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a b s t r a c t 

The topic of the paper is recognition of objects and patterns in color images regardless of their position, 

orientation, and scale. Gaussian–Hermite moment invariants designed especially for color images are in- 

troduced in this paper. We extend the existing invariants for graylevel images and show that in the case 

of color images there exist additional independent invariants, which can be constructed as joint invari- 

ants from cross-channel moments and/or from new non-trivial low-order moments. The experiments on 

real data confirmed that the new invariants improve the recognition rate. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Invariant-based object recognition has been a goal of much re-

cent research. This requirement appears quite often in real recog-

nition problems, where the patterns that we would like to detect

in the images are different from the dictionary (training) patterns.

While the training patterns are usually stored under ideal condi-

tions and in somehow normalized positions, the actual patterns

may have been rotated, translated or scaled. That is why the in-

variance of the features with respect to the assumed intra-class

variabilities is very important. The invariance is, however, not the

only requirement imposed on good features. The other one, which

is of the same importance, is the ability to discriminate patterns

belonging to different classes. 

Designing a class of suitable features to represent 2D objects

has been a topic of thousands of papers and several monographs

(see, for instance, [1] for a survey and other references). Among

various types of features which have been proposed, moment in-

variants play an important role thanks to their global information

representation, to their ability to cope with many pattern defor-

mations, and to their easy and stable numerical implementations.

They have been regarded as a kind of robust and powerful de-

scriptors for object representation and recognition. Many success-

ful practical applications have been reported, both in recognition

of 2D as well as 3D structures (see [1] or [2] or for the history and

the state of the art of moment invariants). 
∗ Corresponding author. 
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Invariants to translation, rotation and scaling (TRS) of graylevel

i.e. single-channel) images were introduced as early as in the 60’s

3] and improved, modified and further developed many times

4–10] . Many authors have approved that using orthogonal mo-

ents leads to better numerical stability and improves the recog-

ition power. In 2D, there exist two families of orthogonal (OG)

olynomials, which differ from one another by the area of or-

hogonality – polynomials orthogonal on a disk and polynomi-

ls orthogonal on a square/rectangle. The former group is inher-

ntly suitable for constructing rotation invariants, because these

oments change under rotation in a simple way and the rota-

ion parameter can be eliminated easily. This was noted for ex-

mple by Teague [11] , Khotanzad and Hong [5] , and Wallin and

ubler [12] who used Zernike moments, and by other authors who

mployed pseudo-Zernike moments [13] , Fourier–Mellin moments

14–16] , Jacobi–Fourier moments [17] , and Chebyshev–Fourier mo-

ents [18] . The negative aspect of using moments OG on a disk

s that they require mapping of the image into the disk, which is

quivalent to image scaling and polar transformation. This opera-

ion leads to a precision loss due to the image resampling and also

ncreases the computation time. That is why some authors pre-

er to use the moments OG on a square/rectangle, such as Legen-

re moments [7,19,20] , Chebyshev moments [21–23] , Hermite and

aussian–Hermite moments [24,25] , Krawtchouk moments [26] ,

nd Gegenbauer moments [27,28] . However, construction of ro-

ation invariants from these moments is generally very difficult.

ermite (and modified Hermite) moments are the only exception.

hey offer a possibility of an easy and efficient design of rota-

ion and scaling invariants because Hermite polynomials are trans-

http://dx.doi.org/10.1016/j.sigpro.2017.08.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.08.027&domain=pdf
mailto:flusser@utia.cas.cz
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c  
ormed under rotation exactly in the same way as do the monomi-

ls x p y q , as was discovered by Yang et al. [10,29] . Hence, the theory

hich had been developed for geometric moments was adapted to

esign rotation invariants of Hermite and Gaussian–Hermite (GH)

oments of theoretically arbitrary orders and reasonable numer-

cal stability [30,31] . Scaling invariance of the GH moments was

chieved as well [32] . Thanks to that, the GH invariants have been

ne of the latest state-of-the-art techniques in object recognition.

hey have been used in a variety of practical applications such as

n the traffic management and surveillance [33] , in license plate

ecognition [34] , in biometric identification for fingerprint recog-

ition [35] , iris recognition [36] , and for infrared face recognition

37] . 

