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a b s t r a c t

This paper is concerned with the two-phase obstacle problem, a type of a variational
free boundary problem. We recall the basic estimates of Repin and Valdman (2015) and
verify them numerically on two examples in two space dimensions. A solution algorithm
is proposed for the construction of the finite element approximation to the two-phase
obstacle problem. The algorithm is not based on the primal (convex and nondifferentiable)
energy minimization problem but on a dual maximization problem formulated for
Lagrange multipliers. The dual problem is equivalent to a quadratic programming problem
with box constraints. The quality of approximations ismeasured by a functional a posteriori
error estimatewhich provides a guaranteed upper bound of the difference of approximated
and exact energies of the primal minimization problem. The majorant functional in the
upper bound contains auxiliary variables and it is optimized with respect to them to
provide a sharp upper bound. A space density of the nonlinear related part of the majorant
functional serves as an indicator of the free boundary.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A free boundary problem is a partial differential equation where the equation changes qualitatively across a level set of
the equation solution u so the part of the domain where the equation changes is a priori unknown. A general form of elliptic
free boundary problems can be written as

1u = f (x, u, ∇u) in Ω, (1)

where the right hand side term is piecewise continuous, having jumps at some values of the arguments u and ∇u. Here Ω

is a bounded open subset of Rn with smooth boundary and Dirichlet boundary conditions are considered. In this paper we
are concerned about the particular elliptic free boundary problem

1u = α+χ{u>0} − α−χ{u<0} in Ω,
u = g on ∂Ω.

(2)

Here, χA denotes the characteristic function of the set A, α± : Ω → R are positive and Lipschitz continuous functions and
g ∈ W 1,2(Ω) ∩ L∞(Ω) and g changes sign on ∂Ω .
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The boundary
(∂{x ∈ Ω : u(x) > 0} ∪ ∂{x ∈ Ω : u(x) < 0}) ∩ Ω

is called the free boundary. Properties of the solution of the two-phase obstacle problem, regularity of solution and free
boundary have been studied in [1,2]. It is known that the differential equation from (2) represents the Euler–Lagrange
equation corresponding to the minimizer of the functional

J(v) =


Ω


1
2
|∇v|

2
+ α+ max(v, 0) + α− max(−v, 0)


dx (3)

over the affine space

K = {v ∈ W 1,2(Ω) : v − g ∈ W 1,2
0 (Ω)}. (4)

The functional J : K → R is convex, coercive on K and weakly lower semi-continuous, hence the minimum of J is attained
at some u ∈ K . The following minimization problem is therefore uniquely solvable.

Problem 1 (Primal Problem). Find u ∈ K such that

J(u) = inf
v∈K

J(v). (5)

Note that if we letα−
= 0, and assume that g is nonnegative on the boundary, thenwe obtain thewell-known one-phase

obstacle problem, see e.g. [3,4].

Remark 1. The problem (2) describes a complete reaction of two substances coming into contact with an elastic membrane,
and sometimes is referred to as the ‘‘two-phase membrane’’ problem. If densities of substances are given as ρ1 and ρ2 and
the elastic membrane has the density ρm satisfying ρ1 > ρm > ρ2, then α+ is proportional to the difference ρ1 − ρm and
α− is proportional to the difference ρm − ρ2, see [5,2]. In minimization problem (3),if instead of zero obstacle, we consider
q ∈ C2(Ω), then minimizer satisfies the following problem which generalizes (2) for a non-flat obstacle case.

1u = α+χ{u>q} − α−χ{u<q} + 1qχ{u=q} in Ω,
u = g on ∂Ω.

(6)

There are numerous papers on approximations and error analysis for the one-phase obstacle problem in terms on
variational inequalities [6,7]. In [8] a sharp L∞ error estimate for semilinear elliptic problems with free boundaries is given.
For obstacle problem and combustion problems, the author uses regularization of penalty term combined with piecewise
linear finite elements on a triangulation and then shows that the method is accurate in L∞. Using non-degeneracy property
of one-phase obstacle problem, a sharp interface error estimate is derived. In [9] error estimates for the finite element
approximation of the solution and free boundary of the obstacle problem are presented. Also an optimal error analysis for
the thin obstacle problem is derived.

Recently, the numerical approximation of the two-phase membrane problem has attracted much interests. Most
approximations are based on the finite difference methods. In [10] different methods to approximate the solution are
presented. The first method is based on properties of the given free boundary problem and exploit the disjointness of
positive and negative parts of the solution. Regularization method and error estimates are given. The a priori error gives
a computable estimate for gradient of the error for regularized solutions in the L2. In [11], the authors rewrite the two phase
obstacle problem in an equivalent min–max formula then for this new form they introduce the notion of viscosity solution.
Discretization of the min–max formula yields a certain linear approximation system. The existence and uniqueness of the
solution of the discrete nonlinear system are shown. Also in [12] the author presents a finite difference approximation for a
parabolic version of the two-phase membrane problem.

A finite element scheme for solving obstacle problems in divergence form is given in [13]. The authors reformulate the
obstacle in terms of an L1 penalty on the variational problem. The reformulation is an exact regularizer in the sense that for
large penalty parameter, it can recover the exact solution. They applied the scheme to approximate classical elliptic obstacle
problems, the two-phase membrane problem and the Hele–Shaw model.

We propose a different finite element scheme for solving the two-phase obstacle problem based on the dual
maximization problem for Lagrangemultipliers. Themain focus of the paper is the verification of a posteriori error estimates
developed in [14]. For a FEM approximation v, we explicitly compute the upper bound of the difference J(v) − J(u) of
the approximate energy J(v) and of the exact unknown minimal energy J(u). Since this upper bound is guaranteed we
automatically have a lower bound of the exact energy J(u). The studied a posteriori error estimates also provide the
approximate indication of the exact free boundary. This is demonstrated on two numerical tests in two space dimensions.
A MATLAB code is freely available for own testing.

