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Abstract. Two novel models for texture representation using paramet-
ric compound random field models are introduced. These models consist
of a set of several sub-models each having different characteristics along
with an underlying structure model which controls transitions between
them. The structure model is a two-dimensional probabilistic mixture
model either of the Bernoulli or Gaussian mixture type. Local textures
are modeled using the fully multispectral three-dimensional causal auto-
regressive models. Both presented compound random field models allow
to reproduce, compress, edit, and enlarge a given measured color, multi-
spectral, or bidirectional texture function (BTF) texture so that ideally
both measured and synthetic textures are visually indiscernible.
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1 Introduction

Physically correct and visually convincing virtual models require object surfaces
covered with realistic nature-like surface material textures to present realism
in virtual scenes. The primary purpose of any synthetic texture approach is to
reproduce and enlarge a given measured material texture so that ideally both
natural and synthetic texture will be visually indiscernible. The appearance of
real materials dramatically changes with illumination and viewing variations and
its most advanced current texture representation is the seven-dimensional Bidi-
rectional Texture Function (BTF) [9]. Unfortunately, measured texture data are
nearly always too limited to reliable estimate these complex seven-dimensional
models, thus their modeling requires some simplifying factorization [9], such
as the presented compound random field models which serve as the the three-
dimensional factor model in the complex overall BTF material model [9].

Compound random field models (CRF) consist of several sub-models each hav-
ing different characteristics along with an underlying structure model which con-
trols transitions between these sub models [11]. Compound Markov filed models
were successfully applied to image restoration [2,3,11,12], segmentation [13], and
modeling [6,7,10]. However, these models always require demanding numerical

c© Springer International Publishing AG 2017
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solutions with all their well known drawbacks. Our exceptional CMRF [6] model
allows analytical synthesis at the cost of a slightly compromised compression rate.

We propose two textural models - CRFBM−3CAR, CRFGM−3CAR, based on
complex spatial probabilistic mixture models. These control field models are
either probabilistic Bernoulli of Gaussian mixture models.

2 Compound Random Field Texture Models

Let us denote a multiindex r = (r1, r2), r ∈ I, where I is a discrete 2-dimensional
rectangular lattice and r1 is the row and r2 the column index, respectively.
Xr ∈ {1, 2, . . . ,K} is a random variable with natural number value (a positive
integer), Yr is multispectral pixel at location r and Yr,j ∈ R is its j-th
spectral plane component. Both random fields (X,Y ) are indexed on the same
lattice I. Let us assume that each multispectral or BTF observed texture Ỹ
(composed of d spectral planes) can be modelled by a compound random field
model, where the principal random field X controls switching to a regional local
model Y =

⋃K
i=1

iY . Single K regional sub-models iY are defined on their
corresponding lattice subsets iI, iI ∩ jI = ∅ ∀i �= j and they are of the same
RF type. They differ only in their contextual support sets iIr and corresponding
parameters sets iθ. The CRF model has posterior probability P (X,Y | Ỹ ) =
P (Y |X, Ỹ )P (X | Ỹ ) and the corresponding optimal MAP solution is: (X̂, Ŷ ) =
arg maxX∈ΩX ,Y ∈ΩY

P (Y |X, Ỹ )P (X | Ỹ ), where ΩX , ΩY are corresponding
configuration spaces for random fields (X,Y ). To avoid an iterative MCMC
MAP solution, we propose the following two step approximation [6]:

(X̆) = arg max
X∈ΩX

P (X | Ỹ ), (1)

(Y̆ ) = arg max
Y ∈ΩY

P (Y | X̆, Ỹ ). (2)

This approximation significantly simplifies the CRFBM−3CAR, CRFGM−3CAR

estimation because it allows us to take advantage of a straightforward analytical
estimation of the regional RF models iY in (2).

2.1 Region Switching Model

The control RF (P (X | Ỹ )) is supposed to be represented by two-dimensional
Bernoulli or Gaussian distribution mixture model, respectively. The mixture
distribution P (Y{r}) has the form:

P (Y{r}) =
∑

m∈M
P (Y{r} |m) p(m) =

∑

m∈M

∏

s∈Ir

ps(Ys |m) p(m) (3)

where Y{r} ∈ Kη, M = {1, 2, . . . ,M}, Ir ⊂ I is an index set, η =
cardinality{Ir}, and p(m) are probability weights

∑
m∈M p(m) = 1.

