored
energy of the form

W (F ) = a|F |2 + ã|CofF |2 + γ(detF ) ,(6.10)

where a, ã > 0 and γ(δ) = c1δ
2 − c2 log δ, c1, c2 > 0.

It can be shown that for n = 3,

W (F ) =
λ

2
(trE)2 + µ|E|2 +O(|E|3) , E = (C − I)/2,

where λ and µ are the usual Lamé constants, and I denotes the identity matrix. Indeed,
it is a matter of a tedious computation to show that, given λ, µ, the following equations
must be fulfilled by a, b, c1, c2: c2 := (λ+ 2µ)/2, 2a+ 2b = µ, and 4b+ 4c1 = λ.

Example 6.6 (compressible neo-Hookean material). This material has a stored
energy of the form

W (F ) = a|F |2 + γ(detF )(6.11)

with the same constants as for the compressible Mooney–Rivlin material.

Example 6.7 (Ogden material). This material has a stored energy of the form
(recall that C = F>F )

W (F ) =

M∑
i=1

aitrC
γi/2 +

N∑
i=1

ãitr(Cof C)δi/2 + γ(detF ),(6.12)

where ai, ãi > 0, limδ→0+ γ(δ) = +∞ for γ : R+ → R convex growing suitably at
infinity.

If W satisfies conditions (6.6)–(6.7), then any u ∈ C1(Ω,R3) for which E(u) from
(6.8) is finite is also locally invertible. This follows from the standard inverse function
theorem. Nevertheless, what is actually desired for a physical deformation is that it is
injective [62]. Indeed, noninjectivity of the deformation would mean that two material
points from the reference configuration would be mapped to just one in the deformed
configuration, which means that the specimen has penetrated through itself. Thus,
additional assumptions to (6.6)–(6.7) on W are needed to assure global invertibility of
u. Preferably, these assumptions should be compatible with polyconvexity and weak
lower semicontinuity.

Take a diffeomorphism u : Ω→ u(Ω) with det∇u > 0 on Ω. Then we have by the
change of variables formula for p > 1,∫

u(Ω)

|∇u−1(w)|pdw =

∫
Ω

|∇u−1(u(x))|p det∇u(x)dx

=

∫
Ω

|(∇u(x))−1|pdet∇u(x)dx =

∫
Ω

|Cof>∇u(x)|p

(det∇u(x))p−1
dx,

where we have used that ∇u−1(u(x)) = (∇u(x))−1 for all x in Ω and that for every

invertible matrix the relation A−1 = Cof>A
detA holds.

Therefore, for energies satisfying a stricter coercivity condition than (6.9) in the
form of

(6.13) W (F ) ≥ c
(
−1 + |F |p +

|CofF>|p

(detF )p−1

)
for some c > 0,
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one might well expect that deformations on which E(u) is finite are invertible. This
is indeed so, as Theorem 6.13 shows.

Nevertheless, before proceeding to the theorem, let us point out that the new
growth condition (6.13) is fully compatible with polyconvexity. Indeed, since the func-
tion g defined by g(x, y) := xp

yp−1 is convex for p > 1 on the set {(x, y) ∈ R2; y > 0},
|Cof>F |p
(detF )p−1 is polyconvex on the set of matrices having a positive determinant.

Theorem 6.13 (due to Ball [15]). Let Ω ⊂ Rn be a bounded Lipschitz domain.
Let u0 : Ω → Rn be continuous in Ω and one-to-one in Ω such that u0(Ω) is also
bounded and Lipschitz. Let u ∈ W 1,p(Ω;Rn) for some p > n, u(x) = u0(x) for all
x ∈ ∂Ω, and let det∇u > 0 a.e. in Ω. Finally, assume that for some q > n

(6.14)

∫
Ω

|(∇u(x))−1|q det∇u(x) dx < +∞ .

Then u(Ω) = u0(Ω) and u is a homeomorphism of Ω onto u0(Ω). Moreover, the
inverse map u−1 ∈ W 1,q(u0(Ω);Rn) and ∇u−1(w) = (∇u(x))−1 for w = u(x) and
a.a. x ∈ Ω.

Let us note that the Sobolev regularity needed in this theorem was later weakened
in [227]. Indeed, in this work it was shown that an inverse to deformation can be
defined even for p > n− 1 and q ≥ p

p−1 .

Theorem 6.13 ensures injectivity of u under the growth (6.13) if an up-to-the-
boundary injective Dirichlet condition is prescribed. This, however, has the disadvan-
tage that we cannot use it to model situations in which hard loads (Dirichlet boundary
conditions) are prescribed on only a part on the boundary.

One possible remedy is to minimize E along with the so-called Ciarlet–Nečas
condition

(6.15)

∫
Ω

det∇u(x)dx ≤ Ln(u(Ω)),

which was introduced in [63] (for n = 3) in order to assure global injectivity of de-
formations. It was shown in [63] that C1-functions satisfying (6.15) and det∇u > 0
are actually injective. The result generalizes to W 1,p-functions as well, but injectivity
is obtained only almost everywhere in the deformed configuration; i.e., almost every
point in the deformed configuration has only one preimage.

Remark 6.8. Maps that are injective almost everywhere in the deformed config-
uration still include rather nonphysical situations. For example, a dense, countable
set of points could be mapped to one point. This can be prevented if the deformation
is injective everywhere.

Using condition (6.15), this can be achieved for finite deformations of the energy
E with a density W satisfying (6.13) for p = m = n = 2. This setting is the one
most explored due to its relationship to quasiconformal maps (see section 7). Such
deformations are open (that is, they map open sets to open sets) and discrete (the
set of preimages for every point does not accumulate) and, moreover, they satisfy the
Lusin N -condition (i.e., they map sets of zero measure again to sets of zero measure);
cf., e.g., [119]).

Then, we have by the area formula∫
Ω

det∇udx =

∫
Rn

N(u,Ω, z) dz =

∫
u(Ω)

N(u,Ω, z) dz,
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where N(u,Ω, z) is defined as the number of preimages of z ∈ u(Ω) in Ω. So the
Ciarlet–Nečas condition is satisfied if and only if N(u,Ω, z) = 1 a.e. on u(Ω). Also,
we can immediately see that the reverse inequality to (6.15) always holds.

Further, if there existed z ∈ u(Ω) that had at least two preimages x1 and x2, then
we could find an ε > 0 such that B(x1, ε)∩B(x2, ε) = ∅ and B(xj , ε) ⊂ Ω for j = 1, 2.
On the other hand, for the images we have that u(B(x1, ε)) ∩ u(B(x2, ε)) 6= ∅. In
fact, u(B(x1, ε)) ∩ u(B(x2, ε)) is of positive measure since both u(B(xj , ε)) are open.
Therefore, there exists a set of positive measure where N(u,Ω, z) is at least two, which
is a contradiction to (6.15).

6.3. Applications to Hyperelasticity in the Higher-Order Setting. Let us now
turn our attention to models of hyperelastic materials depending on higher-order
gradients. Such materials are called nonsimple of grade k, where k refers to the highest
derivatives appearing in the stored energy density. The concept of such materials has
been developing for a long time, since the work by R.A. Toupin [234], under various
names such as nonsimple materials in, e.g., [98, 140, 196, 221] or multipolar materials
(in particular, in fluids).

Here, we will consider only second-grade nonsimple materials, i.e., those for which
second-order deformation gradients (first-order strain gradients) are involved. The
main mathematical advantage of nonsimple materials is that higher-order deforma-
tion gradients bring additional regularity of deformations and, possibly, also compact-
ness in a stronger topology. Moreover, taking the stored energy to be even convex in
the highest derivatives of the deformation does not contradict the basic physical re-
quirements, which is helpful in proving existence of minimizers. The downside of this
approach is that there are very few physically justified models of nonsimple materials
and material constants are rarely available.

For nonsimple materials of the second grade, we define the energy functional

(6.16)

E(u) :=

∫
Ω

W (∇u(x),∇2u(x)) dx−
∫

Ω

b(x) · u(x) dx

−
∫

ΓN

(
g(x) · u(x) + ĝ1(x) · ∂u(x)

∂%

)
dS ,

where % is the outer unit normal to ΓN and ĝ1 : ΓN → Rn is the surface density of
(hypertraction) forces balancing the hyperstress

x 7→ ∂

∂Gijk
W (F,G)|F=∇u(x), G=∇2u(x) .(6.17)

The corresponding first Piola–Kirchhoff stress tensor is constructed as follows.
Denote for i, j ∈ {1, . . . , n}

Hij(F,G) :=

n∑
k=1

∂

∂Gijk
W (F,G) .