The structure of paper is as follows. In Section 2, we present an overview of basic concepts andmathematical background
and recall energy and majorant estimates of [14]. Section 3 deals with discretization using finite elements: construction of
the FEM approximation (Algorithm 1) and the optimization of the functional majorant (Algorithm 2). Section 4 reports on
numerical examples and Section 5 concludes the work.
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2. Mathematical background and estimates

Elements of convex analysis are used throughout this paper, in particular the dualitymethod by conjugate functions [15].
For reader’s convenience, let us summarize the basic notation used in what follows:

n = 1, 2, 3 dimension of the problem,
α± ≥ 0 problem coefficients,
v± positive and negative parts of the function,
J : V × Q → R primal functional to be minimized,
J∗ : Q ∗

→ R conjugate functional to be maximized,
Jµ(·) perturbed functional with multiplier µ,
u, v ∈ K exact and arbitrary minimizers of J ,
p∗, q∗

∈ Q ∗ exact and arbitrary maximizers of J∗,
λ, µ ∈ Λ exact and arbitrary multipliers,
DJ (·, ·) : K × Q ∗

→ R compound functional,
M+ : K × R+ × Y ∗

× Λ → R majorant functional,
η∗

∈ Y ∗ flux variable inM+ approximating p∗,
CΩ constant from the generalized Friedrichs inequality,

Th uniform regular triangular mesh with mesh size h, NI , ND
internal and Dirichlet nodes, I,D their indices, |E |, |N |, |T |

number of edges, of nodes and of triangles,
Kh,Q ∗

h , Λ∗

h finite element approximation spaces on Th
I∗ : Λ∗

h → R discrete dual energy to be maximized,
K stiffness matrix in Kh,
KI,I , KI,D, KD,D its subblocks with respect to I and D,
M generalized mass matrix (L2 - product of Kh and Λh),
MI , MD its subblocks with respect to I and D,
λ, µ, v,uλ discrete vectors,
vI , vD,uλI ,uλD subvectors with respect to I and D,
uref reference solution,
M+1,M+2,M+3 majorant functional subparts,

List 1. Summary of the basic notation used thorough out this paper.

Let V and Q be two normed spaces, V ∗ and Q ∗ their dual spaces and let ⟨·, ·⟩ denote the duality pairing. Assume that
there exists a continuous linear operator l from V to Q , l ∈ L(V ,Q ). The adjoint operator l∗ ∈ L(Q ∗, V ∗) of the operator l
is defined through the relation

⟨l∗q∗, v⟩ = ⟨q∗, lv⟩ ∀v ∈ V , q∗
∈ Q ∗.

Let J : V × Q → R be a convex functional mapping in the space of extended reals R = R ∪ {−∞, +∞}. Consider the
minimization problem

inf
v∈V

J(v, lv) (7)

and its dual conjugate problem

sup
q∗∈Q∗

[−J∗(l∗q∗, −q∗)], (8)

where the convex conjugate function of J is given by

J∗(v∗, q∗) = sup
v∈V , q∈Q

[⟨v, v∗
⟩ + ⟨q, q∗

⟩ − J(v, q)], v∗
∈ V , q∗

∈ Q ∗.

The relation between (7) and (8) is stated in the following theorem.

Theorem 1 (Theorem 2.38 of [16]). Assume that V is a reflexive Banach space and Q is a normed vector space, and let l ∈

L(V ,Q ). Let J : V × Q → R be proper lower semi continuous, strictly convex such that

1. There exists v0 ∈ V , such that J(v0, lv0) < ∞ and q → J(v0, q) is continuous at lv0.
2. J(v, lv) → +∞, as ∥v∥ → ∞, v ∈ V .

Then problem (7) has a solution u ∈ V also problem (8) has a solution p∗
∈ Q ∗, and

J(u, lu) = −J∗(l∗p∗, −p∗). (9)

In the case that the function J is of a separated form, i.e.,

J(v, q) = F(v) + G(q) v ∈ V , q ∈ Q ,

then the conjugate of J is

J∗(v∗, q∗) = F∗(v∗) + G∗(q∗),

where F∗ andG∗ are the conjugate functions of F andG, respectively. To calculate the conjugate functionwhen the functional
is defined by an integral, we use the following theorems which can be found in [16].
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Theorem 2 (Theorem 2.35 of [16]). Assume h : Ω × Rn
−→ R is a Carathéodory function with h ∈ L1(Ω) and suppose

G(q) =


Ω

h(x, q(x)) dx.

Then the conjugate function of G is

G∗(q∗) =


Ω

h∗(x, q∗(x))dx ∀q∗
∈ Q ∗,

where

h∗(x, y) = sup
ξ∈Rn

[y · ξ − h(x, ξ)].

The compound functional DJ(v, q; v∗, q∗) : (V × Q ) × (V ∗
× Q ∗) → R is defined by

DJ(v, q; v∗, q∗) := J(v, q) + J∗(v∗, q∗) − ⟨v, v∗
⟩ − ⟨q, q∗

⟩. (10)

It holds DJ(v, q; v∗, q∗) ≥ 0 for all (v, q) ∈ V × Q , (v∗, q∗) ∈ V ∗
× Q ∗ and DJ(v, q; v∗, q∗) = 0 only if the function (v, q)

belongs to set of subdifferential ∂ J∗(v∗, q∗) and (v∗, q∗) belongs to set of subdifferential ∂ J(v, q), see Proposition 1.2 of [17].

2.1. Energy identity

For simplicity of notation, we introduce the positive and negative parts of a function v

v+
:= max(v, 0), v−

:= max(−v, 0),

so it holds v = v+
− v− and |v| = v+

+ v−. The Euclidean norm in Rn is denoted by | · |. We write (3) in the form
J(v) = F(v) + G(lv), where

F(v) :=


Ω


α+v+

+ α−v−


dx, G(lv) :=

1
2


Ω

∇v · ∇v dx (11)

and l : K → Q = L2(Ω, Rd) is the gradient operator lv = ∇v.

Remark 2. Theorem 1 assumes J : V × Q → R, where V is a normed space. It can be shown that all results are also valid
for J : K × Q → R from above.

