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Abstract: Aircraft are highly non-linear systems, but flight control laws are traditionally designed from a set of linearised models.
Due to the application of linear control laws on a non-linear system, the real performance ability of the aircraft is not fully utilised.
In addition, in adverse situations like near stall, the aircraft develops significant non-linearities, and linear control laws do not
perform well. This study therefore considers the design of a longitudinal flight controller for a fixed-wing aircraft using non-linear
dynamic inversion technique or, in terms of control theory, partial exact feedback linearisation. A novel contribution of this study
is the proposed combination of three different automatic flight controllers that provide complete 3-DOF longitudinal control. A
detailed analysis of the internal dynamics for each controller is also presented. It has been shown that for each controller the
internal dynamics are stable. This makes the controller suitable for various flight conditions. The aims of these flight controllers
are threefold. First, to provide control of the flight path angle by tracking the pitch angle and the angle of attack. Second, to
provide high attitude (pitch up or down) manoeuvrability. Finally, to provide automatic adverse attitude recovery of the aircraft in
situations like stall, the switching strategy between the controllers are also discussed. A simulation carried out on a non-linear
model of a multi-role fighter aircraft verified the proposed theoretical results confirming the suitability of the controllers.

1 Introduction
The current state-of-the-art automatic flight control system (AFCS)
provides efficient methods for pilots to fly the aircraft. The
introduction of the fly-by-wire (FBW) system has enabled the
aircraft to be stabilised automatically, preventing unsafe operation
outside the performance envelope without input from the pilot [1].
However, in the critical conditions, where the aircraft gets outside
the flight envelope the automatic flight control known as
‘Autopilot’ is disengaged, and the pilot is required to take manual
corrective actions. An example of critical conditions of this kind is
when the aircraft reaches critical angle of attack (or stall angle),
beyond which the lift is suddenly reduced. This phenomenon is
known as stall [2]. The standard stall recovery procedure (shown in
Fig. 1) recommended in the pilot training is to push the control
stick down, forcing a nose down motion of the aircraft. This makes
the aircraft go faster and restores the required lift [3]. Pilots tend to
misread the situation and take wrong corrective measure leading to
an accident. A significant number of commercial and military air
crash accidents have occurred after loss of control due to stalling
caused by pilot error. Indonesia AirAsia Flight 8501, Air France
Flight 447, Navy McDonnell-Douglas QF-4S+ Phantom II and
United States Air Force Boeing C-17A Lot XII Globemaster III are
some recent air accidents caused by pilot error and stall [4–7]. To
address this problem, we propose three new different automatic
flight controllers that can be used in different phases of flight based
on the well-known partial exact feedback linearisation approach

within the realm of the non-linear dynamic inversion (NDI)
technique. 

Flight control laws below the stall angle are designed using
linear control design methods such as gain scheduling [1]. The
control laws are designed at many flight-operating points [8] and
the gain scheduling is chosen as a function of mass, Mach number
and altitude. This design procedure requires a great amount of
assessment to ensure the adequate stability and performance at off-
design points. It is time-consuming and the performance
capabilities of the aircraft are not fully realised. As an alternative to
gain scheduling robust control algorithms such as ℋ2 and ℋ∞
controllers are proposed [9]. However, at a large angle of attack
(near the stall angle) aircraft develop significant non-linearities
[10] and for this reason the linearised control laws do no longer
hold. An alternative approach is to apply non-linear design
techniques in critical flight conditions such as near stall point or
high attitude angle (pitch angle) manoeuvres where the aircraft
develops non-linearities. NDI directly make use of the non-linear
structure of the aircraft model. It uses dynamic models and state
feedback to globally linearise dynamics of selected controlled
variables by cancelling the non-linearities in the dynamic model.
As a result, the NDI method is capable of handling large non-
linearities. NDI control law is designed to globally reduce the
dynamics of selected controlled variables to integrators. A closed
loop system is then designed to make the control variables exhibit
specified command responses satisfying the flight-handling
qualities and various physical limitation of the aircraft control

Fig. 1  Stall recovery procedure
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actuators. Flight control design using NDI was first proposed in the
late 1970s [11, 12]. Since that time, a number of research efforts
have been made to use non-linear control techniques for flight
controls, e.g. as incremental NDI [13, 14], adaptive fuzzy sliding
control [15, 16]. Various methods for analysing the robustness of
the NDI flight controllers for a quasi-linear-parameter varying
model were presented in [17, 18]. Stochastic robust non-linear
control using control logic for a high incidence research concept
aircraft is proposed in [19]. However, this work did not take the
internal dynamics into account, and stability was limited to manual
pilot inputs.

NDI is widely used for under-actuated mechanical systems [20].
Since the longitudinal dynamics of the aircraft is under-actuated, it
is not possible to control all the states using a single controller. The
novel approach presented here is a proposal for three different
controllers corresponding to the output sets, which are angle of
attack and pitch angle; velocity and pitch angle; finally, velocity
and angle of attack. The first controller can be used for high pitch
angle control for conditions like take-off while retaining control
over the angle of attack. The second controller can be used as the
pitch autopilot with control over the velocity. Finally, the third
controller can be used for stall recovery of the aircraft at the same
time preventing dangerous speed. A complete analysis of the
internal dynamics for each controller is provided. The switching
strategies between these three controllers are discussed. This
approach with the use of NDI takes into account all significant
non-linearities in the system utilising full performance capability of
the aircraft. An original feature in this paper is the designing of the
three flight controllers with a detailed outline of the stability of the
internal dynamics.

This paper is organised as follows: Section 2 presents the
dynamic model of the aircraft. Main results are given in Sections 3
and 4. Namely, Section 3 presents the detailed design of the control
laws. Section 4 provides a detailed analysis of the simulation
results. Section 5 contains the final concluding remarks.

2 Dynamic modeling
The aircraft configuration is illustrated in Fig. 2. For a
conventional fixed-wing aircraft, the aerodynamic control surfaces
that produce the moments are the horizontal tail (elevator), the
ailerons and the vertical tail (rudder). Only two orientation angles
relative to the wind, known as aerodynamic angles are needed to
specify the aerodynamic forces and moments (angle of attack (α)
and the side-slip angle (β)) acting on the aircraft [10]. 

2.1 Longitudinal aerodynamics

The aerodynamic forces (drag and lift) and the moment (pitching
moment) acting on the aircraft are defined in terms of the non-
dimensional aerodynamic coefficients (CLTotal

, CDTotal
, CmTotal

) are
calculated as follows:

XB = 1
2 ρV2SCDTotal

M = 1
2 ρV2ScMACCmTotal

ZB = 1
2 ρV2SCLTotal

(1)

Here ρ denotes the air density, S denotes the aircraft's effective
wing surface area, and cMAC denotes the mean aerodynamic chord.
The aerodynamic coefficients are specified as functions of
aerodynamic angles, control surface deflections and the
aerodynamic derivatives. Each component of the aerodynamic and
moment coefficients is represented by a ‘look up’ table.

CLTotal
= CLo

+ CLα
α + CLq

q
cMAC
2V + CLδe

δe

= CL + CLq
q

cMAC
2V + CLδe

δe .
(2)

CDTotal
= CD0

+ CDα
α2 + CDδe

δe

= CD + CDδe
δe; CD ≃ CD0

+ |CDα
α2 | .