So far, most existing moment invariants including the GHIs have

een designed for single-channel images. This has been justified by

he fact that in many practical applications moment invariants are

pplied on segmented binary objects to capture their shape rather

han their texture. However, in some cases we may want to apply

nvariants directly on color images. Color images can be viewed as

hree graylevel images corresponding to R, G, and B channels. In

rinciple, single-channel invariants can be applied to each channel,

ut such an approach is only suboptimal. There exists a strong link

mong R, G, and B channels, which can be employed. If the color

mage has been rotated, the rotation angle is the same for all three

hannels. The same is true for translation and scaling. Considering

hat, we can derive so-called joint invariants , which contain mo-

ents of different channels. These joint invariants do not have any

ounterpart in graylevel image analysis and increase the number of

he independent invariants, which consequently may increase the

iscrimination power. Looking for an independent and complete

nvariant set, composed of both single-channel and joint invariants,

s the main goal of the paper. 

The rest of the paper is organized as follows. Section 2 gives

 brief introduction to 2D GHIs. The GHIs for color images are

ntroduced in Section 3 . Section 4 demonstrates experimentally

heir performance in image classification and template matching.

ection 5 concludes the paper. 

. Gaussian–Hermite moments and invariants 

In this section, we recall shortly the basic terms used further in

he paper. For more details we refer to [10,29,30,38] . 

Hermite polynomial of degree p is defined as 

 p (x ) = (−1) p exp (x 2 ) 
d 

p 

d x p 
exp (−x 2 ) . (1)

ermite polynomials are orthogonal on (−∞ , ∞ ) with respect to

eighting function 

 (x ) = e −x 2 , (2)

hich yields 
 ∞ 

−∞ 

w (x ) H n (x ) H m 

(x ) d x = n !2 

n 
√ 

πδnm 

(3)

here δnm 

is the Kronecker symbol. Note, that Hermite polynomi-

ls are not orthonormal without a further normalization. 

The amplitudes of Hermite polynomials grow very fast as | x |

ncreases. That is why it is common to work with weighted (mod-

lated) Gaussian–Hermite (GH) polynomials 

ˆ 
 p (x ;σ ) = H p 

(
x 

σ

)
exp 

(
− x 2 

2 σ 2 

)
, (4)

here σ is a user-defined scale parameter which controls the

ttenuation of the polynomials. Gaussian–Hermite moments of

ingle-channel image f ( x, y ) are then defined as 

ˆ pq = 

∫ ∞ 

∫ ∞ 

ˆ H p (x − x c ;σ ) ̂  H q (y − y c ;σ ) f (x, y )d x d y, (5)

−∞ −∞ 
here ( x c , y c ) is the image centroid. Still, these moments grow

ery fast with the order. To keep them in a reasonable range, we

ork with normalized GH moments 

pq = 

1 

σ
√ 

π2 

p+ q ((p + q )!) 1 / 2 �((p + q ) / 2 + 1) 
ˆ ηpq . (6) 

his normalization does not influence the design of the invariants,

t only insures better numerical stability of the moments. Other

ormalization coefficients of a similar form may be used as well

see [1] for more details). 

Rotation invariants of GHMs for graylevel images were designed

ased on a quantity d pq , which is actually a linear combination of

HMs of the same order 

 pq = 

p ∑ 

k =0 

q ∑ 

j=0 

(
p 

k 

)(
q 

j 

)
(−1) q − j i p+ q −k − j ηk + j,p+ q −k − j , (7) 

here i is imaginary unit. Note that the value of d pq is generally a

omplex number for which d pq = d ∗qp . 

The key property of d pq is its simple transformation under ro-

ation. If the image has been rotated by angle α, d pq preserves its

agnitude while its phase is shifted as 

 

′ 
pq = d pq exp (−i (p − q ) α) . (8) 

he above relation offers an infinite number of rotation invariants

hich are constructed as products of various d pq ’s such that the

verall phase shift is cancelled. A complete and independent sys-

em of rotation invariants can be obtained as 

pq = d pq d 
p−q 
q 0 p 0 

, with p ≥ q, p 0 − q 0 = 1 , (9)

here again �pq = �∗
qp (see [30] for a detailed derivation and

roperties of these invariants). 

. Invariants for color images 

The chief problem of designing moment invariants for color im-

ges is how to incorporate the link, which exists among R, G, and B

hannels, into the invariant set. As we already pointed out, by ap-

lying traditional single-channel invariants individually to R, G, and

, we miss other independent invariants, which can be constructed

rom the cross-moments of two or three channels and which can

ontribute to the discrimination power. 