The corresponding dual conjugate functionals are

F∗(v∗) =


Ω

h∗(v∗) dx, G∗(q∗) =
1
2


Ω

q∗
· q∗ dx, (12)

where h∗(z∗)(x) = 0 for z∗(x) ∈ [−α−(x), α+(x)] otherwise h∗(z∗)(x) = +∞ for x ∈ Ω . Since lv = ∇v, the dual operator
is represented by the divergence operator −l∗q∗

= divq∗. Combining (11) and (12) we derive compound functionals

DF (v, v∗) =


Ω


α+v+

+ α−v−
− v∗ v


dx, DG(lv, q∗) =

1
2


Ω

(lv − q∗) · (lv − q∗) dx, (13)

where the form for DF (·) is valid if the condition

v∗(x) ∈ [−α−(x), α+(x)] (14)

is satisfied almost everywhere in Ω , otherwise DF (v, v∗) = +∞. For the gradient type problem, it holds

p∗
= ∇u, (15)

i.e., p∗ represents the exact flux (gradient of the exact solution). Compound functionals appear in the energy identity
(Proposition (7.2.13) of [18])

DF (v, −l∗p∗) + DG(lv, p∗) = J(v) − J(u) for all v ∈ K . (16)

The terms in the left part of (16) are

DF (v, −l∗p∗) =


Ω


α+v+

+ α−v−
− (divp∗)v


dx, (17)

DG(lv, p∗) =
1
2


Ω

∇(u − v) · ∇(u − v)dx =
1
2
∥∇(u − v)∥2

L2(Ω)
(18)

and DF (v, v∗) is always finite since the condition divp∗(x) ∈ [−α−(x), α+(x)] is satisfied almost everywhere in Ω .
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Remark 3 (Gap In The Energy Estimate). If we drop the nonnegative term DF (v, v∗) we get

1
2
∥∇(u − v)∥2

L2(Ω)
≤ J(v) − J(u) for all v ∈ K (19)

which is well known in connection to class of nonlinear problems related to variational inequalities. For the two-phase
obstacle problem, it was derived in [10]. The gap in the sharpness of the estimate (19) is exactly measured by the term
DF (v, −l∗p∗). By respecting DF (v, −l∗p∗) we can get the equality formulated by the main estimate (16). The contribution
of DF (v, −l∗p∗) is expected not to be very high for good quality approximation v ∈ K to the exact solution u. An example,
when the gap becomes significantly large (for a bad approximation v) is given in Section 4 of [14]. The form of DF (v, −l∗p∗)
represents a certain measure of the error associated with free boundary and it is further discussed in Section 2 of [14].

2.2. Majorant estimate

The exact energy J(u) in the energy identity (16) and the energy inequality (19) is not computablewithout the knowledge
of the exact solution u. However, we can get its computable lower bound using a perturbed functional

Jµ(v) := G(lv) + Fµ(v), Fµ(v) :=


Ω

µv dx, (20)

where a multiplier µ ∈ Λ belongs to the space

Λ :=

µ ∈ L∞(Ω) : µ(x) ∈ [−α−, α+] a.e. in Ω


.

The perturbed functional Jµ(v) replaces the non-differentiable functional J(v) at the cost of a new variable µ ∈ Λ in Fµ(·).
It holds

J(u) = inf
v∈K

sup
µ∈Λ

Jµ(v) = sup
µ∈Λ

inf
v∈K

Jµ(v) ≥ inf
v∈K

Jµ(v) =: Jµ(uµ) for all µ ∈ Λ, (21)

where uµ ∈ K is unique. In view of (21), the minimal perturbed energy Jµ(uµ) serves as the lower bound of J(u). We
find a computable lower bound of Jµ(uµ) by means of the dual counterpart of the perturbed problem. The dual problem is
generated by the Lagrangian

Lµ(v, q∗) :=

q∗, lv


− G∗(q∗) + Fµ(v).

We note v = g + w, where w ∈ H1
0 (Ω) and estimate

Jµ(uµ) = inf
v∈K

Jµ(v) = inf
v∈K

sup
q∗∈Q∗

Lµ(v, q∗) = sup
q∗∈Q∗

inf
v∈K

Lµ(v, q∗)

= sup
q∗∈Q∗

inf
w∈H1

0 (Ω)


−G∗(q∗) +


Ω

(q∗
· ∇g − µg) dx +


Ω

(q∗
· ∇w − µw) dx


≥ sup

q∗∈Qµ


−G∗(q∗) +


Ω

(q∗
· ∇g − µg) dx


= sup

q∗∈Qµ

J∗µ(q∗) ≥ J∗µ(q∗) for all q∗
∈ Q ∗

µ, (22)

where

J∗µ(q∗) := −G∗(q∗) +


Ω

(q∗
· ∇g − µg) dx (23)

and

Q ∗

µ =


q∗

∈ Q ∗
:


Ω

(q∗
· ∇w − µw) dx = 0 for all w ∈ H1

0 (Ω)


. (24)

Due to (21) and (22), we obtain the estimate

J(v) − J(u) ≤ J(v) − J∗µ(q∗) =
1
2
∥∇v − q∗

∥
2
L2(Ω)

+


Ω


α+v+

+ α−v−
− µv


dx (25)

valid for all v ∈ K , µ ∈ Λ, q∗
∈ Q ∗

µ . The right-hand size of (25) is fully computable, but it requires the constraint q∗
∈ Q ∗

µ .
To bypass this constraint we introduce a new variable

η∗
∈ Y ∗

:= H(Ω, div)
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and project it to Q ∗
µ . The space H(Ω, div) is a subspace of L2(Ω, Rn) that contains vector-valued functions with square-

summable divergence. There holds a projection-type inequality (see, e.g., Chapter 3 of [17])
inf

q∗∈Qµ

∥η∗
− q∗

∥L2(Ω) ≤ CΩ∥div η∗
+ µ∥L2(Ω) for all η∗

∈ Y ∗,

where the constant CΩ > 0 originates from the generalized Friedrichs inequality
∥w∥L2(Ω) ≤ CΩ∥∇w∥L2(Ω) for all w ∈ H1

0 (Ω).