Then for x ∈ Ω, F := ∇y(x), and G := ∇2y(x) we evaluate the first Piola–
Kirchhoff stress tensor as

Sij(x) =
∂W (∇u(x),∇2u(x))

∂Fij
−Hij(∇u(x),∇2u(x)) .
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We will assume that

u 7→
∫

Ω

b(x) · u(x) dx+

∫
ΓN

(
g(x) · u(x) + ĝ1(x) · ∂u(x)

∂%

)
dS(6.18)

is a linear continuous functional evaluating the work of external forces on the specimen.
Here, however, we assume for simplicity that b, ĝ1, and g depend only on x ∈ Ω and
x ∈ ΓN, respectively. Notice that the existence of minimizers of E is guaranteed by
Corollary 6.6.

Similarly, as in the case of simple materials, we may formally derive the Euler–
Lagrange equations for minimizers of E . Interestingly, second-grade materials together
with suitable integrability of 1/ det∇u imply a strictly positive lower bound of det∇u
on the whole closure of Ω. This enables us to show that minimizers of the energy func-
tionals are weak solutions to the corresponding Euler–Lagrange equations; cf. [117].
Unlike the simple material situation, here the smoothness of ∂Ω is important be-
cause the mean curvature of the boundary enters the equations. Details on surface
differential operators can be found, for example, in [195].

7. Weak Lower Semicontinuity in General Hyperelasticity. We have seen in
the last section that polyconvexity is relatively easy to verify and ensures weak lower
semicontinuity of the corresponding energy functional. Nevertheless, there are mate-
rials that cannot be modeled by polyconvex energy densities.

A prototypical example is that of systems featuring phase transition with each
phase characterized by some specific deformation of the underlying atomic lattice.
This setup is, for example, found in shape-memory alloys (see, e.g., the monographs
[41, 77, 96, 97, 194], [20], or the recent review [128]). Shape-memory alloys are
intermetallic materials which have a high temperature highly symmetric phase called
austenite and a low temperature phase called martensite, they can, however, exist
in several variants. Such systems are (for a suitable temperature range) typically
modeled by a multiwell stored energy of the form

W (F )

{
= 0 if F = QUi for some i = 1, . . . ,M and some Q ∈ SO(n),

> 0, otherwise.
(7.1)

where U1, . . . , UM ∈ Rn×n are given matrices representing the phases found in the
material and SO(n) is the set of rotations in Rn×n. These materials form complicated
patterns (microstructures) composed from different variants of martensite; cf. Fig-
ure 1.

Energy densities satisfying (7.1) are generically neither polyconvex nor quasicon-
vex and their construction is a modeling issue [240]. Therefore, in order to design
an appropriate model one has to find the weakly lower semicontinuous envelope of
(1.7) with an energy density given by (7.1); in other words, one seeks the supremum
of weakly lower semicontinuous functionals lying below the given energy. We refer
also to section 7.1 for more details on how this relaxation of the problem might be
performed. Let us remark that the need to perform a relaxation persists even if we
use a geometrically linear description of energy wells; see [60, 61, 106, 136, 217], for
instance.

In order to find the weakly lower semicontinuous envelope of (7.1), a precise char-
acterization of weak lower semicontinuity in terms of convexity conditions on W is
needed. We found these conditions in section 3; though only under the growth condi-
tion (i) in Definition 3.3. However, this is incompatible with the physical assumptions
formulated in (6.6)–(6.7). Indeed, notice that (6.6) requires the stored energy to be
infinite if detF ≤ 0, while growth condition (i) in Definition 3.3 corresponds to p-
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Fig. 1 Laminated microstructure in CuAlNi. Courtesy of P. Šittner (Institute of Physics, CAS,
Prague).

growth which, roughly speaking, means that the stored energy is bounded from above
by a polynomial of the pth order and so is finite for all its arguments.

For energies taking infinite values it is no longer known that quasiconvexity im-
plies weak lower semicontinuity. Indeed, this is one of the outstanding problems in
elasticity, which was formulated by J.M. Ball in the following manner.

Open Problem 7.1 (Problem 1 in [17]). “Prove the existence of energy mini-
mizers for elastostatics for quasiconvex stored-energy functions satisfying (6.7).”

While Problem 7.1 is motivated by elasticity, it leads to a study of weak lower
semicontinuity that is interesting in its own right. Therefore, we shall denote the
integrands by f in this section as is done elsewhere in the article and use the notation
W only if the stored energy of an elastic material is specifically meant.

In order to better see why the methods from section 3 might fail once one considers
integrands taking infinite values, let us revisit Example 1.2 given in the introduction.

Example 7.1 (Example 1.2 revisited). In Example 1.2, we studied weak lower
semicontinuity of the functional

Ĩ(u) =

∫
Ω

f(∇u(x))dx,

along the sequence {uk}k∈N ⊂ W 1,∞(Ω;Rm) such that uk
∗
⇀Ax with A some matrix

in Rm×n, and we saw that if f is quasiconvex and finite on Rn×m, then Ĩ is weakly
lower semicontinuous. A key step in the proof was the cut-off procedure, i.e., the
construction of a modified sequence

uk,`(x) = η`uk+(1−η`)Ax such that ∇uk,`(x) = η`∇uk+(1−η`)A+(uk−Ax)⊗∇η`,

which fulfills uk,`(x) = Ax on ∂Ω, as well as the realization that once uk,`(x) is used
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as a test function in (1.8), we have that

(7.2)

f(A)Ln(Ω) ≤
∫

Ω

f(∇uk(`),`(x))dx

=

∫
Ω

f(∇uk(`))dx+

∫
Ω\Ω`

f(∇uk(`),`(x))− f(∇uk(`)(x))dx,

where the last integral vanishes if f is continuous on Rm×n because the measure of
Ω \ Ω` converges to zero.

Now, if f is allowed to take infinite values, the last step is no longer justified. In
fact, even if we assume that the matrix A as well as the sequence {uk}k∈N are such
that f(A) <∞ as well as f(∇uk(x)) <∞ for almost every x ∈ Ω, there is, a priori,
no guarantee that f(∇uk,`(x)) = +∞ on a set of positive measure in Ω \ Ω` can be
excluded. However, in this case,

∫
Ω\Ω`

f(∇uk(`),`(x))−f(∇uk(`)(x))dx = +∞ so that,

in particular, this term cannot vanish.

Example 7.1 presents a simplified setting that, however, contains all the diffi-
culty in proving that quasiconvex integrands taking infinite values are weakly lower
semicontinuous. In fact, to the best of our knowledge, all proofs available in the lit-
erature showing that quasiconvexity implies weak lower semicontinuity, starting from
the works of Morrey [178] and Meyers [171], are built upon the same principle as the
one presented in Examples 1.2 and 7.1 (also see the monograph [67]). In particular,
the cut-off method plays a crucial role, which, as seen in Example 7.1, might result
in the consequence that the method of proof becomes unusable for integrands taking
values in R∪{+∞}. Here, the strength of polyconvexity should be again highlighted,
since for functionals with polyconvex integrands weak lower semicontinuity is proved
by a different method; see section 6.

Remark 7.2. Let us note that if the set on which f is finite is convex, the pro-
cedure in Example 7.1 might still work. Indeed, in this case, if we assume that A as
well as {uk}k∈N are such that f(A) <∞ as well as f(∇uk(x)) <∞ for almost every
x ∈ Ω, then f(η`∇uk + (1−η`)A) <∞ a.e. on Ω due to convexity. This still does not
mean that f(∇uk,`(x)) <∞ due to the small error (uk−Ax)⊗∇η`, because of which
∇uk,`(x) might no longer lie in the set where f takes finite values. Nevertheless, by
suitable scaling and continuity of f on its domain, this difficulty can be overcome, at
least if the domain of f is a ball; see [133]. On the other hand, if the domain of f is
not convex, we can expect that f(η`∇uk(x) + (1− η`)A) =∞ for some x ∈ Ω even if
f(A), f(∇uk(x)) is finite, which is the scenario discussed in Example 7.1.

The physical requirements dictated by (6.6)–(6.7) force the stored energy to be
finite only on matrices with a positive determinant, which is a nonconvex set. In view
of the above remark, this means that one faces exactly the situation from Example 7.1,
in which the available techniques of proving that quasiconvex energies are weakly lower
semicontinuous reach their limit. This is also what makes Problem 7.1 so challenging.

Remark 7.3. Notice that if (7.1) is additively enriched by a convex term of the
form ε

∫
Ω
|∇2y|pdx, which is usually interpreted as some kind of interfacial energy

of the microstructure, Corollary 6.6 can be readily applied to show the existence of
minimizers for E.

Let us also point out that a different approach was proposed recently [223, 224].
There, a new notion of interface polyconvexity was introduced which enables the proof
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of the existence of minimizers for simple materials with an additional phase field
variable.

