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4.1 INTRODUCTION

With the rapid development of devices with high computational performance, the probabilistically
consistent and versatile Bayesian methods have become a popular standard in many applications
of signal processing [1]. Their main difference in comparison to traditional approaches consists
in the representation of the unknown variables of interest. They are described by probability
distributions whose location statistics (the mean, mode, or median) express the probable locations
of these variables while the dispersion statistics of the distribution (e.g., the variance) quantify the
associated uncertainty. An important facet of Bayesian theory is the universality of its methods.
According to Bayes’ theorem, one updates the initial knowledge of a considered variable, represented
by a prior distribution, by following the same generic steps regardless of whether the underlying
task is linear or nonlinear regression, filtering of state-space model parameters, or estimation of
hierarchical models.

In the last decade, signal processing has faced a host of new challenges related to the fast evolution
of spatially distributed systems with components—termed agents, sensors, nodes, or vertices and
here referred to as agents—that have relatively high sensing and computational performance, and
may communicate with other agents of the network. The applications of these systems range from
environment monitoring, disaster relief management, source localization, and precision agriculture to
medicine [2-5]. The first algorithms for processing of data acquired by agents were centralized. More
specifically, there the agents locally sense the relevant data and send them to a fusion center, responsible
for evaluation of (nearly) all necessary computations. Subsequently, the results are sent back to the
agents, i1f necessary. In this setting, the fusion center exploits all the data present in the network and
thus reaches the best possible estimation performance. The price for this 1s the high communication
and computation demands and the lack of redundancy, making the centralized algorithms prone to
failures [6].
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Table 4.1 Summary of Notation

Notation Description

K=1{l..... K} set of agents

K total number ot agents

ke K agent index

Iy neighborhood of agent &

Rl cardinality of the set 1y

t=1,2,... discrete time index

Vi k observation of kth agent at time ¢

Zrk explanatory variable observed by agent k at time ¢
(7 model parameter

0 model parameter point estimate

JOvexlzen.0) probability density of observations of agent k
() probability density of 6 of agent &

n = nl(f) natural parameter

T(-) sufficient statistic

Et ks Ve hyperparameters of agent k at time {

Cik information of agent & at time ¢

ag € [0, 1] weight assigned by agent k to agent

[El-] expectation operator

D(-]]-) Kullback-Leibler divergence

() combined posterior density of agent &

_§;1;_-. Vs hyperparameters of m(-)

Tr trace operator

det determinant

N, 2) normal distribution with mean p and covariance

In order to remove this drawback, fully distributed processing settings have been proposed. First,
incremental algorithms have been studied [7-13], where information 1s passed from agent to agent in
a cyclic Hamiltonian path connecting the whole network. Although this removes the need for a fusion
center and alleviates the communication and computational burden, the reliability of the system is
not improved as each agent and link are single points of failure. A recovery from such a failure by
constructing a new path 1s an NP-hard problem [4]. Then consensus [14-20] and diffusion strategies
[21-26] have been introduced, where the agents share information with their neighbors within a one-
hop distance. Both strategies offer significantly more robust solutions. The consensus strategies aim
at a general agreement in the value of the estimated variables of interest while the diffusion strategies
put emphasis on a local improvement of the estimation quality of each agent. Therefore, while the
diffusion algorithms intrinsically exploit a single time scale both for sensing and collaborative data
processing, the consensus algorithms usually need multiple 1terations between two time instants. This
chapter focuses primarily on diffusion strategies.
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The existing diffusion algorithms mostly extend their nondistributed counterparts to distributed set-
tings. A majority of them exploit the least squares criterion and its variants, e.g., the least-mean-squares
methods [22,27-29], the recursive least-squares methods [21,26], and the Kalman filter [30,31].
There are also algorithms for distributed expectation maximization-based inference of mixture models
|32-34] and distributed particle filtering, e.g., in [35,36].