Then, the q∗-dependent term in (25) satisfies
inf

q∗∈Q∗
µ

∥∇v − q∗
∥
2
L2(Ω)

≤ (∥∇v − η∗
∥L2(Ω) + inf

q∗∈Q∗
µ

∥η∗
− q∗

∥L2(Ω))
2

≤ (∥∇v − η∗
∥L2(Ω) + CΩ∥divη∗

+ µ∥L2(Ω))
2

≤ (1 + β)∥∇v − η∗
∥
2
L2(Ω)

+


1 +

1
β


C2

Ω∥div η∗
+ µ∥

2
L2(Ω)

, (26)

where we used Young’s inequality with a parameter β > 0 in the last inequality. Hence the combination of (25) and (26)
yields the majorant estimate

J(v) − J(u) ≤ M+(v; β, η∗, µ) for all v ∈ K , µ ∈ Λ, η∗
∈ Y ∗, β > 0, (27)

where the nonnegative functional

M+(v; β, η∗, µ) := M+1(v; β, η∗) + M+2(β, η∗, µ) + M+3(v; µ) (28)
represents a functional error majorant with three additive subparts

M+1(v; β, η∗) :=
1
2
(1 + β)∥∇v − η∗

∥
2
L2(Ω)

,

M+2(β, η∗, µ) :=
1
2


1 +

1
β


C2

Ω∥div η∗
− µ∥

2
L2(Ω)

, (29)

M+3(v; µ) :=


Ω


α+v+

+ α−v−
− µv


dx.

Remark 4. The final form of the functional errormajorant (28) is slightly different to formula (3.13) in [14]. In (28), only one
multiplier variable µ is introduced replacing twomultipliers µ−, µ+ of [14]. Another simplification in this paper is that the
variable diffusions coefficient matrix A is not considered here and we treat the quadratic part of the energy 1

2


Ω

∇v · ∇v dx
instead of 1

2


Ω
A∇v · ∇v dx.

3. Discretization

We assume a domain Ω ⊂ R2 with a polygonal boundary discretized by a uniform regular triangular mesh Th in the
sense of Ciarlet [19], where h denotes the mesh size. Let E denote the set of all edges and N the set of all nodes in Th. By

|E |, |N |, |T |

wemean the number of edges, of nodes and of triangles ofTh. The following lowest order finite elements (FE) approximations
are considered:
• The exact solution u ∈ K of the two phase obstacle problem is approximated by

uh ∈ Kh := K ∩ P1(Th),

where P1(Th) denotes the space of elementwise nodal and continuous functions defined on Th.
• The exact multiplier λ ∈ Λ is approximated by

λh ∈ Λh := Λ ∩ P0(Th),

where P0(Th) denotes the space of element wise constant functions defined on Th.
• The flux variable η∗

∈ Q in the functional majorant is approximated by

η∗

h ∈ Y ∗

h := RT0(Th),

where RT0(Th) is the space of the lowest order Raviart–Thomas functions.

Note that dimensions of these approximation spaces are
dim(Kh) = |N |, dim(Λh) = |T |, dim(Y ∗

h ) = |E |.

We are interested in two computation tasks: First obtaining a discrete solution uh or its approximation vh and then
measuring its quality by the optimized functional error majorant.
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3.1. Dual based algorithm for Lagrange multipliers

Aswementioned in 2.2 due to the non-differentiability term in J(·), we do not obtain the approximative solution uh ∈ Kh
from the relation J(uh) = infv∈Kh J(v) directly. We estimate

J(uh) = inf
vh∈Kh

sup
µ∈Λ

Jµ(v) ≥ inf
vh∈Kh

sup
µh∈Λh

Jµh(vh) ≥ sup
µh∈Λh

inf
vh∈Kh

Jµh(vh) =: Jλh(uλh) (30)

and look for an approximation pair (λh, uλh) ∈ Λh × Kh instead. Note, in general uλh ≠ uh and it holds J(uλh) ≥ J(uh)
only. The saddle point problem on the right-hand side of (30) can be further reformulated as a dual problem for a Lagrange
multiplier

I∗(λh) = sup
µh∈Λh

I∗(µh), where I∗(µh) := inf
vh∈Kh

Jµh(vh). (31)

Approximations vh ∈ Kh and µh ∈ Λh from (20) are equivalently represented by discrete column vectors v ∈ R|N |, µ ∈

R|E | and we can rewrite Jµh(·) from (20) as

Jµ(v) =
1
2
vTKv + vTMµ, (32)

whereK ∈ R|N |×|N | andM ∈ R|N |×|T |. The squarematrixK represents a stiffnessmatrix from a discretization of the Laplace
operator in Kh. The rectangularmatrixM represents the L2-scalar product of functions from spaces P1(Th) and P0(Th). It holds

Ω

∇vh · ∇vh dx = vTKv,


Ω

vh · µ dx = vTMµ

for all vh ∈ P1(Th), µ ∈ P0(Th) and corresponding column vectors v ∈ R|N |, µ ∈ R|E |. If we order nodes N in a way that
internal nodes NI precede Dirichlet nodes ND (no Neumann nodes are assumed for simplicity), we have the decomposition

v = (vI , vD) ∈ R|NI | × R|ND|

in Dirichlet and internal components and |N | = |NI | + |ND|. Then (32) can be rewritten as

Jµ(v) =
1
2


vI
vD

T 
KI,I KT

I,D
KI,D KD,D

 
vI
vD


+


vI
vD

T 
MI
MD


µ. (33)

Note that the rectangular matrix KID is the restriction of K to its subblock with rows NI and columns ND. Therefore KI,I and
KD,D are not diagonal matrices. The rectangular matrices MI and MD are then restrictions of M to subblocks with rows NI
and ND with all columns left. The value of vD is known and given by Dirichlet boundary conditions. The direct computation
reveals

I∗(µ) =
1
2
vTD KD,D vD + vTD MD µ −

1
2
(KI,D vD + MI µ)K−1

I,I (KI,D vD + MI µ). (34)

In addition to it, for a given µ, the component vI minimizing the functional (33) satisfies

vI = −K−1
I,I (KI,D vD + MI µ) or equivalently − KI,IvI = (KI,D vD + MI µ). (35)

This formula is applied for the reconstruction of vI from µ. Since KI,I is a sparse matrix, its inverse K−1
I,I is a dense matrix.

