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The paper addresses some computational aspects and applications of the polynomial unbiased finite im- 

pulse response functions originally derived by Shmaliy as a new class of a one-parameter family of dis- 

crete orthogonal polynomials. We present two new explicit formulas to compute these polynomials di- 

rectly. They are based on the discrete Rodrigues’ representation and hypergeometric form, respectively. 

These straightforward calculations lead us to propose another discrete signal representation in moment 

domain. Experimental results show a comparison between the proposed moments and discrete Cheby- 

shev moments in terms of noise-free/noisy signal feature extraction and reconstruction error. 
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. Introduction 

Although orthogonal polynomials over discrete sets were con-

idered as early as the middle of the nineteenth century by Cheby-

hev [1–3] , relatively little attention had been paid to them un-

il now. They appear naturally in discrete moment theory, statis-

ics and various areas of digital signal and image processing such

s object recognition, speech and image reconstruction, and in-

ariant analysis. Thereafter, such polynomials have been applied

o solve a wide range of 1D and 2D signal processing problems.

n digital communication systems, the discrete orthogonal polyno-

ials (DOPs) play an important role in the efficient approxima-

ion of multivariate signals. Later, various classical DOPs, such as

eixner, Hahn, Krawtchouk, Charlier, and Racah polynomials, were

resented in a generalized form [2] . These polynomials have a low-

ring and raising operator, which give rise to a Rodrigues’ formula

nd an explicit expression in terms of hypergeometric form, from

hich the coefficients of the three-term recurrence relation can be

btained. 

There are several efficient applications based on DOPs in the

eld of signal and image processing. Discrete moment analysis

s one of the most widely used techniques to recognize and re-

over speech signals and images. As follows from [4] , the DOPs in

he Chebyshev and Krawtchouk moments form can enhance noisy

peech signals. The DOPs are also used in image compression [5] ,

peech coding [6] , image restoration [7] , image analysis and in-
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ariants [8] . Mukundan et al. showed that the implementations of

ontinuous moments (such as Zernike, Legendre and Fourier-Mellin

oments) involve two main sources of errors including the dis-

rete approximation of the continuous integrals and mapping of

he image coordinate system into the area of orthogonality of the

olynomials [3,9] . They employed the discrete Chebyshev moments

or image analysis and observed they are superior to the contin-

ous moments in terms of image reconstruction capability under

he noise-free and noise conditions. Chebyshev moments are based

n the discrete Chebyshev polynomials with a single parameter

hich depends on the data length of N samples. In contrast to the

hree-parameter Hahn DOPs and two-parameter Krawtchouk DOPs,

hmaliy [10] developed the one-parameter discrete polynomial un-

iased finite impulse response (UFIRs) for FIR filters [11–13] re-

erring to the one-step predictive FIRs by Heinonen and Neuvo

14] . Later, Morales-Mendoza et al. showed in [15] that the UFIRs

10] establish a new class of DOPs having a single tuning parame-

er N (data length) and applied these DOPs in [16] to blind fitting

f finite data. An image reconstruction method based on the afore-

entioned UFIR DOPs has been patented in 2014 [17] . The authors

f this patent concluded that such UFIR transform is suitable for

eal-time processing. 

In this paper, we first recall the DOPs derived by Shmaliy as a

ew class of a single-parameter family of DOPs. Then we propose

wo different explicit equations to compute these DOPs directly

ased on the discrete Rodrigues’ formula and hypergeometric rep-

esentation, respectively. The rest of the paper is organized as

ollows. In Section 2 , we review the polynomial signal model

nd its orthogonality property based on the norm and weight

unctions. General properties of new DOPs are investigated in

http://dx.doi.org/10.1016/j.sigpro.2017.05.023
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mailto:honarvar@utia.cas.cz
mailto:flusser@utia.cas.cz
http://dx.doi.org/10.1016/j.sigpro.2017.05.023


58 B.H. Shakibaei Asli, J. Flusser / Signal Processing 141 (2017) 57–73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[

N

 

w  

n

ρ

 

w  

s  

t

w  

N  

f  

a

h  

h  

h  

h

 

 

n  

n  

t  

p

h  

F  

(

N

 

 

t  

3

 

n  

v

Section 3 including recursive representation, Rodrigues’ formula

and hypergeometric form. In Section 4 , the definition of new DOP

as moment function and its inversion formula is discussed. We

compare the proposed DOP with its continuous version called ra-

dial Mellin in limit condition. Some experimental results in 1D sig-

nal reconstruction are presented in Section 5 . Section 6 contains

concluding remarks. 

2. A new class of DOPs 

P. Heinonen and Y. Neuvo introduced a new class of FIR-Median

Hybrid (FMH) filters which contain linear FIR substructures to esti-

mate the current signal value using forward and backward predic-

tion [14] . It has been shown in [10,15] that the polynomial UFIRs

derived by Shmaliy are orthogonal and represent a new class of

one-parameter family of one-parameter family of DOPs. 