Remark 7.4. It has been pointed out in [17, 18] that one of the reasons why
Open Problem 7.1 is hard to solve is the fact that quasiconvexity possesses no local
characterization [146].

Let us stress that Problem 7.1 is an important attempt toward combining quasi-
convexity and elasticity, but additional steps are still required. Namely, if u : Ω→ Rm
entering (1.7) should represent a deformation of a physical body, it should be injec-
tive and orientation-preserving. It is even natural to require that the deformation is a
homeomorphism, at least if one restricts attention to the case in which the formation
of cavities and cracks is excluded; we refer to, e.g., [118] for problems connected to
the appearance of cavities. Notice that this is not automatically satisfied for all maps
on which the functional (1.7) is finite, even if f fulfills (6.6)–(6.7), but we can rely on
Theorem 6.13 to assure it, provided suitable coercivity of the energy.

An alternative (and related) approach is to study directly weak lower semicon-
tinuity along sequences found in a suitable class of mappings that are injective and
orientation-preserving. As a first step, one may study classes of functions that fulfill
some constraint on the Jacobian, e.g., that det∇u > 0.

Remark 7.5. Clearly, the positivity of the Jacobian det∇u > 0 does not imply
that the mapping u is a homeomorphism. However, surprisingly, the converse impli-
cation also does not necessarily hold, even though a homeomorphism on a domain is
necessarily sense-preserving (or sense-reversing) in the topological sense. We refer to
an example by Goldstein and Haj lasz [105], where a sense-preserving homeomorphism
with det∇u = −1 a.e. in Ω was constructed. This phenomenon concerns functions
with a low Sobolev differentiability. Indeed, it was shown by Hencl and Malý [120]
that any sense-preserving homeomorphism in W 1,p(Ω;Rm) satisfies det∇u > 0 a.e.
on Ω if p >

[
n
2

]
.9 Recently, it was shown by Campbell, Hencl, and Tengvall [59] that

the exponent is critical in the sense that if n ≥ 4 and p <
[
n
2

]
, then there exists a

homeomorphism in W 1,p(Ω;Rm) the Jacobian of which is positive and negative on a
set of positive measure, respectively.

Even though Problem 7.1 remains widely open to date, it has recently been ap-
proached from different perspectives. We review the results within this section, all of
which are based on changing the cut-off technique introduced in Examples 1.9 and
7.1 in order to avoid the convex averaging.

In [141, 142], Koumatos, Rindler, and Wiedemann study weak lower semiconti-
nuity along sequences in {uk} ⊂ W 1,p(Ω;Rm) with p < n satisfying det∇uk > 0.
They prove that (1.7) with f = f(x,∇u) is weak lower semi-continuous along such
sequences if and only if it is W 1,p-orientation-preserving quasiconvex, i.e., for almost
all x ∈ Ω,

f(x,A) ≤ 1

Ln(Ω)

∫
Ω

f(x,∇ϕ(z))dz

for all A with det(A) > 0 and all ϕ ∈ W 1,p(Ω;Rm) satisfying that ϕ(z) = Az on ∂Ω
and det∇ϕ(z) > 0 for a.a. z ∈ Ω.

However, in [142] the authors also show that, in fact, for p < n no W 1,p-
orientation-preserving quasiconvex integrands exist that satisfy the natural coercivity/

9Here [·] denotes the integer part.
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growth condition

1

c

(
|A|p + κ(detA)

)
≤ f(x,A) ≤ c

(
|A|p + κ(detA)

)
for almost all x ∈ Ω. Here c > 0 is a constant and κ > 0 is a convex function satisfying

lims→0 κ(s) = +∞, κ(s) = +∞ for s ≤ 0 and lim sups→∞
κ(s)
sp/n

< +∞. Notice that
this growth condition is compatible with (6.6)–(6.7).

The proof in [141] is based on so-called convex integration, a technique for solving
differential inclusions. It goes back to Nash [188], Kuiper [155, 156], and later Gromov
[112], and it has found applications in various problems including continuum mechan-
ics (interestingly in continuum mechanics of solids as well as fluid dynamics) and
regularity theory; see, e.g., [75, 216, 209, 187]. We refer also to the monograph [68],
where solutions to partial differential inclusions by means of Baire category methods
are introduced.

To the best of our knowledge, the only works in which the authors actually con-
sider equivalent characterization of weak lower semicontinuity for injective maps are
[38] and [36], where bi-Lipschitz and quasiconformal maps in the plane are studied,
respectively.

Here, by bi-Lipschitz maps the following set is meant:

W 1,∞,−∞
+ (Ω;R2) =

{
u : Ω 7→ u(Ω) an orientation-preserving homeomorphism;

u ∈W 1,∞(Ω;R2) and u−1 ∈W 1,∞(u(Ω);R2) is Lipschitz
}
,(7.3)

while quasiconformal maps are introduced as follows:

QC(Ω;R2) =
{
u ∈W 1,2(Ω;R2) : u is a homeomorphism and ∃K ≥ 1 such that

|∇u|2 ≤ K det∇u a.e. in Ω
}
.(7.4)

It is natural to expect that weak lower semicontinuity of the functional

I(u) =

∫
Ω

f(∇u)dx,

along sequences in W 1,∞,−∞
+ (Ω;R2) or QC(Ω;R2) is connected with a suitable notion

of quasiconvexity of f . One even expects a weaker notion than the one from Defini-
tion 1.3, since the set of possible sequences along which semicontinuity is studied is
restricted. Indeed, the most appropriate notion for this setting seems to be an alter-
nation of Definition 1.3 in which only functions from W 1,∞,−∞

+ (Ω;R2) or QC(Ω;R2)
enter as test functions. Precisely this was achieved in [38] and [36]; we review the
result in Proposition 7.3.

First, let us introduce a notion of weak convergence on W 1,∞,−∞
+ (Ω;R2) and

QC(Ω;R2). We say that uk
∗
⇀u in W 1,∞,−∞

+ (Ω;R2) if the sequence has uniformly

bounded bi-Lipschitz constants10 and uk
∗
⇀u in W 1,∞(Ω;R2). Note that the weak

limit is bi-Lipschitz, too.

10Notice that a function u ∈W 1,∞,−∞
+ (Ω;R2) satisfies for all x1, x2 ∈ Ω

(7.5)
1

`
|x1 − x2| ≤ |u(x1)− u(x2)| ≤ `|x1 − x2|

for some ` ≥ 1. This ` is then called the bi-Lipschitz constant of u.
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For a sequence {uk}k∈N ⊂ QC(Ω;R2), we say that it converges weakly to u ∈
W 1,2(Ω;R2) in QC(Ω;R2) if for uk ⇀ u in W 1,2(Ω;R2), there exists a K ≥ 1 such
that the uk are all K-quasiconformal and u is nonconstant. Here it is important to
assume that the limit function is nonconstant, for otherwise the limit function might
not be quasiconformal.11

Moreover, let us introduce the notions of bi-quasiconvexity and quasiconformal
quasiconvexity.

Definition 7.2. We say that a Borel measurable and bounded from below func-
tion f : R2×2 → Ω is bi-quasiconvex if

L2(Ω)f(A) ≤
∫

Ω

f(∇ϕ(x)) dx(7.6)

for all ϕ ∈W 1,∞,−∞
+ (Ω;R2), ϕ = Ax on ∂Ω, and all A with detA > 0.

We say that f is quasiconformally quasiconvex if (7.6) holds for all A with
det(A) > 0 and all ϕ ∈ QC(Ω;R2) such that ϕ(x) = Ax on ∂Ω.

Then we have the following result:

Proposition 7.3 (due to Benešová, Kampschulte, and Kruž́ık [38, 36]). Let Ω ⊂
R2 be a bounded Lipschitz domain. Let f be continuous on the set of matrices that
are 2× 2 with a positive determinant. Then f is bi-quasiconvex if and only if

u 7→ I(u) =

∫
Ω

f(∇u(x)) dx

is sequentially weakly* lower semicontinuous on W 1,∞,−∞
+ (Ω;R2).

Moreover, let f satisfy

0 ≤ f(A) ≤ c(1 + |A|2) with c > 0

on the set of matrices with a positive determinant. Then f is quasiconformally quasi-
convex if and only if I is weakly lower semicontinuous on QC(Ω;R2).