Then, the right part of (35) is exploited in practical evolutions including (34). The matrix K−1
I,I is positive definite as well as

KI,I and the functional I∗(·) is concave and contains quadratic and linear terms only. Thus the functional −I∗(·) is convex
and itsminimum λh from (31) is represented by a column vectorλ ∈ R|T | and solves a quadratic programming (QP) problem
with box constraints

− I∗(λ) = min−I∗(µ), where {µ}j ∈ [−{α−}j, {α+}j] for all j ∈ {1, . . . , |T |}. (36)

Here, vectors α−, α+ ∈ R|T | represent P0(Th) discretizations of functions α−, α+. The corresponding solution uλh ∈ Kh is
then represented by a column vector uλ = (uλI ,uλD) ∈ R|N | and uλI solves (35) for v = λ. The solutions steps above are
summarized in Algorithm 1.
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Algorithm 1 Quadratic programming for Lagrange multipliers.
Let discretization matrices K ∈ R|N |×|N | and M ∈ R|N |×|T | be given with their subblocks KI,I ∈ R|NI |×|NI |, KD,D ∈

R|ND|×|ND|, KI,D ∈ R|NI |×|ND| and MI ∈ R|NI |×|T |, MD ∈ R|ND|×|T |. Let vD ∈ R|ND| be vector of prescribed Dirichlet values
in nodes ND. Then:

(i) find the vector of Lagrange multipliers from the quadratic minimization problem

λ = argminµ∈R|T |


−

1
2
vTD KD,D vD − vTD MD µ +

1
2
(KI,D vD + MI µ)K−1

I,I (KI,D vD + MI µ)


under box constraints {µ}j ∈ [−{α−}j, {α+}j] for all j ∈ {1, . . . , |T |}.

(ii) reconstruct the solution vector vI ∈ R|NI | from −KI,IvI = (KI,D vD + MI µ).
(iii) output λh and uλh represented by vectors λ and v = (vI , vD).

Algorithm 2Majorant minimization algorithm.
Let k = 0 and let initial β0 > 0 and µ0 ∈ Λh be given. Then:

(i) find an iteration η∗

k+1 ∈ Y ∗

h such that η∗

k+1 = argminη∗∈Y∗
h
M+(uλh; βk, µk, η

∗),

(ii) find µk+1 ∈ Λh such that µk+1 = argminµ∈Λh
M+(uλh; βk, µ, η∗

k+1),
(iii) find βk+1 > 0 such that βk+1 = argminβ∈R+

M+(uλh; β, µk+1, η
∗

k+1),
(iv) set k := k + 1 and repeat (i) – (iii) until convergence. Then, output η∗

h := η∗

k+1 and µh := µk+1.

3.2. Minimization of the functional error majorant

For a given approximation uλh ∈ Kh, themajorant valueM+(uλh; β, η∗, µ)majorizes the value J(uλh)−J(u). Themajorant
M+(uλh; β, η∗, µ) can be minimized with respect to its free arguments β > 0, η∗

∈ Y ∗, µ ∈ Λ in order to obtain the sharp
upper bound. The fields η∗

∈ Y ∗, µ ∈ Λ can be sought on a mesh Th̃ with a different mesh size h̃. Choosing very small
mesh size h̃ ≪ h leads to sharper bounds but higher computational costs. Here we consider the same mesh size h̃ = h for
simplicity,

η∗
∈ Y ∗

h , µ ∈ Λh.

We use the successive minimization algorithm described in Algorithm 2. The step (i) corresponds to the solution of a linear
system of equations

(1 + βk)MRT0
+ C2

Ω


1 +

1
βk


KRT0


η∗

k+1 = (1 + βk)c + C2
Ω


1 +

1
βk


dk (37)

for a column vector η∗

k+1 ∈ R|E |. Here, KRT0, MRT0
∈ R|E |×|E | are stiffness and mass matrices corresponding to RT0(Th)

elements. Vectors c, dk ∈ R|E | are column vectors with components constructed as

ci =


Ω

∇uλh · ηi dx, dk,i =


Ω

µk divηi dx (38)

for i ∈ {1, . . . , |E |}. No boundary conditions are imposed on y in (37) since the discrete solution v satisfiesDirichlet boundary
conditions only. Theminimal argumentµk+1 ∈ Λh in step (ii) is locally computed on every triangle T ∈ Th from the formula

µk+1|T = P[−α−,α+]

div η∗

k+1|T +
uλh |T

C2
Ω


1 +

1
βk


 , (39)

where P[−α−,α+] is the projection on the convex set [−α−, α+] and uλh |T means an averaged value of uλh over a triangular
element T . The minimization in step (iii) leads to the explicit relation

βk+1 =
∥div η∗

k+1 − µk+1∥Ω

∥∇v − η∗

k+1∥Ω

. (40)

Remark 5. Algorithm 2 is a subsequent minimization algorithm and majorant values of iterates (in fact their subsequence)
convergence to the minimal majorant value in case of classical obstacle problems, see [20] for details. Here, a convergence
has not been studied yet. A practical convergence can be speeded up significantly, if the approximation λh is taken as an
initial approximation µ0.
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Table 1
Computations of Example I on various uniform triangular meshes.