The p th degree discrete Shmaliy polynomial is defined as 

h p (n, N) = 

p ∑ 

i =0 

a ip (N) n 

i , (1)

existing from 0 to N − 1 and having the coefficients a ip defined

as 

a ip (N) = (−1) i 
M 

(p) 
(i +1) , 1 

(N) 

| H p (N) | (2)

where | H p ( N )| is the determinant and M 

(p) 
(i +1) , 1 

(N) is the minor of

Hankel matrix H p ( N ) 

H p (N) = 

⎛ ⎜ ⎜ ⎝ 

c 0 c 1 · · · c p 
c 1 c 2 · · · c p+1 

. . . 
. . . 

. . . 
. . . 

c p c p+1 · · · c 2 p 

⎞ ⎟ ⎟ ⎠ 

. (3)

The elements of Hankel matrix (3) are power series 

c k (N) = 

N−1 ∑ 

i =0 

i k = 

1 

k + 1 

( B k +1 ( N ) − B k +1 ) , (4)

where B k ( x ) is the Bernoulli polynomial and B k = B k (0) is the

Bernoulli number. By substituting (2) into (1) , we obtain a poly-

nomial of a discrete variable n as 

h p (n, N) = 

p ∑ 

i =0 

(−1) i 
M 

(p) 
(i +1) , 1 

(N) 

| H p (N) | n 

i , (5)

which is valid for n = 0 , 1 , . . . , N − 1 . 

2.1. Some properties of new discrete polynomials 

In [16] , Morales-Mendoza et al. proved the following fundamen-

tal properties of the discrete polynomials (5) . 

Unit area: 

N−1 ∑ 

n =0 

h p (n, N) = 1 . (6)

Zero moments: 

N−1 ∑ 

n =0 

n 

q h p (n, N) = 0 , 1 ≤ q ≤ p. (7)

Finite energy: 

N−1 ∑ 

n =0 

h 

2 
p (n, N) = a 0 p < ∞ . (8)
A class of discrete polynomials h p ( n, N ) is orthogonal on n ∈
0 , N − 1] . They satisfy the relation 

−1 ∑ 

n =0 

w (n, N) h p (n, N) h q (n, N) = ρ(p, N) δpq , (9)

here p, q = 0 , 1 , .., N − 1 and δpq is the Kronecker symbol. The

orm ρ( p, N ) of h p ( n, N ) is given by [16] : 

(p, N) = 

p + 1 

N(N + 1) 

p ∏ 

i =0 

N − i − 1 

N + i 

= 

(p + 1)(N − p − 1) p 
N (N ) p+1 

, 

(10)

here (a ) 0 = 1 , (a ) k = a (a + 1) . . . (a + k − 1) is the Pochhammer

ymbol. Weight function w ( n, N ) is a discrete linear (with respect

o n ) function 

 (n, N ) = 

2 n 

N (N − 1) 
. (11)

ote that w ( n, N ) is not symmetric. This is a substantial difference

rom other discrete polynomials such as Chebyshev, Krawtchouk

nd Hahn, the weight functions of which are all symmetric. 

The low-degree Shmaliy’s DOPs are [10] 

 0 (n, N) = 

1 

N 

, (12a)

 1 (n, N) = 

−6 n + 2(2 N − 1) 

N(N + 1) 
, (12b)

 2 (n, N) = 

30 n 

2 − 18(2 N − 1) n + 3(3 N 

2 − 3 N + 2) 

N(N + 1)(N + 2) 
, (12c)

 3 (n, N) = 

−140 n 

3 + 120(2 N − 1) n 

2 

N(N + 1)(N + 2)(N + 3) 

−20(6 N 

2 − 6 N + 5) n + 8(2 N 

3 − 3 N 

2 + 7 N − 3) 

N(N + 1)(N + 2)(N + 3) 
. (12d)

To achieve numerical stability, a set of weighted proposed poly-

omials is introduced in this subsection. Therefore, in addition to

ormalizing the polynomials with the norm, the square root of

he weight is also introduced as a scaling factor. Weighted discrete

olynomials are defined by 

¯
 p (n, N) = h p (n, N) 

√ 

w (n, N) 

ρ(p, N) 
. (13)

or the weighted polynomials, the orthogonality condition in

9) becomes 

−1 ∑ 

n =0 

h̄ p (n, N) ̄h q (n, N) = δpq . (14)

The new ordinary and weighted discrete polynomials up to the

hird degree for N = 50 are shown in Fig. 1 (a) and (b), respectively.