There have been very few papers on moment invariants of color

mages [39–41] . One may discover two different approaches to this

roblem in the literature. Suk and Flusser [39] proposed joint affine

nvariants for color images, but they were constructed from geo-

etric moments only and suffer with numerical instability. They

annot be easily re-formulated in terms of GH or other orthogonal

oments. Another approach was proposed by Mindru et al. [40] ,

ho used geometric moments of integer powers of R, G, and B

hannels to create the invariants. However, this approach is numer-

cally unstable because of high dynamic range of the moments and

ay lead to redundant invariant set, if the exponents of the chan-

el image functions have not been selected carefully. Guo et al.

41] used three imaginary components of quaternions for descrip-

ion of colors, but quaternion formalism seems to be useless here

ecause we face the rotation in the coordinate plane only while

he intensity values in the color space do not rotate. 

In this paper, we chose the first mentioned principle and we

onstruct the joint invariants from GH moments of different chan-

els. First, we do so for a translation and rotation (TR) only, then

e resolve the general case of a similarity transformation , which in-

ludes translation, rotation, and scaling (TRS). 

.1. Invariance to translation 

Translation invariance is traditionally provided by shifting the

oordinate origin to the centroid of the object. The centroid ( x c , y c )
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is computed from the zero and first-order geometric moments m 00 ,

m 10 , m 01 as x c = m 10 /m 00 and y c = m 01 /m 00 (see [1] or [2] for the

definition and basic properties of geometric moments). The color

image has three centroids of individual color channels and also a

joint centroid (we keep the notation ( x c , y c ) for simplicity), defined

as 

m 00 = m 

(R ) 
00 

+ m 

(G ) 
00 

+ m 

(B ) 
00 

x c = (m 

(R ) 
10 

+ m 

(G ) 
10 

+ m 

(B ) 
10 

) /m 00 

y c = (m 

(R ) 
01 

+ m 

(G ) 
01 

+ m 

(B ) 
01 

) /m 00 . (10)

The symbols with a superscript refer to individual channels, the

symbols without a superscript refer to joint quantities. Now, if

we shift the coordinate origin into the joint centroid, the first-

order central moments of individual channels are generally non-

zero (they express the deviation of the channel centroids from the

joint centroid) and we can use them for constructing invariants.

This is one of the differences from the single-channel case, where

the first-order central moments are zero by definition. 

3.2. The number of independent invariants 

How many invariants can we construct from the moments up to

the order r ? It is well known that in general the number n i of in-

dependent invariants created from n m 

independent measurements

(i.e. moments in our case) is 

n i = n m 

− n p , (11)

where n p is the number of independent transformation parameters

that should be eliminated. In the case of TR, n p = 3 (two transla-

tions and a rotation), in the case of TRS we have n p = 4 (two trans-

lations, rotation, and scaling). The number of moments of orders

from 0 to r of a single channel equals 

n m 

= 1 + 2 + 3 + . . . + (r + 1) = 

(r + 1)(r + 2) 

2 

. (12)

In a multichannel case, we can create n c n i single-channel in-

variants ( n c is the number of the channels; n c = 3 for RGB color

images). However, since the transformation of all channels is the

same, we have to eliminate only n p parameters, the same number

as in the single-channel case. That means there must be n c n m 

− n p
independent invariants in total. It implies there exist (n c − 1) n p
additional independent invariants (which means six in the case of

TR and eight for TRS transformations, respectively), which should

be added to the set of all single-channel invariants. Adding such

invariants may improve the recognition power without increasing

the order of the moments involved. In the next section, we discuss

two possibilities how to design these “additional” invariants. 

3.3. New independent invariants for color images 

In the previous section, we explained why there must exist ad-

ditional invariants for multichannel images and we also showed

that their number is a simple function of the number of the trans-

formation parameters and the number of the image channels. Now

we show how to actually construct them. 

There are basically two approaches. One way is to employ the

zeroth- and the first-order moments, which have not been involved

in the single-channel invariants (we recall that for single-channel

images the first-order central moments always vanish, but for color

images we consider the central moments with respect to the joint

centroid of all channels which makes the first-order central mo-

ments nontrivial). The other way is to construct joint invariants ,

which contain moments of more than one channel. Both ways

could be even combined together. 

