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a b s t r a c t 

Vector field images are a type of new multidimensional data that appear in many engineering areas. 

Although the vector fields can be visualized as images, they differ from graylevel and color images in 

several aspects. To analyze them, special methods and algorithms must be originally developed or sub- 

stantially adapted from the traditional image processing area. In this paper, we propose a method for 

the description and matching of vector field patterns under an unknown rotation of the field. Rotation of 

a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates 

but also on the field values. Invariants of vector fields with respect to total rotation constructed from 

orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is 

shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real 

world template matching application of rotated vector fields. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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1. Introduction 

In the last decade, an increasing attention has been paid to vec-

tor field images and to the tools for their analysis. Vector fields

arise in mechanical engineering, fluid dynamics, computer vision,

meteorology, and many other application areas. They describe par-

ticle velocity, wind velocity, optical/motion flow, image gradient,

and other phenomena, for instance, flowing water in a pipe, an air

flow around an aircraft wing or around a coachwork, or a wind ve-

locity map. Vector fields are obtained as a result of computer pro-

cessing of standard digital images or videos, numerical solutions of

the Navier–Stokes equations, or from real physical measurements

(see Fig. 1 ). 

A 2D vector field f ( x ) can be mathematically described as a pair

of scalar fields (images) f ( x ) = ( f 1 ( x ) , f 2 ( x )) . At each point x =
(x, y ) , the value of f ( x ) shows the orientation and the magnitude

of a certain vector. 

A common task in vector field analysis is the detection of vari-

ous patterns of interest. It comprises not only detection of singular-

ities such as sinks, vortices, saddle points, vortex-saddle combina-

tions, and double vortices, but also detection of patterns which are
∗ Corresponding author. 
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ot specific but are similar to the pattern stored in the database.

or engineers and designers, it is very important to identify these

atterns of interest in the flow, because they may increase the

riction, vary the pressure, or decrease the speed of the medium,

hich consequently increases the power and cost necessary to

ransport it through the pipe or the object through the air or wa-

er. We also may just look for an appearance of certain pattern

ecause it may indicate the presence of the physical phenomenon

n the fluid we are interested in. The detection of these features is

ypically accomplished by template matching. 1 Sample templates

f these patterns, obtained from similar fields or as a result of a

imulation, are stored in the template database and searched in

he given field. The search algorithm must be primarily rotation in-

ariant , because the particular orientation of the template is un-

nown (see Fig. 2 for illustration). It is further important that the

lgorithm is robust with respect to noise in the measurements. 

Many template-matching techniques have been developed for

calar images. The key point to avoid a brute-force search is to

nd rotation-invariant template descriptors. The matching is then

erformed by a search of all possible template locations (which

ay be sped-up by a pyramidal representation of the image) and
1 If the patterns to be detected were only singularities or other mathematically 

ell-described patterns, we could alternatively use other methods. Template match- 

ng is a general method suitable for any pattern which is defined by example rather 

han by mathematical description. 
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Fig. 1. Fluid flow behind an obstacle. The flow direction is visualized using line 

integral convolution and the velocity is encoded in the color. 

Fig. 2. Vortex detection in a swirling fluid by template matching. The detection 

method must be invariant to the template orientation. 
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he matching position is determined as that one which minimizes

ertain “distance” (usually derived from � 2 -norm) in the high-

imensional feature-space of descriptors. The first method of this

ind was proposed by Goshtasby [1] , who used rotation invariants

rom geometric moments as the descriptors, but in principle any

nvariants from any kind of features [2–7] can be used for this pur-

ose. 

The methods (or, more precisely, the invariant descriptors) orig-

nally designed for scalar images cannot be applied directly to vec-

or fields, because the behavior of a vector field under rotation is

ubstantially different. The rotation of scalar image f by the angle

can be described as 

f ′ ( x ) = f ( R −α · x ) , 

here 

 α = 

(
cos α − sin α
sin α cos α

)

s a rotation matrix. This rotation, called inner rotation , affects the

patial coordinates only. 

However, when rotating a vector field, the situation is differ-

nt. The vectors rotate inversely to the in-plane rotation such that

heir relative orientation to the image content stays constant. The

nderlying model, which is called total rotation , is 

 

′ (x ) = R αf ( R −α · x ) . 

he total rotation of a sample vector field is illustrated in Fig. 3 (b)

or α = 22 . 5 ◦. Each arrow is rotated around the image center to the

ew position and its direction is also rotated by the same angle. 