Level |N | J(uλh ) (I∗(λh)) J(uλh ) − J(u) M+(uλh , ·) M+1(·) M+2(·) M+3(·)
M+(uλh ,·)

J(uλh )−J(u)

1 15 6.0383 (5.9975) 7.05e−01 1.79e+00 1.43e+00 2.88e−02 3.29e−01 2.54
2 45 5.5030 (5.5000) 1.70e−01 3.91e−01 3.75e−01 1.08e−03 1.48e−02 2.30
3 153 5.3779 (5.3750) 4.46e−02 9.38e−02 8.88e−02 3.72e−05 5.00e−03 2.11
4 561 5.3449 (5.3437) 1.15e−02 2.32e−02 2.16e−02 1.24e−06 1.62e−03 2.01
5 2145 5.3409 (5.3355) 7.55e−03 1.07e−02 5.16e−03 6.40e−08 5.54e−03 1.42
6 8385 5.3354 (5.3340) 2.04e−03 2.77e−03 1.32e−03 2.09e−08 1.45e−03 1.36

4. Numerical examples

In this section we elaborate two numerical examples, i.e. Example I, and Example II, with known and unknown exact
solutions.

4.1. Example I with known exact solution

This example is introduced in [10]; it is also tested for one dimensional case in [14]. Here, we consider it in two
dimensional and assume a rectangular domain

Ω = X × Y := (−1, 1) × (0, 1), (41)

and constant coefficients

α− = α+ = 8. (42)

The two phase obstacle problem (2) is supplied with the Dirichlet boundary conditions

u(−1, y) = −1, u(1, y) = 1 ∀y ∈ Y (43)

and homogeneous Neumann boundary conditions

∂u
∂x

(x, 0) =
∂u
∂x

(x, 1) = 0 ∀x ∈ X . (44)

The exact solution u ∈ K is given by the relation independent of y ∈ Y ,

u(x, y) =

−4x2 − 4x − 1, x ∈ X− := [−1, −0.5],
0, x ∈ X0 := [−0.5, 0.5],
4x2 − 4x + 1, x ∈ X+ := [0.5, 1]

(45)

and its (exact) energy is J(u) = 5 1
3 . The (exact) free boundary is characterized by two lines

(±0.5, y), where y ∈ Y .

The (exact) Lagrange multiplier λ ∈ Λ is then given by

λ(x, y) =


−α−, x ∈ X−,
0, x ∈ X0,
α+, x ∈ X+

(46)

and it is a discontinuous functionwith a jumpon the free boundary.We compute approximation pairs (λh, uλh) ∈ Λh×Kh for
a sequence of nested uniformly refinedmeshes. Levels 1 and 2meshes are depicted in Fig. 1. Since some discretization nodes
are lying exactly on the free boundary, theremight be a chance to reconstruct the free boundary exactly from approximative
solutions. A finer (level 5) approximationpair (λh, uλh) ∈ Λh×Kh computed from thedual-based solver is shown in Fig. 2. The
approximative Lagrangemultiplier fieldλh however only approximates the exact free boundary. To the given approximation
pair (λh, uλh), a functional majorant is optimized using a fixed number of 10 iterations of Algorithm 1 (we set µ0 = λh). To
get more insight on the majorant behaviour, we display space densities of all three additive majorant subparts

M+1(uλh; β, η∗), M+2(β, η∗, µ), M+3(uλh; µ)

separately in Fig. 3. The amplitudes of M+2 are significantly lower than amplitudes of M+1 and M+3, but the value of M+3
is still relatively high. The high value of M+3 indicates that the exact free boundary is not sufficiently resolved yet and the
density of M+3 seem to be a reasonable indicator of the exact free boundary.

Computations on all nested uniformly refined triangular meshes are summarized in Table 1. The dual energy I∗(λh) and
primal energy J(uλh) converge to the exact energy J(u) as h → 0. Since we work with nested meshes, we additionally have

J(uλh) ↘ J(u) or equivalently J(uλh) − J(u) ↘ 0.

The difference of energies J(uλh) − J(u) ↘ 0 is bounded from above by the majorant value M+(uλh , . . .) as stated in the
majorant estimate (27).
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Fig. 1. Example I—level 1 (left) and level 2 (right) nested triangular meshes. Note that there are nodes lying on the exact free boundary given by lines
x = ±0.5.

Fig. 2. Example I—approximations:multiplierλh ∈ Λh (left) and the corresponding solution uλh ∈ Kh (right) computed on level 5 triangularmesh (referred
to as level 5 in Table 1). The multiplier approximation λh indicates an approximative free boundary, the exact free boundary is given by lines x = ±0.5.
Full contour lines of uλh at values ±0.0001 are additionally displayed (right).

Fig. 3. Example I—distribution of the majorant parts M+1 (left), M+2 (middle), M+3 (right) computed on level 5 triangular mesh (referred to as level 5 in
Table 1).

Remark 6 (Extension ToMixed Dirichlet–Neumann Boundary Conditions). This example assumes both Dirichlet and Neumann
boundary conditions, but only Dirichlet boundary conditions are considered in K . The dual based solver for a double-phase
problem can still be applied, with Neumann nodes NN being added to internal nodes NI . The majorant estimate (27) is valid
with the same majorant form (28), but the flux η∗

∈ Qh must satisfy an extra condition η∗
· n = 0 on a Neumann boundary,

where n is a normal vector to the boundary. This condition means that components of η∗

k+1 from (37) corresponding to
Neumann edges EN must be equal to zero.

4.2. Example II

The second example is also taken from [10] and considers a square domain

Ω = X × Y := (−1, 1) × (−1, 1), (47)
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Table 2
Computations of Example II on various uniform triangular meshes. Note that J(uref ) = J(uλh ) for uλh computed on level 6 mesh.

Level |N | J(uλh ) (I∗(λh)) J(uλh ) − J(uref ) M+(uλh , ·) M+1(·) M+2(·) M+3(·)
M+(uλh ,·)

J(uλh )−J(uref )

1 13 13.6667 (13.6667) 6.64e−01 1.84e+00 1.53e+00 1.17e−01 1.98e−01 2.77
2 41 13.1924 (13.1924) 1.90e−01 4.99e−01 4.74e−01 4.44e−03 2.01e−02 2.63
3 145 13.0492 (13.0489) 4.67e−02 1.21e−01 1.19e−01 1.69e−04 1.08e−03 2.58
4 545 13.0135 (13.0134) 1.10e−02 2.96e−02 2.93e−02 6.13e−06 2.19e−04 2.69
5 2113 13.0044 (13.0042) 1.85e−03 7.26e−03 7.01e−03 2.35e−07 2.56e−04 3.92

6 8321 13.0020 (13.0019) Not evaluated

Table 3
Example II: Lower and upper bounds of the exact energy J(u) computed for various triangular meshes.

