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a b s t r a c t

Switched Affine Systems (SAS's) is a class of Hybrid Systems composed of a collection of Affine Systems
(AS's) and a switching signal that determines, at each time instant, the evolving affine subsystem. This
paper is concerned with the observability and observer design for single-input single-output (SISO) SAS's
under unknown perturbation, for the case that no information about the switching signal is available. It

from the continuous output, meaning that it is not possible to infer the evolving AS by using only the
information provided by the output of the SAS. Nevertheless, by taking advantage of the knowledge on
the disturbance bound, new distinguishability conditions are derived, making possible to distinguish the
evolving AS. By using these new distinguishability conditions, an observer scheme for SISO SAS's, subject
to unknown switching signal and unknown perturbations, is presented. Such an observer scheme
determines in finite-time the evolving AS. Furthermore, it estimates both the state of the system and the
disturbance. Finally, the proposed observer scheme is effectively applied for a non-autonomous chaotic
modulation application, which is an attractive method for spread-spectrum secure communication in
which the message is fed as a disturbance to a chaotic SAS and the output is then transmitted through an
open channel to a receiver, which is an observer algorithm that recovers the message (the disturbance)
from the output signal.

& 2016 European Control Association. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Switched Affine Systems (SAS's) are composed of a collection of
Affine Systems (AS's) and a switching signal determining, at each time
instant, the evolving affine subsystem. Although SAS's are formed of
simple AS's, this class of systems may exhibit highly non-linear
behaviors, such as chaos [34,26,48,52,27,32,38,13], under a suitable
selection of the affine subsystems and the switching rule.

SAS's are interesting models for applications in different engi-
neering areas. For instance, process systems frequently include the
operation of discrete actuators, each combination of the actuator
states leads to an operation mode in which the behavior of the
lished by Elsevier Ltd. All rights re

ez-Gutiérrez)cr.
.(S. Čelikovský)art@gdl.
v.mx.(B. Castillo-Toledo)
system is ruled by a continuous model [1,25,8]. In the same area,
nonlinear continuous dynamics are frequently approximated by
AS's operating at different operation points, thus the active AS
depends on the continuous state, leading to autonomous switch-
ing as a piecewise affine system [39,43]. In power electronic sys-
tems, the presence of semiconductors that may be either con-
trolled or autonomously driven together with linear components
leads to switched linear models [17,44]. The analysis and control of
these kinds of systems, based on SAS's, are frequently affected by
disturbances and parametric variations, particularly when a SAS
model is used to approximate a nonlinear continuous behavior like
in process control. For this reason, such analysis should be per-
formed by taking into account the disturbances affecting the
system.

This paper is concerned with the observability and the observer
design for single-input single-output (SISO) perturbed SAS's, under the
assumption that the switching signal in unknown. Mainly considering
served.
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the unperturbed case, the observability has been extensively studied
for Switched Linear Systems (SLS) in [46,15,7], whose results can be
straightforwardly extended to SAS's, by means of the so-called distin-
guishability property, which allows to infer the currently evolving
subsystem based on the input–output information only. Regarding the
perturbed case, in [18] the distinguishability property using the input–
output information of the perturbed SLS has been characterized, based
on invariant subspaces analysis. Nevertheless, as we show hereinafter,
when disturbances (unknown inputs) are considered for single-input
single-output SAS's, every pair of affine systems are indistinguishable
from the output, i.e. the output information is not sufficient to deter-
mine the evolving AS. Thus, for this frequent case, new distinguish-
ability analysis that take into account additional information, such as
the knowledge on the disturbance bound, are required.

Regarding the observer design in SLS, many contributions have been
presented in the literature in the last years [47,12,20,31,49,33,9,11,19].
However, to the best of our knowledge the available results are not
applicable to the problem under consideration in this paper. For
instance, in [47], in order to infer the evolving subsystem and the
unknown input, it is required to know not only the output but also the
initial condition. In [12,20,31,49,33], in order to recover the state and
the unknown input, it is required to know the switching signal (i.e. the
evolving system is always known). In our setting, the switching signal is
unknown. Regarding observers for SLS subjected to an unknown
switching signal [9,11,35,19], most of the methods consider the
unperturbed case and are valid for observable SLS that require that each
pair of subsystems is distinguishable [19]. Nevertheless, such results
cannot be straightforwardly applied to the perturbed case. In addition,
we show that, unlike [35], the continuous state and the switching signal
can be estimated in the perturbed case even if there is not a common
transformation that transforms every AS to the observability form.

For unperturbed systems, multi-observer structures have been
proposed in the framework of supervisor [22] and adaptive control
[3,40], where they are used to determine a suitable controller (from a
bank of controllers) for the evolving process based on the smallness of
the output estimation error. Unfortunately, as shown hereinafter,
when considering perturbed SISO AS's, each observer in the multi-
observer structure may give a zero output estimation error. Thus, a
different decision method for inferring the evolving AS and for the
observer design is required.

1.1. Contribution

We first show that every pair of observable SISO SAS's become
indistinguishable from the output when disturbances are present,
i.e., it is not possible to infer which AS of the SAS is evolving using
only the output trajectory. For this reason, we derive new distin-
guishability results, according to which, by taking advantage on
the knowledge of the disturbance bound, a pair of perturbed SISO
AS's may become distinguishable.

Furthermore, in this paper we present an observer scheme for
perturbed SISO SAS's subject to an unknown switching signal,
where the continuous state, the evolving subsystem and the
unknown disturbance are inferred from the output information
and the knowledge of the disturbance bound. Although our
approach uses a multi-observer structure to infer the evolving
subsystem, this task would be impossible to achieve by using other
multi-observer structures already proposed, as [22,3,40], which
are mainly applicable in the framework of supervisor and adaptive
control for unperturbed systems.

Finally, it is shown that the proposed observer can be effectively
applied for chaos-based modulation, in particular, to the non-
autonomous chaotic modulation. In particular, to the non-autono
mous chaotic modulation [50] (also known as message-embedded
modulation [14,2,29,37]) using chaotic attractors generated by SAS's,
where a message is embedded by means of a non-linear function that
affects the phase of the chaotic attractor, thus acting as a disturbance.
The modulation signal is obtained as the output of the chaotic system
which can be transmitted through an open channel. At the receiver,
the proposed unknown input observer recovers the message using the
knowledge of the nominal system. Thus, the proposed observer
enables a wide class of chaotic attractors generated by SAS's (see e.g.
[34,26,48,52,27,32,38,13]) to be used in non-autonomous chaotic
modulation. To the best of our knowledge, the non-autonomous
modulation using general classes of SAS's with chaotic behavior has
not been presented in the literature.

The manuscript is organized as follows. Section 2 recalls basic
concepts on SAS's and the distinguishability property on these
systems. Section 3 introduces a new distinguishability condition
that will be used in the observer design. Section 4 introduces the
observer scheme. Section 5 presents the application of the pro-
posed methodology to chaos-based non-autonomous modulation.
Finally, some conclusions are presented in Section 6.
2. Preliminaries
Definition 1. A SAS ΣσðtÞ is composed of a collection of AS's
F ¼ fΣ1;…;Σmg, each one evolving in the state space X ¼Rn, and
a switching rule σ : RZ0-f1;…;mg determining the evolving AS
at each time. The state equation of a SISO ΣσðtÞ is

_xðtÞ ¼ AσðtÞxðtÞþbσðtÞ þsσðtÞdðtÞ; xðt0Þ ¼ x0AX0⊊X ;

yðtÞ ¼ cσðtÞxðtÞ;
σ : RZ0-f1;…;mg ð1Þ

where yAR is the output signal and dAR is an unknown input
signal (e.g., disturbance) assumed to be continuous and piecewise
differentiable. The evolving AS, when σðtÞ ¼ i, is represented by Σ i

ðAi; bi; ci; siÞ or simply by Σi, where Ai, bi, ci and si are constant
matrices and vectors of appropriate dimensions. In our setting, the
switching signal σðtÞ is assumed to be unknown (i.e. the currently
evolving AS is not known).