Let us briefly comment on the proof of Proposition 7.3 given in [38] and [36]; it
is based on finding a cut-off technique that can cope with the nonconvexity of the
set of homeomorphisms. The idea is that constructing a cut-off is very much related
to understanding the trace operator. Indeed, generally speaking, we may formulate
the cut-off problem as follows: given a Lipschitz domain Ω, find another domain
Ωδ ⊂ Ω with |Ω \ Ωδ| ≤ δ and a function (or deformation) in the considered set
(here W 1,∞,−∞

+ (Ω;R2) or QC(Ω;R2)) such that it takes some prescribed values on
∂Ω and in Ωδ. Reformulating this once again, we might ask to find a function from
the considered set of functions on Ω \Ωδ (here a function in W 1,∞,−∞

+ (Ω \Ωδ;R2) or
QC(Ω \ Ωδ;R2)) that has some prescribed boundary values on ∂(Ω \ Ωδ), i.e., on ∂Ω
and ∂Ωδ. It is clear that not all boundary data will admit such an extension (even
not all smooth data); to see this recall that the Jacobian is a null Lagrangian (cf.
section 4) which, for example, immediately excludes all affine mappings with negative
Jacobian as boundary data.12

11This is because a sequence of uniformly K-quasiconformal maps converges locally uniformly
either to a K-quasiconformal function or a constant [7], and the locally uniform convergence is
implied by the notion of weak convergence in QC(Ω;R2).

12Let us note here the contrast to the situation considered by Koumatos, Rindler, and Wiedemann
[141]. In fact, it was shown in [141] that every smooth function on the boundary of a Lipschitz domain
admits an extension in y ∈W 1,p(Ω;Rn) with det∇y > 0 a.e. in Ω if p < n.
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The characterization of the trace operator on sets W 1,∞,−∞
+ (Ω;R2) as well as

QC(Ω;R2) is Ω due to [73, 235] and [40], respectively. However, the works [73, 235, 40]
consider only special geometries of Ω (for example, Ω can be chosen as a square) but
they are not appropriate for a doubly-connected domain like Ω \ Ωδ. This difficulty
was overcome in [38, 36] by suitable meshing Ω \ Ωδ and by defining the cut-off on
the grid of the mesh. Even though Proposition 7.3 provides us with a weak lower
semicontinuity result, this is not yet enough to prove existence of minimizers for
functionals with densities from some suitable class. This holds because bi-Lipschitz
as well as quasiconformal maps include a L∞-type constraint which can be enforced
by letting the stored energy density be finite only on a suitable subset of R2×2; yet,
this subset is usually left when employing cut-off methods—this happens even in the
standard cases where, however, the issue can be solved by scaling (see Remark 7.2).
Thus, letting f become infinite on a subset of R2×2

+ is incompatible with the proof of
Proposition 7.3.

The usual remedy for proving existence of minimizers or relaxation results is to
work with Lp-type (with p finite) constraints only. In the setting above, this would
mean working with so-called bi-Sobolev classes (see, e.g., [122]) for 1 < p <∞:

W 1,p,−p
+ (Ω;R2) =

{
u : Ω 7→ u(Ω) an orientation-preserving homeomorphism;

u ∈W 1,p(Ω;R2) and u−1 ∈W 1,p(u(Ω);R2)
}
.

However, for these classes of functions, the approach from [38] and [36] cannot be
adopted since, as we explained above, it relies on having a complete characterization
of the trace operator, which has not yet been achieved for these classes. In fact, we
have the following open problem.

Open Problem 7.4. Characterize the class of functions X (∂Ω;R2) such that

Tr : W 1,p,−p
+ (Ω;R2)

onto−→ X (∂Ω;R2)

with 1 < p <∞, at least for Ω the unit square.

Let us note that the above problem may also play a role in constructing smooth
approximations (by diffeomorphisms) of deformations in elasticity. Indeed, the stan-
dard techniques of smoothing Sobolev functions (by a mollification kernel) fail under
the injectivity requirement since they essentially rely on convex averaging.

Recently, several results on smoothing even under these constraints appeared
[127, 72, 177, 121, 123] that use completely different techniques and limit their scope to
planar deformations. In particular, Iwaniec, Koskela, and Onninen prove in [127] that
a homeomorphism in W 1,p(Ω;R2) can be strongly approximated by diffeomorphisms
in the W 1,p-norm for p > 1. For p = 1, this result has recently been extended in [123].

Nevertheless, in elasticity, one might rather be interested in approximating a
function in W 1,p,−p

+ (Ω;R2) together with its inverse. To our knowledge, the only
results in this direction are by Daneri and Pratelli [72], who showed that bi-Lipschitz
maps can be strongly approximated together with their inverse in the W 1,p-norm for
every finite p, and Pratelli [197], who proved that diffeomorphic approximation is
possible in W 1,−1(Ω;R2). Yet, for functions in W 1,p,−p

+ (Ω;R2) with 1 < p < ∞ the
problem remains largely open, as is also mentioned in [127].

To end this section, let us remark (by formulating several open problems) that
the relationship between bi-quasiconvexity and the standard notions of quasiconvexity
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mentioned in this article is still unexplored. We focus here only on bi-quasiconvexity,
but similar problems could also be formulated for quasiconformal quasiconvexity.

It is clear from the definitions that any function that is quasiconvex on the
set of matrices with a positive determinant is also bi-quasiconvex. Moreover, bi-
quasiconvexity implies, at least in the plane, rank-one convexity on the set of matrices
with a positive determinant.

Remark 7.6. To see why bi-quasiconvexity implies rank-one convexity on the set
of matrices with a positive determinant, we proceed as follows. First, notice that the
determinant changes affinely on rank-one lines due to the formula

(7.7) det(A+ λa⊗ n) = detA
(
1 + λn·(A−1a)

)
,

where a and n are some arbitrary vectors. Therefore, rank-one convexity on the set
of matrices with a positive determinant is really meaningful, since all matrices on a
rank-one line between two matrices with a positive determinant have this property,
too.

Next we mimic the proof from [67, Lemma 3.11 and Theorem 5.3] showing that
quasiconvexity implies rank-one convexity. Without loss of generality, we suppose
that Ω is the unit square and that we want to show rank-one convexity along the line
A+a⊗e1 with e1 the unit vector in the first coordinate. Then we consider the sequence
of mappings

un(x) = un(x1, x2) =

{
Ax for x1 ∈

[
k
n ,

k
n + λ 1

n

)
for k = 0, . . . , n− 1,

(A+ a⊗ e1)x for x1 ∈
[
k
n + λ 1

n ,
k+1
n

)
for k = 0, . . . , n− 1,

with some λ ∈ [0, 1]. Notice that {un}n∈N are Lipschitz and injective and that (∇y)−1

is uniformly bounded and det∇u is bounded away from zero. Thus, {un}n∈N is a
sequence of uniformly bi-Lipschitz maps that converges weakly to λAx+ (1− λ)(A+
a⊗ e1)x. We may therefore use the cut-off technique from [38] to modify the sequence
in such a way that it attains exactly the value of the weak limit at the boundary. Then,
the same procedure as in [67, Theorem 5.3] gives rank-one convexity.

In summary, we have the series of implications

quasiconvexity on R2×2
+ ⇒ bi-quasiconvexity⇒ rank-one convexity on R2×2

+ ,

where we denote by R2×2
+ the 2 × 2 matrices with positive determinant. However, it

is unclear whether some of the converse implications also hold. We have the following
open problems.

Open Problem 7.5. Does rank-one convexity on R2×2
+ imply bi-quasiconvexity?

Open Problem 7.6. Does bi-quasiconvexity imply quasiconvexity on R2×2
+ ?

7.1. Relaxation of Non(quasi)convex Variational Problems. As we have al-
ready seen, mathematical (hyper)elasticity is one area of analysis where mechanical
requirements are beyond the scope of the current tools and results available in the
calculus of variations. Orientation-preservation and injectivity for simple nonpolycon-
vex materials are prominent examples. Resorting to nonsimple materials depending
on second-order deformation gradients might seem to be a way out. The definition of
a physically acceptable form of the higher-order energy density is, however, a largely
open problem. See, e.g., [24] for a discussion on this topic.
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Another approach is to accept the fact that our minimization problem may have
no solution and to trace out the behavior of minimizing sequences driving the elastic
energy functional to its infimum on a given set of deformations and deduce some
effective material properties from their patterns. This is the idea of relaxation in
variational calculus. We explain the main ideas using the following simplified example,
for which f in (1.10) depends only on the first gradient. Assume we want to

minimize E(u) :=

∫
Ω

f(∇u(x)) dx for u ∈ Y.(7.8)

Here, Y represents an admissible set of deformations equipped with some topology.
In typical situations, Y is a subset of a Sobolev space and the topology is the weak
one on this space. If no minimizer exists but the infimum is finite, we want to find a
new functional ER defined on some set YR such that the following properties hold:

(i) minYR
ER = infY E ;

(ii) if {yk}k∈N ⊂ Y is a minimizing sequence of E , then its convergent subse-
quences converge (in the topology of YR) to minimizers of ER on YR; and

(iii) any minimizer of ER on YR is a limit of a minimizing sequence of E .

