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Abstract. Prevailing surface material recognition methods are based
on textural features but most of these features are very sensitive to scale
variations and the recognition accuracy significantly declines with scale
incompatibility between visual material measurements used for learning
and unknown materials to be recognized. This effect of mutual incompat-
ibility between training and testing visual material measurements scale
on the recognition accuracy is investigated for leading textural features
and verified on a wood database, which contains veneers from sixty-six
varied European and exotic wood species. The results show that the
presented textural features, which are illumination invariants extracted
from a generative multispectral Markovian texture representation, out-
perform the most common alternatives, such as Local Binary Patterns,
Gabor features, or histogram-based approaches.
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1 Introduction

Visual scene understanding is based on shapes and materials. While the shape
is stable visual attribute, the surface material appearance vastly changes under
variable observation conditions [3], which significantly and negatively affect its
recognition as well as its realistic synthesis. Reliable computer-based interpre-
tation of visual information which would approach human cognitive capabili-
ties is very challenging and impossible without significant improvement of the
corresponding sophisticated visual information models capable to handle huge
variations of possible observation conditions. The appropriate paradigm for such
a surface reflectance function models is a multidimensional visual texture. Gen-
erative visual texture models are useful not only for modelling physically correct
virtual objects material surfaces in virtual or augmented reality environments
or restoring images but also for contextual recognition applications such as seg-
mentation, classification or image retrieval.

2 Textural Features

Numerous textural features have been published with miscellaneous recogni-
tion successfulness. Only the leading and commonly used textural features are

© Springer International Publishing AG 2017
C. Beltran-Castanén et al. (Eds.): CIARP 2016, LNCS 10125, pp. 84-92, 2017.
DOI: 10.1007/978-3-319-52277-7_11



Scale Sensitivity of Textural Features 85

selected for this texture scale sensitivity study. These are the two-dimensional
causal auto-regressive (2DCAR), local binary patterns (LBP), Gabor, and colour
histogram features, respectively.

2.1 2DCAR Illumination Invariant Features

The texture is factorised into K levels of the Gaussian down-sampled pyra-
mid and subsequently each pyramid level is modelled by a wide-sense Markovian
type of model - the Causal Auto-regressive Random (CAR) model. The model
parameters are estimated and illumination invariants are computed from them.
Finally, the illumination invariants from all the pyramid levels are concatenated
into one feature vector. Let us assume that each multispectral (colour) texture
is composed of C' spectral planes (usually C' = 3), Y, = [Y,.1,..., Y, |7 is the
multispectral pixel at location r. The multiindex r = (r1,72) is composed of
row index r; and column index ro. The spectral planes are mutually decorre-
lated by the Karhunen-Loeve transformation and subsequently modelled using
either a three-dimensional model or a set of C' two-dimensional models. The
two-dimensional models assumes that the j-th spectral plane of pixel at position
r can be modelled as:

Yoj=%Zrj+er,  Zpj=[Yr—s;:Vse L]

where Z, ; is the n x 1 data vector, v; = [a1,...,a,] is the 1 x n unknown
parameter vector. Some selected contextual neighbour index shift set is denoted
I and np = cardinality(I,). The texture is analysed in a chosen direction, where
multiindex ¢ changes according to the movement on the image lattice I. Given
the known CAR process history Y1 ={Y, 1, Y, o,.... Y1, 2, Zs_1,..., 71},
4 can be estimated using fast, numerically robust recursive statistics [2]:
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where the positive definite matrix Vj represents prior knowledge. The following
features are proved to be colour invariant [10,11]:
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where g is the mean value of Y,.. The dissimilarity between two feature vectors of
two textures is computed using fuzzy contrast [8] in its symmetrical form FCs.

Table 1. Classification accuracy for 2DCAR features and variable scale inconsistency
between test and learning texture scales computed separately on all RGB spectral
channels.