(3)

CmTotal
= Cm0

+ Cmα
α + Cmq

q
cMAC
2V + Cmδe

δe

= Cm + Cmq
q

cMAC
2V + Cmδe

δe .
(4)

Here, subscripts stand for the aerodynamic derivative of the
respective variables. The aerodynamic coefficients CL, CD and Cm
are related to the lift, drag, and pitching moments produced by the
main wing and are functions of angle of attack (α).

2.2 Rigid body equation of motion for the aircraft

The aerodynamic force and the moment models are combined with
the vector equations of motion to obtain the aircraft dynamic
motion model. The stability and the wind axes are treated as being
fixed to frames that are rotating relative to the vehicle-body frame
[10]. Combined with wind and body axes the total 3-DOF
longitudinal dynamic motion of the aircraft is written as follows:

Force equations:

V̇ = −
XB
m +

FT
m cos αcos β

+g cos ϕcos θsin αcos β + sin ϕcos θsin β − sin θcos αcos β .
(5)

α̇ = −
ZB

mVcos β + q − tan β pcos α + rsin α

−
FTsin α
mVcos β + g

Vcos β cos ϕcos θcos α + sin θsin α .
(6)

Fig. 2  Description of the aircraft system: V, flight path velocity; α, angle of attack; β, side-slip angle; ϕ, θ, ψ , Euler's angles; δe, δa, δr, control surface
deflections; FT, engine thrust; p, q, r, angular rates; Ixx, Iyy, Izz,Ixz, moments of inertia; L, M, N, aerodynamic moments; XB, YB, ZB, body forces
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Moment equation:

q̇ =
Izz − Ixx

Iyy
pr −

Ixz
Iyy

p2 − r2 + M
Iyy

. (7)

Kinematic equation:

θ̇ = qcos ϕ − rsin ϕ . (8)

Assuming that the lateral-directional motion of the aircraft is
independently and separately controlled bringing the aircraft to a
wing-level flight condition the 3-DOF longitudinal model of the
aircraft motion can be further simplified. The side-slip and roll
angles are associated with the lateral dynamics, so it can be
assumed that the roll angle (ϕ) and the side-slip angle (β) is zero.
The 3-DOF longitudinal dynamics equation (5)–(8) get:

V̇ = − 1
2

ρS
m (CD0

+ CDα
α)V2

− 1
2

ρS
m CDδe

α V2δe +
FTcos α

m + gsin α − θ .
(9)

α̇ = − 1
2

ρS
m (CLo

+ CLα
α)V − 1

2
ρS
m cMACCLq

q − 1
2

ρS
m CLδe

Vδe

−
sin α FT

mV + q + gcos α − θ
V .

(10)

q̇ = 1
2

ρS
Iyy

cMAC(Cm0
+ Cmα

α)V2 + 1
4

ρS
Iyy

cMAC
2 Cmq

Vq

+ 1
2

ρS
Iyy

cMACV2Cmδe
δe .

(11)

θ̇ = q . (12)

3 Control law design
As has already been noted, we will study the case of simplified
non-linear dynamics, namely the longitudinal model (9)–(12). This
model has four state variables and two control inputs. First, let's
put the equations into the standard state-space model form known
in non-linear control theory [20]. Now, if we define the state
variables as x1, x2, x3, x4

T = V, α, q, θ T, and the control inputs as
u1, u2

T = δe, FT
T, then the system in (9–12) can be written in the

following form: (see (13)) 
Here, x ∈ ℝ4, u ∈ ℝ2, f (x) = ( f i(x)) ∈ ℝ4, and

g(x) = (gi j x ) ∈ ℝ4 × 2, where i = 1, 2, 3, 4 and j = 1, 2.

Furthermore, lets denote g j = g1 j, g2 j, g3 j, g4 j
T, j = 1, 2, and

b1 = − ρS
2m ; b2 = b1CDδe

; b5 = CL0
; b6 = b1cMACCLq

; b7 = b1CLδe
;

b8 = ρS
2Iyy

cMAC; b9 = b8cMACCmq; b10 = b8Cmδe
; b3 = 1

m ; b4 = g;
b11 = CD0

; b12 = CDα
; b13 = CLα

; b14 = Cm0
; b15 = Cmα

. Moreover,
CLδe

, CLq
, CLα

, CD0
> 0 and Cmq

, Cmδe
, Cmα

< 0. Thus the variables
b1, b2, b6, b7, b9, b10 < 0 and b3, b4, b5, b8, b11, b13 > 0.

To compute partial exact feedback linearisation of (13), the
notion of the so-called auxiliary/virtual output is used. Namely, by
defining a suitable output functions h x = h1 x , h2 x T, x ∈ ℝ4

we can compute the input–output linearisation transforming certain
sub-systems to linear form. To proceed with, h x  is said to have

vector relative degree r = r1, r2  around some equilibrium working
point xo ∈ ℝ4 if r1, r2 is the integers such that there exists
neighbourhood of xo denoted as Nx0

, it holds:

ℒ
g jℒ f

l hk x ≡ 0, x ∈ Nxo
, k, j = 1, 2, l = 0, …, rk − 2 (14)

rank ℒ
g jℒ f

rk − 1
hk xo = 2, k, j = 1, 2. (15)

Here, ℒ f
m, m = 0, 1, …, stands for the so-called Lie derivatives

and their iterations [20]. More precisely:

ℒ fh = ∇h f , ∇h = ∂h
∂x ,

ℒ f
oh = h, ℒ f

mh = ℒ f ℒ f
m − 1h = ∇ ℒ f

m − 1h f , m = 1,
2, 3, … .

It is well-known [20] that the n-dimensional system with vector
relative degree r = (r1, r2) ≥ 1 has (r1 + r2)-dimensional exact
feedback linearisable part has n − (r1 + r2) residual non-linear part.
The residual part of the system dynamics is called ‘internal
dynamics’. It is important to ensure that the internal dynamics of
the residual part or state that is left uncontrolled is stable. The
autonomous part which keeps the selected output zero is referred to
as the zero-dynamics. In the following sections, we will present
three different selections of pairs of outputs giving three different
partial linearisations (three different controllers) and their internal
dynamics analysis.

3.1 Flight controller for angle of attack and pitch angle (flight
controller no. 1)

This flight controller is to be used for situations like take-off where
the primary focus is on lifting the aircraft with a desired pitch angle
(θ = x4) at a certain take-off speed and to have a control over the
angle of attack (α = x2), so that the aircraft has enough lift to get
off the ground without stalling. Following (13) the relation
between the pitch rate (q = x3) and the pitch angle (θ = x4) is a
single integrator, so x4 can be tracked jointly with x3.

3.1.1 Control design.: The control objective for this controller is
to design a tracking controller for x2 and x4 while stabilising the x3.
Thus the auxiliary outputs chosen to get the partial exact feedback
linearisation for Flight Controller No. 1, denoted as h1(x) are as
follows:

h1 x =
x2

x4
.