Notice that it is already implicitly assumed in (i) that minimizers of ER do exist
on YR. Conditions (ii) and (iii) state that, roughly speaking, there is a “one-to-one”
correspondence between minimizing sequences of E and minimizers of ER. If (i)–(iii)
hold, we say that ER is the relaxation of E and that ER is the relaxed functional.
The concept of relaxation is also very closely related to Γ-convergence and Γ-limits
introduced by E. de Giorgi. We refer to Braides [49] and Dal Maso [69] for a modern
exposition and section 9 for further references.

If Y ⊂W 1,p(Ω;Rn) and the continuous stored energy f : Rm×n → R fulfills

c0(−1 + |F |p) ≤ f(F ) ≤ c1(1 + |F |p)(7.9)

with c1 > c0 > 0 and 1 < p < +∞ then Dacorogna [65] showed13 that YR = Y
equipped with the weak convergence and

ER(u) :=

∫
Ω

Qf(∇u(x)) dx ,(7.10)

where Qf : Rm×n → R is the quasiconvex envelope (or quasiconvexification) of f ,
being the largest quasiconvex function not exceeding f . It can also be evaluated at
any A ∈ Rm×n as

Qf(A) := Ln(Ω)−1 inf
ϕ∈W 1,∞

0 (Ω;Rm)

∫
Ω

f(A+∇ϕ(x)) dx .(7.11)

Notice that the above formula (7.11) generally holds only for f locally finite (see
[67] and also [21] for its regularity). The definition of Qf does not depend on the
(Lipschitz) domain Ω, but as we see, the calculation of Qf requires us to again solve
a minimization problem. Not surprisingly, there are only a few cases where Qf is
known in closed form. We mention the works by DeSimone and Dolzmann [76], where

13In fact, Dacorogna’s result is stated for more general integrands, namely, |f(F )| ≤ c(1 + |F |p)
with Qf > −∞, In this case, however, fixed Dirichlet boundary conditions must inevitably be
assigned on the whole of ∂Ω. This is again strongly related to condition (ii) in Meyers’ Theorem 3.4
and concentrations on the boundary discussed in section 3.1.
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the authors calculate the quasiconvex envelope of the stored energy density arising in
the modeling of nematic elastomers in three dimensions, and by LeDret and Raoult
[158, 160, 198], where the quasiconvex envelope of an isotropic homogeneous Saint
Venant–Kirchhoff energy density (m = n = 3)

W (F ) :=
µ

4
|C − I|2 +

λ

8
(trC − 3)2

is derived. Here, λ, µ are Lamé constants of the material and C = F>F is the right
Cauchy–Green strain tensor. Notice that W is convex in C, but it is not even rank-one
convex in F .

As for relaxation of multivariant materials, we refer to [136], where a geometrically
linear two-well problem is considered such that elasticity tensors corresponding to
both wells are equal. It was later extended in [60], where nonequal elastic moduli are
admitted. See also [137, 138, 139] for quasiconvexification in optimal design problems.

Recently, Conti and Dolzmann [64] proved that the expression of the quasiconvex
envelope via (7.11) is valid even for functions taking infinite values and satisfying the
growth condition{

c0(−1 + |F |p + θ(detF )) ≤ f(F ) ≤ c1(1 + |F |p + θ(detF )) if detF > 0,

f(F ) = +∞ otherwise.

Here, c1 > c0 > 0, p ≥ 1, and θ : (0; +∞] → [0; +∞) is a suitable convex function.
They, however, require that Qf is polyconvex for the result to hold. Needless to say,
this assumption is extremely hard to verify. Results applicable to a generic situation
have not yet been discovered.

As we pointed out in the introduction, when solving a general minimization prob-
lem (1.1) one is interested not only in the value of the minimum but, often more
importantly, in the minimizer. If the minimizer does not exist, we are still interested
in the minimizing sequence. For example, if the minimization problem aims to find
the stable states of an elastic material—and these do not exist—it is still reasonable
to argue that the material will be found in a state “near” the actual infimum, i.e.,
that the minimizing sequence contains the information on physically relevant states.
Actually, patterns of minimizing sequences of functionals with density of the type
(7.1) can be linked to observed microstructures as shown in Figure 1.

The downside of the relaxation via the quasiconvex envelope is that it does not
“store” too much information on the minimizing sequence. Therefore, it would be
valuable to have a tool for relaxation that retains some important features of the mini-
mizing sequence by defining “generalized functions” for which the limits limk→∞ E(yk)
where {yk} ⊂ Y are evaluated. This is the basic idea of Young measures [238]. Instead
of replacing the original integrand by its quasiconvex envelope, we extend the original
problem defined on vector-valued functions to a new problem defined on parametrized
measures. These measures enable us to describe the limit of a weakly converging se-
quence composed with a nonlinear function and effectively describe the “patterns” of
the minimizing sequence.

Before giving an example (see Example 7.8) of how Young measures can be em-
ployed, and before discussing their properties further, let us start with the so-called
fundamental theorem on Young measures asserting their existence. This result is
originally due to L.C. Young [238] for L∞-bounded sequences; various versions of
the theorem below valid for Lp can be found in [13, 16, 88, 154, 210, 229, 230], for
instance.
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Theorem 7.7 (Lp-Young measures). If Ω ⊂ Rn is bounded and {Yk}k∈N ⊂ Lp(Ω;
Rm×n), 1 ≤ p < +∞, is a bounded sequence, then there exists a (nonrelabeled)
subsequence and a family of parametrized (by x ∈ Ω) probability measures ν = {νx}x∈Ω

supported on Rm×n such that for every Carathéodory integrand f : Ω × Rm×n →
R∪{+∞} which is bounded from below and such that {f(·, Yk)}k∈N is relatively weakly
compact in L1(Ω), it holds that

lim
k→∞

∫
Ω

f(x, Yk(x)) dx =

∫
Ω

∫
Rm×n

f(x,A)dνx(A) dx .(7.12)

Conversely, if ν = {νx}x∈Ω is a weakly* measurable family of probability measures
supported on Rm×n and either∫

Ω

∫
Rm×n

|A|pdνx(A) dx <∞ for some 1 < p < +∞ or(7.13)

supp νx ⊂ B(0, r) for almost all x ∈ Ω and some r > 0,(7.14)

then there is a sequence {Yk}k∈N ⊂ Lp(Ω;Rm×n) (p = +∞ if (7.14) holds) such
that (7.12) holds. Moreover, if (7.13) holds, then {Yk}k∈N can be chosen such that
{|Yk|p}k∈N is relatively weakly compact in L1(Ω).

Here the adjective “weakly* measurable” means that x 7→
∫
Rm×n f(A)dνx(A) is

measurable for all f ∈ C0(Rm×n). The measure ν from Theorem 7.7 is called an
Lp-Young measure generated by {Yk}. It easily follows from Theorem 7.7 that a
weakly* measurable map ν = {νx} : Ω → M1

+(Rm×n) (M1
+(Rm×n) denotes the set

of probability measures supported on Rm×n) is an Lp-Young measure for 1 ≤ p < +∞
or p = +∞ if and only if (7.13) or (7.14), respectively, holds.

We noted in section 3.1 that weak convergence can essentially be caused by con-
centrations of oscillations that can be separated from each other by Decomposition
Lemma 3.6. As for the Young measure, only the oscillating part of the sequence is
important. Indeed, two sequences that differ only on a set of vanishing measure gen-
erate the same Young measure [191]; this happens exactly for the original sequence
{yk}k∈N and the sequence {zk}k∈N constructed in Lemma 3.6.

Remark 7.7. There are finer tools than Young measures that have the ability to
capture both oscillations and concentrations in a generating sequence. These are, for
example, Young measures and varifolds [93]. A detailed treatment of such generalized
Young measures can be found in Roub́ıček [203].

In summary, we see that Young measures are an effective tool to capture the
asymptotic behavior of a nonlinear functional along an oscillating sequence. More-
over, the Young measure carries information about the oscillations in the sequences
themselves. To see this, let us return to Example 1.1 from the introduction.

Example 7.8 (Example 1.1 revisited). In Example 1.1 we constructed a sequence
of “zig-zag” functions {uk}k∈N defined by setting

u(x) =

{
x if 0 ≤ x ≤ 1/2,

−x+ 1 if 1/2 ≤ x ≤ 1,

extending it periodically to the whole of R and letting uk(x) := k−1u(kx) for all k ∈ N
and all x ∈ R.