. General properties of h p ( n, N ) 

In this section, we analyze the computational aspects of the

ew discrete polynomials, h p ( n, N ), discuss their properties and de-

elop some new ones. 
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(a) (b)

Fig. 1. The plots of the new discrete polynomials for N = 50 up to the 3rd degree: (a) ordinary polynomials h p ( n, N ) and (b) weighted polynomials h̄ p (n, N) . 
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.1. Representation based on the weight function moments 

The DOPs h p ( n, N ) can be expressed in terms of the k th mo-

ents m k ( N ) of the weight function w ( n, N ). The moments are de-

ned as 

 k (N) = 

N−1 ∑ 

n =0 

n 

k w (n, N) . (15) 

ssuming m k � m k ( N ), it is possible to simplify m k for k ≥ 0 as

16] 

 k = 

2 

N(N − 1)(k + 2) 
[ B k +2 (N) − B k +2 (0) ] . (16) 

Now, the set of orthogonal polynomials h p ( n, N ) can be repre-

ented as 

 p (n, N) = r p (N) det M , (17) 

here r p ( N ) obeys the unit area property in (6) and 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

m 0 m 1 · · · m p 

m 1 m 2 · · · m p+1 

. . . 
. . . 

. . . 
. . . 

m p−1 m p · · · m 2 p−1 

1 n · · · n 

p 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (18) 

.2. Recursive representation 

In [16] , Morales-Mendoza et al. showed that orthogonal poly-

omials h p ( n, N ) satisfies the following three-term recurrence rela-

ion: 

p(2 p − 1)(N + p) h p (n, N) − 2 

[
p 2 (2 N − 1) − n (4 p 2 − 1) 

]
(19) 

×h p−1 (n, N) + p(2 p − 1)(N − p) h p−2 (n, N) = 0 , 

here p ≥ 1, h −1 (n, N) = 0 and h 0 (n, N) = 

1 
N . This recursive imple-

entation can be used for numerical implementation of the poly-

omials. 

.3. Rodrigues’ representation 

The continuous orthogonal polynomials such as Legendre, Her-

ite and Laguerre polynomials may be expressed using Rodrigues’
ormula [2] : 

 n (x ) = 

1 

r n w (x ) 

d 

n 

d x n 
{ w (x ) g n (x ) } , (20) 

here P n ( x ) is the continuous polynomial of degree n, w ( x ) is the

eight function, g ( x ) is a polynomial in x , the coefficients of which

re independent of n , and r n is a coefficient constant with respect

o x . An analogous formula exists for DOPs F p ( n ), too. We obtain

t by replacing the derivatives with forward differences [18] (note

hat we also replaced the continuous variable x with discrete vari-

ble n and the order n with order p for discrete case) 

 p (n ) = 

1 

r p w (n, N) 
�p { w (n, N) g(n, p) } , (21) 

here � is the first-order forward difference 

{ f (n ) } = f (n + 1) − f (n ) , (22) 

p is the p th order forward difference [19] 

p { f (n ) } = 

p ∑ 

k =0 

(−1) p−k 

(
p 

k 

)
f (n + k ) , (23) 

(n, p) = g(n ) g(n − 1) . . . g(n − p + 1) such that g ( n ) is a polyno-

ial in n independent of p and r p is a constant with respect to

 that can be obtained after finding the Rodrigues’ representation,

s will be shown in (33) . 

Since the weight function has been known, the only unknown

unction here is g ( n, p ). It is rather difficult to find this function in

he signal domain. Therefore, we propose transforming Eq. (21) to

he Z -domain and find the function g ( n, p ) there. The left-hand side

f (21) equals to the proposed DOP, h p ( n, N ). The weight function

as a fixed part of 2 
N (N −1) 

that can be canceled from the denom-

nator and argument of the forward difference in (21) . So, we can

ewrite (21) as 

h p (n, N) = 

1 

r p 
�p { ng(n, p) } . (24) 

By applying the Z -transform to (24) with respect to discrete

ariable n , we get 

z 
d H p (z) 

d z 
= 

1 

r p 
Y p (z) 

p ∑ 

k =0 

(−1) p−k 

(
p 

k 

)
z k , (25) 
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where H p ( z ) and Y p ( z ) are the Z -transforms of h p ( n, N ) and ng ( n,

p ), respectively (see more details in Appendix A ). The goal is to

find g ( n, p ) which is related to y p ( n ) ≡ ng ( n, p ) as 

 p (z) = −r p 
z 

d H p (z) 

d z ∑ p 

k =0 
(−1) p−k 

(
p 
k 

)
z k 

. (26)

We set p = 1 and get 

h 1 (n, N) = 

−6 n + 2(2 N − 1) 

N(N + 1) 

Z ←→ H 1 (z) 

= 

2 z 2 (2 N − 1) − 4 z(N + 1) 

N(N + 1)(z − 1) 2 
, 

d H 1 (z) 

d z 
= 

8 z − 4 N(z − 1) + 4 

N(N + 1)(z − 1) 3 
, 

and, finally, 

 1 (z) = −r 1 
z [ 8 z − 4 N(z − 1) + 4 ] 

N(N + 1)(z − 1) 4 
. (27)

Applying the inverse Z -transform to (27) yields 

y 1 (n ) = 

2 r 1 
N(N + 1) 

n (n − 1)(N − n ) . (28)

For p = 1 , we have 

y 1 (n ) = ng(n, 1) = ng(n ) . 