Let the virtual inputs to stabilise ẋ3 be v1 and to control ẋ2 be v2. Lie
derivative computation of h1(x) following (14) and (15) show that it
has relative degrees r = (1, 2). This allows us to obtain the
feedback linearised form of the system (13) as

x2
˙ = v2,
x3
˙ = v1,
x4
˙ = x3 .

x1
˙

x2
˙

x3
˙

x4
˙

ẋ

=

b1b11x1
2 + b1b12x2x1

2 + b4sin x2 − x4

b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos x2 − x4

b8b14x1
2 + b8b15x2x1

2 + b9x1x3

x3

f (x)

+

b2x1
2 b3cos x2

b7x1 −b3x1
−1sin x2

b10x1
2 0

0 0

g(x)

u1

u2

u

. (13)
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Now the virtual inputs v1 and v2 are defined as follows:

v1

v2
=

f 3

f 2
+

g31 0
g21 g22

u1

u2
. (16)

The conditions for the existence of the relative degree as
mentioned in (14) and (15) hold if and only if x1 ≠ 0 and x2 ≠ lπ, l
is an integer. This does not limit the applicability of the designed
controller as x1 is the velocity and x2 is the angle of attack while
lifting the aircraft which always occurs with non-zero angle of
attack. Following (16) the input equations for u1 and u2 can be
rewritten as follows:

u1

u2
=

g31 0
g21 g22

−1
−

f 3

f 2
+

v1

v2
,

u1 = −(b8b14x1
2 + b8b15x2x1

2 + b9x1x3) + v1

b10x1
2 . (17)

u2 = − b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos(x2 − x4) b10x1

2

(b10x1
2) −b3x1

−1sin x2
+

+ b8b14x1
2 + b8b15x2x1

2 + b9x1x3 b7x1

(b10x1
2) −b3x1

−1sin x2
+ −b7x1v1 + b10x1

2v2

(b10x1
2) −b3x1

−1sin x2
.

(18)

Further, consider the subsystem involving x3, x4 and the virtual
input v1. This is a system with a double integrator relationship. To
track some reference x3

ref(t), x4
ref t , have in mind that it should hold

x3
ref = x4

˙ ref. Now to track the references, let us define the tracking
error as follows:

e3 = x3 − x4
˙ ref, e3̇ = x3

˙ − x4
¨ ref, (19)

e4 = x4 − x4
ref, e4̇ = x4

˙ − x4
˙ ref = e3 . (20)

The feedback tracking controller equation for x3 can be written
as

x3
˙ = v1 = x4

¨ ref + k3 x3 − x4
˙ ref + k4 x4 − x4

ref . (21)

Here k3 and k4 are the feedback control gains. Using (19)–(21)
we get:

e3̇ = k3e3 + k4e4; e4̇ = e3 . (22)

Therefore, choosing k3 < 0 and k4 < 0, we gets e3 → 0 and
e4 → 0 exponentially, which means that exponential tracking is
achievable.

Consider the subsystem involving x2 and the virtual input v2.
This system is directly related as a single integrator. We assume
x2

ref t  is to be tracked and we define tracking error e2 as

e2 = x2 − x2
ref, e2̇ = x2

˙ − x2
˙ ref . (23)

The feedback tracking controller for x2 can be written in the
form:

x2
˙ = v2 = x2

˙ ref + k2 x2 − x2
ref . (24)

Here k2 is the feedback tracking control gain. Now, combining
(23) and (24) gives

e2̇ = k2e2 .

By choosing k2 < 0, e2 → 0, hence exponential tracking is
possible for the reference angle of attack x2

ref. Substituting (21) and
(24) into (17) and (18) gives the complete closed form expression
for u1 and u2 as (see (25)) 

(see (26)) 
Combining the two controllers enables us to control both the

pitch angle x4 and the angle of attack x2, provided that the
corresponding internal non-linear residual dynamics of the velocity
x1 has favourable properties.

3.1.2 Internal dynamics of the velocity (x1).: During the design
of the controller the velocity x1 is left uncontrolled. This
corresponds to the hidden uncontrolled internal dynamics. It is
essential to check and ensure that the internal dynamics of the
velocity is stable. To check the stability of the internal dynamics,
substitute the expression of control input u1 and u2 (25) and (26)
into the equation of x1

˙  in (13). For simplicity zero-dynamics are
studied, hence for reference tracking x2

ref t , x4
ref t , x3

ref t  the
virtual inputs v1 = v2 = 0. For the purposes of the analysis constant
reference tracking is considered. This means x2

ref ≡ x2
e, x4

ref ≡ x4
e,

x3
˙ ref ≡ 0, here x2

e and x4
e are constant and therefore we have to

analyze stability of the equilibrium of the one dimensional velocity
internal dynamics given by

x1
˙ = f 1

¯ (x1),

Here f 1
¯ (x1) is given by (51) derived in Appendix 1. To analyse

the stability, we have to first compute the equilibrium velocity by
solving (52) and then to analyse the Jacobian of f 1

¯ (x1) at x1
e, i.e.

(∂ f 1
¯ /∂x1)(x1

e). We will show that (∂ f 1
¯ /∂x1)(x1

e) < 0 and therefore by
the first method of Lyapunov x1

e is the locally exponentially stable
equilibrium of (51). To be more specific, rewrite (52) as follows:

0 = (x1
e)2 cot(x2

e) b1b5 − b7b8b14

b10

+x2
ecot(x2

e) b1b13 − b7b8b15

b10
+ b1b11 + b1b12x2

e

+ b4cot(x2
e)cos(x2

e − x4
e) − b2

b10
b2b14 + b8b15x2

e + b4sin(x2
e − x4

e) ,
(27)

here x2
e, x4

e are given required reference angle of attack and pitch
angle and x1

e is the velocity to be determined. Equation (27) is
obviously a simple quadratic equation of the form A(x1

e)2 + B = 0.

u1 = −(b8b14x1
2 + b8b15x2x1

2 + b9x1x3) + x4
¨ ref + k3 x3 − x4

˙ ref + k4 x4 − x4
ref

b10x1
2 . (25)

u2 = − b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos(x2 − x4) b10x1

2 + b8b14x1
2 + b8b15x2x1

2 + b9x1x3 b7x1

(b10x1
2) −b3x1

−1sin x2

+ x2
˙ ref + k2 x2 − x2

ref b10x1
2 − b7x1 x4

¨ ref + k3 x3 − x4
˙ ref + k4 x4 − x4

ref

(b10x1
2) −b3x1

−1sin x2
.

(26)
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The coefficient of (x1
e)2 is A = cot(x2

e)[(b1b5 − (b7b8b14/b10)) +
x2

e(b1b13 − (b7b8b15/b10))] + b1b11 + b1b12x2
e, and

B = [b4cot(x2
e)cos(x2

e − x4
e) − (b2/b10)(b2b14 + b8b15x2

e) +
b4sin(x2

e − x4
e)].