In the sequel, expressions yiðt; x0; dðtÞÞ and xiðt; x0; dðtÞÞ will be
used to denote the output and the state trajectories, respectively,
obtained when the system Σi is evolving from the initial state x0
under the disturbance d(t).

When a SAS (1) is composed of AS's, it may occur that fundamental
properties of AS's may not be preserved in the occurrence of
switching among them. Furthermore, highly nonlinear dynamics such
as chaotic behavior can be generated by a simple SAS.

Throughout this paper, it will be assumed that the considered
SAS's fulfill the following assumptions.

Assumptions.

1. Each AS Σ iðAi; bi; ci; siÞ composing the SAS is assumed to be
observable with unknown input d(t) (also known as strongly
observable), i.e. the pair ðAi; ciÞ is observable, the pair ðAi; siÞ is
controllable and the triple ðAi; si; ciÞ has no transmission zeros.

2. The set X0 of all possible initial conditions is bounded, i.e., Jx0
Joδ for all x0AX0, with known δ.

3. Zeno behavior is excluded and there is a minimum dwell-time
between any two switching instants. However, only the mini-
mum dwell time for the first switching τd is assumed to
be known.

4. The disturbance d(t) is assumed to satisfy for all tZ0, jdðtÞjoD
and j _dðtÞjoL with known constants D and L.

Since Zeno behavior is excluded, solutions to (1) are under-
stood in the sense of Carathéodory [30, Section 1.2], which are
absolutely continuous and piecewise differentiable functions [30].
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For the case of state dependent switching, the minimum dwell-
time condition for the first switching can be enforced by imposing a
suitable region for the system's initial condition, which can be com-
puted by using the bound of the disturbance and minimum-time
control methods that ensure that the switching condition will not be
satisfied before a predefined time regardless of the disturbance
affecting the SAS, see e.g. [10, Algorithm 3.5.1 and Problem 3.5.1].

2.1. Distinguishability in perturbed SISO SAS's

An important concept related to the observability and the
observer design problems in SAS's is the distinguishability prop-
erty, which deals with the possibility of inferring, from the con-
tinuous output of the SAS, the evolving AS even in the presence of
disturbance [18]. Here we call such property as output-
distinguishability to emphasize that it is based on the output
information only. Let us formally introduce such property.

Definition 2. The AS Σi is said to be output-indistinguishable from
the AS Σj if there exists a pair (x0, d(t)) applied to Σi and (x00, d

0ðtÞ)
applied to Σj such that Σi and Σj produce the same output, i.e.

(x0; x00; dðtÞ; d0ðtÞ such that yiðt; x0;dðtÞÞ ¼ yjðt; x00; d0ðtÞÞ; 8 tZ0

ð2Þ
otherwise Σi is said to be output-distinguishable from Σj.

Thus, if Σi is output-indistinguishable fromΣj it is impossible to
determine from the output of the SAS whether the evolving AS is
Σi or Σj, the initial condition is x0 or x00 and the affecting dis-
turbance is d(t) or d0ðtÞ.

Notice that, in general, the pairs ðx0; dðtÞÞ and ðx00; d0ðtÞÞ such that
(2) holds are not required to be equal. For the case when they are
equal the continuous initial condition and the affecting dis-
turbance can be uniquely determined even if it is impossible to
assert which AS is the evolving one.
3. New distinguishability conditions for perturbed SISO SAS's

In this section, it is shown that any pair of SISO perturbed AS's is
output-indistinguishable. For this reason, a new distinguishability
condition is introduced in order to support the design of the
observer algorithm to be introduced in Section 4. This new con-
dition takes advantage of the known disturbance bound
(Assumption 4) in order to gain distinguishability.

Proposition 1. Any two SISO AS's Σi and Σj are output-indis-
tinguishable under disturbance. Otherwise stated, for every initial
condition x0 and disturbance d(t) applied to Σi there exist an initial
condition x00 and a disturbance d0ðtÞ (not necessarily equal to x0 and d
(t)) applied to Σj such that the corresponding output trajectories are
equal, i.e. yiðt; x0; dðtÞÞ ¼ yjðt; x00; d0ðtÞÞ for all time tZ0, thus making
impossible to infer from the output which is the evolving AS.

Proof. Consider a similarity transformation x¼ Ti �x such that Ti ¼
O�1
Σ i

and OΣ i
is the observability matrix of the AS Σi (recall that a

nonsingular coordinate transformation does not change the input–
output behavior of the AS). By Assumption 1, such similarity
transformation is well defined and the transformed system is in
the observability canonical form with the unknown disturbance d
(t) affecting only the last state variable [24].

In the new coordinates the AS is represented by

_�x1 ¼ �x2þ �b
i
1

_�x2 ¼ �x3þ �b
i
2

⋮

_�xn ¼ �ain �x1�ain�1 �x2�⋯�ai1 �xnþ �b
i
nþβidðtÞ

yðtÞ ¼ �x1

where

snþai1s
n�1þ⋯þain�1sþain ð3Þ

is the characteristic polynomial of Ai. Now, let us introduce the
variable transformation x1 ¼ �x1 and xk ¼ �xkþ �b

i
k�1, kAf2;…;ng,

thus x ¼ T �1
i ðxþbiÞ. Then, the AS Σi can be represented as

_x1 ¼ x2
_x2 ¼ x3
⋮
_xn ¼ αiðxÞþβidðtÞ
yðtÞ ¼ x1 ð4Þ
where

αiðxÞ ¼ �ainx1�
Xn
k ¼ 2

ain�kþ1 xk� �b
i
k�1

� �
þ �b

i
n: ð5Þ

Notice that the new state variables are the output and their deri-
vatives, i.e.

xk ¼
dk�1yðtÞ
dtk�1

; 8kAf1;…;ng ð6Þ

Now, applying the analogous transformation procedure to the
AS Σ jðAj; bj; cj; sjÞ, with x ¼ T �1

j ðxþbjÞ, Σj can be represented as

_x1 ¼ x2
_x2 ¼ x3
⋮
_xn ¼ α jðxÞþβ jdðtÞ
yðtÞ ¼ x1 ð7Þ
Notice that if the disturbance d(t) is applied to Σi and the signal

d0ðtÞ ¼ 1

β j
αiðxÞ�α jðxÞþβidðtÞ
� �

ð8Þ

is applied to Σj as a disturbance then (4) and (7) have the same output
behavior. Therefore, the output trajectory obtained when the dis-
turbance d(t) is applied to the system Σi with the initial condition x0 is
equal to that obtained when the disturbance d0ðtÞ in (8) is applied toΣj

with the initial condition x00 ¼ TjT
�1
i ðx0þbiÞ�bj. Notice that it is

possible to compute such x00 and dðtÞ0 for any pair x0 and d(t). Thus, it is
impossible to determine from the output whether the evolving sub-
system is Σi or Σj. Similarly, it is impossible to determine from the
output whether the initial condition is x0 or x00. Therefore, the AS Σi is
output-indistinguishable from Σj. □

The previous proposition establishes that any pair of perturbed
SISO AS's are always output-indistinguishable. The next proposi-
tion additionally establishes that Σi and Σj become output-
indistinguishable only with disturbances of the form (8).