The sequence of derivatives {u′k}k∈N converges in L∞(0, 1) weakly* to zero. This
is so because the derivatives oscillate between 1 and −1 with zero being the mean. We
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thus see that the weak limit does carry information about the “mean” of the oscillating
sequence, but not the values between which the oscillations happened. This infor-
mation, however, is encoded in the corresponding Young measure; in fact, {u′k}k∈N
generates the sum of two Dirac measures 1

2δ1 + 1
2δ−1.

The above example illustrates a recurring theme in Young measures: while the
weak limit carries information on average values in a oscillating sequence, the Young
measure contains more information on “where” the oscillations have taken place.

Usually, Theorem 7.7 is applied to f(x,A) := f̃(A)g(x), where f̃ ∈ C(Rm×n),
lim|A|→∞ f̃(A)/|A|p = 0, and g ∈ L∞(Ω). These conditions make {f(·, Yk)}k∈N rela-
tively weakly compact in L1(Ω) so that (7.12) holds, i.e.,

lim
k→∞

∫
Ω

f̃(Yk(x))g(x) dx =

∫
Ω

∫
Rm×n

f̃(A)g(x)dνx(A) dx .(7.15)

The original functional introduced in (7.8) is then extended by continuity to
obtain its relaxed version expressed in terms of Young measures. However, there
are a few important issues which need to be addressed. First of all, in taking a
minimizing sequence {uk}k∈N ⊂ Y ⊂ W 1,p(Ω;Rm) for (7.8) we must ensure that
{f(∇uk)}k∈N is weakly relatively compact in L1(Ω). This is possible, for example,
if (7.9) holds. Indeed, if {uk} ⊂ W 1,p(Ω;Rm) is a bounded minimizing sequence for
E , we can assume that {|∇uk|p}k∈N is relatively weakly compact in L1(Ω) due to the
Decomposition Lemma 3.6.14 Then applying Theorem 7.7 to Yk := ∇uk we obtain

inf E = lim
k→∞

E(uk) =

∫
Ω

∫
Rm×n

f(A)dνx(A) dx .

However, an important issue is that the resulting Young measure is generated by
{∇uk}k∈N, i.e., by gradients of Sobolev maps. Such measures are called gradient
Young measures and clearly form a subset of Young measures. Nevertheless, an ex-
plicit characterization of this subset is far more involved than with the characterization
of mere Lp-Young measures by means of (7.13). Indeed, the only known characteriza-
tion of admissible measures, called gradient Young measures, again involves quasicon-
vex functions [42, 135, 133, 145, 191, 184, 203], which makes the goal of obtaining a
closed formula of relaxation by means of parametrized measures largely unreachable.
The following theorem is a characterization of gradient Young measures (also called
W 1,p-Young measures) due to Kinderlehrer and Pedregal [135, 133]. Before we state
the theorem we define the set

Q(p) :=


{f : Rm×n → R; f is quasiconvex & |f | ≤ c(f)(1 + | · |p), c(f) > 0}

if 1 < p < +∞,
{f : Rm×n → R; f is quasiconvex} if p = +∞.

Theorem 7.8 (W 1,p-Young measures). Let 1 < p ≤ +∞ and let Ω ⊂ Rn be a
bounded Lipschitz domain. An Lp-Young measure ν is a gradient Young measure if
and only if there is u ∈ W 1,p(Ω;Rm) and a set ω ⊂ Ω, Ln(ω) = 0 such that for all
x ∈ Ω \ ω,

f(∇u(x)) ≤
∫
Rm×n

f(A)dνx(A)(7.16)

for all f ∈ Q(p).

14Here, recall that the gradients of the two sequences introduced in Lemma 3.6 generate the same
Young measure.
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Fig. 2 An illustration of the calculation of a relaxed energy of a cube under loading. The cube in the
middle is the specimen and on the sides a few elements show the calculated microstructure
in the form of laminates. The gray scale indicates volume fractions of the phases involved.

Taking f(A) := ±Aij for 1 ≤ i ≤ m and 1 ≤ j ≤ n in (7.16) we find that
∇u(x) =

∫
Rm×n Aνx(dA), i.e., that ∇u is the first moment (the expectation) of the

Young measure ν. Notice that ∇u is also the weak limit of every generating sequence
of the Young measure ν.

If (7.9) holds, then the relaxed problem is as follows:

minimize ER(ν) :=

∫
Ω

∫
Rm×n

f(A)νx(dA) dx(7.17)

over all W 1,p-Young measures generated by {∇uk}k∈N for some arbitrary bounded
{uk} ⊂ Y. These admissible Young measures then form YR.

The Jensen-like inequality (7.16) puts gradient Young measures into duality with
quasiconvexity. As an efficient description of the set of quasiconvex functions is not
available, it is practically impossible to decide whether a given ν is generated by
gradients.

Nevertheless, one can restrict attention to a subset of gradient Young measures
consisting of so-called laminates [191]. Laminates are those gradient Young measures
that satisfy the Jensen-like inequality (7.16) even for all functions from the set

R(p) :=


{f : Rm×n → R; f is rank-one convex & |f | ≤ c(f)(1 + | · |p), c(f) > 0}

if 1 < p < +∞,
{f : Rm×n → R; f is rank-one convex} if p = +∞.

This subset can be advantageously exploited in the numerical minimization of (7.17);
see, e.g., [10, 30, 35, 77, 150] as well as the review paper by Luskin [164] on different
finite-element approaches for such a treatment and the illustration in Figure 2, which
shows computations of material microstructures by means of laminates.

Another possibility is to minimize (7.17) over a superset of gradient Young mea-
sures. For example, one can require (7.16) to hold only for null Lagrangians to obtain
a lower bound on the value of the minimizer. This approach corresponds to replacing f
in (7.8) by its polyconvex envelope, i.e., the biggest polyconvex function not exceeding
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f . We refer to [31, 32] for details on this approach. We emphasize that the two men-
tioned bounds are not sharp in general because rank-one convexity, quasiconvexity,
and polyconvexity are all different.

Nevertheless, most of the results on relaxation presented above are applicable only
to energies with p-growth. However, as we explained in detail at the beginning of this
section, this clearly prevents us from applying the requirements (6.6) and (6.7) on f .
Thus, we see that even cutting-edge tools and techniques of mathematical analysis
and calculus of variations need to be suitably tailored to cope with deep problems in
elasticity, and new ideas and approaches are needed to solve them.

A natural question is whether one can extend weak lower semicontinuity results
known for integrands depending on gradients to more a general framework. We will
investigate this question in the following section.

8. A-quasiconvexity. In this section, we summarize results about weak lower
semicontinuity of integral functionals along sequences which satisfy a first-order linear
differential constraint. Clearly, gradients as curl-free fields are included in this setting
but, as emphasized by L. Tartar, besides curl-free fields there are also other important
differential constraints on possible minimizers. Such a setting naturally arises in
electromagnetism, linearized elasticity, or even higher-order gradients, to name a few.
Tartar’s program was materialized by Dacorogna in [66] and then studied by many
other authors; see, e.g., [12, 52, 94, 224] and references therein.

The problem studied in this section can be formulated as follows: Given a se-
quence {uk}k∈N ⊂ Lp(Ω;Rm), 1 < p < +∞, such that each member satisfies a
linear differential constraint Auk = 0 (A-free sequence), or Auk → 0 in W−1,p(Ω;Rn)
(asymptotically A-free sequence), what conditions on f precisely ensure weak lower
semicontinuity of integral functionals in the form

(8.1) I(u) :=

∫
Ω

f(x, u(x)) dx?

Here A is a first-order linear differential operator.
To the best of our knowledge, the first result of this type was proved in [92] for

nonnegative integrands. In this case, the crucial necessary and sufficient condition
ensuring weak lower semicontinuity of I in (8.1) is the so-called A-quasiconvexity;
cf. Definition 8.1 below. However, if we refrain from considering only nonnegative
integrands, this condition is not necessarily sufficient, as we have already observed in
the case A :=curl.

8.1. The Operator A and A-quasiconvexity. Following [92], we consider the
linear operators A(i) : Rm → Rd, i = 1, . . . , n, and we define A : Lp(Ω;Rm) →
W−1,p(Ω;Rd) by

Au :=

n∑
i=1

A(i) ∂u

∂xi
, where u : Ω→ Rm ,

i.e., for all w ∈W 1,p′

0 (Ω;Rd),

〈Au,w〉 = −
n∑
i=1

∫
Ω

A(i)u(x) · ∂w(x)

∂xi
dx .
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For w ∈ Rn we define the linear map

A(w) :=

n∑
i=1

wiA
(i) : Rm → Rd .