Therefore, Eq. (28) leads to 

g(n ) = 

2 r 1 
N(N + 1) 

(n − 1)(N − n ) (29)

and 

g(n, p) = 

p−1 ∏ 

k =0 

g(n − k ) 

= 

2 r 1 
N(N + 1) 

p−1 ∏ 

k =0 

(n − k − 1)(N − n + k ) 

= 

2 r 1 
N(N + 1) 

(n − p) p (N − n ) p . 

(30)

Note that the solution of the above product can be directly found

from the definition of the Pochhammer symbol [20] . By replacing

this obtained form of g ( n, p ) in (24) , we arrive at 

h p (n, N) = 

2 r 1 
r p N(N + 1) n 

�p 
{ 

n (n − p) p (N − n ) p 

} 

. (31)

It is clear that 
2 r 1 

r p N (N +1) 
is an independent function of n and can be

denoted as σ ( p, N ), which yields 

h p (n, N) = 

1 

nσ (p, N) 
�p 

{ 

n (n − p) p (N − n ) p 

} 

. (32)

By considering the low-order DOPs in Eq. (12) , it is easy to

find the general form of σ ( p, N ). The process of finding σ ( p, N ) is

shown in Appendix B in detail. By replacing this function in (32) ,

we get 

h p (n, N) = 

p + 1 

np!(N) p+1 

�p 
{ 

n (n − p) p (N − n ) p 

} 

, (33)

which is the discrete case of Rodrigues’ formula for representing

the discrete polynomials h p ( n, N ). 
.4. Hypergeometric representation 

The readers can find in [16] the statement, that the representa-

ion of polynomials h p ( n, N ) via hypergeometric functions has been

nknown. Here we present such a representation for the first time.

heorem 1. For p, n, N ≥ 0, the orthogonal discrete polynomials on

0 , N − 1] defined by (31) satisfy the following relation: 

 p (n, N) = 

(−1) p (p + 1)(n − p) p (N − n ) p 
p!(N) p+1 

3 F 2 (−p, n + 1 , 

1 − N + n ; n − p, 1 − N − p + n ; 1) . (34)

The proof of Theorem 1 is presented in Appendix C . 

. Discrete orthogonal moments of h p ( n, N ) 

Given a set of DOPs h p ( n, N ) with weight function w ( n, N )

nd norm ρ( p, N ), the orthogonal moment of order p < N of any

ounded signal f ( n ), n = 1 , . . . , N, is defined as 

 p = 

N ∑ 

n =1 

f (n ) ̄h p (n, N + 1) , (35)

here h̄ p (n, N + 1) = h p (n, N + 1) 

√ 

w (n,N+1) 
ρ(p,N+1) 

. 

Partial reconstruction 

˜ f (n ) of signal f ( n ) from its moments H p

p to the order N max can be found as 

˜ f (n ) = 

N max ∑ 

p=0 

H p ̄h p (n, N + 1) ; n = 1 , . . . , N. (36)

hanks to the orthogonality, if N max = N − 1 , than the recon-

tructed signal is error-free, which means ˜ f (n ) = f (n ) . 

The moments as well as the reconstruction can be calculated

n a numerically stable way, as will be demonstrated in Section 5 .

he pseudo code implementation of (35) and (36) is given in

lgorithm 1 . 

Algorithm 1: Algorithm in pseudo code for the implementa- 

tion of the new discrete orthogonal moments. 

Input : Signal f (n ) , 1 ≤ n ≤ N 

Output : New discrete moments, H p and reconstructed signal, 
˜ f (n ) 

1 Compute norm, ρ(p, N) and weight, w (p, N) from (10) and 

(11), respectively 

2 Compute DOPs, h p (n, N) from (20) or (34) 

3 Compute weighted DOPs, h̄ p (n, N + 1) from (13) 

4 for n ← 1 to N do 

5 for p ← 0 to N − 1 do 

6 compute H p from Eq. (35); 

7 end 

8 end 

9 for p ← 0 to N max do 

10 for n ← 1 to N do 

11 compute ˜ f (n ) from Eq. (36); 

12 end 

13 end 

As we can see from the Rodrigues’ formula (31) and from the

ypergeometric representation (34) , there is a close relationship

etween the proposed discrete polynomials h p ( n, N ) and continu-

us polynomial kernel Q p ( n ) (defined on the unit circle) of Fourier-
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Fig. 2. Comparison between the new discrete polynomials (red) and the continuous radial Mellin polynomials (black) for the (a) 5th degree, (b) 10th degree, (c) 15th degree, 

and (d) 20th degree. 
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ellin transform [21] if N approaches infinity. 

lim 

→∞ 

N(−1) p 

p + 1 

h p (N n, N ) = Q p (n ) , 

n ∈ [0 , 1] ; p = 0 , 1 , 2 , . . . 