Scale | Test

Train 50 |55 |60 |65 |70 |75 |80 |85 |90 |95 100 |@

50 100 100 [100 |100 99.2496.97|95.45|88.64|79.55|68.94|64.39/90.29
55 100 100 |100 [100 |100 199.24/99.24 99.24 /92.42 87.1278.79|96.01
60 100 100 [100 |100 |100 |100 |100 |99.24 98.4894.70/89.39|98.35
65 100 100 |100 |100 100 100 |[100 |100 [100 |99.24/96.97|99.66
70 100 100 100 |100 |100 |100 100 |100 |100 |100 100 |100
75 99.24/100 100 |100 |100 |100 [100 |100 100 100 |100 |99.93
80 94.70/199.24/100 |100 |100 |100 [100 100 100 100 |100 [99.45
85 84.09/95.45/100 |100 |100 |100 |100 |100 100 100 |100 |98.14
90 75.00/90.15|/96.97/100 [100 |100 |100 |100 |100 |100 |100 |96.56
95 66.67/82.58/93.18/97.73/99.24/100 |[100 |100 100 100 |[100 |94.49
100 |61.36|72.73|88.64|/94.70|/98.48/99.24/100 |100 100 100 [100 |92.29

2.2 Local Binary Patterns

Local Binary Patterns [6] are histograms of texture micro patterns. For each
pixel, a circular neighbourhood around the pixel is sampled, P is the number of
samples and R is the radius of circle. The sampled point values are thresholded
by the central pixel value and the pattern number is formed:

P-1

LBPpr =Y sgn(Y,—Y,)2", (1)
s=0

where sgn is the sign function, Y is the grey value of the sampled pixel, and Y, is
the grey value of the central pixel. Subsequently, the histogram of patterns is com-
puted. Because of the thresholding, the features are invariant to any monotonic
grey-scale change. The multiresolution analysis is done by growing of the circular
neighbourhood size. All LBP histograms were normalised to have unit L; norm.
The similarity between LBP feature vectors is measured by means of Kullback-
Leibler divergence as the authors suggested. We have tested features LBPg 1433,
which are combination of features with radii 1 and 3. They were computed either
on gray images or on each spectral plane of color image and concatenated. We also
tested uniform version LBP{g 5, but their results were inferior.

2.3 Gabor Features

The Gabor filters [1,7] can be considered as orientation and scale tunable edge
and line (bar) detectors and statistics of Gabor filter responses in a given region
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Table 2. Classification accuracy for LBP features on gray-scale textures.

Scale | Test

Train 50 |55 |60 |65 |70 |75 |80 (85 |90 |95 100 1)
50 100 100 [99.24/93.94|75.76|63.64|46.21|35.61|26.52|20.45/19.70{61.91
55 100 100 |100 [99.24/93.94|79.55|65.15|45.45|36.36|28.79|26.52|70.45
60 99.24/100 |100 [100 |99.2495.45|81.82|65.91|46.21|38.64|38.64|78.65
65 86.36/99.24/100 |100 [100 |100 |96.21|83.33|66.67 50.00|46.97|84.44
70 71.97/91.67/100 |100 [100 |100 |100 |98.48|85.61|71.97|63.64|89.39
75 48.48/71.21/93.94/100 |100 |100 [100 |100 98.48 87.12/83.33/89.33
80 39.39/51.52|72.73/96.97/100 |100 |100 |100 |100 |99.24|93.94 86.71
85 27.27/38.64|53.03|74.24/96.97/100 100 |100 |100 |100 |95.45 80.51
90 22.73/28.79|40.15|57.58|77.27|98.48 100 |100 |100 |100 |96.97|74.72
95 18.18/21.97/28.79/40.91 59.85/84.09/98.48100 |[100 |100 |96.21|68.04
100 [16.67[20.45|28.03|37.12|52.27|76.52(89.39/93.94 1 96.21 196.21 | 100 |64.26

are used to characterise the underlying texture information. A two dimensional
Gabor function g¢(r) : R? — C can be specified as

where o, ,0.,,V are filter parameters. The convolution of a texture image and
Gabor filter extracts edges of given frequency and orientation range. The whole
filter set was obtained by four dilatations and six rotations of the function g¢(r).
The filter set is designed so that Fourier transformations of filters cover most of
image spectrum, see [5] for details. Finally, given a single spectral image with
values Y, j, r € I, j = 1, its Gabor wavelet transform is defined as