In order to implement a rotation-invariant template matching

lgorithm, we first need to find descriptors that are invariant with

espect to the total rotation of a vector field. This problem was

aised for the first time by Schlemmer et al. [8] , who adapted the

calar moment invariants proposed by Mostafa and Psaltis [9] and

lusser [3,10] and designed invariants composed of geometric com-

lex moments of the field. Schlemmer et al. used these invariants

o detect specific patterns in a turbulent swirling jet flow. Rota-

ion invariants from geometric complex moments have found sev-

ral applications. Liu and Ribeiro [11] used them, along with a local

pproximation of the vector field by a polynomial, to detect singu-

arities on meteorological satellite images showing wind velocity.
asically the same kind of rotation invariants were used by Liu and

ap [12] for the indexing and recognition of fingerprint images. Bu-

ack et al. [13,14] studied the invariants of complex moments thor-

ughly, generalized the previous works, and showed that the in-

ariants can be derived also by means of the field normalization

pproach. These authors demonstrated the use of the invariants in

everal pattern matching tasks including fluid dynamics simulation

f a Kármán vortex street. 

In all of the above-mentioned papers, despite of certain differ-

nces, the invariants are essentially based on standard geometric

oments. It is well known from many studies of scalar images,

hat the geometric (and consequently the complex) moments have

ather poor numerical properties, in particular they cannot be cal-

ulated in a stable way up to high orders [2] . This is caused by

he fact that their basis functions x p y q are not orthogonal. In scalar

mage analysis, this finding led to the design of invariants from or-

hogonal moments and from other orthogonal projections of the

mage (see, for instance, [2] for a survey). However, nothing like

hat has been published for vector fields so far. 

In this paper, we introduce vector field invariants w.r.t. total ro-

ation composed of orthogonal Gaussian–Hermite moments and of

ernike moments. We demonstrate that they have better numeri-

al properties than the invariants of geometric/complex moments

nd they can be advantageously used in the vector field template

atching tasks. 

In the next section, we briefly recall Gaussian–Hermite mo-

ents. In Section 3 , we show how the Gaussian–Hermite mo-

ents can be used for designing rotation invariants of vector fields.

ection 4 introduces vector field invariants based on Zernike mo-

ents. Finally, numerical experiments and comparison are pre-

ented in Section 5 . 

. Gaussian–Hermite polynomials and moments 

Hermite polynomials are popular basis functions introduced by

. Hermite [15] . They have been widely used in signal analysis and

n many other applications. 

The Hermite polynomial of the n -th degree is defined as 

 n (x ) = (−1) n e x 
2 d 

n 

d x n 
e −x 2 . (1)

ermite polynomials are orthogonal on ( −∞ , ∞ ) with the weight

 ( x ) = e −x 2 . For numerical calculations, Hermite polynomials can

e evaluated in a fast and stable way by means of the three-term

ecurrence relation 

 n (x ) = 2 xH n −1 (x ) − 2(n − 1) H n −2 (x ) (2)

ith the initialization H 0 (x ) = 1 and H 1 (x ) = 2 x . If they are not

odulated, they have a high range of values and poor localization,

hich makes them difficult to use directly for image description.

o overcome this, we modulate Hermite polynomials with a Gaus-

ian function and scale them. This normalization yields Gaussian–

ermite (GH) polynomials 

 n (x, σ ) = H n (x/σ ) e −
x 2 

2 σ2 . (3)

n most cases, we work with orthonormal GH polynomials ˆ H n ,

hich differ from Eq. (3) just by the scalar factor: 

ˆ 
 n (x, σ ) = 

1 √ 

n !2 

n σ
√ 

π
H n (x, σ ) . (4)

As can be seen in Fig. 4 , the GH polynomials have a range

f values inside (−1 , 1) . Although they are formally defined on

(−∞ , ∞ ) , they are effectively localized into a small neighborhood

f the origin controlled by σ . 
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)b()a(

Fig. 3. Vector field transformation: (a) original vector field, (b) its total rotation. 
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Fig. 4. The graphs of the Gaussian–Hermite polynomials up to degree 6 with σ = 1 . 
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2D Gaussian–Hermite moments of a function f ( x, y ) are defined

as 

ˆ ηpq = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

ˆ H p (x, σ ) ̂  H q (y, σ ) f (x, y )d x d y. (5)

The GH moments were introduced to the image analysis com-

munity by Shen [16,17] . They were proved to be robust w.r.t. addi-

tive noise [18,19] and were successfully employed in several appli-

cations, such as in the detection of moving objects in videos [20] ,

in license plate recognition [21] , in image registration as landmark

descriptors [4] , in fingerprint classification [22] , in face recognition

[23,24] , in 3D object reconstruction [25] , and as directional feature

extractors [26] . 