In this review, we assume that there exists r ∈ N ∪ {0} such that

rank A(w) = r for all w ∈ Rn , |w| = 1 ,(8.2)

i.e., A has the so-called constant-rank property. In what follows we use kerA to
denote the set of all locally integrable functions u such that Au = 0 in the sense of
distributions, i.e., 〈Au,w〉 = 0 for all w ∈ D(Ω). Of course, kerA depends on the
considered domain Ω.

Definition 8.1 (cf. [92, Def. 3.1, 3.2]). We say that a continuous function f :
Rm → R, satisfying |f(s)| ≤ C(1 + |s|p) for some C > 0, is A-quasiconvex if for all
s0 ∈ Rm and all ϕ ∈ Lp#(Q;Rm) ∩ kerA with

∫
Q
ϕ(x) dx = 0 it holds that

f(s0) ≤
∫
Q

f(s0 + ϕ(x)) dx .

In the above definition, we used the space of Q-periodic Lebesgue integrable
functions

Lp#(Rn;Rm) := {u ∈ Lploc(Rn;Rm) : u is Q-periodic},

where Q denotes the unit cube (−1/2, 1/2)n in Rn, and we say that u : Rn → Rm is
Q-periodic if for all x ∈ Rn and all z ∈ Zn it holds that u(x+ z) = u(x) .

Fonseca and Müller [92] proved the following result linking A-quasiconvexity and
weak lower semicontinuity. Notice that the integrand is more general than that in
(8.1).

Theorem 8.2. Let Ω ⊂ Rn be open and bounded and let f : Ω × Rd × Rm →
[0; +∞) be a Carathéodory integrand. Let

0 ≤ f(x, z, u) ≤ a(x, z)(1 + |u|p)

for almost every x ∈ Ω and all (z, u) ∈ Rd × Rm, 1 < p < +∞, and some 0 ≤ a ∈
L∞loc(Ω;Rd). Assume that {zk}k∈N ⊂ L∞(Ω;Rm), zk → z in measure, and that uk⇀u
in Lp(Ω;Rd), ‖Auk‖W−1,p(Ω;Rm) → 0.

Then

lim inf
k→∞

∫
Ω

f(x, zk, uk) dx ≥
∫

Ω

f(x, z, u) dx

if and only if f(x, z, ·) is A-quasiconvex for almost all x ∈ Ω and all z ∈ Rd.

The following definition is motivated by our discussion above Theorem 3.8. It
first appeared in [87].

Definition 8.3. Let 1 < p < +∞ and {uk}k∈N ⊂ Lp(Ω;Rm) ∩ kerA. We say
that {uk} has an A-free p-equi-integrable extension if for every domain Ω̃ ⊂ Rn such
that Ω ⊂ Ω̃, there is a sequence {ũk}k∈N ⊂ Lp(Ω̃;Rm) ∩ kerA such that

(i) ũk = uk a.e. in Ω for all k ∈ N,
(ii) {|ũk|p}k∈N is equi-integrable on Ω̃ \ Ω, and
(iii) there is C > 0 such that ‖ũk‖Lp(Ω̃;Rm) ≤ C‖uk‖Lp(Ω;Rm) for all k ∈ N.



WEAK LOWER SEMICONTINUITY AND APPLICATIONS 755

Then we have the following result proved in [87].

Theorem 8.4. Let 0 ≤ g ∈ C(Ω), let |f | ≤ C(1 + | · |p) be A-quasiconvex, satisfy
(3.4), and have a recession function, and let 1 < p < +∞. Let {uk} ⊂ Lp(Ω;Rm) ∩
kerA, uk⇀u weakly, and assume that {uk} has an A-free p-equi-integrable extension.
Then I(u) ≤ lim infk→∞ I(uk), where

I(u) :=

∫
Ω

g(x)f(u(x)) dx.(8.3)

Surprisingly, it was shown by Fonseca and Müller [92, p. 1380] that higher-order
gradients can also be recast as A-free mappings. They construct A such that Au = 0 if
and only if u = ∇kw for some w ∈ W k,p(Ω;Rm). In this situation, A-quasiconvexity
coincides with Meyers’ k-quasiconvexity. This allows us to study the weak lower
semicontinuity of

(8.4) I(w) :=

∫
Ω

g(x)f(∇kw(x)) dx,

with g and f as in Theorem 8.4, on the set

{w ∈W k,p(Ω;Rm) : w = w0 on ∂Ω},

with w0 ∈ W k,p(Ω;Rm), in the context of A-quasiconvexity. In particular, in this
case, we may construct the extension required in Definition 8.3 by extending the
Dirichlet boundary condition, and thus Theorem 8.4 is applicable. It follows that
k-quasiconvexity of f is sufficient to make (8.4) weakly lower semicontinuous, which
affirmatively answers Problem 3.9 in this particular setting.15

Let us finally point out that the treatment of A-quasiconvexity for integrands
whose negative part grows with the pth power is a very subtle issue which has recently
been addressed in [143]. A new condition called A-quasiconvexity at the boundary is
introduced in two forms depending on whether or not u can be extended to a larger
domain preserving the A-free property. This allows us to remove the assumption of
the existence of an A-free p-equi-integrable extension from Theorem 8.4.

9. Suggestions for Further Reading. The above exposition aims to reflect de-
velopments in weak lower semicontinuity related to Morrey’s [178] and Meyers’ [171]
papers, with emphasis on applications to static problems in continuum mechanics of
solids. We dare to hope that it provides a fairly complete picture of the theory from
1952 to current trends. On the other hand, it is clearly influenced by our personal
points of view. We believe we have convinced the reader that the calculus of varia-
tions has been a very active research area for the last fifty years with many important
results and with many remaining challenging open problems. Below we describe some
additional research directions and we invite the interested reader to find more details
in the references.

9.1. Applications to Continuum Mechanics and Beyond. We have seen that
weak lower semicontinuity serves as a main ingredient in proofs of existence of min-
imizers to variational integrals, and we have outlined applications in elastostatics.
Even in the static case, models of elasticity can be combined with other phenomena,

15In fact, one can consider integrands of the form f(x,∇kw(x)) whenever f(x, ·) is k-quasiconvex
for all x ∈ Ω, |f(x,A)| ≤ C(1 + |A|p), f(·;A) is continuous in Ω for all A ∈ X(n,m, k), and f(x, ·)
possesses a recession function.
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such as magnetism. This leads to magnetoelasticity (magnetostriction), a property of
NiMnGa, for instance. We refer the reader to, e.g., to the monograph [78] or to [83]
for a physical background.

The idea of drawing macroscopic properties of composite materials from their
microscopic ones lies at the core of homogenization theory. We cite the classical
books by Jikov, Kozlov, and Olejnik [129], Braides and Defranceschi [51], and Ben-
soussan, Lions, and Papanicolaou [39] for a thorough overview. Γ-convergence of
integral functionals (see monographs by Braides or Dal Maso [49, 69]) plays a key
role in this research. The main objective is to study properties for ε→ 0 of Iε(uε) :=∫

Ω
f(x, xε ,∇uε(x)) dx, where f is (0, 1)n-periodic in the middle variable. Homogeniza-

tion problems are not only restricted to gradients, but new results in the context of
A-quasiconvexity (even with nonconstant coefficients) have recently appeared, e.g.,
in [74]. Various other generalizations including stochastic features to describe ran-
domness in the distribution of inhomogeneities can be found in the papers by Dal
Maso and Modica [71], Messaoudi and Michaille [170], and the recent work of Gloria,
Neukamm, and Otto [104]. Γ-convergence is also one of the main tools applied to
dimension-reduction problems in mechanics to obtain various plate models; see, for
instance, LeDret and Raoult [159], Friesecke, James, and Müller [100], and Hornung,
Neukamm, and Velčić [124] and references therein.

Quasistatic evolutionary problems and their treatment by means of the so-called
“energetic solution” has been a lively area of mathematical continuum mechanics for
many years. This theory is thoroughly discussed and summarized in the book by
Mielke and Roub́ıček [172], where one can find applications to continuum mechan-
ics of solids including plasticity, damage, and mechanics of shape-memory materials
including numerical approximations. Various combinations of inelastic processes are
also treated, e.g., in [47, 95]. Weak lower semicontinuity of corresponding energy
functionals is a key part of the theory, which also includes relaxation and Young mea-
sures. We also point out the papers [173] for (evolutionary) Γ-convergence treatment
of quasistatic problems or [47] for combinations of damage and plasticity. This opens
up many possibilities of applying this type of solution to dimension-reduction prob-
lems, linearization, or brittle damage, for instance. Weak lower semicontinuity finds
its application in dynamical problems, too. For example, it is the main tool proving
existence of solutions in time-discrete approximations of evolution in various models.
We refer, e.g., to the book of Braides [50] or [172] for many such instances. We also
refer to [103] and references therein for further results concerning the mathematical
treatment of nonlinear elasticity.