Proposition 2. Let Σi and Σj be perturbed AS's satisfying Assumption
1. Suppose the disturbance d(t) is applied to the system Σi with the
initial condition x0 and the signal d0ðtÞ is applied to Σj as a dis-
turbance with the initial condition x00. Both AS's produce the same
output trajectories iff d0ðtÞ fulfills (8) and x00 ¼ TjT

�1
i ðx0þbiÞ�bj,

where T �1
k ¼OΣk

with OΣk
being the observability matrix of Σk,

k¼ i; j.
Furthermore, the generated state trajectories xiðt; x0;dðtÞÞ and xjðt; x00;

d0ðtÞÞ fulfill with

xjðt; x0; dðtÞÞ ¼ TjT
�1
i ðxiðt; x00; d0ðtÞÞþbiÞ�bj:
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Proof. The sufficiency has been demonstrated above. To prove the
necessity, assume that (x0; x00; dðtÞ; d0ðtÞ such that yiðt; x0; dðtÞÞ
¼ yjðt; x00; d0ðtÞÞ. Let us consider the coordinate transformations xi

¼ T �1
i ðxiþbiÞ and xj ¼ T �1

j ðxjþbjÞ for Σi and Σj, respectively
(which do not affect the input–output behavior of the AS's). Since

yiðt; x0; dðtÞÞ ¼ yjðt; x00; d0ðtÞÞ, 8 tZt0, then dk

dtk
yiðt; x0; dðtÞÞ ¼ dk

dtk
yjðt; x00;

d0 ðtÞÞ, for all kZ0, which implies that xi ¼ xj and

αiðxiÞþβidðtÞ ¼ αjðxjÞþβ jd0ðtÞ. Based on these equations, it is easy
to see that d0ðtÞ must be equal to (8) in order to make Σi output-

indistinguishable from Σj and that, in such case, xjðtÞ ¼ TjT
�1
i

ðxiðtÞþbiÞ�bj, which particularly holds for xjð0Þ ¼ x00 ¼ TjT
�1
i

ðx0þbiÞ�bj. □

Lemma 1. Consider a SAS and suppose it is evolving in eitherΣi. By using
the knowledge of the disturbance bound D imposed by Assumption 4, it
can be inferred whether the system evolves in Σi or Σj if the signal d0ðtÞ
that, if applied to Σj as a disturbance, would make Σj output-indis-
tinguishable fromΣi does not satisfy the disturbance bound condition for a
proper time interval, i.e. if for a proper time interval it holds that

jd0ðtÞj ¼ 1

βj
αiðxÞ�αjðxÞþβidðtÞ
� ������

�����4D ð9Þ

Proof. The proof follows directly from the previous propositions.□

Notice that, in some cases, this bound condition does not
provide additional information for instance when βi

=βjo1 and
the system is evolving in a certain state region where αiðxÞ�αjðxÞ
is relatively small with respect to βidðtÞ. The following theorem
formalizes this new distinguishability condition.

Lemma 2. Consider a SAS and two AS's, Σi and Σj, of the collection.
Consider the disturbance bound D imposed by Assumption 4. Suppose
that the system is evolving in either Σi or Σj. Let Bij

x DRn be the set of
vectors x0ARn that fulfills

1
βj

αiðx0Þ�αjðx0Þ
� ������

�����4D 1þ βi

βj

�����
�����

 !
ð10Þ

where the polynomial functions αiðx0Þ and αjðx0Þ are given by (5).

During the evolution of the SAS, if for a proper time interval xðtÞABij
x ,

where xkðtÞ ¼ dk� 1yðtÞ
dtk

for kA ½1,..,n�, then it can be inferred whether

the system evolves in Σi or Σj. In such case, it is said that the pair Σi

and Σj is bound-distinguishable.

Proof. Considering jdðtÞjrD, the condition (10) implies the con-
dition (9). Thus, whenever the system is evolving in a state region
such that xðtÞABij

x , the conditions of Lemma 1 hold. Then it is
possible to determine whether Σi or Σj is evolving. □

Additional information can be exploited for the case when each LS
in known to only evolve in a sub-region of the state space X . Such is
the case in chaotic attractors where there exists a basin of attraction or
switching AS's, where the switching among the AS's is state dependent.

The sub-region in which a LS Σi is known to only evolve in is
defined as the containing set CΣ i

. The following result shows how the
information on containing sets can be used to distinguish between AS's.

Lemma 3. Consider two AS's Σi and Σj in the SAS. Let CΣ i
and CΣ j

be
two containing sets for the evolution of x(t) on Σi and Σj, respectively.
Suppose that the evolving AS is either Σi or Σj. If the output trajectory
is such that in a proper time interval

Tix�bjACΣ i
and Tjx�bj =2CΣ j

; ð11Þ

where xkðtÞ ¼ dk� 1yðtÞ
dtk

for kA ½1;…;n�, then it can be inferred that the
evolving system is Σi, not Σj. In such case Σi is said to be containing

set-distinguishable from Σj.

Proof. The proof follows from Proposition 2. If Σi is evolving and x

is such that xkðtÞ ¼ dk� 1yðtÞ
dtk

for kA ½1;…;n�, the evolving state tra-

jectory is xðtÞ ¼ TixðtÞ�bj, which according to the knowledge on
the containing set should satisfy TixðtÞ�bjACΣ i

. On the contrary, if

we suppose that the evolving AS is Σj then the state trajectory

would be TjxðtÞ�bj, but since TjxðtÞ�bj =2CΣ j
then Σj is not evol-

ving. Therefore, it can be asserted that Σi is evolving. □

The information of containing sets can be used together with
the disturbance bound to explore distinguishability. The following
theorem involves the previous results.

Theorem 1. Let CΣ i
be the containing set for the evolution of Σi, i¼

1;…;m (if such information is unavailable or the evolution of Σi is
unconstrained then consider CΣi

¼Rn), and let D be the bound on the
disturbance imposed in Assumption 4. Then the continuous and dis-
crete states of the SAS are observable for every x (where xkðtÞ ¼ dk� 1yðtÞ

dtk

for kA ½1;…;n� Þ such that pairwise Σi and Σj are either bound-
distinguishable or containing set-distinguishable.

Proof. The proof follows from Lemmas 2, 3 and Assumption 1.□
4. Observers synthesis

In this section, an observer structure for SISO SAS's, fulfilling the
aforementioned assumptions, is proposed. In the proposed struc-
ture, an observer is designed for each AS in the collection.

To illustrate our approach we use the High Order Sliding mode
(HOSM) differentiator proposed in [28]. Nevertheless, any exact
differentiator algorithm can be used. An alternative for the
observers design is the uniform robust exact differentiator pro-
posed in [4] (in such case, the convergence-time is bounded,
independently on the initial condition).

Another alternative is a step-by-step observer based on the
super-twisting algorithm, for which the observer gains can be
easily chosen with a priori time-convergence bound by using the
results from [45]; the drawback of this approach however is that
the observer is not global.

The idea is to design the observer for each AS in the SAS in such
a way that the error dynamic coincide with the differentiation
error of an exact differentiator, illustrated hereinafter for the
HOSM differentiator proposed in [28].

4.1. Estimation of the currently evolving AS

In this subsection an observer algorithm based on the HOSM
differentiator described in [28] is proposed for the detection of the
evolving AS and the estimation of the current continuous state and
the affecting disturbance.