In the next two sections, we demonstrate both approaches in

the case of TR and TRS transformations, respectively. 
.4. Invariants to translation and rotation 

The easiest way to designing a complete system is to start with

ccepting all the single-channel invariants from Eq. (9) : �(R ) 
pq , �

(G ) 
pq ,

nd �(B ) 
pq for p + q ≥ 2 . Three additional independent invariants

ould be the zero-order ones �(R ) 
00 

, �(G ) 
00 

, and �(B ) 
00 

, which actu-

lly equal to the zero-order moments and are inherently invari-

nt to rotation. The other three additional invariants could be the

rst-order single-channel invariants �(C) 
01 

, C ∈ { R, G, B }, as was men-

ioned in the previous section. We denote this set of invariants as

RGB (Single-channel Red, Green, and Blue). 

Now let us incorporate the joint invariants. In SRGB, we replace

hree invariants �(C) 
01 

by three joint invariants 

(J1) 
01 

= d (R ) 
10 

d (G ) 
01 

(J2) 
01 

= d (G ) 
10 

d (B ) 
01 

(J3) 
01 

= d (B ) 
10 

d (R ) 
01 

. (13)

ote that they are actually independent of the rest of the SRGB set.

e call this set, which contains three joint invariants, JSRGB (Joint

nd Single-channel Red, Green, and Blue). 

Yet another possibility of a creation of the complete and inde-

endent set is to use the joint invariants whenever it is possible.

oint invariants �( p, q ) ( JC ) are defined as 

�(JR ) 
pq = d (R ) 

pq 

�(JG ) 
pq = d (G ) 

pq 

�(JB ) 
pq = d (B ) 

pq 

⎫ ⎪ ⎬ 

⎪ ⎭ 

p = q, 

�(JR ) 
pq = d (R ) 

qp d 
(G ) 
pq 

�(JG ) 
pq = d (G ) 

qp d 
(B ) 
pq 

�(JB ) 
pq = d (B ) 

qp d 
(R ) 
pq 

⎫ ⎪ ⎬ 

⎪ ⎭ 

p < q, 

�(JR ) 
pq = R e (d (R ) 

pq (d (G ) 
12 

) p−q ) 

�(JG ) 
pq = R e (d (G ) 

pq (d (B ) 
12 

) p−q ) 

�(JB ) 
pq = R e (d (B ) 

pq (d (R ) 
12 

) p−q ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

p > q. 

(14)

his invariant set is called JRGB (Joint Red, Green, and Blue). 

.5. Invariants to translation, rotation, and scaling 

There are several distinctions between the TRS and TR transfor-

ations, which influence the way how the invariant sets are cre-

ted. The first one comes from the behavior of the GH moments

nder scaling. Geometric moments, as well as all other common

oments, are only multiplied by certain power of the image in-

egral if the image has been scaled. Since the GH moments are

eighted with a Gaussian (see (4) ), the parameter σ of this Gaus-

ian must be also modified to achieve scale-invariant version of

H moments. This is not a trivial task which has been resolved

y means of a variable modulation , see [32] . Roughly speaking,

hat method sets σ such that it is not constant but depends on

he zero-order moment of the image. One has to use this variable

odulation whenever scaling invariance of the GH moments is re-

uired. 

As we already explained, we look for eight additional TRS in-

ariants to be appended to the set of the single-channel invariants.

he simplest way is to take the SRGB set from the previous section

nd incorporate two zero-order ratios 

(RG ) 
00 

= d (R ) 
00 

/d (G ) 
00 

, 

(BG ) 
00 

= d (B ) 
00 

/d (G ) 
00 

. 

Alternatively, we may replace three invariants �(C) 
10 

, C ∈ { R, G,

 } in the SRGB set with three joint invariants and add other three

ndependent joint invariants. We used the low-order ones: �(J1) 
01 

,

(J2) 
01 

, and �(J3) 
01 

as in the TR model and three new joint invari-

nts 
(J4) = R e ((d (R ) ) 2 d (G ) ) 

10 10 02 
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Fig. 1. Two “pick a pair” cards used in the first experiment: (a) – (c) “Ferdy the 

Ant”, (d) – (f) “Ant lion”. (b) and (e) are rotated cards with Gaussian noise of 

STD = 0.2 in the entire image, and (c) and (f) are rotated cards with Gaussian noise 

of STD = 2 added only to the object. 