Consider the term A, here cot(x2
e)[(b1b5 − (b7b8b14/b10)) +

x2
e(b1b13 − (b7b8b15/b10))] is associated with the lift. Here by

definition, for x2
e > 0, the lift produced is considered to be negative

(by convention), hence (b1b5 − (b7b8b14/b10)) +
x2

e(b1b13 − (b7b8b15/b10)) < 0. In addition when x2
e > 0, cot(x2

e) > 0
and x2

e < 0, cot(x2
e) < 0. Also the term b1b11 + b1b12x2

e  is associated
with drag and by definition it is always negative. This implies that
the coefficient of (x1

e)2 is always negative.
Now consider the term B. Here the term (b2/b10) b2b14 + b8b15x2

e

is associated with the coefficient of pitching moment. Hence for
x2

e > 0, (b2/b10) b2b14 + b8b15x2
e > 0 and x2

e < 0,
(b2/b10) b2b14 + b8b15x2

e < 0. Therefore for B to be positive, it is
necessary to satisfy that

cos(x2
e − x4

e) + sin(x2
e − x4

e) > 0. (28)

From (28), it can be said that for every combination of x2
e and x4

e

B is positive. Hence, it can be concluded that for every selection of
x2

e, x4
e (27) can be solved to find a unique equilibrium velocity x1

e.
To study the local stability of (27) its linear approximation

around the selected equilibrium points x = (x1
e, x2

e, 0, x4
e) is

considered. Thus the partial derivative of (27) (Jacobian) becomes:

x1
˙ = [2x1

ecot(x2
e) b1b5 + b1b13x2

e − 2b2x1
e

b10
b8b14 + b8b15x2

e +

− b7cot(x2
e)x1

e

b10
b8b14 + b8b15x2

e ] x1 − x1
e + 𝒪 x1 − x1

e .
(29)

The simplified Jacobian (Jx1) from (29) can be written as

Jx1 = x1
e 2cot(x2

e) b1b5 + b1b13x2
e + 2 b1b11 + b1b12x2

e

+ − 2b2

b10
− b7cot(x2

e)
b10

b8b14 + b8b15x2
e .

(30)

Following (30), it can be seen that for x2
e > 0 or x2

e < 0 the terms
2cot(x2

e) b1b5 + b1b13x2
e < 0 and 2 b1b11 + b1b12x2

e < 0. For x2
e > 0

the term − 2b2
b10

− b7cot(x2
e)

b10
b8b14 + b8b15x2

e > 0 and for x2
e < 0,

− 2b2
b10

− b7cot(x2
e)

b10
b8b14 + b8b15x2

e < 0. Also

2cot(x2
e) b1b5 + b1b13x2

e + 2 b1b11 + b1b12x2
e

≫ − 2b2

b10
− b7cot(x2

e)
b10

b8b14 + b8b15x2
e .

Thus it holds that the term Jx1 in (30) is always negative.
Therefore linear approximation in (29) takes the form:

x1
˙ = τx1

e(x1 − x1
e) .

Here,

τ = 2cot(x2
e) b1b5 + b1b13x2

e + 2 b1b11 + b1b12x2
e

+ − 2b2

b10
− b7cot(x2

e)
b10

b8b14 + b8b15x2
e < 0.

This confirms that any positive equilibrium velocity x1
e is

exponentially stable, i.e. the zero-dynamics of the controller is
exponentially stable. It should be noted that the value of τ is small.
Therefore, during tracking the target values of pitch angle and
angle of attack, the change in the velocity will not be very fast or
rapid. It can be noted that flight path angle γ = x4 − x2, so by
choosing appropriate angle of the attack and pitch angle, flight
patch angle can controlled.

3.2 Flight controller for pitch angle and velocity (Flight
Controller No. 2)

This flight controller can be used for pitch angle (x4) control while
maintaining or tracking a certain desired velocity (x1), when, e.g.
during the cruising or steady climb. In this controller, x4 is
controlled using the elevator deflection (u1) and x1 is controlled by
the engine throttle (u2).

3.2.1 Control design.: The control objective for this controller is
to design a tracking controller for x1 and x4. Thus the auxiliary
outputs chosen to get the partial exact feedback linearisation for
Flight Controller No. 2, denoted as h2(x) are as follows:

h2 x =
x1

x4
.

Let the virtual inputs to stabilise ẋ3 be v1 and to control ẋ1 be v2.
Lie derivative computation of h2(x) following (14) and (15) shows
that the relative degrees r = (1, 2). This allows us to obtain the
feedback linearised form of the system (13) as

x1
˙ = v2,
x3
˙ = v1,
x4
˙ = x3 .

The virtual inputs v1 and v2 are defined as follows:

v1

v2
=

f 3

f 1
+

g31 0
g11 g12

u1

u2
. (31)

The conditions for the existence of the relative degree as
mentioned in (14 and 15) hold if and only if x1 ≠ 0 and x2 ≠ (l/2)π,
l is an integer. Therefore, in the control design we consider the
aircraft is in some state where x1 ≠ 0, x2 ≠ (l/2)π. These conditions
are satisfied in all real flight conditions because the aircraft
velocity can never be zero and the angle of attack cannot be (l/2)π.
Following (31) the input equations for u1 and u2 can be rewritten as
follows:

u1

u2
=

g31 0
g11 g12

−1
−

f 3

f 1
+

v1

v2
.

u1 = −(b8b14x1
2 + b8b15x2x1

2 + b9x1x3) + v1

b10x1
2 . (32)

(see (33)) 
The complete closed form expression for u2 is given as (see

(34)) k3, k4, x3
ref, x4

ref are the same as in Section 3.1.1. Here x1
ref  is

the desired reference velocity, k1 is the feedback tracking control
gain and has the value k1 < 0. Combining these two controllers
enables us to control pitch angle x4 and velocity x1 at the same
time, provided that the corresponding hidden internal dynamics of
the angle of attack x2 has favourable properties.

3.2.2 Internal dynamics of the angle of attack (x2).: During the
design of the controller, the angle of attack x2 is left uncontrolled.
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This corresponds to the hidden uncontrolled internal dynamics. It is
essential to check and ensure that this internal dynamics of the
angle of attack is stable. Now, to check the stability of the internal
dynamics, substitute the expression of control input u1 (25) and u2
(33) into the equation of x2

˙  in (13). For simplicity, zero-dynamics
are studied. Hence for reference tracking x1

ref t , x4
ref t , x3

ref t  the
virtual inputs v1 = v2 = 0. For purposes of the analysis, constant
reference tracking are considered. This means x1

ref ≡ x1
e, x4

ref ≡ x4
e,

x3
˙ ref ≡ 0 and therefore we have to analyse stability of the
equilibrium of the angle of attack's internal dynamics given by

x2
˙ = f 2

¯ (x2),

Here f 2
¯ (x2) is given by (55) derived in Appendix 2. To analyse

the stability, we have to first compute the equilibrium of the one-
dimensional angle of attack by solving (56) and than to analyse the
Jacobian of f 2

¯ (x2) at x1
e, i.e. (∂ f 2

¯ /∂x2)(x2
e). We will show that

(∂ f 2
¯ /∂x2)(x2

e) < 0 and therefore by the first method of Lyapunov x2
e

is the locally exponentially stable equilibrium of (55). To be more
specific, rewrite (56) as follows:

b1b5x1
e(x1

e) + b1b13x1
ex2

ex1
e + b4cos(x2

e − x4
e)

+ b8x1
etan(x2

e)x1
e b14 + b15x2

e +
− b10

−1 b7 + b2x1
etan(x2

e) b4sin(x2
e − x4

e)
− b10

−1 b1b11x1
e2 + b1b12x1

e2x2
e = 0.