Derivation of nonlinear continuum models from discrete atomic models and cor-
responding numerical computations has been a lively field of research in recent years.
We refer to Blanc, Le Bris, and Lions [43] for a survey article and to work of
Braides and Gelli [53], Allicandro and Cicalese [3], and Braun, Friedrich, and Schmidt
[99, 54] and references therein. Various aspects of continuum/atomistic coupling,
which combines accurate atomistic models with efficient continuum elasticity, are
thoroughly discussed in Luskin and Ortner [165]; see also Lazzaroni, Palombaro,
Schäffner, and Schlömerkemper [157, 208] for further analytical results in this di-
rection.

Nonlocal theories of elastodynamics, such as, e.g., peridynamics, have initiated
research activities in nonlocal variational problems. Here we wish to mention recent
work of Bellido and Mora-Corral [33] and Bellido, Mora-Corral, and Pedregal [34], for
instance.
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9.2. Functionals with Linear Growth. Contrary to weak lower semicontinuity
in W 1,1(Ω;Rm), where the definition excludes concentrations in gradient, a serious
analytical problem arisess if one wants to minimize functionals defined in (1.7) for
f(x, r, ·) with linear growth at infinity. In this case, we would naturally work in
W 1,1(Ω;Rm) which is, however, not reflexive, and therefore the weak limit of a min-
imizing (sub)sequence does not necessarily exist. This leads to various extensions
of W 1,1(Ω;Rm) as well as of the functional I. Usually, we embed W 1,1(Ω;Rm) into
the space of functions with bounded variations BV(Ω;Rm) which contains integrable
mappings whose gradient is a Radon measure in Ω. Detailed descriptions and prop-
erties can be found in references by Ambrosio, Fusco, and Pallara [5] and by Attouch,
Buttazzo, and Michaille [9]. Besides the function space, one must also suitably extend
the functional I to allow for measure-valued gradients. This uses the notion of the
recession function to f(x, r, ·). We refer the reader to Fonseca and Müller [90, 91] and
references therein for the case of nonnegative integrands. Recently, Kristensensen and
Rindler [147, 148] resolved the weak* lower semicontinuity relaxation of the functional
if f = f(x,∇u) with |f(x, s)| ≤ C(1 + |s|) along sequences with prescribed Dirichlet
boundary conditions. This result was then generalized by Benešová, Krömer, and
Kruž́ık [37] to avoid restrictions on the boundary. A closely related topic is weak*
lower semicontinuity in the space of functions with bounded deformations [231], i.e.,
in the subspace of L1(Ω;Rm) of mappings whose symmetrized gradient is a measure
on Ω. This set naturally appears in problems of linearized perfect plasticity [226], for
instance. We refer to Rindler [201] for a general lower semicontinuity statement.

Functionals with linear growth and their setting in the space of maps with bounded
variations often arise as Γ-limits of various phase-field problems. Here one tries to
accommodate two or more phases/materials of a given volume in such a way that
the interfacial energy assigned to two mutual interfaces is minimal. Besides classical
works of Modica and Mortola [175, 176] on phase transition, versatile applications
exist nowadays in many areas of mechanics like topology optimization [44].
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[37] B. Benešová, S. Krömer, and M. Kruž́ık, Boundary effects and weak∗ lower semicontinuity
for signed integral functionals on BV , ESAIM Control Optim. Calc. Var., 21 (2015),
pp. 513–534. (Cited on p. 757)

[38] B. Benešová and M. Kruž́ık, Characterization of gradient Young measures generated by
homeomorphisms in the plane, ESAIM Control Optim. Calc. Var., 22 (2016), pp. 267–
288, https://doi.org/10.1051/cocv/2015003. (Cited on pp. 744, 745, 746, 747)

[39] A. Bensoussan, J.L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Struc-
tures, North-Holland, Amsterdam, 1978. (Cited on p. 756)

[40] A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal map-
pings, Acta Math., 96 (1956), pp. 125–142. (Cited on p. 746)

[41] K. Bhattacharya, Microstructure of Martensite. Why It Forms and How It Gives Rise to
the Shape-Memory Effect, Oxford University Press, New York, 2003. (Cited on p. 740)

[42] K. Bhattacharya, N.B. Firoozye, R.D. James, and R.V. Kohn, Restrictions on mi-
crostructure, Proc. R. Soc. Edinburgh Sect. A, 124 (1994), pp. 843–878. (Cited on p. 751)

[43] X. Blanc, C. Le Bris, and P.-L. Lions, Atomistic to continuum limits for computational
materials science, Math. Model. Numer. Anal., 41 (2007), pp. 391–426. (Cited on p. 756)

[44] L. Blank, H. Garcke, C. Hecht, and C. Rupprecht, Sharp interface limit for a phase
field model in structural optimization, SIAM J. Control Optim., 54 (2016), pp. 1558–
1584, https://doi.org/10.1137/140989066. (Cited on p. 757)

[45] B. Bojarski, Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk. SSSR, 102
(1955), pp. 661–664. (Cited on p. 726)

[46] O. Bolza, Lectures on the Calculus of Variations, reprinted by Chelsea, New York, 1973.
(Cited on p. 705)

[47] E. Bonetti, E. Rocca, R. Rossi, and M. Thomas, A rate-independent gradient system in
damage coupled with plasticity via structured strains, ESAIM Proc. Surveys, 54 (2016),
pp. 54–69, https://doi.org/10.1051/proc/201654054. (Cited on p. 756)

[48] A. Borichev, P. Janakiraman, and A. Volberg, Subordination by conformal martingales
in Lp and zeros of Laguerre polynomials, Duke Math. J., 162 (2013), pp. 889–924. (Cited
on p. 733)

[49] A. Braides, Γ-Convergence for Beginners, Oxford University Press, Oxford, 2002. (Cited on
pp. 748, 756)

[50] A. Braides, Local Minimization, Variational Evolution and Γ-Convergence, Springer, Hei-
delberg, 2014. (Cited on p. 756)

[51] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford University
Press, Oxford, 1998. (Cited on p. 756)

[52] A. Braides, I. Fonseca, and G. Leoni, A-quasiconvexity: Relaxation and homogenization,
ESAIM Control Optim. Calc. Var, 5 (2000), pp. 539–577. (Cited on pp. 722, 753)

[53] A. Braides and M.S. Gelli, Continuum limits without convexity hypothesis, Math. Mech.
Solids, 7 (2002), pp. 41–66. (Cited on p. 756)

[54] J. Braun and B. Schmidt, On the passage from atomistic systems to nonlinear elasticity
theory for general multi-body potentials with p-growth, Networks Heterog. Media, 8 (2013),
pp. 879–912. (Cited on p. 756)

[55] J.K. Brooks and R.V. Chacon, Continuity and compactness of measures, Adv. Math., 37
(1980), pp. 16–26. (Cited on p. 720)

[56] D.L. Burkholder, Sharp inequalities for martingales and stochastic integrals, Astérisque,
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[57] D.L. Burkholder, A proof of Pe lczyński’s conjecture for the Haar system, Studia Math., 91
(1988), pp. 79–83. (Cited on p. 733)

[58] F. Cagnetti, k-quasi-convexity reduces to quasi-convexity, Proc. Roy. Soc. Edinburgh Sect.
A, 141 (2011), pp. 673–708. (Cited on p. 711)

[59] D. Campbell, S. Hencl, and V. Tengvall, Approximation of W 1,p Sobolev Homeo-
morphism by Diffeomorphisms and the Signs of the Jacobian, preprint, MATH-KMA-
2016/522 (2016). (Cited on p. 743)

[60] I.V. Chenchiah and K. Bhattacharya, The relaxation of two-well energies with possibly
unequal moduli, Arch. Ration. Mech. Anal., 187 (2008), pp. 409–479. (Cited on pp. 740,
749)
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[216] A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure
Appl. Math., 50 (1997), pp. 1261–1286. (Cited on p. 744)

[217] V.P. Smyshlyaev and J.R. Willis, On the relaxation of a three-well energy, R. Soc. Lond.
Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), pp. 779–814. (Cited on p. 740)

[218] E.N. Spadaro, Non-uniqueness of minimizers for strictly polyconvex functionals, Arch. Ra-
tion. Mech. Anal., 193 (2009), pp. 659–678. (Cited on p. 732)

[219] P. Sprenger, Quasikonvexität am Rande und Null-Lagrange-Funktionen in der nichtkon-
vexen Variationsrechnung, Ph.D. thesis, Universität Hannover, 1996. (Cited on pp. 719,
728)

[220] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Uni-
versity Press, Princeton, NJ, 1970. (Cited on p. 713)
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