Fig. 2. Two cards corrupted by Poisson noise: (a) and (d) with intensity scaling 

factor p = 0.05, (b) and (e) with p = 0.1, and (c) and (f) with p = 1. 
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Table 1 

The number of errors out of 77 trials in the experi- 

ment with “Ferdy the Ant” cards with Gaussian back- 

ground noise. 

Order Gray RGB SRGB JSRGB JRGB 

3 63 29 4 3 6 

4 54 17 6 8 3 

5 57 27 12 13 12 

6 50 18 12 12 6 

7 46 16 11 11 6 

8 51 15 15 15 7 

s  

t  

r  

t  

t  

p  

i  

a  

l  

t  

(

 

t  

p  

(
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u  
(J5) 
10 

= R e ((d (G ) 
10 

) 2 d (B ) 
02 

) 

(J6) 
10 

= R e ((d (B ) 
10 

) 2 d (R ) 
02 

) . (15) 

n this way, we constructed the set JSRGB for TRS transformation. 

As in the case of TR, we may create a set JRGB of joint invari-

nts. It consists of the invariants �(RG ) 
00 

, �(BG ) 
00 

, further �(J1) 
10 

, �(J2) 
10 

,

(J3) 
10 

from (13) , and also �(J4) 
10 

, �(J5) 
10 

, and �(J6) 
10 

from (15) . The set

s completed by �( p, q ) ( JC ) from (14) for p + q ≥ 2 . 

Summarizing, we have SRGB, JSRGB and JRGB sets of the invari-

nts for each of the transformations TR and TRS. In the next sec-

ion, we test numerically their performance in real object recogni-

ion tasks. 

. Numerical experiments 

In this section we design experiments to show the behavior of

he GHIs for color images. The first and the third experiments as-

ume the TRS model; the second one, where the scaling was not

resent, assumes TR transformation. Two experiments show clas-
ification of simple color images irrespectively on their orienta-

ion/size, one experiment shows the performance of the GHI’s in

otation-invariant template matching. In all experiments, whenever

he invariants �pq are used, we set p 0 = 2 and q 0 = 1 . The goal of

hese experiments is not only to show if (and how well) the GHI’s

erform but namely to test and evaluate different sets of the GH

nvariants. The experiments do not compare GHI’s to other invari-

nts such as Zernike or geometric because such studies were pub-

ished several times and clearly proved the advantageous proper-

ies of the GHI’s, especially the numerical stability of higher orders

see for instance [30–32] ). 

It is worth mentioning that for stable numerical implementa-

ion of Hermite polynomials (as well as of all other orthogonal

olynomials) one should use the three-term recurrent formulas

see [38] or [1] ) instead of the definition (1) . 

.1. Card recognition 

In this experiment, we used photographs of twelve round cards

rom the “pick a pair” game. Each card was captured eight times

y a camera that was rotated approximately by 45 ° between the

naps, so the image rotation is real. We did not introduce differ-

nces in the scale intentionally, but still, since the camera was

and-held, the size of the images is not precisely the same. This

s why we used the TRS invariants in this experiment. 

The aim of the experiment was to classify these test images.

ne image of each card was used as a representative of the class,

he others were recognized by a nearest-neighbor classifier. 

When we used the card images in the original quality, no clas-

ification error occurred whatever invariant set was used. To make

he task more challenging, we introduced computer-generated

ero-mean Gaussian noise of standard deviation 0.2 to all the im-

ges (the range of brightness of the images was from 0 to 1). The

oise in different channels was independent and was applied on

he entire image including the background, see Fig. 1 (b) and (e)

or two noisy cards. The other original cards used in the experi-

ent are shown in Fig. 4 . 

First, we converted the images into graylevel versions and com-

uted �( p, q ) for p + q ≥ 2 . The number of errors is shown in

able 1 in the column “gray”. Then we took the same invari-

nts computed from individual color channels (column “RGB”).

e compared them with the feature sets SRGB, JSRGB, and JRGB,

hich were proposed in Section 3.5 . We ran all the experiments

or different orders of the invariants; the first column of the table

hows the maximum order used. 