(35)

The above equation can be solved numerically for the
equilibrium x2

e. However, the crucial aspect here is to check that for
every selection of x1

e and x4
e, the equilibrium solution for x2

e is
within the stall angle range. As a matter of fact, when choosing x1

e

and x4
e it is important to solve (35) for x2

e and to ensure that x2
e is

less than stall angle.
To study the local stability of (35) around the equilibrium point

x1
e, x2

e, 0, x4
e , its linear approximation is considered. The partial

derivative of (35) (Jacobian), Jx2 becomes

x1
˙ = Jx2 x2 − x2

e + 𝒪 x2 − x2
e . (36)

Jx2 = b1b13x1
e + b8b15x1

etan(x2
e)

+ b2sec2(x2
e) b4sin(x4

e − x2
e) + b1b11x1

e2 + b1b12x1
e2x2

e

b10

+ b4sin(x4
e − x2

e)
x1

e + b8x1
esec2(x2

e) b14 + b15x2
e

− b7 + b2x1
etan(x2

e) b1b12x1
e2 + b4cos(x4

e − x2
e)

b10x1
e

(37)

The term

b2sec2(x2
e) b4sin(x4

e − x2
e) + b1b11x1

e2 + b1b12x1
e2x2

e

b10

is related to the drag and engine thrust, hence it is always zero or
negative (in practice aircraft cannot fly backward) for any values of
x2

e. The term b1b13x1
e + b8b15x1

etan(x2
e) < 0 in (37) for any values of

x2
e. The term b8x1

esec2(x2
e) b14 + b15x2

e  is related to the pitching
moment, therefore for x2

e > 0, the term
b8x1

esec2(x2
e) b14 + b15x2

e > 0 and for x2
e < 0,

b8x1
esec2(x2

e) b14 + b15x2
e < 0. The term

b7 + b2x1
etan(x2

e) b1b12x1
e2 + b4cos(x4

e − x2
e)

b10x1
e < 0

is related to the drag, lift, pitching moment produced by the
elevator deflection (δe). Hence term

b7 + b2x1
etan(x2

e) b1b12x1
e2 + b4cos(x4

e − x2
e)

b10x1
e > 0

for or any values of x2
e. The condition for Jx1 to be negative is (see

(38)) 
The condition in (38) is easily satisfied because the terms on the

right hand side are much smaller than the terms on the left hand
side. Hence, (36) can be written as

x2
˙ = λ(x2 − x2

e) .

Here λ = Jx2 < 0. This confirms that the state x2
e is

exponentially stable, i.e. the zero-dynamics of the controller is
exponentially stable. It has been shown that for any combination of
velocity x1

e and pitch angle x4
e the zero-dynamics of the angle of

u2 = − b1b11x1
2 + b1b12x2x1

2 + b4sin x2 − x4 b10x1
2 + b8b14x1

2 + b8b15x2x1
2 + b9x1x3 b2x1

2

b3cos x2 (b10x1
2)

+ −b2x1
2v1 + b10x1

2v2

b3cos x2 (b10x1
2) .

(33)

u2 = − b1b11x1
2 + b1b12x2x1

2 + b4sin x2 − x4 b10x1
2 + b8b14x1

2 + b8b15x2x1
2 + b9x1x3 b2x1

2

b3cos x2 (b10x1
2)

−b2x1
2 x4

¨ ref + k3 x3 − x4
˙ ref + k4 x4 − x4

ref + b2x1
2 x1

˙ ref + k1 x1 − x1
ref

b3cos x2 (b10x1
2) .

(34)

b7 + b2x1
etan(x2

e) b1b12x1
e2 + b4cos(x4

e − x2
e)

b10x1
e ∣ + ∣ b1b13x1

e + b8b15x1
etan(x2

e)

b2sec2(x2
e) b4sin(x4

e − x2
e) + b1b11x1

e2 + b1b12x1
e2x2

e

b10

>∣ b8x1
esec2(x2

e) b14 + b15x2
e + b4sin(x4

e − x2
e) ∣ .

(38)
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attack x2
e is exponentially stable. However, it is crucial to calculate

the equilibrium angle of attack x2
e and to check that if it lies within

the operational range to avoid stall.

3.3 Flight controller for angle of attack and velocity (Flight
Controller No. 3)

This controller can be used in critical conditions where the aircraft
is about to exceeded the stall angle and/or exceeded the maximum
construction velocity. A quick automatic recovery controller is
needed to bring the angle of attack (x2) back to a reasonable value.
Two crucial tasks in aircraft stall recovery are to get the angle of
attack (x2) within the normal operation range and to control the
velocity (x1) of the aircraft so that it does not fly too fast or too
slow. Here the velocity (x1) is controlled by the engine throttle (u2),
and the angle of attack (x2) by the elevator deflection (u1).

3.3.1 Control design.: The control objective for this controller is
to design a tracking controller for x2 and x1. Thus the auxiliary
outputs chosen to get the partial exact feedback linearisation for
Flight Controller No. 3, denoted as h3(x) are as follows:

h3 x =
x1

x2
.

Let the virtual inputs to control ẋ2 and ẋ1 be v1 and v2. Lie
derivative computation of h3(x) following (14) and (15) shows that
it has the relative degrees r = (1, 1). This gives a two-dimensional
internal dynamics. Hence, the feedback linearised form of the
system (13) is obtained as follows:

x1
˙ = v2,
x2
˙ = v1,

The virtual inputs v1 and v2 are defined as follows:

v1

v2
=

f 2

f 1
+

g21 g22

g11 g12

u1

u2
. (39)

The conditions for the existence of the relative degree as
mentioned in (14) and (15) hold if and only if, x1 ≠ 0, i.e. for any
non-zero velocity of the aircraft. Following (39) the input
equations for u1 and u2 can be rewritten as follows:

u1

u2
=

g21 g22

g11 g12

−1
−

f 2

f 1
+

v1

v2
.

u1 = b1b11x1
2 + b1b12x2x1

2 + b4sin x2 − x4 −b3x1
−1sin x2

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2

+ b3cos x2 v1 − −b3x1
−1sin x2 v2

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2

− b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos x2 − x4 b3cos x2

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2
.

(40)

u2 = − b1b11x1
2 + b1b12x2x1

2 + b4sin x2 − x4 b7x1

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2

+ − b2x1
2 v1 + b7x1 v2

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2

+ b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos x2 − x4 b2x1

2

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2
.

(41)

Combining the two controllers enables us to control the angle of
attack (x2) and the velocity (x1), provided that the two-dimensional
internal dynamics are stable and have favourable properties.

3.3.2 Internal dynamics of pitch rate (x3) and pitch angle
(x4).: During design of the controller, the pitch rate x3 and the pitch
angle x4 are left uncontrolled. This corresponds to the hidden
uncontrolled internal dynamics. In this controller, the internal
dynamics is two dimensional. Now, to checking the internal
dynamics, substitute the expression of control input u1 and u2 (40)
and (41) into the equation of x3

˙  and x4
˙  in (13). For simplicity, zero-

dynamics are studied. Hence, for reference tracking x1
ref t , x2

ref t ,
the virtual inputs are set to v1 = v2 = 0. For the purposes of the
analysis, constant reference tracking is considered. This means
x1

ref ≡ x1
e, x2

ref ≡ x2
e. Thus, the equilibrium equation for x3 and x4 gets

x3
˙

x4
˙ =

f 3 + b10x1
2 u1

f 4
= 0

0 .