(37) 

here 

 p (n ) = n 

p 

(
2 p + 1 

p + 1 

)
2 F 1 

(
−p − 1 , −p;−2 p − 1 ; 1 

n 

)
. (38) 

The above fact suggests to perform a comparative analysis be-

ween the discrete and continuous polynomials. A comparison

lots of h p ( n, N ) and radial Mellin polynomials of degrees 5, 10,

5 and 20 are shown in Fig. 2 (a), (b), (c) and (d), respectively. In

ll cases, N = 500 was used. We can see from Fig. (2 ) that for suf-

ciently large N it is possible to approximate continuous polyno-

ials by discrete ones with a reasonable accuracy. 

.1. Discrete approximation of radial Mellin moments 

The errors that are introduced if we apply continuous orthogo-

al moments to discrete signals can be significant in many appli-

ations. As we compared discrete polynomials h p ( n, N ) with con-

inuous radial Mellin polynomials Q p ( n ) in (37) , the definition of
ontinuous radial Mellin moments can be presented as follows: 

 p = 2(p + 1) 

∫ 1 

0 

f (x ) Q p (x ) x d x. (39) 

The signal f ( x ) can be reconstructed from its radial Mellin mo-

ents ψ p using the following formula 

f (x ) = 

∞ ∑ 

p=0 

ψ p Q p (x ) , (40) 

here the upper limit of the summation can be changed, when

oing a partial reconstruction, to maximum order of the moments

 max similarly to (36) . For a 1D signal f ( i ) of length N , a discrete

pproximation of (39) is 

 p = 2(p + 1) 
N−1 ∑ 

i =0 

f (i ) 

∫ i +1 
N 

i 
N 

Q p (x ) x d x. (41) 

The discretization of continuous integrals as given in (39) af-

ects the orthogonality property of the radial Mellin moments. If
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Fig. 3. Orthogonality violation of radial Mellin polynomials due to discretization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. “Baboon” gray-scale image of the size 512 × 512 pixels. 
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we define 

ε(p, q ) = 

1 

N − 1 

N−1 ∑ 

i =0 

Q p (x i ) Q q (x i ) x i , 

x i = 

i 

N − 1 

, 

(42)

in the discrete domain of signal, then it is desirable to have

ε(p, q ) = 0 whenever p 
 = q . However this condition is not met es-

pecially for small values of N . Plots of ε (2, 4), ε (5, 7), ε (8, 0) and

ε(11, 9) with respect to N is shown in Fig. 3 . The violation of or-

thogonality is clearly apparent. 

5. Numerical experiments 

In this section we illustrate the performance of the proposed

moments H p in signal reconstruction. We do so for both noise-

free and noisy signals and always compare the results with discrete

Chebyshev moments, which play the role of ”golden standard” in

this kind of problems. The comparison has been performed namely

in terms of accuracy, which is usually the primary criterion, but we

also compared time complexity of both methods. 

5.1. The signals 

We performed the experiments on six real 1D signals, which

were extracted as line segments from the commonly available test

image ”Baboon”. To ensure the diversity of the data, the signals

were taken from different parts of the image, see Fig. 4 . All ex-

tracted signals have the length of 32 samples (see Fig. 5 for the

signal plots). 

5.2. Noise-free signal reconstruction 

In this experiment, we calculated the proposed moments and

the discrete Chebyshev moments of the test signals and per-

formed partial reconstruction from moments of orders up to

2 , 4 , 6 , . . . , 30 , 32 (for the 32nd order the reconstruction becomes

complete). The reconstruction process is illustrated in Figs. 6–8 for

the signals showed in Fig. 5 (a),(c) and (f). We can observe that
he reconstruction always converges to the original signal. How-

ver, the partial reconstructions from the proposed and Chebyshev

oments, especially from the orders less than 10, are different. 

We measured the reconstruction accuracy by the normalized

ean square reconstruction error (NMSRE) defined as 

MSRE = 

√ ∑ N−1 
n =0 

(
f (n ) − ˜ f (n ) 

)2 ∑ N−1 
n =0 f 2 (n ) 

, (43)

here f ( n ) represents the original signal and 

˜ f (n ) is its recon-

tructed version. The comparison of the reconstruction errors is

resented in Fig. 9 . It can be seen that the NMSRE for the pro-

osed and Chebyshev moments are almost the same for the orders

igher than 10. 

.3. Signal reconstruction from noisy data 

Real signals are often corrupted by noise. Stable reconstruction

f the original signal from the moments, which have been com-
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Fig. 5. The plots of six test signals extracted from the ”Baboon” image: (a) row 

137, columns from 349 to 380, (b) row 218, columns from 191 to 222, (c) row 296, 

columns from 52 to 83, (d) row 385, columns from 478 to 509, (e) row 419, columns 

from 209 to 240, (f) row 490, columns from 398 to 429. 

Table 1 

Confidence intervals for noise-free case shown in the 

form of μ ± 1 . 96 σ√ 
n 

. 