As we can see from Table 1 , all color invariants perform much

etter than the graylevel ones. The best performing are JRGB, while

RGB and JSRGB are only slightly worse. The performance varies

ith the order, but overall there is no significant difference. Rela-

ively high misclassification rates were caused namely by the back-

round noise. The background noise is also responsible for poor

erformance when high-order invariants SRGB and JSRGB were

sed, because higher-order moments are more vulnerable to noise.
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Fig. 3. The card positions in the space of two invariants (a) �(R ) 
00 

and �(G ) 
00 

(background noise, STD = 0.2), (b) �(R ) 
11 

and �(R ) 
02 

(background noise, STD = 0.2), (c) �(R ) 
00 

and 

�(G ) 
00 

(noise in the image only, STD = 2), and (d) �(R ) 
11 

and �(R ) 
02 

(noise in the image only, STD = 2). Zero-order invariants are affected by noise less than the second-order 

ones, especially in case of background noise. Legend: – Ferdy the Ant 1, – Ferdy the Ant 2, – Ladybird, – Poke the Bug, – Ant-lion 1, – Ant-lion 2, – Mole 

cricket, – Snail, – Butterfly, – Cricket, – Bumblebee, – Heteropter. 

Fig. 4. The other cards used in the experiment: (a) Ferdy the Ant 2, (b) Ladybird, (c) Poke the Bug, (d) Mole cricket, (e) Snail, (f) Butterfly, (g) Cricket, (h) Bumblebee, (i) 

Heteropter. 
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The robustness to noise of joint invariants from JRGB is higher,

since the noise is independent in different channels. 

We repeated this experiment with the same setting but with

the noise added only to the card pictures themselves, not to the

black background. In this case, the standard deviation of the noise

was two, which is ten times more than before, see Fig. 1 (c) and (f).
he results are in Table 2 . If we use the newly proposed features,

e reach correct results even if the noise is so heavy that people

annot recognize the cards visually. 

In Fig. 3 we can see that the zero-order invariants create much

ore compact clusters than the second-order ones, especially in

he case of background noise. It illustrates the conclusion that the
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Fig. 5. The aerial image of the size of 257 × 257 pixels. In (b), the white circles show some extracted templates. 

Fig. 6. Sample extracted and rotated templates without noise (top row) and noisy (bottom row). The diameter of the template is 41 pixels. Only 8 templates out of 100 are 

shown. 

Table 2 

The number of errors out of 77 trials in the experi- 

ment with “Ferdy the Ant” cards with Gaussian noise 

in the card picture only. 

Order Gray RGB SRGB JSRGB JRGB 

3 49 6 0 0 0 

4 40 1 0 0 0 

5 45 4 0 0 0 

6 40 3 0 0 0 
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Table 3 

The number of errors out of 77 trials in the experi- 

ment with “Ferdy the Ant” cards with Poisson noise, 

p = 0 . 05 . 

Order Gray RGB SRGB JSRGB JRGB 

3 63 25 2 1 4 

4 58 17 2 2 3 

5 54 24 4 3 4 

6 51 15 4 4 5 

Table 4 

The number of errors out of 77 trials in the experi- 

ment with “Ferdy the Ant” cards with Poisson noise, 

p = 0 . 1 . 

Order Gray RGB SRGB JSRGB JRGB 

3 54 14 3 1 0 

4 46 3 0 0 0 

5 47 5 0 0 0 

6 42 4 0 0 0 

m  

i  

c  

c  

t  

a

4

 

w  

i  
ets of invariants that include zero-order moments, can improve

eliability and noise robustness of recognition of color images. 

To test robustness to other kinds of noise, we repeated the

xperiment again with Poisson noise. In digital imaging, Poisson

oise occurs as shot noise in photon counting on the chip, where

t is associated with the particle nature of light. It can be modelled

y an array of random variables with Poisson distribution P ( λ).

oisson distribution has a single parameter λ, which determines

oth mean value and variance. For λ> 10, Poisson distribution is

lose to normal distribution N(λ, 
√ 

λ) . Poisson noise is neither ad-

itive nor signal-independent. To simulate it, we replace each im-

ge pixel by randomly generated sample from P ( h ), where h is the

ixel intensity. Hence, Poisson noise does not have any indepen-

ent parameter that could be changed analogously to the variance

f Gaussian noise. However, we can control the SNR by scaling of

he image intensities before the noise has been applied and inverse

caling afterwards, which leads to the noisy image with the inten-

ities P ( ph )/ p where p is the scaling factor. The noise was applied

n the cards only, not on the background. The results are summa-

ized in Table 3 , where p = 0 . 05 was used to obtain heavy noise

nd in Table 4 , where the image was scaled with p = 0 . 1 to get
oderate noise (see Fig. 2 for examples of noisy images). Even

f the noise perceived as very heavy, the overall number of mis-

lassifications is low. Comparing different sets among themselves

learly shows that the color invariants (all three sets) are also in

his case significantly better than the single-channel RGB invari-

nts and graylevel invariants. 