This can be expanded to give (see Appendix 3 for details of the
derivation):

x3
˙

x4
˙ = Φ3

Φ4
= 0

(see (42)) 
Here Φ is the internal dynamics function. For every selection of

x1
e and x2

e, there are unique equilibrium x3
e and x4

e such that (42) is
zero. For analysing the local stability, we need to analyse the
Jacobian of (42). The Jacobian of (42) will be a 2 × 2 square matrix
due to two-dimensional internal dynamics. For the stability proof,
we will show that real parts of the eigenvalues of the Jacobian of
(42) are negative at the equilibrium.

To study the local stability of (42), its linear approximation
around the selected equilibrium points x = (x1

e, x2
e, x3

e, x4
e) is

considered. Here, x3
e = 0 because at the equilibrium pitch angle x4

e,
the pitch rate x3

e must be zero. The partial derivative of (42)
(Jacobian) becomes:

x3
˙

x4
˙ =

∂Φ3

∂x3

∂Φ3

∂x4

∂Φ4

∂x3

∂Φ4

∂x4

(x3 − x3
e)

(x4 − x4
e)

.

Thus the Jacobian for x3
˙  and x4

˙  becomes:

∂Φ3

∂x3
= b9x1 − b3b10x1

2cos(x2)(b6 + 1)
b3b7x1cos(x2) + b2b3x1sin(x2)

, (43)

(see (44)) 

Φ3
Φ4

=
f 3 + b10x1

− b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos x2 − x4 + −b3x1

−1sin x2 u2 + x2̇
ref + k2 x2 − x2

ref

b7

x3

. (42)
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∂Φ4

∂x3
= 1, ∂Φ4

∂x4
= 0. (45)

For the stability of the internal dynamics, the roots of the
characteristic equation should be negative real roots. The roots of
the characteristic equations can be calculated as follows:

sI −

∂Φ3

∂x3

∂Φ3

∂x4

∂Φ4

∂x3

∂Φ4

∂x4

= 0.

s1, 2 = (∂Φ3/∂x3) ± ∂Φ3/∂x3
2 + 4(∂Φ3/∂x4)

2 .

Here s is the complex frequency in the Laplace transform. The
condition for stability is that the real part of the roots should be
negative, i.e.

1. ∂Φ3/∂x3 < 0 and ∂Φ3/∂x4 < 0.

Consider ∂Φ3/∂x3 (43). It can be simplified to:

∂Φ3

∂x3
= b8x1 cmacCmq

−
Cmδe

cos(x2) CL0
+ 1

b1 CLδe
cos(x2) + CDδe

sin(x2)
. (46)

The term is always b8x1 > 0, by definition from (15). The terms
Cmq

, Cmδe
< 0, CLδe

, CDδe
> 0 and CL0

≥ 0 by definition.
Substituting all these inequalities in (46) gives that (∂Φ3/∂x3) < 0.

Now consider the term, (∂Φ3/∂x4) in (44), it can be simplified to
give:

∂Φ3

∂x4
= b10b4 b3b4cos(x2 − x4)sin(x2) − b3b4sin(x2 − x4)cos(x2)

b3b7cos(x2) + b2b3sin(x2)

= b4b10 sin(x4)
b7cos(x2) + b2sin(x2)

.
(47)

∂Φ3

∂x4
=

gb8Cmδe
sin(x4)

b1CLδe
cos(x2) + b1CDδe

sin(x2)
. (48)

To recover from a stall, the aircraft has to go into a nose dive
motion, as such x4 < 0. This implies that the numerator of (48) is
always positive due to the term sin(x4) being multiplied by
Cmδe

< 0. The denominator of (48) is also always negative because
it is multiplied by the term b1 which by definition in (15) is
negative. It can be therefore be concluded that for this controller
∂Φ3/∂x3 < 0 and ∂Φ3/∂x4 < 0. It can be said that the two-
dimensional internal dynamics of the proposed controller is stable.

3.4 Controllers gain selection and robustness

It has been shown in Sections 3.1–3.3 that the relation between the
virtual inputs and the selected the auxiliary outputs are integral
(integrator). Each feedback gains (k1, k2, k3 and k4) can be computed
by specifying the time constant of the closed loop. For
implementation, flight-handling quality requirements should be
taken into account. The flight control system should provide
responses satisfying the existing specifications (MIL-STD-1797A
and MIL-F-9490D) [21]. Methods for choosing the flight controller
gains considering the actuator lag are presented in [22]. While
choosing the gain, it is important to make a trade-off between the

response of the controlled variable and the physical actuator's limit,
so as not to saturate the control inputs.

The robustness properties of the dynamic inversion have
received too little attention in the literature. Some robustness
analysis of the NDI controllers is presented in [23, 24]. In [23],
authors proposed a sum-of-squared method to analyse the
robustness properties of non-linear controller for longitudinal
aircraft dynamics. In [24], authors proposed a robust NDI in
combination with sliding mode control. Individual studies of each
methods are out of scope in this paper. However, to study the basic
parametric uncertainties, we have added ±10% uncertainties as an
upper bound and lower bound to the nominal values of the
controller gains during the simulations (see Section 4).

3.5 Switching of the flight controllers

Flight Controller No.1 can be used for situations like take-off,
steady climb of the aircraft when the angle of attack is non-zero.
This will allow controlling the aircraft's both angle of attack (α)
and pitch angle (θ). For the steady but steep climbing, angle of
attack should stay high and singularity at α = 0 is not crucial.
While using this controller, the velocity of the aircraft will be left
uncontrolled. For each combination of angle of attack and pitch
angle, there is a stable equilibrium velocity. Difference between the
pitch angle and angle of attack is the flight path angle. Hence, this
controller can be used for controlling the flight path angle by
independently choosing desired angle of attack and pitch angle. For
example, for horizontal cruising same tracking values of angle of
attack and pitch angle resulting in zero flight path angle.

Using Flight Controller No. 2 velocity and pitch are controlled,
while angle of attack is left uncontrolled. This controller can be
used for situations where rapid change in pitch up or pitch down
manoeuver is required while having control over the aircraft
velocity. Alternatively, this flight controller can be used for faster
cruise conditions. For example, assume the aircraft is flying with
some reasonable angle of attack using the Flight controller No. 1.
Then, for faster cruising, we can set θ = x4 = 0 and velocity (x1) to
some desired cruising fast velocity to achieve it. In conditions
where the angle of attack is critically big (close to stall angle) and
the velocity is too slow, Flight Controller No. 3 should be used to
get angle of attack within some acceptable range.

Flight Controller No. 3 can be primarily used to recover the
aircraft from critical conditions like stall while controlling the
velocity while preventing the aircraft from exceeding the
maximum construction velocity. The linearising feedback
influences of elevator input (u1) and engine thrust (u2) on both
velocity and angle of attack. Mainly the engine thrust is responsible
for controlling the velocity and elevator for controlling the angle of
attack. Coupling terms in this controller are smaller, and are rather
treated as undesired coupling, which is actually compensated by
the linearising feedback. Using this controller, both the angle of
attack and the velocity are controlled while leaving pitch angle
uncontrolled, which is not very crucial. Indeed, in situations like
stall, the ‘dangerous’ variables are the angle of attack and the
velocity. As soon as the aircraft is brought within some acceptable
limits of α and velocity the controller can be switched to Flight
controller No. 1 or 2.