Proposition 3. The AS Σ iðAi; bi; ci; siÞ admits the following global
finite-time observer:

_~x1 ¼ �ai1yþ ~x2þ �b
i
1þ l1ρjy� ~x1jn=ðnþ1Þsignðy� ~x1Þ

⋮

_~x j ¼ �aijyþ ~xjþ1þ �b
i
jþ ljρjjy� ~x1jðn� jþ1Þ=ðnþ1Þsignðy� ~x1Þ

⋮

_~xn ¼ �ainyþ �b
i
nþ ~dðtÞþ lnρnjy� ~x1j1=ðnþ1Þsignðy� ~x1Þ

_~d ¼ lnþ1ρnþ1signðy� ~x1Þ
~y ¼ ~x1 ð12Þ
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where l1;…; ln and ρ are observer parameters to be adjusted, ai1;…;

ain are the coefficients of the characteristic polynomial (3) of Ai, and �b
i
j

is the j-th element of the vector �bi ¼ T �1
i bi with

T �1
i ¼

1 0 ⋯ 0
ai1 1 ⋯ 0
⋮ ⋮ ⋱ 0

ain�1 ain�2 ⋯ 1

2
66664

3
77775

ci
ciAi

⋮
ciA

n�1
i

2
66664

3
77775: ð13Þ

Solutions to (12) are understood in the sense of Filippov [30,28].
The state and the disturbance estimates are given by x̂ðtÞ ¼ T i ~x

and d̂ðtÞ ¼ 1
βi

~dðtÞ, respectively. In other words, if the AS Σi is evolving

with the state trajectory x(t) and the affecting disturbance d(t) then,
after the observer converges in finite-time, the estimates x̂ðtÞ ¼ xðtÞ
and d̂ðtÞ ¼ dðtÞ will be produced.

Proof. Notice that T i as in (13) is the similarity transformation
taking the i-th AS into the observer canonical form [24]. Then, by
substitution, the estimation error eðtÞ ¼ T �1

i xðtÞ� ~xðtÞ evolves as

_e1 ¼ e2� l1ρje1jn=ðnþ1Þsignðe1Þ
⋮
_ej ¼ ejþ1� ljρjje1jðn� jþ1Þ=ðnþ1Þsignðe1Þ for j¼ 1;…; k�1:

⋮
_en ¼ ed� lnρnje1j1=ðnþ1Þsignðe1Þ
_ed ¼ βi _dðtÞ� lnþ1ρnþ1signðe1Þ

where ed ¼ βidðtÞ� ~dðtÞ: ð14Þ
This error evolution coincides with that of the differentiation error
of the HOSM differentiator [28]. Thus, with an appropriate gain
selection (l1;…; ln and ρ), the estimation error e(t) will converge to
zero after a finite-time t (it is well-known that such t can be made
arbitrarily small with a suitable selection of the gains), i.e. for all
tZt , x̂ðtÞ ¼ T i ~xðtÞ ¼ xðtÞ, and d̂ðtÞ converges to d(t). □

Let us provide a couple of comments regarding practical issues
during the observers synthesis:

� Previous proposition establishes that, if the gains are appro-
priated adjusted, the observer (12) corresponding to the evol-
ving AS will accurately estimate the state and the disturbance in
finite-time. See [28] for a selection of the observer gains for the
error dynamics (14) for up to 5th order. See [45] for the gain
selection of a second order error dynamic (14) together with a
tight estimation of the convergence time bound. For instance,
for a third order error dynamic (14), a proper gain selection is
l1 ¼ 9:5608, l2 ¼ 6:8681, l3 ¼ 0:0219 and ρn�14 jβijL=0:0081
[42], for a convergence time bound see [42].

� In our framework, it is expected that the observer correspond-
ing to the evolving AS converges before the first switching. Thus,
the time convergence must be lower bounded by the dwell time
τd imposed in Assumption 3. It is known that such convergence
bound can be obtained with an appropriate selection of the
observer gains, as the initial condition lies in a known bounded
set according to Assumption 2. It is shown in Appendix A that
such convergence bound can be obtained with an appropriate
selection of the observer gains, provided that the initial condi-
tion is bounded as required by Assumption 2. In particular,
assume that using the gain selection l1; l2;…; lnþ1, ρ, a time
convergence bound T f is obtained. It is shown in Appendix A
that the convergence time bound for a gain selection l1 ¼ ρl1,
l2 ¼ ρ2l2, …, lnþ1 ¼ ρnþ1lnþ1 and ρZ1 is given by Tf ¼ T f =ρ.

The next proposition demonstrates that if the observer of
another AS converges, then the estimate of the disturbance will be
equal to that of (8). Thus, by means of such estimated disturbance
and Lemma 1, the estimations provided by such observer can be
discarded.

Proposition 4. Let Σi be the evolving AS with x(t) as the state tra-
jectory and d(t) as the affecting disturbance. Let the observer asso-
ciated to Σj be designed as illustrated in Proposition 3. If the output
estimation error of the observer associated to Σj, denoted as
ejy ¼ y� ~yj, becomes zero then the observer will produce an estimate
of the state x̂ðtÞ and the disturbance d̂ðtÞ making Σi output-indis-
tinguishable from Σj, where d̂ðtÞ has the form of (8).

Proof. For the sake of simplicity, assume that the AS Σi and Σj are

represented in the observer canonical form [24]. Let Σi be the

evolving AS with xðtÞ being the state trajectory and let ~xjðtÞ be the
state of the observer associated to Σj. Denote the entries of the

error vector as êjk ¼ xk� ~xjk, k¼ 1;…;n. Thus, if y� ~xj1 ¼ êj1 ¼ 0 then

the dynamic behavior of êj ¼
h
ê j
1 ⋯ êjn

iT
becomes

0¼ ê j
2þ
�
�ai1yþ �b

i
1

�
�
�
�aj

1yþ �b
j
1

�

_̂e j
2 ¼ ê j

3þ
�
�ai2yþ �b

i
2

�
�
�
�aj

2yþ �b
j
2

�
⋮

_̂e j
n ¼

�
�ainyþ �b

i
nþβidðtÞ

�
�
�
�aj

nyþ �b
j
nþ ~d

jðtÞ
�

ð15Þ

Differentiating the first equation and combining it with the

second equation in (15) we get ê j
3 ¼ � �ai1 _y�ai2yþ �b

i
2

� �
þ�

�ak1 _y�ak2yþ �b
i
2

�
. Differentiating ê j

3 and combining it with (15),

we get ê j
4 ¼ � �ai1 €y�ai2 _yþai3yþ �b

i
2

� �
þ �ak1 €y�ak2 _yþaj

3yþ �b
i
2

� �
.

Following this procedure we get that ê j
n ¼ � �ai1 y

ðn�2Þ�⋯�
�

ain�1

yþ �b
i
2

�
þ �ak1 y

ðn�1Þ�⋯�aj
n�1yþ �b

i
2

� �
. Differentiating ê j

n and

combining it with the last equation of (15) we get that

d̂
jðtÞ ¼ 1

β j
~d
jðtÞ, with ~d

jðtÞ ¼ αði; xÞ�αðj; xÞþβidðtÞ
� �

, thus d̂
jðtÞ is

equal to (8). Since with ej
y ¼ y� ~y j ¼ 0 the observer (12) becomes a

copy of Σj represented in the canonical observer form producing

the same output information as Σi then the state estimate

obtained by the observer associated to Σj is the one given in
Proposition 2. □

Remark 1. In [9], a super-twisting based step-by-step observer
was proposed for autonomous switched nonlinear systems, i.e.
where no inputs are present. Such approach requires, for each
step, a super-twisting algorithm, which is designed by using the
known bounds for the first n derivatives of the output. In our
approach, which allows to cope with unknown inputs, such bound
knowledge is not required for the convergence of the observer
(12), instead only the knowledge on the bound for j _dðtÞj is needed
(Assumption 4).

4.2. Observer scheme

The complete observer scheme (Fig. 1) includes a collection of
finite-time observers, one for each AS, determining thus the
evolving AS by detecting the only observer that satisfies j ~dðtÞjrD
and eðtÞ ¼ yðtÞ� ~yðtÞ ¼ 0 for a proper time interval. The state esti-
mate is given by the observer of the evolving AS, once it is
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Fig. 1. SAS observer.
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determined. This is formally stated in the following proposition. In

the sequel, let us denote as x̂iðtÞ, ŷiðtÞ and d̂
iðtÞ the estimates of the

state, the output and the disturbance provided by the observer of
the i-th AS, respectively. Similarly, let us denote as eiðtÞ ¼ yðtÞ� ŷiðtÞ
the estimation output error provided by such observer.