Order Chebyshev moments Proposed moments 

2 (0.1306 ± 0.1160) (0.2648 ± 0.1221) 

4 (0.10 0 0 ± 0.0939) (0.1249 ± 0.0548) 

6 (0.0814 ± 0.0705) (0.0892 ± 0.0687) 

8 (0.0748 ± 0.0719) (0.0747 ± 0.0703) 

10 (0.0721 ± 0.0701) (0.0712 ± 0.0692) 

12 (0.0609 ± 0.0597) (0.0586 ± 0.0546) 

14 (0.0551 ± 0.0551) (0.0558 ± 0.0551) 

16 (0.0453 ± 0.0387) (0.0452 ± 0.0394) 

18 (0.0395 ± 0.0302) (0.0401 ± 0.0312) 

20 (0.0366 ± 0.0263) (0.0368 ± 0.0267) 

22 (0.0334 ± 0.0223) (0.0343 ± 0.0243) 

24 (0.0299 ± 0.0188) (0.0294 ± 0.0184) 

26 (0.0239 ± 0.0182) (0.0241 ± 0.0185) 

28 (0.0211 ± 0.0157) (0.0212 ± 0.0165) 

30 (0.0117 ± 0.0052) (0.0114 ± 0.0048) 

32 (0.0 0 0 0 ± 0.0 0 0 0) (0.0 0 0 0 ± 0.0 0 0 0) 
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Table 2 

Confidence intervals for noisy case shown in the form of 

μ ± 1 . 96 σ√ 
n 

. 

Order Chebyshev moments Proposed moments 

2 (0.1569 ± 0.1108) (0.2709 ± 0.1205) 

4 (0.1455 ± 0.0816) (0.1577 ± 0.0469) 

6 (0.1418 ± 0.0593) (0.1480 ± 0.0575) 

8 (0.1487 ± 0.0567) (0.1495 ± 0.0549) 

10 (0.1506 ± 0.0525) (0.1491 ± 0.0511) 

12 (0.1536 ± 0.0387) (0.1504 ± 0.0346) 

14 (0.1545 ± 0.0350) (0.1541 ± 0.0338) 

16 (0.1589 ± 0.0287) (0.1562 ± 0.0292) 

18 (0.1692 ± 0.0386) (0.1697 ± 0.0401) 

20 (0.1725 ± 0.0379) (0.1720 ± 0.0387) 

22 (0.1749 ± 0.0341) (0.1753 ± 0.0347) 

24 (0.1845 ± 0.0483) (0.1846 ± 0.0483) 

26 (0.1889 ± 0.0493) (0.1888 ± 0.0489) 

28 (0.1975 ± 0.0448) (0.1978 ± 0.0448) 

30 (0.2034 ± 0.0454) (0.2035 ± 0.0457) 

32 (0.2156 ± 0.0511) (0.2156 ± 0.0511) 
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uted from the noisy signal, is one of the most important indica-

ors of suitability of the given type of moments for signal anal-

sis. Signal reconstruction from noisy data is a difficult problem.

ven if we had a perfect reconstruction algorithm, we would never

btain exactly the noise-free original signal. If we minimize the

ean-square error between the reconstructed and noise-free orig-

nal signals, we find out that an optimal order of moments exists.

oments of higher orders contribute more to reconstruction of the

oise rather than to reconstruction of the signal. Since the problem

s ill-posed, the reconstruction error from noisy data may be very

igh, even if we use this optimal moment order. 

In this experiment, we used the same signals as before. We

orrupted them by additive zero-mean white Gaussian noise such

hat the signal-to noise ratio was 25 dB (see Fig. 10 for the noisy

ignals). The reconstruction process and error measurement were

nalogous to the noise-free case. The reconstructed signals are
lotted in Figs. 11–13 . Like in the previous experiment, we can ob-

erve only little differences between the reconstructions from the

roposed and the Chebyshev moments. 

Fig. 14 shows the reconstruction errors by using Chebyshev mo-

ents and our proposed method. Similarly to the noise-free case,

he differences for moment orders higher than 10 are insignificant.

ence, the noise robustness of both moment families is compara-

le and sufficiently high in both cases. For low-order reconstruc-

ion, there are domains where one method outperforms the other

ne. This is, however, substantially dependent on the signal itself

nd cannot be generalized into a signal-independent statement. In

ig. 14 , we can observe the phenomenon of optimal moment order

 opt , which corresponds to the local minimum of the NMSRE curve.

rder p opt depends on the data but also on the SNR – the higher

NR (i.e. the less noise), the higher p opt . For SNR approaching in-

nity we obtain p opt = N. 

.4. Confidence intervals of reconstruction error 

Confidence intervals consist of a range of values that act as

ood estimates of the unknown parameter; however, the interval

omputed from a particular sample does not necessarily include

he true value of the parameter. The desired level of confidence is

 user-defined parameter, it is not determined by data. If a cor-

esponding hypothesis test is performed, the confidence level is

he complement of respective level of significance, i.e. a 95% con-

dence interval reflects a significance level of 0.05. Here, we use

 confidence level of 95% for our both noise-free and noisy ex-

eriments due to the calculated reconstruction errors. This level of

onfidence can be formulated by μ ± 1 . 96 σ√ 

n 
where μ is the mean

f NMSRE, σ is the standard deviation of NMSRE and n is the num-

er of test signals (in this case n = 6 ). The confidence intervals of

he NMSRE for all moment orders are shown in Tables 1 and 2 for

oise-free and noisy cases, respectively. 