.2. Template matching 

We tested the invariants in a template matching experiment,

hich is one of the most frequent applications of the invariants

n practice. We downloaded an aerial image from the website
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Fig. 7. The histogram (bar graph) and the fitted Rayleigh distribution (the curve) of the small error magnitudes for the invariant sets: (a) gray, (b) RGB, (c) SRGB, (d) JSRGB, 

and (e) JRGB. 
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[42] and randomly selected 100 circular templates (see Fig. 5 (a) for

the original scene and Fig. 5 (b) for some template positions). The

templates were rotated by a random angle with a uniform distri-

bution between 0 ° and 360 ° and corrupted by additive Gaussian

white noise of standard deviation 0.125, which resulted in SNR of

the templates being from −5 . 7 dB to 3.1 dB. A few selected tem-

plates before and after adding the noise are depicted in Fig. 6 . The

aim of this experiment is to locate the noisy templates in the orig-

inal image. 
We employed the TR invariants from Section 3.4 up to the

ourth order. The matching position was determined as the min-

mum 
 2 distance in the space of the invariants (simple full search

hrough the entire image was applied, we did not use any iterative

ierarchical approach). 

We encountered two different kinds of errors – “small” errors

p to 10 pixels, which can tell as how accurate the matching is,

nd “big” errors that mean a total mismatch. The particular val-

es of these big errors does not say anything meaningful about
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Fig. 8. Segmented national flags. These images were used as the class representatives. (a) Italy, (b) Mali, (c) Chad, (d) France, (e) Guinea, (f) Ireland, (g) Romania, (h) Algeria, 

(i) Turkey, (j) Pakistan, (k) Mauritania, (l) Tunisia, (m) Finland, (n) Denmark, (o) Sweden, (p) Iceland, (q) Norway, (r) Zimbabwe, (s) São Tomé and Príncipe, (t) Cuba, (u) 

Bahamas, (v) Jordan, (w) Philippines, (x) Sierra Leone, (y) Russia, (z) Yemen, (aa) Austria, (ab) Bulgaria, (ac) Hungary, (ad) Netherlands, (ae) Tuvalu, (af) Fiji, (ag) New Zealand, 

(ah) Australia, (ai) Uzbekistan, (aj) Tajikistan, (ak) Slovenia, (al) Croatia, (am) Azerbaijan, (an) Argentina, (ao) Honduras, (ap) Ethiopia, (aq) Afghanistan, (ar) Andorra, (as) 

Cameroon, (at) Guatemala, (au) Senegal, (av) Somalia, (aw) Morocco, (ax) Vietnam, (ay) China, (az) Albania, (ba) Lesotho, (bb) Slovakia, (bc) India, (bd) Venezuela, (be) Syria, 

(bf) Bolivia, (bg) Ghana, (bh) Niger, (bi) Egypt, (bj) Czechia, (bk) South Africa, and (bl) Grenada. 

Fig. 9. Eight snaps of the Swedish flag – an example of the test images. 
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Fig. 10. Flag positions in the space of two invariants (a) �(SB ) 
00 

and �(J1) 
01 

and (b) �(R ) 
11 

and �(R ) 
02 

. Legend: Italy, Mali, Chad, France, Guinea, Ireland, Romania, 

Algeria, Turkey, Pakistan, Mauritania, Tunisia, Finland, Denmark, Sweden, Iceland, Norway, Zimbabwe, São Tomé and Príncipe, Cuba, 

Bahamas, Jordan, Philippines, Sierra Leone, Russia, Yemen, Austria, Bulgaria, Hungary, Netherlands, Tuvalu, Fiji, New Zealand, Australia, 

Uzbekistan, Tajikistan, Slovenia, Croatia, Azerbaijan, Argentina, Honduras, Ethiopia, Afghanistan, Andorra, Cameroon, Guatemala, Senegal, 

Somalia, Morocco, Vietnam, China, Albania, Lesotho, Slovakia, India, Venezuela, Syria, Bolivia, Ghana, Niger, Egypt, Czechia, South Africa, 

and Grenada. 