Wi, j(r1,m2) = / Yrj Grg(r1 — u1,me — uz) duy dug,

u1,u2ER

where (-)* indicates the complex conjugate, ¢ and k are orientation and scale
of the filter. The Gabor features [5] are defined as the mean p; and the stan-
dard deviation o; of the magnitude of filter responses W. The Gabor features
of colour images have been computed either on grey images or on each spec-
tral plane separately and concatenated to form a feature vector. The distance
between two textures T,S is measured as the sum:

(T) f(S)

p
Llsrp(T,S) Z : (2)

where o(f;) is standard deviations of a feature f; computed over all database,
and p is the size of the feature vector. Another extension of the Gabor filters to
colour textures [4] is based on adding a chromatic antagonism, while the spatial
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antagonism is modelled by Gabor filters themselves. Opponent Gabor features
consists of the monochrome part of features: 1; ymn = />, me’n(r), where

Wi mn is the response to Gabor filter of orientation m and scale n, i is i—th
spectral band of the colour texture 7. The opponent part of features is:

Wimn (™) Wjmrn(r)\
wi,jﬂn,m/,n = Z < - E )

Mi,m,n Nj.m’\n

T

for all 4,5 with ¢ # j and |m — m/| < 1. (Opponent features could be
also expressed as correlation between spectral planes responses.) The distance
between textures T,S using the Opponent Gabor features is measured as sum

P fT) S 2
L2s7p(T,S) = Z (la(f)z> ) (3)
i=0 t

where o(f;) is standard deviations of feature f; computed over all database,
and p is the size of feature vector.

2.4 Histogram Based Features

The simplest features used in this study are based on histograms of colours or
intensity values. Although, these features cannot be considered as proper tex-
tural features, because they are not able to describe spatial relations which are
the key texture properties, their advantage is robustness to various geometrical
transformations, fast, and easy implementation. The cumulative histogram pro-
posed in [9] is defined as the distribution function of an image histogram. The
i-th bin H; is computed as H; = Z€<i h¢, where hy is the ¢-th bin of ordinary
histogram. The distance between two cumulative histograms is computed in L
metric. The cumulative histogram is more robust than the ordinary histogram,
because a small intensity change characterised by a one-bin shift in the ordinary
histogram, have only negligible effect on the cumulative histogram.

3 Experiments

The scale sensitivity of the selected textural features was tested on the wood
database, which contains veneers from varied European and exotic wood species,
each with two sample images only. The original images of 66 wood species
were acquired by a colour scanner device. These images were scaled down to
95%, 90%, 85%, . .., 50% of their original size. Finally, regions with the same res-
olution were cropped out, see examples in Fig.1. As a consequence, image of
scale 50% covers doubles size of the original texture image, but with half of
details than scale 100%. In the experiment, the training set was composed of
images of a single selected scale and the classification accuracy was tested for all
scales, separately. To avoid training and testing on the same images the scaled
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Table 3. Classification accuracy for colour histogram and opponent Gabor features.