Proposition 5. Let ΣσðtÞ be a SAS and consider a collection of
observers of the form (12), one for each AS in the SAS, evolving in
parallel, as depicted in Fig. 1. Suppose that the system remains in the
initial AS a time longer than τd, and suppose that each observer has a
time convergence bound τ{τd. Suppose that the system evolves
inside a region in which the output and their derivatives fulfill xABij

x ,
for every pair of AS's Σi and Σj, as defined in Theorem 1. Then, the
state of the switching signal σðtÞ can be detected by the index k of the
only k-th observer satisfying

x̂kðtÞACΣk
and

���d̂kðtÞ rD and ekyðtÞ ¼ 0 8 t in a proper
���

interval½τ; τþΔt�; Δt40 ð16Þ

Once it is inferred that the evolving AS is Σk, an exact estimate of the
continuous state of the SAS and the affecting disturbance is provided
by the observer associated to Σk.

Proof. If Σi is evolving with x(t) as the state trajectory and d(t) as
the affecting disturbance, then the observer associated to the AS Σj

either gives eya0 8 t4τ, from which it can be asserted that Σk is
not the evolving AS, or it precisely produces an estimate of the
state x̂kðtÞ and the disturbance d̂

kðtÞ when Σi is output-
indistinguishable from Σk, according to Proposition 4. However,
the conditions of Theorem 1 are satisfied, thus if iak (i.e. for an
observer not associated to the evolving AS) then the condition (16)
cannot hold for a proper time interval. Consequently, jd̂kðtÞj4D
and thus it can be asserted that Σk is not the evolving AS. On the
contrary, if i¼k (i.e. for the observer associated to the evolving AS)
then, according to Proposition 3, exact estimates of the evolving
state trajectory x(t) and the affecting disturbance d(t) are obtained
by the observer, which clearly is consistent with the knowledge on
the disturbance bound, i.e. (16) is satisfied. □

According to the previous proposition, the evolving AS can be
detected as the index k of the only observer satisfying (16). After a
switching occurrence, the same observer can no longer maintain
the condition (16). Thus, the switching occurrence is detected
when such condition no longer holds.

Based on the previous propositions, the observer structure is
presented in the next algorithm. The observer structure estimates
the switching signal, the continuous state and the affecting
disturbance.

Algorithm 1. State and disturbance observer implementation.
Input The collection of AS's F . The disturbance bound D.
The first switching dwell time τd. The bound for the pos-

sible initial state δ. The output evolution y(t) of the SAS.

Output The estimates of the state and the disturbance are

given by x̂ðtÞ and d̂ðtÞ, respectively.
Synthesis:

� Design an observer (12) with time convergence bound
τ{τd for each Σ iAF .
� Initialize each observer state and the disturbance as ~xið
0Þ ¼ 0 and ~d

ið0Þ ¼ 0. Initialize the switching signal estimate
as σ̂ ð0Þ ¼ 1. Initialize the state estimate and disturbance

estimate as x̂ð0Þ ¼ 0 and d̂ð0Þ ¼ 0, respectively.
Operation:

� All the observers run in parallel.

� If there is an observer of an AS Σk satisfying (16), i.e. such

that ekyðtÞ ¼ 0 and jd̂kðtÞjrD for a proper time interval, then

set σ̂ ðtÞ ¼ k, x̂ðtÞ ¼ T kx̂
kðtÞ and d̂ðtÞ ¼ d̂

kðtÞ.

� After the evolving AS Σk has been detected, a switching
occurring at time ts can be detected as the time instant
when the observer associated to Σk no longer satisfies (16).

In that case, the observer associated to each AS Σi has to be

reinitialized as ~xiðtsÞ ¼ T �1
i x̂kðtsÞ and ~d

iðtsÞ ¼ ~d
kðtsÞ.
Proposition 6. Consider a SAS ΣσðxÞ fulfilling Assumptions 1–4.
Suppose that the state of ΣσðxÞ evolves in a state region such that the
output and their derivatives fulfill the condition in Theorem 1. Then
the state x(t) of ΣσðxÞ, the disturbance d(t) and the switching signal
σðtÞ are estimated by the observer structure of Fig. 1 following
Algorithm 1.

Proof. Proposition 5 guarantees that if the AS Σk is evolving then
only its associated observer will satisfy condition (16) for a proper
time interval, thus the evolving system is detected and exact
estimates of the continuous state x(t) and the affecting disturbance
d(t) are given by x̂kðtÞ and d̂ðtÞ, respectively. Next, after a switching
occurrence the condition of Proposition 5 can no longer hold, thus
the switching time is detected. Since no jumps occur in the con-
tinuous state of ΣσðxÞ, by reinitializing each observer with the
estimated value at the switching time, all the observers have
accurate estimates of the state and the disturbance, but only the
observer associated with the new evolving system will satisfy
condition (16). Consequently, no additional time is required for the
convergence of the observer scheme. Following in this way the
switching signal σðtÞ, the continuous state x(t) and the affecting
disturbance d(t) are continuously estimated. □
5. Application to chaos-based non-autonomous modulation

A SAS may exhibit a complex nonlinear behavior, such as chaos,
under a suitable selection of the affine subsystems and the
switching rule. Chaotic SAS's exhibit properties like wide spread
spectrum, dense periodic orbits and strong dependence on the
initial conditions. These features make them suitable for commu-
nication applications, mainly because broadband information
carriers enhance the robustness of communication channels
against interferences with narrow-band disturbances, which is the
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Σ2

Σ3

Fig. 2. Chaotic modulation/demodulation process.

Fig. 3. High sensitivity to the initial condition. Let x(t) and x0ðtÞ be trajectories of
ΣσðxÞ starting at the initial condition x0 ¼ ½1 0 0:5�T and x00 ¼ ½0:9999 0 0:5�T ,
respectively. The difference ϵðtÞ ¼ xðtÞ�x0ðtÞ is shown above.

Fig. 4. Preservation of the multiscroll attractors under small disturbances.
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basis of spread-spectrum communication techniques. In chaos-
based communications, the broadband coding signal is generated
at the physical layer rather than algorithmically, as in code division
multiple access [5]. Additionally, the irregular signals and see-
mingly randomness of chaotic systems make them useful to hide
information, enhancing software-based encryption, to achieve
privacy in the communication [50,14].

One of the chaos-based modulation methods is the non-
autonomous chaotic modulation [50] (also known as message-
embedded modulation [14,2,29,37]), which has been previously con-
sidered using the Lorenz system [29] and the Generalized Lorenz
system [14] as the chaotic attractors. In this modulation method, a
message is embedded by means of a non-linear function that is then
fed to the chaotic system as an input. The modulated signal (which is
an analog signal) to be transmitted is obtained as the output of the
chaotic system. The receiver recovers the message from the trans-
mitted signal by synchronization with the emitter. From a control
theory perspective, the original message is estimated from the
modulated signal by means of a disturbance observer that takes
advantage from the knowledge of the nominal system.

In our approach, the chaotic attractor for chaos-based non-auton-
omous modulation is assumed to be generated by a SAS. One of the
main advantages of using SAS's is the simple circuitry required for the
implementation of the chaotic system for instance using Chua's circuit
[34], DC to DC converters [16], or the general jerk circuit [51,38].

In this section we show that the proposed observer design for
perturbed SISO SAS's can be applied for the non-autonomous
chaotic modulation using general chaotic attractors generated by
SAS's (see e.g. [34,26,48,52,27,32,13]). This modulation/demodu-
lation process is depicted in Fig. 2.
5.1. Multiscroll attractors by switched affine systems

Let us consider for instance the multiscroll attractor ΣσðtÞ pro-
posed in [13] given by the following collection of AS's
A
 b
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together with a state dependent switching rule:

σðtÞ ¼
1 if x1ðtÞZ1=3
2 if �1=3ox1ðtÞo1=3
3 if x1ðtÞr�1=3

8><
>:

Notice that the state x is unknown at the receiver, thus if the
switching depends on an unmeasured state then the switching
signal σðtÞ is unknown at the receiver.