Level 1 2 3 4 5 6

Lower bound of energy J(u) 11.8338 12.7075 12.9319 12.9841 12.9971 Not evaluated
Upper bound of energy J(u) 13.6667 13.1924 13.0491 13.0137 13.0045 13.0020

constant coefficients

α+ = α− = 4. (48)

The Dirichlet boundary conditions as assumed in the form

u(x, y) =


x + 1 x ∈ [−1, 1] and y = 1,
x − 1 x ∈ [−1, 1] and y = −1,
y + 1 y ∈ [−1, 1] and x = 1,
y − 1 y ∈ [−1, 1] and x = −1.

(49)

The exact solution u ∈ K is not known for this example. Consequently, no apriori information about the shape of the free
boundary or the value of the exact energy J(u) is provided.We compute approximation pairs (λh, uλh) ∈ Λh ×Kh again for a
sequence of nested uniformly refined meshes. Levels 1 and 2 meshes are depicted in Fig. 5. An approximative solutions pair
(λh, uλh) ∈ Λh × Kh obtained by the dual-based solver is depicted in Fig. 6. The approximative Lagrange multiplier field λh
presumably indicates the exact free boundary. Space distributions of majorant subparts are visualized in Fig. 7. We assume
that the density of M+3 serves as an indicator of the exact free boundary. Table 2 summarizes computations on all nested
uniformly refined triangularmeshes. The exact energy J(u) is not known but it is replaced by the energy J(uref ) of a reference
solution uref in Table 2. The reference solution uref is computed as uλh on themesh one level higher (level 6 uniformly refined
triangular mesh here).

Remark 7 (Lower Bound of Difference of Energies Based on a Reference Solution). If a reference solution uref is available, its
energy J(uref ) satisfies J(uλh) ≥ J(uref ) ≥ J(u) and

J(uλh) − J(uref ) ≤ J(uλh) − J(u) ≤ M+(uλh , . . .). (50)

The inequality (50) provides actually guaranteed lower and upper bounds of the difference of energies J(uλh) − J(u). Fig. 4
displays convergence of both bounds of J(uλh) − J(u) for considered 5 levels approximations uλh . By reformulating (50) we
get guaranteed bounds of the exact energy

J(uλh) − M+(uλh , . . .) ≤ J(u) ≤ J(uref ) (51)

valid for every approximation uλh ∈ Kh. For this example, lower bounds of (51) create an increasing sequence with respect
to levels of refinement as reported in Table 3. For convenience, corresponding upper bounds from Table 2 are also added.
The sharpest bounds of Table 3 provide the inequality

12.9971 ≤ J(u) ≤ 13.0020

and it suggests J(u) = 13 although there is no analytical proof of it.

4.3. Implementation details and performance

Both numerical examples are implemented in MATLAB and the code available for download at http://www.mathworks.
com/matlabcentral/fileexchange/57232.

The code is based on vectorization techniques of [21,22]. The main file‘start.m’ is located in the directory
‘solver_two_phase_obstacle’. The following parameters can be adjusted:

‘example’—the considered example (‘1’ or ‘2’)

http://www.mathworks.com/matlabcentral/fileexchange/57232
http://www.mathworks.com/matlabcentral/fileexchange/57232
http://www.mathworks.com/matlabcentral/fileexchange/57232
http://www.mathworks.com/matlabcentral/fileexchange/57232
http://www.mathworks.com/matlabcentral/fileexchange/57232
http://www.mathworks.com/matlabcentral/fileexchange/57232
http://www.mathworks.com/matlabcentral/fileexchange/57232
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Fig. 4. Example II—convergence of the difference of energies J(uλh ) − J(u) is controlled by its computable upper bound M+(uλh , . . .) and its computable
lower bound J(uλh ) − J(uref ).

Fig. 5. Example II—level 1 (left) and level 2 (right) nested triangular meshes.

Fig. 6. Example II—approximations: multiplier λh ∈ Λh (left) and the corresponding solution uλh ∈ Kh (right) computed on level 5 triangular mesh
(referred to as level 5 in Table 2). The multiplier approximation λh (left) indicates an approximative free boundary, the exact free boundary is unknown.
Full contour lines of uλh at values ±0.0001 are additionally displayed (right).
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Fig. 7. Example II—distribution of the majorant parts M+1 (left), M+2 (middle), M+3 (right) computed on level 5 triangular mesh (referred to as level 5
in Table 2).

Table 4
Example II: energy evaluations inside QP solver of Algorithm 1 and indices of efficiency for various number of iterations of Algorithm 2.

Level 1 2 3 4 5 6

Energy evaluations in QP 88 268 1202 3323 4133 10424
Ieff for 10 majorant iterations 2.7713 2.6260 2.5799 2.6926 3.9192 Not evaluated
Ieff for 100 majorant iterations 2.7598 2.5537 2.5126 2.6585 3.9121 Not evaluated
Ieff for 1000 majorant iterations 2.7598 2.5489 2.5005 2.6242 3.9058 Not evaluated
Ieff for 10000 majorant iterations 2.7598 2.5489 2.4976 2.6196 3.9025 Not evaluated

‘levels_energy_error’—the number of the finest uniform triangular level (default is ‘5’)
‘iterations_majorant‘—the number of iterations of Algorithm 2 (default is ‘10’)

The dual based solver of Section 3.1 is implemented in ‘optimize_energy_dual_mu_constant_compact.m’ and the underlying
quadratic programming function ‘quadprog’ requires the optimization toolbox ofMATLAB to be available.Wehave exploited
the inbuilt trust region reflective algorithm and Hessian multiply function option for lower memory. Evaluation of the
primal energy J(uλh) for a given function uλh ∈ K is done in the function ‘energy’. This function is able to provide an exact
quadrature [23] of the energy J(v) for any function v ∈ Kh, including nondifferentiable terms


Ω

v+dx,


Ω
v−dx.