Scale | Test

Train[50 |55 [60 [65 [70 |75 [80 (85 (90 (95 (100 | @
Colour histogram features

50 100 100 |98.48/96.21|93.94|91.67|87.12|82.58|79.55|76.5265.91|88.36
55 100 100 |100 |98.48 96.9795.45/92.42|88.64|85.61|81.82|70.45|91.80
60 98.48/100 |100 |100 |99.24|99.24/96.21|93.18|87.12|86.36|74.24 94.01
65 96.21/99.24 100 100 |100 [100 |99.2497.73/92.42|90.91|78.79|95.87
70 93.18/98.48/100 |100 [100 |100 |100 |97.73|/96.21|94.70|82.58/96.63
75 90.15/93.94|98.48/100 [100 |100 |100 |100 |97.73|95.45|84.85/96.42
80 84.09/92.42|93.18/99.24/100 |100 |100 |100 |100 |96.97|85.61|95.59
85 82.58|87.12/90.15|93.94/99.24/100 |100 |[100 100 |100 |87.12/94.56
90 78.79/82.58|85.61|90.91|95.45|98.4899.24| 100 |100 |100 |86.36/92.49
95 74.24|78.03|82.58|85.61(92.42|95.45|98.48|99.24|100 |100 |87.12/90.29
100 165.91|73.48|76.52|78.7978.79|83.33|85.61|87.12|86.36|86.36 100 |82.02
Opponent gabor features
50 100 100 |100 |98.48 96.2192.42|87.12|82.58|75.00|67.42|62.12|87.40
55 100 100 |100 |100 100 |99.24/96.97|93.18/87.12|80.30/70.45|93.39
60 100 100 [100 [100 100 |100 |98.48|98.48/96.97|93.18|85.61|97.52
65 100 100 [100 |100 100 100 |100 |98.48/98.48/96.21/90.15|98.48
70 100 100 [100 |100 100 [100 |100 |100 |100 |96.97/95.45|99.31
75 99.24/100 |100 |100 [100 |100 |100 |100 |100 |99.24|96.97|99.59
80 95.45/99.24 /100 |100 100 |100 (100 |100 100 |100 |97.73]99.31
85 87.88/96.21/99.24/100 [100 |100 |100 |100 |100 |100 |98.48/98.35
90 81.06/90.91|98.48/100 [100 |100 |100 |100 |100 |99.24|97.73/97.04
95 72.73/85.61|93.18|97.73/99.24|100 |100 |100 |100 |100 |98.48/95.18
100 |62.12/75.00 87.88/93.94|98.4898.48(99.24/99.24|99.24|99.24 100 |92.08

images were split to upper half and lower half with 812 x 1034 pixel resolution.
The final result were computed as an average of classification accuracy tested
on lower and upper halfs (training was performed on the other half). The com-
puted feature vectors were compared using the suggested distances and classified
with the Nearest Neighbour (1-NN) classifier. Scale sensitivity of textural fea-
tures is visualised in the graph on Fig. 2, which is created from two experiment
results. The left part is based on training on scale 100% and testing on down-
scaled images 100%, 95%, . .., 50%, while the right part (scaling factor 1-2) uses
training on scale 50% and testing on 55%,60%, ..., 100%, which simulates up-
scaled images which avoids heavy interpolation. Results on Tables1, 2, 3 and
Fig. 2 illustrate the best and the most robust scale invariant performance of the
2DCAR features, which benefits from multiscale approach, followed by opponent



90 M. Haindl and P. Vacha

afromosia pine hornbeam

Fig. 1. The afromosia, pine, cedar, oak burr, hornbeam, and wenge veneer textures,
respectively. The rows correspond to different resolution (50% top, 70% middle, 100%
bottom) setups.
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Fig. 2. Classification accuracy (y: [%]) for test x: scaling factor(0.5-2), training at scale
factor 1, and average over 66 classes.

Gabor features. Histogram feature are the least sensitive to extreme scale varia-
tion, but they simultaneously they lack sufficient discriminability for recognition
at similar scales. LBP are very sensitive to scale changes, because they have
small support. Multiscale approach could probably improve their performance,
but it will increase the already large number of LBP features.
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4 Conclusion

The presented results indicate that Markovian illumination invariant texture fea-
tures (2DCAR), based on Markovian descriptive model, are the most robust tex-
tural features for texture classification when learning and classified textures dif-
fer in scale. The 2DCAR features outperformed tested textural features, i.e., the
LBP, Gabor or histogram texture features, respectively. Their additional advan-
tage is their fast and numerically robust estimation. Additionally, our colour
Markovian textural features were successfully applied in recognition of wood
veneers using a smart phone camera. The method’s correct recognition accuracy
improvements are between 20% and 40%, compared to the Local Binary Pat-
terns (LBP) features and up to 8% compared to the opponent Gabor features
which is the second best alternative from all tested textural features.

It is worth to note that the presented results apply for recognition with
bounded scale variation. If the expected scale variation would go to extremes,
the fully scale invariant textural features should be considered. On the other
hand, fully invariant features usually losses some discriminability, therefore each
application need to carefully balance invariance to expected variability and dis-
criminability. In the future, the presented results on wood recognition will be
extended to a larger and more general texture database.
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