The main advantage of the GH moments for using in image pro-

cessing is their simple transformation under a rotation of the spa-

tial coordinates, as was discovered by Yang et al. [27,28] and em-

ployed to design GH rotation invariants of scalar images [29] . This

property of the GH moments has been known as the Yang’s theo-

rem : If there exists rotation invariant I(m p 1 q 1 , m p 2 q 2 , . . . , m p d q d 
) of
eometric moments 

 pq = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

x p y q f (x, y )d x d y, (6)

hen the same function of the corresponding Hermite moments is

lso a rotation invariant (see [28] for the detailed proof). Further-

ore, Gaussian weighting and scaling do not violate this property

rovided that the scale parameter σ is the same for x and y and

hat the normalizing coefficient has been set up as 

ˆ pq = 

1 

σ
√ 

π(p + q )!2 

p+ q 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

H p (x, σ ) H q (y, σ ) f (x, y )d x d y. 

(7)

he Yang’s theorem still holds well and the functional I( ̂  ηp 1 q 1 ,

ˆ p 2 q 2 , . . . , ˆ ηp d q d 
) is a rotation invariant of the Gaussian–Hermite

oments of scalar images [28] . 

In the next section, we adapt the Yang’s theorem for vector

elds and show how to construct GH invariants w.r.t. total rota-

ion, which is the main theoretical contribution of the paper. 

. Gaussian–Hermite rotation invariants of vector fields 

A vector field can be treated as a complex-valued function (or

atrix in a discrete case) 

 (x, y ) = f 1 (x, y ) + i f 2 (x, y ) , 

hich allows us to use the standard definition of moments. It

olds, for arbitrary moment M pq , 

 

( f ) 
pq = M 

( f 1 ) 
pq + iM 

( f 2 ) 
pq , 

here M pq may stand for geometric, GH, or any other moment.

ince the outer rotation (i.e. the rotation of the vector values) can

e modeled as a multiplication of the vector field by a constant

actor e −iα, any moment M pq suffices 

 

′ 
pq = e −iαM pq . 

ence, the GH moments are transformed exactly in the same way

s the geometric moments. This allows us to formulate a general-

zation of the Yang’s theorem to vector fields: 

If there exists invariant to total rotation of a vector field

(m p 1 q 1 , m p 2 q 2 , . . . , m p d q d 
) of geometric moments, then the same
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unctional I( ̂  ηp 1 q 1 , ˆ ηp 2 q 2 , . . . , ˆ ηp d q d 
) of the Gaussian–Hermite mo-

ents is also an invariant. 

Practical applicability of the Yang’s vector-field theorem de-

ends on our ability to find rotation invariant I composed of ge-

metric moments (in practice, a single invariant is not sufficient

nd we are looking for a set providing a sufficient discriminabil-

ty). That is, however, not easy. Already in the theory of moments

f scalar images, it was shown [30] that the rotation invariants are

ard to construct directly from the geometric moments. The same

pplies for vector fields, where the problem is even more difficult.

n scalar moment invariants, the problem was overcome by using

omplex moments 

 pq = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

(x + iy ) p (x − iy ) q f (x, y )d x d y. (8)

he complex moments change under the inner rotation by angle α
imply as 

 

′ 
pq = e −i (p−q ) αc pq (9) 

see [30] for the proof). Under a total rotation of a vector field, c ( f ) pq 

ulfills 

 

( f 
′ 
) 

pq = e −iαe −i (p−q ) α · c ( f ) pq = e −i (p−q +1) α · c ( f ) pq . (10)

he link between the geometric and the complex moments

30] (which is the same both for scalar and vector images) 

 pq = 

p ∑ 

k =0 

q ∑ 

j=0 

(
p 

k 

)(
q 

j 

)
(−1) q − j i p+ q −k − j m k + j,p+ q −k − j (11)

ields the possibility of applying the Yang’s theorem. When replac-

ng the c pq ’s by the corresponding functions of the GH moments 

 pq = 

p ∑ 

k =0 

q ∑ 

j=0 

(
p 

k 

)(
q 

j 

)
(−1) q − j i p+ q −k − j ˆ ηk + j,p+ q −k − j , (12)

he behavior under a total rotation must be preserved, which leads

o 

 

( f 
′ 
) 

pq = e −i (p−q +1) α · d ( f ) pq . (13)

Now we can cancel the rotation parameter by multiplication of

roper powers of the d pq ’s. Let � ≥ 1 and further let k i , p i , and q i 
(i = 1 , . . . , � ) be non-negative integers such that 

� 
 

i =1 

k i (p i − q i + 1) = 0 . 

hen, 

 = 

� ∏ 

i =1 

d k i p i q i 
(14) 

s invariant with respect to total rotation of a vector field. 