Quite surprisingly, most of the algorithms for distributed inference are independently developed
from the original nondistributed ones, e.g., the already-mentioned classical least-mean-squares method,
recursive least-squares method, and Kalman filter. However, because there 1s a common underlying
principle in Bayesian estimation, a unifying framework has been recently proposed [37]. Within this
framework, one can develop methods that can be applied to a wide class of inference tasks with minimal
modifications. For instance, the existing recursive least-squares method [21] or the Kalman filter [31]
are special cases when particular models and prior distributions are used. In [34], a quasi-Bayesian
algorithm for sequential estimation of mixture models was introduced. The components of the models
considered there belong to the exponential family of distributions. In [38], a diffusion approximate
Bayesian computation method was presented. The method extends the particle filtering principles to
cases of unknown or intractable models. The foundations of these approaches are described in the
present chapter.

4.2 BAYESIAN INFERENCE OVER NETWORKS

We consider a network to be represented by a connected undirected graph consisting of a set of vertices
termed agents. The agents are interconnected by a set of edges, which determine the network topology.
The set of agents is denoted by XX = {1, 2, ..., K}, where K is the number of agents in the network. (A
summary of notation for this chapter 1s presented in Table 4.1.) Each agent £k € K may communicate
only with agents in its close neighborhood 1, here defined as a set of agents within one-hop distance
(note that £k € %91;). The agents independently observe outcomes y;; of a common discrete-time
stochastic process {Y,:t = 1,2,...} with an unknown parameter ¢, and a known explanatory variable
Zrk» 1T 1t exists. For instance, z;; may be a regressor.

For the sake of prediction, filtering, and smoothing, the agents employ a probabilistic model in
the form of a probability density f(v; i |z;k, @), or f(yv;x|0) 1f Z;4 1s not assumed. The value of & remains
unknown, but its reliable estimation 1s of main interest in the rest of the chapter. The Bayesian approach
to estimating € proceeds by updating the prior distributions of & at time 7, 7wx(6 |yo:r—1.4. 20:1—14), Where
Yoi—14 = 10k - - - Vi—1.4k) and 20:0—1.k = {204, - - - » 21— 1.k }» DY using the new observation y; ; via Bayes’
theorem,

Ty (0 |}"{;}:r,k: C[J:r,fc} D‘if(}"r,k |24 4 )R (O 1Y0: 11 .k 2001 I,k]- (4.1)

Note that in writing this equation we assume that the observations are independent given the explanatory
variables z,; and the parameter 6. In this chapter, we assume that the reader is familiar with the
principles of Bayesian inference, and skip technical details of derivation of posterior distributions
and their computations via Monte Carlo methods, variational approaches, and the like. There is a vast
literature on this topic, e.g., [39,40]. Next, we describe a prominent case where the posterior distribution
1s analytically tractable and which will be used 1n the sequel.
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Suppose that the model f(y, x|z k. €) belongs to the exponential family of distributions, 1.e., that it
can be written in the form [41]

FOuklzek. 0) = h(ve g 2ex)8E) exp {nT(O) T(yvek, zk)} - (4.2)

where h(vik,zrx) 18 @ known function, g(#) is a normalizing log-partition function, n(f) is a natural
parameter, and 7'(y, k. z; &) 18 a sufficient statistic that completely summarizes all the information about ¢/
contained in y; ; and z; ;. Now, we assume that the prior distribution can be written in the conjugate form

TE(O1Y0:— 1,k 20:0—1,4) = TR(O18 1 k- ve—14)
= q(& 1 g Vi—1,4)80) Hexp {nT(0) &1 4} . (4.3)
where &_1 and v,—y are the prior hyperparameters. The former is of the same dimension as

T'(vr &, zr k) and the latter 1s a scalar whereas g(&,—1 ¢, v—1.4) 1s @ known function. Then Bayes’ theorem
(4.1) updates the prior hyperparameters according to [37,41]

Stk = &r—14k T Tt ks Zr k) (4.4)
Vik = Vi1 k + L. (4.5)

Naturally, 1t 1s possible to write
Tk(O1Y0:1. k> 20:0.k) = Tk (061 k> Ve k) (4.6)

We point out here that in sequential processing at time ¢, 7mi(€|vo-r.k, Z0-2.%) 18 the posterior of 6. This
distribution is also the prior of # for the processing that takes place at time instant 7 4 1.