4 Simulation results and discussion
Simulations are performed with MATLAB/Simulink to verify the
proposed controllers on the aircraft model (13). The non-linear
aircraft model used for the control design and validation is based
on the aerodynamic and flight dynamic data of the F-16 multi-role
fighter aircraft (Fig. 3). F-16 is a single-engine supersonic fighter
developed by Lockheed Martin for United States Air Force. The
physical parameters for the aircraft that are used are as follows
[25]: m = 636.94 slug, Iyy = 55814 slugft2, S = 300 ft2,

∂Φ3

∂x4
= b10x1

2 (b3b4cos(x2 − x4)sin(x2)/x1) − (b3b4sin(x2 − x4)cos(x2)/x1)
b3b7x1cos(x2) + b2b3x1sin(x2)

, (44)

1856 IET Control Theory Appl., 2017, Vol. 11 Iss. 12, pp. 1849-1861
© The Institution of Engineering and Technology 2017



cMAC = 11.32 ft, b = 30 ft. The airfoil used by the F-16 aircraft is
NACA 64A-204 and has ∼ 15∘ stall angle [10]. The maximum
thrust of the engine (FT) is 19, 000 lbs at the rate limited by
±10, 000 lbs/s. The maximum and minimum elevator deflection
(δe) is ±25∘ limited by 60∘/s. The opensource MATLAB/Simulink
model used for the demonstration of controller performance
verification is found in [26] (https://www.aem.umn.edu/people/
faculty/balas/darpa_sec/SEC.Software.html). During the
simulation, changes in parameters such as ρ (air density) and
ambient air temperature with respect to the altitude were
considered to follow International Standard Atmospheric (ISA)
condition model. The controller performances are tested using
specific manoeuvres. To carry out the robustness analysis, we have
considered adding ±10% uncertainty to the nominal values of the
controller gains k1, k2, k3 and k4. For example, if the nominal
controller gain value, ko = 100, then the upper bound of the
controller gain, kupper = 110 and the lower bound of the controller
gain, klower = 90. 

4.1 Flight Controller No. 1

Flight path angle can be controlled by tracking pitch angle (x4 or θ)
and angle of attack (x2 or α). To demonstrate the controller
performance, the trimmed flight condition were chosen to be at
velocity, V = 550 ft/s, and altitude 10, 000 ft. For demonstrating
the controller performance two different manoeuvres were chosen.
For the first manoeuvre, pitch angle tracking (x4) was set to 4∘ and
the angle of attack (x2) tracking was set to 3∘. For the second
manoeuvre, x4 and x2 tracking were set to −1∘ and 1∘. Both the
manoeuvres were set to start from the initial trimmed condition
with x4 = x3 = 2.5∘. Following (22) and (24) controller parameters
are listed as follows: k2 = − 60 s−1, k3 = − 20 rad s−1, and
k4 = − 40 rad s−2. For each manoeuvre the influence of the
controller uncertainties are demonstrated. Fig. 4 illustrates the
simulation results. 

It can be seen that the pitch angle and the angle of attack are
exponentially tracked by the controller. In the first manoeuvre, for
positive flight path the velocity reduces by exponentially decaying
towards 500 ft/s for going against the gravity. However, for
controlling the angle of attack with engine thrust, it is essential to
provide more thrust to achieve exponential tracking of the angle of
attack. In general providing more thrust should increase the
velocity, but in the presented case it does not happen because the
rate of reduction of velocity (due to pitch of motion) is much larger
than the thrust used to control the angle of attack. Hence,
irrespective of increasing the thrust to control increase the angle of
attack, the decay of velocity decays, but rather slowly.

In the second manoeuvre, a negative flight path angle is
demonstrated. It can be seen the that the velocity of the aircraft
increases and stabilises at around 670 ft/s. At the beginning, higher
thrust is required due to large difference between the reference
angle of attack and actual angle of attack. However, gradually the
thrust requirement settles down.

Fig. 3  F-16 Fighter Aircraft [26]
 

Fig. 4  Angle of attack and pitch angle controller. Blue, red, and green show the controller performance with nominal gains, upper bound gains, and lower
bound gains
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To demonstrate the robustness of the control gains, we carried
out the simulation of each manoeuvres separately with nominal
(blue), upper bound (red), and lower bound (green). For all the
cases, the controller exponentially tracked the pitch angle and
angle of attack. It is important to notice that for all the cases the
uncontrolled velocity stabilises.

4.2 Flight Controller No. 2

To demonstrate the tracking of pitch angle (x4 or θ) and the velocity
(x1 or V) control, the chosen initial flight condition was cruising
velocity of 500 ft/s at an altitude of 10, 000 ft. Two different
manoeuvres were chosen to show the performance of the
controller. Firstly, a nose up motion while tracking the x4 and x1 at
10∘ and 550 ft/s. The second manoeuvre was chosen to be a nose
dive motion while tracking the x4 and x1 at 1∘ and 600 ft/s,
respectively. Both the manoeuvre initialised from the trimmed
condition with x4 = 3.4∘. Following (33) and (34), the controller
parameters are listed as follows: k1 = − 100 s−1, k3 = − 20 rad s−1,
and k4 = − 40 rad s−2. For each manoeuvre, the influence of the
controller uncertainties are demonstrated in terms of nominal,
upper bound, and lower bound of the controller gains. Fig. 5
illustrates the simulation results. 

It can be seen that the velocity V and the pitch angle θ are
exponentially tracked. It is noticeable for the pitch down motion
(manoeuvre 2), the angle of attack (α) exponentially stabilises at
the equilibrium value of 2∘. However, for the pitch up motion
(manoeuvre 1), the angle of attack stabilised as well but a slower
rate. This is because the tracking of velocity while making a pitch
up motion is slower. However, it is important to notice the tracking
error in pitch angle converges to the zero, and the tracking error for
the velocity converges to a small value near zero. The slow
convergence of the velocity tracking is due to the chosen controller
gains so as not to saturate the engine thrust. To demonstrate the

robustness of the control gains, we carried out the simulation of
each manoeuvres separately with nominal (blue), upper bound
(red), and lower bound (green). In all the cases, the desired pitch
angle and velocity were exponentially tracked.

4.3 Flight Controller No. 3

The performance of the Flight Controller No.3 has been verified
assuming the worst case scenario, where the aircraft has reached
the stall angle x2 or α = 14.87∘ and stall velocity x1 or V = 375 ft/s
at an altitude of 30, 000 ft. The two important objectives of the
controller are: firstly, to bring back the angle of attack of the
aircraft within the operating range and secondly, to ensure that the
aircraft is not flying too slowly or too fast. Hence, for α and V
tracking reference is set to 8∘ and 550 ft/s. The primary focus of the
controller is to get the aircraft out of stall as quick as possible,
resulting in vigorous control actions. Following (40) and (41), the
controller parameters are listed as follows: k2 = − 60 s−1 and
k1 = − 86 rads−1. For the manoeuvre, the influence of the controller
uncertainties are demonstrated in terms of nominal, upper bound,
and lower bound of the controller gains. Fig. 6 illustrates the
simulation performance of the controller. 