The maximum-likelihood parameter estimates p(m) (probability weights),
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μms, σms (Gaussian mixture component means and standard deviation), θm,s

(Bernoulli mixture component parameters) are computed using the EM algo-
rithm [1,4] p

(t+1)
s (. |m) and

q(t)(m |X{r}) =
p(t)(m)P (t)(X{r} |m)

∑
j∈M p(t)(j)P (t)(X{r} | j) , (4)

p(t+1)(m) =
1

|S|
∑

X{r}∈S
q(t)(m | X{r}). (5)

Bernoulli Distribution Mixture Model. We assume that control field pixel
Xr ∈ K where K is the index set of K distinguished sub-models. The distribution
P (X{r}) is assumed to be multivariable Bernoulli mixture (BM) and the control
field is further decomposed into separate binary bit planes of binary variables
ξ ∈ B, B = {0, 1} which are separately modeled and can be learned from much
smaller training texture than a multi-level discrete mixture model. We suppose
that a bit factor of a control field can be fully characterised by a marginal
probability distribution of binary levels on pixels within the scope of a window
centered around the location r and specified by the index set Ir ⊂ I, i. e. X{r} ∈
Bη and P (X{r}) is the corresponding marginal distribution of P (X | Ỹ ). The
component distributions P (· |m) are factorisable, and multivariable Bernoulli:

P (X{r} |m) =
∏

s∈Ir

θXs
m,s(1 − θm,s)1−Xs Xs ∈ X{r}. (6)

The mixture model parameters (6) include component weights p(m) and the
univariate discrete distributions of binary levels. They are simply defined by one
parameter θm,s as a vector of probabilities:

ps(· |m) = (θm,s, 1 − θm,s). (7)

The EM solution is (4), (5) and

p(t+1)
s (ξ |m) =

1
|S| p(t+1)(m)

∑

X{r}∈S
δ(ξ,Xs) q(t)(m |X{r}), ξ ∈ B. (8)

The total number of mixture (3), (7) parameters is thus M(1+η) – confined to the
appropriate norming conditions. The advantage of the multivariable Bernoulli
model (7) is a simple switch-over to any marginal distribution by deleting super-
fluous terms in the products P (X{r} |m).

Gaussian Mixture Model. The discrete control field can be alternatively
modeled by a continuous RF if we map single indices into continuous random
variables with uniformly separated mean values and small variance. The synthe-
sis results are subsequently inversely mapped back into a corresponding synthetic
discrete control field. We assume the joint probability distribution P (X{r}),
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X{r} ∈ Kη in the form of a normal mixture and the mixture components are
defined as products of univariate Gaussian densities

P (X{r} |μm, σm) =
∏

s∈I{r}

ps(Xs |μms, σms), (9)

ps(Xs |μms, σms) =
1√

2πσms

exp
{

− (Xs − μms)2

2σ2
ms

}

,

i. e., the components are multivariate Gaussian densities with diagonal covariance
matrices. The maximum-likelihood estimates of the parameters p(m), μms, σms

can be computed by EM algorithm [1,4]. Anew we use a data set S obtained
by pixel-wise shifting the observation window within the original texture image
S = {X

(1)
{r}, . . . , X

(K)
{r} }, X

(k)
{r} ⊂ X. The corresponding log-likelihood function is

maximized by the EM algorithm (m ∈ M, n ∈ N ,X{r} ∈ S) and the iterations
are (4), (5) and

μ(t+1)
m,n =

1
∑

X{r}∈S q(t)(m |X{r})

∑

X{r}∈S
Xn q(m |X{r}), (10)

(σ(t+1)
m,n )2 = −(μ(t+1)

m,n )2 +

∑
X{r}∈S X2

n q(t)(m |X{r})
∑

X{r}∈S q(m|X{r})
. (11)

Control Field Synthesis. We can assume at a given position r of the contex-
tual neighbourhood Ir to have some part of the pixel-wise synthesised control
field X{r} already specified. If X{ρ} is a sub-vector of all of X{r} pixels previ-
ously specified within this window and Iρ ⊂ Ir the corresponding index subset,
then the statistical properties of the remaining unspecified variables are fully
described by the corresponding conditional distribution:

pn | ρ(Xn |X{ρ}) =
M∑

m=1

Wm(X{ρ}) pn(Xn |m), (12)

where Wm(X{{ρ}) are the a posteriori component weights corresponding to the
given sub-vector X{ρ}:

Wm(X{ρ}) =
p(m)Pρ(X{ρ} |m)

∑M
j=1 p(j)Pρ(X{ρ} | j)

, (13)

Pρ(X{ρ} |m) =
∏

n∈ρ

pn(Xn |m).