4.2.1 STRATEGIES FOR INFERENCE OVER NETWORKS

There are various types of settings of inference over networks. First and foremost, a question of
paramount importance 18 whether the models and their parameters are the same for all the collaborating
agents. If the model parameters have a physical interpretation, then their homogeneity is usually
guaranteed. However, 1f f;(6|-) are black box models that may have different structures, problems arise.
For the sake of simplicity, we adopt the assumption that the models are the same for all agents, and
that they are all interested in the same 6. The Bayesian treatment of inhomogeneous parameters 1s
studied 1n [42].

The next question 1s what kind of information may be shared among network agents. It there are
(virtually) no limitations 1n communication resources, the agents may share their observations y;
and explanatory variables z; (the sharing may be in the form of sufficient statistics T(y;x, 2:.x)), and
estimates 0 potentially accompanied by related statistical properties such as covariance matrices. If
the Bayesian approach to inference 1s employed, then the most legitimate way 1s to share the posterior
distributions m(€|-), or their hyperparameters (e.g., & x and v, ;) whenever possible.

We discriminate among three possible strategies:

1. Incorporation of neighbors’ (and own) measurements. This step is often called adaptation (A) in
the literature.

2. Incorporation of estimates provided by neighbors. This is known as combination (C). Unlike in
adaptation, a combination criterion is required that ensures the result to be as close to the original
estimates as possible.
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3. Incorporation of both measurements and estimates of neighbors (i.e., implementation of both
adaptation and combination). There are two strategies, and they are known as ATC
(adapt-then-combine) or alternatively CTA (combine-then-adapt). It has been proved that ATC
outperforms CTA in terms of estimation quality [4,37].

4.2.2 SHARING OF MEASUREMENTS OR STATISTICS

Let us fix an agent k € K and assume that at time 7 1t has access to the neighbors’ observations y; ; and
explanatory variables z;;, where j € ;. Alternatively, these observations may be surrogated by the
sufficient statistics 7(y; j, z; ;). Then agent k can improve its knowledge about ¢ by incorporating them
in the same way as its own sufficient statistic. If 73 (6|&,1 &) 1s the &’s prior distribution of & at time ¢,
where ;1 stands for all the information available to agent k by time ¢ — 1, including any previously
shared information, the distributed variant of the Bayes’ theorem (4.1) reads

Tk (01200) X 701510 | | SOrjlzes 0). (4.7)
JjeMy

where we assumed that the observations are conditionally independent. If the models f(y; |z ;. 0)
belong to the exponential family of distributions and the prior distribution 7¢(€|{;—1x) 1S a conjugate
distribution, then Bayes’ theorem reduces to the update of the £’s hyperparameters according to (see
Egs. (4.4) and (4.5)),

Stk =681kt Z Iyt 21, (4.8)
JjeMy
Vik = Vi—1k + [Nl (4.9)

where || is the cardinality of the set 21, i.e., the number of neighbors plus one.

4.2.3 MERGING OF BAYESIAN ESTIMATORS

Now we fix again an agent k € K and assume that the network agents updated their prior distributions
by either own or shared measurements, and that their posterior distributions ;(€|¢; ;) are shared with
the neighbors. That is, agent k has access to the set {m;(€|¢;;):j € D }. Each member of this set may be
assigned a nonnegative weight ag; < 1 expressing the (subjective) probability that the related posterior
is true at the moment. The weights thus take values from a corresponding probability simplex and sum
to unity. For simplicity, we assume that the weights ay; are constant and either uniform, or selected
according to a convenient rule, e.g., |5, Chap. 8]. A model-based Bayesian treatment of the weights can
be found 1n [37].