Eq. (14) may generate an infinite number of rotation invariants.

t is desirable to work with an independent and complete subset

basis). The simplest possible basis can be obtained by 

(p, q ) ≡ d pq d 
p−q +1 
q 0 p 0 

, (15)

here p 0 − q 0 = 2 and d q 0 p 0 	 = 0 . To get a complete system, we set

y definition �(q 0 , p 0 ) ≡ | d q 0 p 0 | (note that �( q 0 , p 0 ), if calculated

rom Eq. (15) , would always equal one). 

The choice of the basis is not unique and it is determined by

he choice of d q 0 p 0 , which is sometimes called the basic moment

r the normalizer . The normalizer must be nonzero for all vector

elds in the given experiment. If this condition was not fulfilled,

he basis would lose its discrimination power. The construction of

he basis requires special care if the fields in question exhibit cer-

ain symmetry, as we will see in the next section. 
.1. Symmetry issues 

In moment-based pattern recognition, symmetric objects re-

uire special care when we define the invariants. Many moments

re zero on objects that exhibit a certain symmetry. If they were

sed as a factor in a product, the invariant would become trivial

n any object with the given type of symmetry. Trivial invariants

o not provide any discriminability and only increase the dimen-

ionality of the feature space, which may lead to a drop in perfor-

ance. When we want to recognize different symmetric objects,

he vanishing moments must be identified in advance and the triv-

al invariants need to be discarded from the system. 

For rotation invariants of scalar images, the systematic analy-

is of this phenomenon was first presented in [31] , where the au-

hors showed the solution based on complex moments for objects

ith N -fold rotation symmetry. Vanishing of Gaussian–Hermite

oments was studied later in [29] , where the basis construction

hat prevents the use of the vanishing moments was proposed.

he most general choice of the non-vanishing invariants of com-

lex moments was proposed by Bujack [32] , who introduced so-

alled flexible basis. 

The problem of vanishing moments appears in case of vector

elds, too. Unlike scalar images, the symmetry we have to investi-

ate in the case of vector fields is that one which is related to the

otal rotation of the field. Let us define the notion of total N-fold

otation symmetry . The vector field f is said to be totally N -fold

ymmetric if it holds, for α = 2 π/N, 

 

′ (x ) ≡ R αf ( R −α · x ) = f(x) . 

e may extend this definition also to N = ∞ ; then the equality

ust hold for any α. 

If a vector field f is totally N -fold symmetric, then d ( f ) pq = 0 for

ny index pair p, q such that (p − q + 1) /N is not an integer. This

an be observed immediately from Eq. (13) if we set α = 2 π/N.

hen, due to the symmetry of field f , we get d ( f 
′ ) 

pq = d ( f ) pq . This

quality can be fulfilled only if d ( f ) pq = 0 or if (p − q + 1) /N is in-

eger. 

We should take this proposition into account when designing

nvariants that are supposed to discriminate two vector fields with

he same total N -fold symmetry. Instead of the basic invariants

( p, q ) from Eq. (15) , which may vanish, we create a non-trivial

asis composed of the invariants 

N (p, q ) ≡ d pq d 
p−q +1 

N 
q 0 p 0 

, (16)

here (p − q + 1) /N is an integer and p 0 − q 0 = N + 1 . 

When considering a total radial symmetry N =∞ , the only non-

anishing invariants are 

∞ 

(p, p + 1) ≡ d p,p+1 . (17)

The described problem of invariants of symmetric fields is not

arginal as many specific templates we search for often exhibit

ymmetry with respect to a total rotation. The symmetry must be

dentified in advance and the invariant basis should be chosen ac-

ording to (16) or (17) . 