Because of the message-embedding method of Fig. 2 using the
nonlinear function gðx;mÞ, the estimates of both the continuous
state and the disturbance are required for recovering the hidden
message mðtÞ. Moreover, once x(t) and d(t) are estimated the
recovery of the hidden message by means of the function hðx̂; d̂Þ is
straightforward. For this reason, in this example we focus on the
estimation of both x(t) and d(t) and for simplicity the func-
tion gðx;mÞ of Fig. 2 is assumed to be such that gðx;mÞ ¼m, hence
dðtÞ ¼mðtÞ (such method is known as non-autonomous chaotic
modulation), however different gðx;mÞ functions enhancing the
security of the communication can be straightforwardly addressed.

In [13], it was shown that ΣσðtÞ as defined above is a chaotic
attractor. Fig. 3 shows the high sensitivity to the initial condition in
the presence of the disturbance and Fig. 4 displays the multi-scroll
behavior of ΣσðtÞ.

Although measurement (or channel) noise is not affecting the
system, this example has practical applications in fiber–optic and
visible–light communications, for instance, visible light commu-
nication systems in indoor have very high signal-to-noise-ratio



Fig. 5. From top to bottom: SAS output vs output estimation of each observer,
disturbance vs estimation of the disturbance of each observer, switching signal.
Estimation Process: Estimation of the evolving AS. Switching occurrence.
Switching Detection. Reinitialization of the observer. Detection of the sub-
sequent evolving AS.

Fig. 6. Chaotic synchronization; estimation of the continuous state x(t), the
switching signal σðtÞ and the information signal d(t).
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(SNR) in the range of 40–70 dB [41,6]. Under such SNR the effect of
noise is negligible.

Let us analyze the fulfilling of Assumptions 1–4 and the con-
dition of Theorem 1 for this application example.

� First, it is always possible to impose a suitable bound for the
message and hence on the disturbance.

� The evolution inside the basin of attraction of a chaotic attractor
is confined inside an invariant bounded set [21]. For instance,
such bounded set can be obtained by using the methodology
proposed in [23], where piecewise quadratic Lyapunov func-
tions are used to derive tight bounds for the chaotic oscillations
and for the evolution of each individual AS.

� Zeno behavior does not occur in this system. This can be seen
from the vector field and the definition of the switching signal,
since the vector fields of the AS's point in the same direction
relative to the switching surface [30]. In detail, let us denote as
Ω1 ¼ fxjx1 ¼ 1=3g the hyperplane between Σ1 and Σ2. Then, it is
easy to verify that the vector fields of Σ1 and Σ2 are in the same
direction (in the direction of x2) in the neighborhood ofΩ1. This
also occurs for the switching hyperplane Ω2 ¼ fxjx1 ¼ �1=3g
between Σ2 and Σ3.

� Regarding the assumption on the minimum dwell time for the
first switching, regions for suitable initial conditions guaran-
teeing that no switching may occur before τd can be found by
using minimum-time control methods, which allow to obtain,
by computational methods, the set of states that can be reached
from x0 by a bounded control with time trτd (in our case a
bounded disturbance), see [10], Algorithm 3.5.1 and Problem
3.5.1. Thus, appropriate bounds for the initial conditions can be
provided by the system designer.

� A suitable output for each AS can be selected by the designer to
fulfill Assumption 1 together with the bound-distinguishability
condition in Theorem 1. For instance,if y¼ x2 then Σ1 and Σ3

can be proved to be indistinguishable by showing that both AS's
have the same set of equations when written in the form of (4),
with α1ðxÞ ¼ α3ðxÞ ¼ �9:1623x1�3:2792x2�1:3563x3. More-
over, α2ðxÞ�α1ðxÞ ¼ 1:2083x1 and the condition of Theorem 1
is not satisfied for x1 ¼ x2Að�1;1Þ. On the contrary,if y¼ x3 and
the disturbance dðtÞ ¼mðtÞ is bounded by D¼1 then the condi-
tion of Theorem 1 is satisfied. In detail, β1 ¼ β2 ¼ 1 and

α1ðxÞ ¼ �9:1623x1�3:2792x2�1:3563x3þ5:5355

α2ðxÞ ¼ �7:9540x1�3:2792x2�1:3563x3
α3ðxÞ ¼ �9:1623x1�3:2792x2�1:3563x3�5:5355:

Thus, α1ðxÞ�α3ðxÞ
���¼ 11:07142D

��� and for x1 ¼ x3A ð�2:5;2:5Þ���α2ðxÞ�α1ðxÞ
���¼ ����5:5355þ1:2083x1

���42D and
���α2ðxÞ

�α3ðxÞ
���¼ 5:5355þ1:2083x1

���42D:
���

It can be seen by numerical simulation that the evolution inside
the basin of attraction satisfies x3A ð�2:5;2:5Þ as shown in Fig. 4.

Now, let us report the results. The demodulation process, i.e.
the chaotic synchronization and the estimation of the signal d(t),
for the chaotic system ΣσðtÞ described above is shown in Figs. 5–7.

In Fig. 5, in time point it is shown that only the observer
associated with the evolving AS Σ3 is able to satisfy the conditions
of Proposition 5 for a proper time interval before the first
switching. Thus, it is asserted that Σ3 is evolving. Next, the
switching occurrence is detected when the observer associated

to Σ3 no longer maintains
��� ~dkðtÞ

���oD with ekyðtÞ ¼ 0, as indicated by
. Once the switching occurrence is detected then each observer

is reinitialized, as indicated in , and after the reinitialization
only the observer associated to Σ2 is able to maintain the



Fig. 7. Estimation of the signal d(t) by the SAS observer.
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condition
���d̂kðtÞ

���oD with ekyðtÞ ¼ 0 as shown by . Consequently,

the switching signal σðtÞ, the continuous state x(t) and the signal d
(t) can be estimated, as shown in Fig. 6.

The discontinuities in the estimated variables that appear in
Figs. 6 and 7 occur because the initial condition of the estimated
switching signal was σ̂ ðt0Þ ¼ 1, thus the continuous state and the

disturbance were estimated as x̂ðtÞ ¼ x̂1ðtÞ and d̂ðtÞ ¼ d̂
1ðtÞ,

respectively. Once the evolving AS is detected this value was
updated to σ̂ ðt0Þ ¼ 3 and the estimates of the continuous state and
the affecting disturbance were updated to x̂ðtÞ ¼ x̂3ðtÞ and

d̂ðtÞ ¼ d̂
3ðtÞ. The estimate of the signal d(t) by the SAS observer is

also shown in Fig. 7.
6. Conclusions

Regarding observability of SISO SAS's, in this paper it has been
shown that in the presence of disturbances every pair of AS's are
always indistinguishable from the continuous output. Never-
theless, it has been demonstrated that by taking advantage of the
knowledge on the disturbance bound, it would be possible to
distinguish which is the evolving AS. By using such information,
new distinguishability conditions have been introduced.

An observer scheme for SISO SAS's subject to unknown
switching signals and unknown perturbations has been presented.
It has been shown that the proposed observer can be effectively
applied in the non-autonomous chaotic modulation, which is an
attractive method for spread-spectrum secure communications
[36], using SAS's with chaotic behavior.
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Appendix A
Proposition 7. Let the initial conditions of the observer (12) be
taken as zero and let the continuous initial condition of the SAS (1) be
bounded by δ, i.e. Jx0 Joδ with a known constant δ, as in
Assumption 2. Then for every constant τk, the gains of (12) can be
designed such that the estimation error (14) converges to the origin in
a finite time lower than τk.