.5. Time complexity of moment computation 

In this experiment, a one dimensional signal is used to measure

he speed of the moment computation by applying the hypergeo-

etric and recursive methods for discrete Chebyshev and the pro-

osed polynomials. The signal of length N = 128 used in this test

as generated as 

f (n ) = sinc 

(
n 

2 

)
or 0 ≤ n ≤ 127 (see Fig. 15 for the plot). 
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Fig. 6. Signal reconstruction of Fig. 5 (a): (a) the proposed moments and (b) discrete Chebyshev moments. 
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Fig. 7. Signal reconstruction of Fig. 5 (c): (a) the proposed moments and (b) discrete Chebyshev moments. 



66 B.H. Shakibaei Asli, J. Flusser / Signal Processing 141 (2017) 57–73 

Fig. 8. Signal reconstruction of Fig. 5 (f): (a) the proposed moments and (b) discrete Chebyshev moments. 
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Fig. 9. Reconstruction error for Figs. 6–8 : The proposed moments (dashed line) and discrete Chebyshev moments (solid line). 

Fig. 10. Noisy signals of Fig. 5 corrupted by additive zero-mean white Gaussian 

noise of SNR = 25 db. 

Table 3 

Average CPU elapsed times in milliseconds for computation of Cheby- 

shev and the proposed moments using two different methods. 

Order of Hypergeometric method Recursive method 

moments Chebyshev Proposed Chebyshev Proposed 

moments moments moments moments 

0 0.23 0.25 0.07 0.12 

10 0.47 0.59 0.19 0.34 

20 0.86 0.94 0.54 0.68 

30 1.27 1.35 0.87 1.13 

40 3.16 3.34 1.06 1.44 

50 5.07 5.27 1.89 2.32 

75 9.80 11.66 3.67 5.83 

100 24.69 31.12 7.72 10.25 

125 75.88 90.32 16.11 23.43 

 

e  
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t

6

 

n  

U  
Each moment was calculated four times and the average CPU

lapsed time was stored. Table 3 shows the average times mea-

ured in this experiment. We can see that the recursive method is

uch faster than the hypergeometric one in all cases, so there is

 clear recommendation to use recursive formulas for implementa-

ion. On the other hand, there is no significant differences between

he complexity of the proposed and Chebyshev moments. 

. Conclusion 

A new set of discrete orthogonal moment features based on a

ew class of a one-parameter family of DOPs established by the

FIR functions earlier derived by Shmaliy has been proposed in



68 B.H. Shakibaei Asli, J. Flusser / Signal Processing 141 (2017) 57–73 

Fig. 11. Signal reconstruction of Fig. 5 (a): (a) The proposed moments and (b) discrete Chebyshev moments. 
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Fig. 12. Signal reconstruction of Fig. 5 (c): (a) The proposed moments and (b) discrete Chebyshev moments. 
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Fig. 13. Signal reconstruction of Fig. 5 (f): (a) The proposed moments and (b) discrete Chebyshev moments. 
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Fig. 14. Reconstruction error for Figs. 11–13 : Proposed moments (dashed line) and Chebyshev moments (solid line). The minimum indicates the moment order which is 

optimal for signal reconstruction. 

Fig. 15. The test signal of length 128 used for the measurement of the moment 

calculation time complexity. 
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his paper. The new DOPs have two remarkable features. In a con-

rast to many popular DOPs such as Krawtchouk and Hahn, they

epend on a single parameter (the signal length) only. The sec-

nd distinction is that they are orthogonal with respect to linear

eight function, while most of other polynomials require symmet-

ic non-linear weight functions. We derived both explicit formu-

as to compute these new class of DOPs based on the discrete Ro-

rigues’ representation and hypergeometric form, respectively. The
ypergeometric representation of these polynomials has not been

nown before. We also showed that the new DOPs are the discrete

ersion of the radial Mellin polynomials in the limiting case when

he length of the signal approaches infinity. 

After employing Z -transform to find a straightforward solution

or the proposed DOPs, we applied the new discrete moments to

ignal analysis, particularly to signal reconstruction. Experimental

esults conclusively prove the effectiveness of the proposed mo-

ents as a new feature descriptors. Comparative analysis with

hebyshev moments, which form another single-parameter family,

hows the capability of the proposed moments in terms of recon-

truction error of noise-free/noisy signals. 

This paper studied only 1D polynomials and moments. Exten-

ion into 2D and 3D is straightforward – we can define the multi-

ariate polynomials as products of the univariate ones in each di-

ension. Doing so, we can study the performance of the new mo-

ents in all traditional tasks of 2D and 3D image analysis, where

oments have been commonly applied [22] – in object descrip-

ion and recognition, watermarking, image registration, and many

thers. This could be a subject of a future work. 
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Appendix A 

Derivation of Eq. (25) . Let 

h p (n, N) 
Z ←→ H p (z) ; ng(n, p) = y p (n ) 

Z ←→ Y p (z) . 