.2. Flexible basis 

However, in practice, symmetric patterns may not be exactly

ymmetric due to sampling errors. Even if we do not detect any

ero moments, certain moments may be very close to zero. This

ay happen also for some non-symmetric patterns. If we choose

uch a numerically zero moment as a basic moment in (15) , the

esulting invariants may be unstable and vulnerable to noise. To

vercome that, we may construct a so-called flexible invariant ba-

is as follows. We relax the constraint given earlier on the indices
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2 This terminology originates from the fact that the complex moments are simple 

functions of geometric moments, the most elementary moments. Sometimes they 

are called monomial invariants because they are based on the monomial basis func- 

tions. 
p 0 and q 0 by only requiring p 0 − q 0 + 1 	 = 0 . We look for a “signif-

icantly non-zero” moment d q 0 p 0 satisfying this constraint by cal-

culating the average magnitude of all d pq ’s up to the given order.

The lowest-order moment whose magnitude exceeds the average

is then taken as the normalizer d q 0 p 0 and the basis is constructed

via 

� f lex (p, q ) ≡ d pq d 
p−q +1 

p 0 −q 0 −1 

q 0 p 0 
. (18)

There are | p 0 − q 0 − 1 | complex roots, so �flex ( p, q ) is defined with

a | p 0 − q 0 − 1 | -ambiguity. Since all these solutions are dependent,

it is sufficient to store a single value only (all of them should be,

however, taken into account when comparing two patterns). To

avoid working with the multiple roots, we can alternatively use the

powers 

�(p, q ) ≡ � f lex (p, q ) p 0 −q 0 −1 = d p 0 −q 0 −1 
pq d p−q +1 

q 0 p 0 
, (19)

which are defined unambiguously. 

The flexible basis avoids using close-to-zero moments but does

not require a prior analysis of the symmetry. It may be used in

any case; however for common non-symmetric and non-singular

patterns the flexible basis provides the same discrimination power

as the basis (15) (in many cases the chosen normalizer is exactly

the same as in (15) ). 

4. Zernike rotation invariants of vector fields 

Zernike polynomials were originally proposed to describe the

diffracted wavefront in phase contrast imaging [33] and have

found numerous applications in mathematics, optics, and imaging.

Zernike moments (ZMs) [5] have become very popular in image

analysis. They belong to the family of radial moments , along with

the Pseudo–Zernike, Fourier–Mellin, Jacobi–Fourier, Chebyshev–

Fourier, and other moments (see [2] for a survey)). Their main ad-

vantage comes from the fact that they are orthogonal on the unit

disk, they keep their magnitude constant under an image rotation,

and their phase change is simple and easy to eliminate. The lat-

ter property ensures a theoretically easy construction of rotation

invariants of scalar images [6] . 

Zernike moment of degree n with repetition � of vector field f is

defined as 

A n� = 

n + 1 

π

∫ 2 π

0 

∫ 1 

0 

V 

∗
n� (r, θ ) f (r, θ ) r d rd θ, (20)

where n = 0 , 1 , 2 , . . . , � = −n, −n + 2 , . . . , n and V n � ( r, θ ) is the re-

spective Zernike polynomial (see for instance [2] for its complete

definition). 

Under a total rotation of the field by α, ZMs are transformed as

A 

′ 
n� = A n� e 

−i (� −1) α. (21)

The rotation invariants of vector fields are then obtained by phase

cancellation as 

Z n� = A n� (A n 0 � 0 ) 
−(� −1) / (� 0 −1) , (22)

where the normalizer should be chosen such that � 0 	 = 1 and

A n 0 � 0 	 = 0 . If we choose � 0 = 0 or � 0 = 2 , we avoid the complex

roots and end up with simpler invariants 

Z n� = A n� (A n 0 � 0 ) 
±(� −1) . (23)

5. Experiments 

The goal of the experimental section is to compare the pro-

posed orthogonal invariants of vector fields (both GH and ZM) to
heir competitors – the invariants composed of geometric/complex

oments [2] . These invariants are formally defined by the same

quation as (15) , but complex moments c pq are used in place of

 pq : 

(p, q ) ≡ c pq c 
p−q +1 
q 0 p 0 

(24)

nd 
(q 0 , p 0 ) ≡ | c q 0 p 0 | . A few special cases of the invariants

24) of low orders, without mentioning the general formula, were

sed in [8] and in the follow-up papers mentioned in the introduc-

ion. In fact, they perform the only method for template matching

n vector fields published so far. 

In the remainder of this paper, we will refer to the invariants

iven by Eq. (24) as the geometric invariants. 2 

In the first experiment, we demonstrate the main advantage of

he orthogonal invariants – high numerical stability and low preci-

ion loss even for high-order invariants. The second and third ex-

eriments illustrate the application of the GH invariants in tem-

late matching in real vector fields. 