Proof. Consider the error dynamics given in (14) which is finite-
time stable. Take ρZ1 and consider the time-scaling �t ¼ tρ toge-
ther with the coordinate change ϵ¼ P �ϵ with P ¼ diagð1;ρ;…;ρnÞ
and �ϵ ¼ ½ �e1 ⋯ �en �ed� and d¼ ρnþ1 �d. These transformations and
time scaling take (14) into the following form:

dð �e1Þ
d�t

¼ �e2� l1j �e1jn=ðnþ1Þsignð�e1Þ
⋮

dð �enÞ
d�t

¼ �ed� lnj �e1j1=ðnþ1Þsignð �e1Þ

dð �edÞ
d�t

¼ _�dðtÞ� lnþ1signð�e1Þ ðA:1Þ

which does not depend on ρ. Therefore, (A.1) is finite-time stable
and 8δ40, exists �τd such that it holds

�ϵð�t ; �ϵ0Þ ¼ 0; 8 �ϵ0 such that J �ϵ0 Joδ and 8 �tZ �τd

where �ϵ0 ¼ �ϵðt0Þ. Going back to the original coordinates ϵ and the
real time t, the above implies that

ϵðt; ϵ0Þ ¼ 0; 8ϵ0 such that Jϵ0 Joδ and 8 tZ �τd=ρ:

Indeed, the above implication is correct as the inequality Jϵ0 J
oδ clearly implies that J �ϵ0 Joδ due to the straightforward
inequality

J �ϵ Jr JϵJ ; 8ρZ1:

Therefore 8δ; τd40 there exists ρðδ; τdÞ such that ϵðt; ϵ0Þ ¼ 0, 8ϵ0
such that Jϵ0 Joδ and 8 tZτd. □
References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, S. Yovine, The algorithmic analysis of hybrid systems,
Theor. Comput. Sci. 138 (1) (1995) 3–34.

[2] J.M. Amigó, Chaos-based cryptography, in: L. Kocarev, Z. Galias, S. Lian (Eds.),
Intelligent Computing Based on Chaos, Studies in Computational Intelligence,
vol. 184, Springer, Berlin, Heidelberg, 2009, pp. 291–313.

[3] B.D. Anderson, T.S. Brinsmead, F. De Bruyne, J. Hespanha, D. Liberzon, A.
S. Morse, Multiple model adaptive control. Part 1: Finite controller coverings,
Int. J. Robust Nonlinear Control (11–12) (2000) 909–929.

[4] M.T. Angulo, J.A. Moreno, L. Fridman, Robust exact uniformly convergent
arbitrary order differentiator, Automatica 49 (8) (2013) 2489–2495.

[5] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-
Ojalvo, C.R. Mirasso, L. Pesquera, K.A. Shore, Chaos-based communications at
high bit rates using commercial fibre–optic links, Nature 438 (7066) (2005)
343–346.

[6] L.A. Azizan, M.S. Ab-Rahman, M.R. Hassan, A.A.A. Bakar, R. Nordin, Optimiza-
tion of signal-to-noise ratio for wireless light-emitting diode communication
in modern lighting layouts, Opt. Eng. 53 (4) (2014) 1–9.

[7] M. Babaali, G.J. Pappas, Observability of switched linear systems in continuous
time, in: Hybrid Systems: Computation and Control, Springer-Verlag, 2005,
pp. 103–117.

[8] A. Balluchi, L. Benvenuti, S. Engell, T. Geyer, K. Johansson, F. Lamnabhi-
Lagarrigue, J. Lygeros, M. Morari, G. Papafotiou, A. Sangiovanni-Vincentelli,
F. Santucci, O. Stursberg, Hybrid control of networked embedded systems, Eur.
J. Control 11 (4–5) (2005) 478–508.

[9] J. Barbot, H. Saadaoui, M. Djemaï, N. Manamanni, Nonlinear observer for
autonomous switching systems with jumps, Nonlinear Anal.: Hybrid Syst. 1
(4) (2007) 537–547.

[10] G. Basile, G. Marro, Controlled and Conditioned Invariants in Linear System
Theory, Prentice-Hall, Englewood Cliffs, 1992.

http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref1
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref1
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref1
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref1
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref2
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref2
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref2
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref2
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref3
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref3
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref3
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref3
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref4
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref4
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref4
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref5
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref5
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref5
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref5
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref5
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref6
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref6
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref6
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref6
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref8
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref8
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref8
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref8
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref8
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref9
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref9
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref9
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref9
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref10
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref10


D. Gómez-Gutiérrez et al. / European Journal of Control 34 (2017) 49–5858
[11] F.J. Bejarano, L. Fridman, State exact reconstruction for switched linear systems
via a super-twisting algorithm, Int. J. Syst. Sci. Englewood Cliffs, 42 (5) (2011)
717–724.

[12] F. Bejarano, A. Pisano, Switched observers for switched linear systems with
unknown inputs, IEEE Trans. Autom. Control 56 (3) (2011) 681–686.

[13] E. Campos-Cantón, J.G. Barajas-Ramírez, G. Solís-Perales, R. Femat, Multiscroll
attractors by switching systems, Chaos 20 (1) (2010) 1–6.

[14] S. Čelikovský, V. Lynnyk, Message embedded synchronization for the gen-
eralized Lorenz system and its use for chaotic masking, in: I. Zelinka, G. Chen,
O.E. Rössler, V. Snasel, A. Abraham (Eds.), Nostradamus 2013: Prediction,
Modeling and Analysis of Complex Systems, Advances in Intelligent Systems
and Computing, vol. 210, Springer International Publishing, Heidelberg, 2013,
pp. 313–322.

[15] E. De Santis, M.D. Di Benedetto, G. Pola, On observability and detectability of
continuous-time linear switching systems, in: Proceedings of the 42nd IEEE
Conference on Decision and Control, 2003, pp. 5777–5782.

[16] M. Di Bernardo, F. Garefalo, L. Glielmo, F. Vasca, Switchings, bifurcations, and
chaos in DC/DC converters, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
45 (2) (1998) 133–141.

[17] G. Escobar, A.J. van der Schaft, R. Ortega, A Hamiltonian viewpoint in the
modeling of switching power converters, Automatica 35 (3) (1999) 445–452.

[18] D. Gómez-Gutiérrez, A. Ramírez-Treviño, J. Ruiz-León, S. Di Gennaro, On the
observability of continuous-time switched linear systems under partially
unknown inputs, IEEE Trans. Autom. Control 57 (3) (2012) 732–738.

[19] D. Gómez-Gutiérrez, S. Čelikovský, A. Ramírez-Treviño, B. Castillo-Toledo, On
the observer design problem for continuous-time switched linear systems
with unknown switchings, J. Frankl. Inst. 352 (2015) 1595–1612.

[20] J.V. Gorp, M. Defoort, K.C. Veluvolu, M. Djemai, Hybrid sliding mode observer
for switched linear systems with unknown inputs, J. Frankl. Inst. 351 (7)
(2014) 3987–4008.

[21] C. Grebogi, E. Ott, J.A. Yorke, Chaos, strange attractors, and fractal basin
boundaries in nonlinear dynamics, Science 238 (4827) (1987) 632–638.

[22] J.P. Hespanha, D. Liberzon, A.S. Morse, Overcoming the limitations of adaptive
control by means of logic-based switching, Syst. Control Lett. 49 (1) (2003)
49–65.

[23] T. Hu, H. Jung, Estimation of magnitude of self-induced oscillations via pie-
cewise quadratic Lyapunov functions, IEEE Trans. Circuits Syst. I: Reg. Pap. 58
(12) (2011) 2872–2881.