Numerical performance of both algorithms in case of Example II is further reported in Table 4. The number of function
evaluations in the quadratic programming of Algorithm 1 (corresponding to solution of the linear system (35)) increases
significantly for finer meshes. It indicates that the QP solver is not scalable with respect to the problem size and it performs
slowly for finer meshes. A future more efficient implementation deserves some extra testing and preconditioning. We have
used default MATLAB tolerances and stopping criteria. It also seems that too high number of iterations of Algorithm 2 has
only a marginal impact on the improvement of the index of efficiency

Ieff =
M+(uλh , ·)

J(uλh) − J(uref )

measuring how much the optimized majorant value over-determines the lower bound of the difference of energies.

5. Conclusions and future outlook

A dual based solution algorithm (Algorithm 1) to provide a finite element approximation of the Lagrange multiplier of
the perturbed problemwas described and tested on two benchmarks in 2D. The finite elements approximation of the primal
minimization problem can be easily reconstructed from Lagrange multipliers by solving one linear system of equations. The
quality of such approximation is measured in terms of a fully computational functional majorant. A nonlinear part of the
optimized functional majorant (by Algorithm 2) seems to work as an indicator of the free boundary. In the future, it would
be interesting to consider some preconditioning in order to reduce number of evaluations in the quadratic programming of
Algorithm 1. A subsequent minimization of Algorithm 2might be replaced by some variant of ‘all at one’ coupled algorithm
that might converge faster. We also plan to extend the Matlab solver to allow for a mesh adaptivity based on a majorant
distribution.

Acknowledgements

We thank anonymous referees for valuable comments and remarks which improved final exposition of our work.
The second author acknowledges the support by GAČR through project GF16-34894L and by MŠMT ČR through project
7AMB16AT015.



432 F. Bozorgnia, J. Valdman / Computers and Mathematics with Applications 73 (2017) 419–432

References

[1] N.N. Uraltseva, Two-phase obstacle problem, J. Math. Sci. 106 (3) (2001) 3073–3077.
[2] G.S. Weiss, The two-phase obstacle problem: Pointwise regularity of the solution and an estimate of the hausdorff dimension of the free boundary,

Interfaces Free Bound. 3 (2) (2001) 121–128.
[3] L. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998) 383–402.
[4] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, 1980.
[5] H. Shahgholian, N.N. Uraltseva, G.S. Weiss, The two-phase membrane problem – regularity of the free boundaries in higher dimensions, Int. Math.

Res. Not. (2007).
[6] R.S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comp. 28 (128) (1974) 963–971.
[7] R. Glowinski, J.L. Lions, R. Trémolieres, Numerical Analysis of Variational Inequalities, North-Holland, 1981.
[8] R.H. Nochetto, Sharp L∞-error estimates for semilinear elliptic problems with free boundaries, Numer. Math. 54 (3) (1989) 243–255.
[9] R.H. Nochetto, E. Otárola, A.J. Salgado, Convergence rates for the classical, thin and fractional elliptic obstacle problems, Phil. Trans. R. Soc. A 373 (2050)

(2015).
[10] F. Bozorgnia, Numerical solutions of a two-phase membrane problem, Appl. Numer. Math. 61 (2011) 92–107.
[11] A. Arakelyan, R. Barkhudaryan, M. Poghosyan, A finite difference method for two-phase parabolic obstacle-like problem, Armen. J. Math. 2 (2015)

164–182.
[12] A. Arakelyan, A finite difference method for two-phase parabolic obstacle-like problem, Armen. J. Math. 7 (2015) 32–49.
[13] G. Tran, H. Schaeffer, W. Feldman, S. Osher, An L1 penalty method for general obstacle problems, SIAM J. Appl. Math. 75 (4) (2007) 1424–1444.
[14] S. Repin, J. Valdman, A posteriori error estimates for two-phase obstacle problem, J. Math. Sci. 20 (2) (2015) 324–336.
[15] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, 1976.
[16] W. Han, A Posteriori Error Analysis Via Duality Theory, Springer, 2005.
[17] S. Repin, A Posteriori Estimates for Partial Differential Equations, Walter de Gruyter, 2008.
[18] P. Neittaanmäki, S. Repin, Reliable Methods for Computer Simulation (Error Control and a Posteriori Estimates), Elsevier, 2004.
[19] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978.
[20] P. Harasim, J. Valdman, Verification of functional a posteriori error estimates for obstacle problem in 1D, Kybernetika 49 (5) (2013) 738–754.
[21] I. Anjam, J. Valdman, Fast matlab assembly of fem matrices in 2D and 3D: edge elements, Appl. Math. Comput. 267 (2015) 252–263.
[22] T. Rahman, J. Valdman, Fast matlab assembly of fem matrices in 2D and 3D: nodal elements, Appl. Math. Comput. 219 (2013) 7151–7158.
[23] J. Kadlec, J. Valdman, Quadrature of the absolute value of a function.Matlab package. http://www.mathworks.com/matlabcentral/fileexchange/54183.

http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref1
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref2
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref3
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref4
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref5
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref6
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref7
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref8
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref9
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref10
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref11
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref12
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref13
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref14
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref15
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref16
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref17
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref18
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref19
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref20
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref21
http://refhub.elsevier.com/S0898-1221(16)30669-1/sbref22
http://www.mathworks.com/matlabcentral/fileexchange/54183

	A FEM approximation of a two-phase obstacle problem and its a posteriori error estimate
	Introduction
	Mathematical background and estimates
	Energy identity
	Majorant estimate

	Discretization
	Dual based algorithm for Lagrange multipliers
	Minimization of the functional error majorant

	Numerical examples
	Example I with known exact solution
	Example II
	Implementation details and performance

	Conclusions and future outlook
	Acknowledgements
	References