.1. Numerical precision 

In this experiment, we evaluated numerical properties of GH,

M and geometric moment invariants up to the order p + q = 160 .

t can be expected that high-order geometric moment invariants

ose precision because they comprise very high and very low num-

ers. Since the GH moments can be calculated by the recurrence

elation (2) , the overflow and underflow effects should be less sig-

ificant or even not present at all. The same is true for the Zernike

oments. Due to their popularity, great effort has been made to

evelop efficient and numerically stable algorithms for their calcu-

ation [34–40] . In this experiment, we used an implementation of

he recurrent Kintner method [2,34] , which is like a gold standard

n the ZM computation. 

The evaluation is done by measuring the relative error of each

nvariant. We took a 365 × 451 vector field (obtained as a gradient

eld of the image of a hair, see Fig. 5 ), rotated it by π /4 using the

otal rotation, and calculated the relative error in percents as 

 �(p, q ) = 100 · | �(p, q ) − �′ (p, q ) | 
�(p, q ) 

, 

here �( p, q ) stands for the geometric/GH/ZM invariant and �′ ( p,

 ) denotes the same invariant of the rotated field. Theoretically it

hould hold ε = 0 for any p, q , and �; the non-zero values are

aused by the field resampling and by numerical errors of the mo-

ent calculations. This is why we used the rotation by π /4 – the

elative errors are greater than for any other angle and allow to

bserve the differences between the three types of the invariants

learly. 

The relative errors of the geometric invariants are visualized in

ig. 6 using the color map on the right. It is worth noting that

he invariants are well defined only in a strip along the diago-

al p = q . Outside the colored area, the Matlab code yielded NaN

alues when calculating the invariants. This illustrates the limited

ossibility of working with the geometric invariants if p − q > 20

nd p, q > 80 (the particular numbers depend on the given vector

eld). 

The relative errors of the GH invariants and the ZM invariants

re visualized in the same way in Fig. 7 and in Fig. 8 , respectively.

he main difference, which is apparent at first sight, is that all in-

estigated invariants are valid, there have been no NaN’s in the
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Fig. 5. Hair image: (a) the original, (b) the gradient field, and (c) the colormap for gradient visualization. The brightness corresponds to the magnitude and the hue to the 

direction of the gradient. 

Fig. 6. Relative errors of the geometric invariants. White area corresponds to NaN 

values of the invariants. 
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Fig. 7. Relative errors of the Gaussian–Hermite invariants. 
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alculations. To compare the relative errors in the valid region, we

alculated element-wise the ratios 

 1 (p, q ) = 

ε(geometric) 

ε(GH) 
, 

 2 (p, q ) = 

ε(geometric) 

ε(ZM) 
, 

nd 

 3 (p, q ) = 

ε(GH) 

ε(ZM) 
. 
hey are visualized in Figs. 9–11 . While the calculation of ϱ1 is

traightforward, the definition of ϱ2 and ϱ3 may not be unique, be-

ause the second index of the Zernike moment expresses the an-

ular repetition factor while both indices of the geometric/GH mo-

ents are the degrees of the basis polynomials. A reasonable way,

hich we employed here, of comparing the geometric/GH mo-

ents to the ZMs, is to link the indices p, q of geometric/GH mo-

ents to the indices p + q, p − q of the ZMs. The yellow-red color

ap is used for ϱ> 1, light green is neutral ( 
 = 1 ) and green-blue

tands for ϱ< 1 (to keep the same range on both sides, the values

f ϱ> 1 were displayed as 2 − 1 /
). The vast majority of indices
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Fig. 8. Relative errors of the Zernike moment invariants. 

Fig. 9. The ratio of the relative errors ϱ1 . 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The ratio of the relative errors ϱ2 . 

Fig. 11. The ratio of the relative errors ϱ3 . 
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a  

c  
( p, q ) (precisely in 85%), satisfies ϱ1 > 1, which means the relative

error of the geometric invariants is higher than that of the GH in-

variants. The mean value of ϱ1 is 7.3 and the median equals 4.3,

which clearly illustrates the higher stability of the GH invariants.

The behavior of ϱ2 is similar, although the dominance of the ZMs

is not as prominent. 

The quantitative comparison between the GH and ZM invari-

ants is expressed by ϱ3 . In the central strip area, the GH invariants

are more stable (the mean value of ϱ3 is 0.8, the median is 0.65).