[24] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[25] S. Kowalewski, O. Stursberg, N. Bauer, An experimental batch plant as a test

case for the verification of hybrid systems, Eur. J. Control 7 (4) (2001)
366–381.

[26] J. Lü, X. Yu, G. Chen, Generating chaotic attractors with multiple merged
basins of attraction: a switching piecewise-linear control approach, IEEE
Trans. Circuits Syst. I: Fundam. Theory Appl. 50 (2) (2003) 198–207.

[27] J. Lü, T. Zhou, G. Chen, X. Yang, Generating chaos with a switching piecewise-
linear controller, Chaos 21 (12) (2004) 344–349.

[28] A. Levant, Higher-order sliding modes, differentiation and output-feedback
controls, Int. J. Control 76 (9–10) (2003) 924–941.

[29] K.-Y. Lian, P. Liu, Synchronization with message embedded for generalized
Lorenz chaotic circuits and its error analysis, IEEE Trans. Circuits Syst. I:
Fundam. Theory Appl. 47 (9) (2000) 1418–1424.

[30] D. Liberzon, Switching in Systems and Control, Birkhäuser, Boston, 2003.
[31] J. Lin, Z. Gao, Observers design for switched discrete-time singular time-delay

systems with unknown inputs, Nonlinear Anal. Hybrid Syst. 18 (2015) 85–99.
[32] X. Liu, K.-L. Teo, H. Zhang, G. Chen, Switching control of linear systems for

generating chaos, Chaos Solitons Fractals 30 (2006) 725–733.
[33] I. Manaa, N. Barhoumi, F. M'Sahli, Unknown inputs observers design for a class
of nonlinear switched systems, Int. J. Model. Ident. Control 23 (1) (2015)
45–54.

[34] T. Matsumoto, L. Chua, M. Komuro, The double scroll, IEEE Trans. Circuits Syst.
32 (8) (1985) 797–818.

[35] L. Menini, C. Possieri, A. Tornambè, On observer design for a class of
continuous-time affine switched or switching systems, in: 53rd IEEE Con-
ference on Decision and Control, 2014, pp. 6234–6239.

[36] G. Millerioux, J. Amigó, J. Daafouz, A connection between chaotic and con-
ventional cryptography, IEEE Trans. Circuits Syst. I: Reg. Pap. 55 (6) (2008)
1695–1703.

[37] G. Millerioux, J. Daafouz, Unknown input observers for message-embedded
chaos synchronization of discrete-time systems, Int. J. Bifurc. Chaos 14 (04)
(2004) 1357–1368.

[38] K. Murali, S. Sinha, H. Leung, Generating multi-scroll chaotic attractors via
threshold control, in: IEEE International Symposium on Circuits and Systems,
2006, pp. 233–236.

[39] N.N. Nandola, S. Bhartiya, A multiple model approach for predictive control of
nonlinear hybrid systems, J. Process Control 18 (2) (2008) 131–148.

[40] K.S. Narendra, O.A. Driollet, M. Feiler, K. George, Adaptive control using
multiple models, switching and tuning, Int. J. Adapt. Control Signal Process. 17
(2) (2003) 87–102.

[41] D. O'brien, L. Zeng, H. Le-Minh, G. Faulkner, J.W. Walewski, S. Randel, Visible
light communications: challenges and possibilities, in: 19th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, 2008,
pp. 1–5.

[42] F.A. Ortiz-Ricardez, T. Sanchez, J.A. Moreno, Smooth Lyapunov function and
gain design for a second order differentiator, in: 54th IEEE Conference on
Decision and Control, 2015, pp. 5402–5407.

[43] C. Song, B. Wu, J. Zhao, P. Li, An integrated state space partition and optimal
control method of multi-model for nonlinear systems based on hybrid sys-
tems, J. Process Control 25 (2015) 59–69.

[44] T.A.F. Theunisse, J. Chai, R.G. Sanfelice, W.P.M.H. Heemels, Robust global sta-
bilization of the DC–DC boost converter via hybrid control, IEEE Trans. Circuits
Syst. I: Reg. Pap. 62 (4) (2015) 1052–1061.

[45] V. Utkin, On convergence time and disturbance rejection of super-twisting
control, IEEE Trans. Autom. Control 58 (8) (2013) 2013–2017.

[46] R. Vidal, A. Chiuso, S. Soatto, S. Sastry, Observability of linear hybrid systems,
in: Hybrid Systems: Computation and Control, Springer, Berlin, Heidelberg,
2003, pp. 526–539.

[47] L. Vu, D. Liberzon, Invertibility of switched linear systems, Automatica 44 (4)
(2008) 949–958.

[48] M.E. Yalçin, J.A. Suykens, J. Vandewalle, S. Özoğuz, Families of scroll grid
attractors, Int. J. Bifurc. Chaos 12 (1) (2002) 23–41.

[49] J. Yang, Y. Chen, F. Zhu, K. Yu, X. Bu, Synchronous switching observer for
nonlinear switched systems with minimum dwell time constraint, J. Frankl.
Inst. 352 (11) (2015) 4665–4681.

[50] T. Yang, A survey of chaotic secure communication systems, Int. J. Comput.
Cogn. 2 (2) (2004) 81–130.

[51] S. Yu, J. Lü, H. Leung, G. Chen, Design and implementation of n-scroll chaotic
attractors from a general jerk circuit, IEEE Trans. Circuits Syst. I: Reg. Pap. 52
(7) (2005) 1459–1476.

[52] Z. Zheng, J. Lü, G. Chen, T. Zhou, S. Zhang, Generating two simultaneously
chaotic attractors with a switching piecewise-linear controller, Chaos Solitons
Fractals 20 (2) (2004) 277–288.

http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref11
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref11
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref11
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref11
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref12
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref12
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref12
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref13
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref13
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref13
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref14
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref14
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref14
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref14
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref14
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref14
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref14
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref16
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref16
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref16
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref16
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref17
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref17
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref17
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref18
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref18
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref18
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref18
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref19
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref19
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref19
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref19
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref20
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref20
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref20
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref20
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref21
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref21
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref21
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref22
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref22
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref22
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref22
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref23
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref23
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref23
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref23
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref24
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref25
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref25
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref25
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref25
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref26
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref26
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref26
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref26
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref27
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref27
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref27
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref28
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref28
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref28
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref29
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref29
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref29
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref29
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref30
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref31
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref31
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref31
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref32
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref32
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref32
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref33
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref33
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref33
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref33
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref34
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref34
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref34
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref36
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref36
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref36
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref36
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref37
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref37
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref37
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref37
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref39
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref39
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref39
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref40
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref40
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref40
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref40
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref43
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref43
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref43
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref43
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref44
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref44
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref44
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref44
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref45
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref45
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref45
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref47
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref47
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref47
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref48
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref48
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref48
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref49
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref49
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref49
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref49
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref50
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref50
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref50
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref51
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref51
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref51
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref51
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref52
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref52
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref52
http://refhub.elsevier.com/S0947-3580(16)30268-0/sbref52

	On the distinguishability and observer design for single-input single-output continuous-time switched affine systems...
	Introduction
	Contribution

	Preliminaries
	Distinguishability in perturbed SISO SAS's

	New distinguishability conditions for perturbed SISO SAS's
	Observers synthesis
	Estimation of the currently evolving AS
	Observer scheme

	Application to chaos-based non-autonomous modulation
	Multiscroll attractors by switched affine systems

	Conclusions
	Acknowledgments
	References