The generalization of forward difference yields 

�p { y p (n ) } = 

p ∑ 

k =0 

(−1) p−k 

(
p 

k 

)
y p (n + k ) . (A.1)

By time shifting and using differentiation properties in Z domain,

we obtain 

nh p (n, N) 
Z ←→ −z 

d H p (z) 

d z 
, (A.2)

�p { y p (n ) } Z ←→ 

p ∑ 

k =0 

(−1) p−k 

(
p 

k 

)
z k Y p (z) . (A.3)

Combining (A.2) and (A.3) leads us to (25) . 

Appendix B 

Comparing Eq. (12) as low-order polynomials and (35) allows us

to find σ ( p, N ). Table B-1 shows the first four low-order polynomi-

als and their corresponding σ ( p, N ) explicitly. The third column of

this table shows that the numerators include Pochhammer num-

bers multiplied by the factorial of the degree p . The denominators

equal p + 1 . 

Table B-1 

Explicit formula to find σ ( p, N ). 

p h p ( n, N ) σ ( p, N ) 

0 h 0 (n, N) = 

1 
N 

N 

1 h 1 (n, N) = 

−6 n +2(2 N−1) 
N (N +1) 

N (N +1) 
2 

2 h 2 (n, N) = 

30 n 2 −18(2 N−1) n +3(3 N 2 −3 N+2) 
N (N +1)(N +2) 

2 N (N +1)(N +2) 
3 

3 h 3 (n, N) = 

−140 n 3 +120(2 N−1) n 2 −20(6 N 2 −6 N +5) n +8(2 N 3 −3 N 2 +7 N −3) 
N (N +1)(N +2)(N +3) 

6 N (N +1)(N +2)(N +3) 
4 

� � �

p 
∑ p 

i =0 
(−1) i 

M (p) 
(i +1) , 1 

(N) 

| H p (N) | n i 
p!(N) p+1 

p+1 

Appendix C 

Proof of Theorem 1 : We expand (33) using the general expansion

formula of the forward difference (23) as 

h p (n, N) = 

p + 1 

np!(N) p+1 

p ∑ 

k =0 

(−1) p−k 

(
p 

k 

)
(n + k ) 

× (n + k − p) p (N − n − k ) p . (C.1)

The main part of the proof is to convert each term in the above

sum to a form of Pochhammer symbol as (.) k . We use the follow-

ing well-known properties of Gamma function and Pochhammer

symbol for integer variables n and k 

�(n + 1) = n ! (C.2a)

(n ) k = 

�(n + k ) 

�(n ) 
(C.2b)

�(n + k ) = �(n )(n ) k (C.2c)

�(n − k ) = 

(−1) k �(n ) 

(1 − n ) k 
(C.2d)
By expanding 
(

p 
k 

)
as p! 

k !(p−k )! 
and using ( C.2 b), Eq. (C.1) can be

ewritten as 

 p (n, N) = 

(p + 1)(−1) p 

np!(N) p+1 

p ∑ 

k =0 

(−1) −k p! 

k !(p − k )! 
(n + k ) 

× �(n + k ) 

�(n + k − p) 

�(N − n − k + p) 

�(N − n − k ) 
. 

(C.3)

o obtain a Pochhammer symbol expression for terms (n + k ) and

(p − k )! , we use the identities (C.2) which leads to 

 + k = 

(n + k )! 

(n + k − 1)! 
= 

�(n + k + 1) 

�(n + k ) 
= n 

(n + 1) k 
(n ) k 

(C.4a)

(p − k )! = �(p − k + 1) = 

(−1) k �(p + 1) 

(1 − p − 1) k 
= 

(−1) k p! 

(−p) k 
(C.4b)

Substituting (C.4) into (C.3) and using (C.2), (C.3) can be further

implified into the form 

 p (n, N) = 

(p + 1)(−1) p 

np!(N) p+1 

p ∑ 

k =0 

(−1) −k p! 

k ! (−1) k p! 
(−p) k 

n 

(n + 1) k 
( n ) k 

× �(n )(n ) k 
�(n − p)(n − p) k 

(−1) k �(N − n + p) 

(1 − N + n − p) k 

(1 − N + n ) k 
(−1) k �(N − n ) 

.

(C.5)

fter some manipulations, (C.5) becomes 

 p (n, N) = 

(−1) p (p + 1)(n − p) p (N − n ) p 
p!(N) p+1 

p ∑ 

k =0 

1 

k ! 

× (−p) k (n + 1) k (1 − N + n ) k 
(n − p) k (1 − N − p + n ) k 

. 

(C.6)

ntroducing hypergeometric function 3 F 2 into the above equation,

e finally end up with Eq. (34) , which completes the proof of

heorem 1 . 
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