It can be seen the that angle of attack and the velocity converges
to the reference value. It is important to notice that at the start of
the manoeuvre the control actions are vigorous and operates at the
maximum limits. This is because the high gain values chosen for
the tracking controllers of x1 and x2 for faster recovery from stall
causing maximum control efforts from the actuators (elevator
deflection (δe) and thrust (FT)). It can also be noticed that the pitch
rate (q) is exponentially stable and slowly converges to zero. It is
important to note that pitch angle (θ) is directly related to pitch rate
(q). This residual pitch rate causes a change in the pitch angle (θ)
over a long period of time. Here, the controller is only for use in
adverse situations, such as stalling. This controller is always in use

Fig. 5  Pitch angle and velocity controller. Blue, red, and green show the controller performance with nominal gains, upper bound gains, and lower bound
gains
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for a short duration. Exponential stability of q is not therefore a
problem for this controller.

5 Conclusions
In this paper, automatic longitudinal flight controller is presented
for conventional fixed-wing aircraft using non-linear dynamic
inversion (NDI) technique or, in control theoretic terms, the partial
exact feedback linearisation. Main theoretical results include
designing of three different tracking flight controllers which
provides full control of longitudinal states (velocity, angle of attack
and pitch angle) of the aircraft. A detailed study on the stability of
the internal dynamics for each controller are carried out and has
been showed to be stable. Combination of these three flight
controllers depending on the flight condition provided full 3-DOF
longitudinal control authority of a fixed-wing aircraft. Simulation
results demonstrate that with the proposed controllers, longitudinal
motion of a conventional multi-role combat aircraft can be
controlled with small tracking error.
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8 Appendix
 
8.1 Appendix 1: derivation of Flight Controller No. 1

Deriving the equation of the control inputs u1 and u2 in the form of
f (x) and g(x), we get

u1 = − f 3 + v1

g31
. (49)

u2 = ( f 3 − v1)g21

g22g31
− f 2 − v2

g22
. (50)

Substituting v1 = v2 = 0, in (49) and (50) we get,

u1 = − f 3

g31
, u2 = ( f 3)g21

g22g31
− f 2

g22
.

Now substitute the expression of control input u1 and u2 above
into the equation of x1

˙  in (13), we get

x1
˙ = f 1 + g11u1 + g12u2 .

x1
˙ = f 1 + g11

− f 3

g31
+ g12

( f 3)g21

g22g31
− f 2g12

g22

= f 1 + g12g21

g22g31
− g11

g31
f 3 − f 2g12

g22
.

g12g21

g22g31
− g11

g31
= −b7cot(x2

e) − b2

b10
, g12

g22
= − x1

ecot(x2
e) .

g12g21

g22g31
− g11

g31
= −b7cot(x2) − b2

b10
, g12

g22
= − x1cot(x2) .

Now substitute x3
e = 0 in the equation of x1

˙  above, we get the
internal dynamics as follows:

x1
˙ = f 1

¯ (x1),

Here, (see (51)) 

The equilibrium point of this zero-dynamics (or also
equilibrium velocity) x1

e can be computed solving the following
algebraic equation:

f 1
¯ (x1

e) = 0. (52)

8.2 Appendix 2: derivation of Flight Controller No. 2

Deriving the equation of the control inputs u1 and u2 in the form of
f (x) and g(x), we get

u1 = − f 3 + v1

g31
. (53)

u2 = ( f 3 − v1)g11

g12g31
− f 1 − v2

g12
. (54)

Substituting v1 = v2 = 0, in (53) and (54) we get,

u1 = − f 3

g31
, u2 = ( f 3)g11

g12g31
− f 1

g12
.

Now substitute the expression of control input u1 and u2 above
into the equation of x2

˙  in (13), we get:

x2
˙ = f 2 + g21u1 + g22u2

x2
˙ = f 2 + g21

− f 3

g31
+ g22

( f 3)g11

g12g31
− f 1g22

g12

= f 2 + g22g11

g12g31
− g21

g31
f 3 − g22

g12
f 1

(see equation below)

g22

g12
= −b3x1

e − 1sin(x2
e)

b3cos(x2
e)

= −tan(x2
e)

x1
e .

Now substitute x3
e = 0 in the equation of x2

˙  above, we get the
internal dynamics as follows:

x2
˙ = f 2

¯ (x2),

here,

f 2
¯ (x2) = b1b5x1

e + b1b13x1
ex2 + b4cos(x2 − x4

e)
x1

e

+ b8x1
etan(x2) (b14 + b15x2)

− b7 + b2x1
etan(x2) b4sin(x2 − x4

e)
b10x1

e

− b1b11x1
e2 + b1b12x1

e2x2

b10x1
e .

(55)

f 1
¯ = (x1

e)2 cot(x2
e) b1b5 − b7b8b14

b10

+x2
ecot(x2

e) b1b13 − b7b8b15

b10
+ b1b11 + b1b12x2

e

+ b4cot(x2
e)cos(x2

e − x4
e) − b2

b10
b2b14 + b8b15x2

e + b4sin(x2
e − x4

e)

(51)

g22g11

g12g31
− g21

g31
= b2x1

e2( − b3x1
e − 1sin(x2

e))
b3cos(x2

e)b10x1
e − b7x1

e

b10x1
e2 = −b3x1

etan(x2
e) − b7

b10x1
e .
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Simplifying the equation above, the equilibrium point of this
zero-dynamics (or also equilibrium angle of attack x2

e can be
computed solving the following algebraic equation:

f 2
¯ (x2

e) = b1b5x1
e(x1

e) + b1b13x1
ex2

ex1
e + b4cos(x2

e − x4
e)

+ b8x1
etan(x2

e)x1
e (b14 + b15x2

e)
− b10

−1 b7 + b2x1
etan(x2

e) b4sin(x2
e − x4

e)
− b10

−1 b1b11x1
e2 + b1b12x1

e2x2
e = 0.

(56)

8.3 Appendix 3: derivation of Flight Controller No. 3

Deriving the equation of the control inputs u1 and u2 in the form of
f (x) and g(x), we get

u1 = − f 2

g21
− g22

g21
u2 + v1

g21
, u2 = − f 1

g12
− g11

g12
u2 + v2

g12
. (57)

u1 = g12 f 2 − v1

g11g22 − g12g21
− g22 f 1 − v2

g11g22 − g12g21
. (58)

u2 = g21 f 1 − v2

g11g22 − g12g21
− g11 f 2 − v1

g11g22 − g12g21
. (59)

Substituting v1 = v2 = 0, in (57) and replacing them into the
equation of x3

˙  and x4
˙  in (13), we get

x3
˙

x4
˙ =

f 3 + g31u1

f 4
=

f 3 + g31
− f 2 − g22u2

g21

f 4

. (60)

Now substituting expression for f (x) and g(x) in (60) gives the
two-dimensional zero-dynamics:

x3
˙

x4
˙ = Φ3

Φ4

(see equation below)

Φ3
Φ4

=
f 3 + b10x1

− b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos x2 − x4 + −b3x1

−1sin x2 u2 + x2̇
ref + k2 x2 − x2

ref

b7

x3

.
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