Xn can be randomly generated by the conditional distribution pn | ρ(Xn |X{ρ})
where by Eq. (12) can be applied to all the unspecified variables n = η− card{ρ}
given a fixed position of the control field. Each newly generated Xn is used to
upgrade the conditional weights Wm(X{ρ}).
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2.2 Local Markov Models

Local i-th texture region (not necessarily continuous) is represented by the adap-
tive 3D causal auto-regressive random (3DCAR) field model [5,8]. This model
can be analytically estimated as well as easily synthesised. The model can be
defined in the following matrix equation (i-th model index is further omitted to
simplify notation):

Yr = γ Zr + εr, (14)

where Zr = [Y T
r−s : ∀s ∈ Ir]T is the η d × 1 data vector with multiindices

r, s, t, γ = [A1, . . . , Aη] is the d × d η unknown parameter matrix with
parametric sub-matrices As. The model functional contextual neighbour index
shift set is denoted Ir and η = cardinality(Ir). All CAR model statistics can
be efficiently estimated analytically [8]. Given the known 3DCAR process history
Y (t−1) = {Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} the parameter estimation γ̂ can
be accomplished using fast, numerically robust and recursive statistics [8]:

γ̂T
t−1 = V −1

zz(t−1)Vzy(t−1), Vt−1 = Ṽt−1 + V0,

Ṽt−1 =
(∑t−1

u=1 YuY T
u

∑t−1
u=1 YuZT

u∑t−1
u=1 ZuY T

u

∑t−1
u=1 ZuZT

u

)

=

(
Ṽyy(t−1) Ṽ T

zy(t−1)

Ṽzy(t−1) Ṽzz(t−1)

)

,

Fig. 1. Cloth and frosted planks (left column) synthesis and enlargement (right col-
umn) using the CRFBM−3CAR model.
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where V0 is a positive definite matrix (see [8]). Although, an optimal causal
functional contextual neighbourhood Ir can be solved analytically by a straight-
forward generalisation of the Bayesian estimate in [8], we use faster approxima-
tion which does not need to evaluate statistics for all possible Ir configurations.
This approximation is based on spatial correlations. Starting from the causal part

Fig. 2. Measured three textile and two cobra skin textures (left column) and their
synthesis using the CRFGM−3CAR model.
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of a hierarchical non-causal neighbourhood, neighbours locations corresponding
to spatial correlations larger than a specified threshold (>0.6) are selected. The
i-th model pixel-wise synthesis is simple direct application of (14) for all 3DCAR
models. 3DCAR models provide better spectral modelling quality than the alter-
native spectrally decorrelated 2D models for motley textures at the cost of small
increase of number of parameters to be stored.

3 Experiments

Both presented compound random field models (CRFBM−3CAR,
CRFGM−3CAR) are well suited for near-regular textures such as textile materials
which are notoriously difficult for Markov random field type of textural models
[6,9]. The dimension of the estimated control field model distribution is not too
high (η ≈ 101 − 102) and the number of the training data vectors is relatively
large (|S| ≈ 104 − 105). Nevertheless the window should always be kept reason-
ably small and the sample size as large as possible. In our experiments we have
used a regular left-to-right and top-to-down shifting of the generating window.
Figure 1 illustrates the CRFBM−3CAR model applied to a frosted planks and
two textile textures synthesis and enlargement, while Fig. 2 shows three textile
materials and two skin samples synthesized using the CRFGM−3CAR model.

4 Conclusion

Both presented CRF (CRFGM−3CAR, CRFBM−3CAR) methods show good
visual performance on selected real-world measured materials. The appearance
of such materials should consist of several types of relatively small regions with
fine-granular inner structure such as fabric, skin, or wood. The models offer large
data compression ratio (only tens of parameters per BTF) easy simulation and
fast seamless synthesis of any required texture size. The methods can be easily
generalised for colour or BTF texture editing by estimating some local models
from different target materials. The model does not compromise spectral corre-
lation thus it can reliably model motley textures. A drawback of the presented
CRF models is the need to have sufficiently large learning data for both mixture
sub-models.
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