Outside this area, ϱ3 looks like a close-to-zero-mean random noise,

which shows there is no significant difference between the GH and

ZM invariants in this range of the indices. 
.2. Template matching in a gradient field 

In this experiment we demonstrate the use of the GH invariants

or template matching, i.e. in the task they have been designed

or and where they are supposed to be applied in practice. As the

est vector field, we again used the gradient of the hair image, see

ig. 5 . We chose this particular photograph to make the matching

hallenging. On one hand, the picture is rich in edges so there are

o large regions of a constant gradient; on the other hand there

re many patches similar to each other, which makes the match-

ng non-trivial. 

We randomly extracted 10 0 0 circular templates of the radius

0 pixels from the gradient field, rotated them by random angles,

nd matched them against the original field. The matching was

arried out by searching for the minimum � -distance in the space
2 
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Fig. 12. The Kármán vortex street with the selected template. 

Fig. 13. The matching vortices when only the GH invariants up to the fourth order have been employed. 
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f the invariants between the template and all field patches of

he same size. We encountered two kinds of errors which we call

small” and ”gross”. An error is considered ”small” if it is less than

0 pixels (measured as the Euclidean distance from the ground-

ruth location). These errors are governed by a Rayleigh distribu-

ion R ( x ; σ ) [41] (provided that the errors in horizontal and verti-

al directions are independent, normally distributed random vari-

bles with the same variance), whose density is 

 (x ;σ ) = 

x 

σ 2 
e −

x 2 

2 σ2 . (25)

he mean value of the distribution, which we used to quantify the

mall errors, is σ
√ 

π/ 2 . 
The “gross” error means the template was found at a com-

letely wrong place, usually because there was a similar patch at

hat position. Since in most applications the errors are considered

qually serious if they are, let us say, 50 or 500 pixels (in both

ases, the location found is totally wrong and the position cannot

e refined by searching within a neighborhood), we only count the

umber of these gross errors to evaluate the matching. 

We matched each template by eight different invariants for

omparison. We used the vector-field GH invariants up to the or-

ers four and six to illustrate the contribution of higher orders. To

how the differences in numerical stability, we did the same with

he vector-field invariants composed of complex (geometric) mo-

ents [2] . Finally, we converted the vector values to magnitudes
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Fig. 14. The matching vortices when also higher-order GH invariants have been used. The higher orders obviously yield less matching results: (a) fifth order, (b) seventh 

order, (c) ninth order, (d) eleventh order, and (e) thirteenth order. 

Table 1 

The number of gross errors (NGE) and the mean small errors (MSE) out of 10 0 0 

trials in the experiment with the template matching in the gradient field. 

Features 4th order 6th order 

NGE MSE NGE MSE 

GH vector 114 0.504 75 0.401 

CM vector 360 1.157 282 0.836 

GH scalar 391 0.748 176 0.624 

CM scalar 745 1.497 647 1.070 
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and used traditional scalar image invariants (both GH and CM) act-

ing on magnitudes only to match the templates. This shows that

the vector field template matching cannot be reduced to scalar im-

age matching without a loss of performance. The results are sum-

marized in Table 1 . It can be seen clearly, that the vector field GH

invariants outperform the other three methods significantly, both
n the number of gross errors as well as in the mean value of

he small ones. At the same time, we can observe an improvement

f the performance of all methods when the 6-th order moments

ere used. 

.3. Template matching in a fluid flow field 

In this experiment, we demonstrate the applicability of the pro-

osed technique in an important problem from fluid dynamics en-

ineering – vortex detection in a fluid flow vector field. We used

he field showing the Kármán vortex street, which is a repeating

attern of swirling vortices caused by the flow of a fluid around

lunt bodies. In the Kármán pattern, we can see several vortices

rranged into two rows. The orientation of the “street” is given

y the main flow direction and is generally not known a priori.

 patch with a typical vortex is used as a template. In this task

e used a vortex from the upper row (see Fig. 12 ), but generally,

he template may be extracted from another similar field. To sim-
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Fig. 15. The histogram of absolute errors (in pixels) of the vortex localization (the 

bar graph) with the fitted Rayleigh distribution superimposed (the curve). 
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N  

t  
late this, we rotated the template by 30 degrees. The task is to

nd all vortices of a similar shape regardless of their orientation.

he search is performed in the space of the rotation invariants. Un-

ike the previous experiment, we search for all local minima of � 2 -

istance below a user-defined threshold. 