Table 5 

The error statistics in the template matching experi- 

ment. NBE – the number of “big” errors, MME – the 

mean magnitude of “small” errors in pixels. 

Gray RGB SRGB JSRGB JRGB 

NBE 28 22 16 14 18 

MME 1.39 1.82 1.64 1.71 1.66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Flag recognition – the number of errors out of 512 tri- 

als. 

Order Gray RGB SRGB JSRGB JRGB 

3 223 87 29 29 26 

4 147 63 11 11 15 

5 110 41 9 9 14 

6 116 43 10 10 13 
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the accuracy because the error of 50 pixels is of the same practi-

cal significance as the error of 200 pixels for example. To evaluate

the “big” errors, we only counted their number without consid-

ering their actual value. The “small” errors are caused by random

measurement errors in both coordinates. Assuming they are inde-

pendent and normally distributed in x and y , their magnitudes un-

derlay the Rayleigh distribution 

R (x ;σ ) = 

x 

σ 2 
e −

x 2 

2 σ2 . (16)

The mean value of the magnitude of these “small” errors, along

with the number of “big” errors, provide a good measure of the

matching accuracy. The results are summarized in Table 5 . 

The strength of the color invariants is in the less number of

big errors. Apparently, the color invariants are more stable to noise

than gray and RGB invariants. On the other hand, the invariants

JRGB, JSRGB, and SRGB are comparable. The distribution of “small”

errors is similar for all the methods (see Fig. 7 ; the red curve is

the fitted Rayleigh probability density function), but note that for

gray and RGB some “small” errors turned to the “big” ones. 

4.3. Flag recognition 

This experiment is similar to that one with the “pick a pair”

cards, but here we used pictures of various national flags. We

chose 64 flags such that there were groups of flags visually very

similar to one another, see Fig. 8 . We intentionally changed not

only the orientation of the camera, but also the distance of the

camera from the flag to obtain snaps of different scales. Each flag
as photographed eight times with different rotation and scale,

ee Fig. 9 for an example. 

First, we tested traditional TRS invariants for graylevel images

omputed from snaps converted to gray levels (see “gray” in the

able). Then, we computed the same features from each color

hannel separately (RGB). Finally, we experimented with three sets

f invariants proposed for color images under TRS transformation:

RGB, JSRGB, and JRGB, see Section 3.5 . The results are summarized

n Table 6 , the graphs of selected invariants are in Fig. 10 . 

It is not surprising that the invariants applied to graylevels only

ielded poor results. Many flags differs from each other namely by

olors, while their texture (stripes, stars, etc.) are similar. When-

ver the color information was used, the number of misclassifica-

ions decreased. The distribution of misclassifications is not uni-

orm. The following six flags are responsible for significantly more

rrors than the others: the flags of Chad ( Fig. 8 (c)) and Romania

 Fig. 8 (g)) differ from one another only by the precise tint of the

lue color; the flags of Mali ( Fig. 8 (b)) and Guinea ( Fig. 8 (e)) dif-

er from one another only by a left-right flip so they cannot be

istinguished by rotation invariants; and the flags of New Zealand

 Fig. 8 (ag)) and Australia ( Fig. 8 (ah)) differ only slightly by the

olor and the number of the stars. 

The proposed invariants significantly reduced the numbers of

rrors, while there is no difference between the single-channel in-

ariants (SRGB) and the single-channel invariants with low-order

oint ones (JSRGB). The joint invariants (JRGB) were slightly worse

n this case. 
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. Conclusions 

Gaussian–Hermite rotation invariants for color images are pro-

osed in this paper. This new kind of invariants is based on the

xisting GHIs for graylevel images, to which new invariants were

dded. The experiments with image classification and template

atching demonstrated their superior performance comparing to

raylevel and concatenated single-channel invariants. 

To complete the set of TR and TRS color invariants, we stud-

ed two approaches which independent invariants should be added

o a union of single-channel invariants applied on RGB. First, we

dded low-order moments which had not been used before and

hen we created joint invariants. Both approaches allowed us to

onstruct complete sets, so in this sense they are theoretically

quivalent. The experiments confirmed there is no significant dif-

erence between them in terms of their recognition power. It is

n interesting conclusion because in case of color affine invariants

tudied earlier in [39] , the use of joint invariants is inevitable. 
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