Such a task definition is rather “soft”, because it specifies nei-

her the significance of the vortices to be detected nor the required

egree of similarity with the template. As we can see, the results

ay be controlled by the number/order of the invariants we use. 3 

In Fig. 13 , we can see the matching results when only the in-

ariants up to the fourth order have been employed. Almost all

ortices, existing in the field, were detected. The detection of the

ortices in the bottom row requires special care, because they are

ipped comparing to the upper row. The GH invariants are trans-

ormed under a mirroring w.r.t. an arbitrary line as 

¯ (p, q ) = �(p, q ) ∗. (26)

ence, the real part of �( p, q ) keeps its value, but the imaginary

art should be taken with an opposite sign. If we want to de-

ect both kinds, the absolute value of the imaginary part should

e used. 

As we increased the order of the invariants, we identified only

hose vortices, which are more similar to the template (see Fig. 14 ).

ote that the results does not necessarily form a nested sequence

ecause the degree of similarity may not be monotonic with the

rder. This process terminated at the order 14, where only a single

ortex, the one identical with the template, was found. 

The previous experiment was carried out on a single vec-

or field with a few templates. In order to perform an objective

rror analysis, we used a 300-frame video, showing the time-

evelopment simulation of the Kármán street. We used the same

ortex template as before and matched it to each frame individ-

ally. To ensure independency, no information from the previous

rames was used. We employed the GH invariants up to the fourth

rder. In each frame, the algorithm identified 21 or 22 vortices,

hich are similar to the template. The video with the vortex track-

ng is at [42] . To evaluate the accuracy, we measured the localiza-

ion error of each vortex in each frame. The ground truth posi-
3 The number of matches may be influenced also by the choice of the threshold. 

o eliminate this influence, we used thresholds of the same significance in each 

oment order and the same thresholds in each run of the experiment. 

T  

I  

G  

U  

l  
ions were deduced from the fluid mechanics theory, which guar-

ntees (under ideal conditions) the equidistant placement of the

ortices (this assumption, however, works only in the first half of

he street; the second half behaves differently and the ground-

ruth positions could not be estimated there). The ground-truth

ositions of the first two vortices were detected manually. We

easured the absolute localization errors of all templates in the

rst half of each frame, so we obtained about 30 0 0 random values,

hich should exhibit a Rayleigh distribution. We estimated its pa-

ameter σ and, consequently, the mean of the absolute errors (see

ig. 15 for the error histogram fitted with the Rayleigh curve). We

btained σ = 2 . 138 , which yields the mean m = σ
√ 

π/ 2 = 2 . 68 .

he actual mean localization error is probably even smaller be-

ause our Kármán street does not behave exactly as the ideal one

nd the error we have measured contains not only the localiza-

ion error but also the error between the ideal and actual Kármán

treet. 

. Conclusion 

The paper introduced rotation invariants of vector fields, which

re functions of orthogonal moments. Vector fields behave differ-

ntly from graylevel and color images under spatial transforma-

ions and traditional scalar invariants cannot be efficiently used for

ecognition. 

Although vector-field invariants can be from simple geomet-

ic moments [2] , in this paper we demonstrated that the use of

rthogonal moments provides significantly higher numerical sta-

ility than the stability of geometric/complex moment invariants.

e tested two popular kinds of orthogonal moments – Gaussian–

ermite and Zernike moments. Although they are distinct from

ne another in their nature (the GH moments are orthogonal on a

quare, while the Zernike moments are orthogonal on a disk), both

an be employed as the building blocks of the invariants. The sta-

ility of the GH invariants was slightly better in our experiments,

ut the difference was not significant and each kind has its own

ros and cons, implied by their different areas of orthogonality. We

emonstrated their performance in template matching in a gradi-

nt field and in a vortex detection in a fluid flow vector field. Com-

aring to vector-field invariants from non-orthogonal moments and

o scalar image invariants, the proposed technique achieved signif-

cantly better results. 

The paper was focused solely on rotational invariance. Trans-

ational invariance is irrelevant in template matching (it could be

nsured by using central moments if needed). Invariance to total

caling of the vector field is formally not difficult to achieve – we

an just follow the idea of variable modulation of the GH moments,

hich was proposed for scalar images by Yang et al. [43] and

hich can be modified for vector fields easily. Dealing with scaled

emplates brings, however, another problem. Since it is not clear

ow large the corresponding neighborhood should be, one has to

est several sizes in a reasonable interval, which increases the com-

utational time. 
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