Keeping all the posterior distributions in the set would, however, quickly lead to an explosion of
its size. In order to prevent this situation, we aim to combine the individual posterior distributions to
a single distribution (¢ |-), which best expresses the information 1n all of them. The Bayesian theory
advocates the use of the Kullback-Leibler divergence, D(-||-), as a proper dissimilarity (loss) measure
[41]. A theoretically consistent combination step 1s equivalent to seeking the minimizer of
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= T (0])
D agD (@) I ©01) = ayFz, ['“g 7 (0])
JEN JEM I
AL -
=FEz, | log T”‘{_” e — log f H [7(01)]™ do
l_[fe*m_-ln,rfm'ﬂ ' =
- / —L"FL‘J‘L;C [Hj(m']]”&:'ffm | L
_D - . . ) H;;Jr' . .
= (0] | c ]_[ [7;(019)] + const., (4.10)
JEI

where ¢ 18 a proportionality constant assuring that the result 1s a valid density. The first equality in
Eq. (4.10) is due to the definition of the Kullback-Leibler divergence, and the second follows from easy
algebra. Because the Kullback-Leibler divergence 1s minimal if the arguments are equal, the minimizing
density has the form

@) oc [ @)™ (.11)

There 1s a notable property of this combination rule. If the posterior distributions belong to the
exponential family, then Eq. (4.11) provides an analytically tractable way for obtaining the posterior
mi(0|-) = mi(@ &k, Vek). Then its hyperparameters are given by

£ = Z agi&rk, and v g = Z ajjvVy k- (4.12)

JeNg JeMy,

The above equations suggest that the hyperparameters of the resulting distribution of the kth agent are
obtained by a linear combination of the hyperparameters of the individual distributions, & ; and v,
J € Mg. Recall from Eq. (4.5) that & ; and v;; aggregate the agents’ observations.

A natural question 1s whether it 1s possible to proceed with swapped arguments of the divergence.
We proceed by writing,

i " (0])
D awD (7 ©01) |7 @) = ) ayln [log = (mﬂ
JeM, JeM; - k
= ) B [logmi(0])]
JEM,

_ EE!E‘H;: g log Z agimi(0]-)
JEIY

2_jey, 7 (01
N e KT
+Elﬁ;ﬁt;~_ﬂkj?§' log 7 (6] (4.13)
=D | Y agmi(0]) ||7x@]) | + const. (4.14)
=1
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The first two terms in Eq. (4.13) do not depend on 74(€]-), and the minimum of the divergence is
achieved by minimization of the last term, which leads to

#1(0]) = Z ag;mi(0]-). (4.15)
JeMy

The result of the minimization 1s a mixture of the neighbors’ posterior distributions. The number of
components 18 equal to |J1|, and with time 1t will explode, unless a suitable component merging/
pruning procedure 1s implemented, e.g., [43].

Example: Covariance intersection

A nice example of the Kullback-Leibler optimal combination (4.11) 1s the merging of normal densities,
which belong to the exponential family of distributions. Assume that the posterior of 6 € IR" is ;(6|-) ~
N (s j, s ;). If we drop the time indices for notational simplicity and rewrite the density in the form
(4.2), we obtain

i . _lia_—y,. —lg_ 4.
] (H|LLJ',Ej):{ZH}_E(dEtEj)_fi‘? Q{H .L{Jr}TEj (e Ilj)

T 19T ~
. i 2. a7 |
ixe:{pilr({_ﬁg I:| [{mT})—EM E ,t } (4.16)
27

where the natural parameter and the sufficient statistic have the form

T——1
L - 3. oT
— J ; —
nj_[ : _,] and T((})_[ T]
_EEj 06

The combination of all the Gaussian distributions will produce another Gaussian. From Eq. (4.11) 1t
follows that

. ars! plz
= | “h s Z agjn; = Z agj l 1> (4.17)
je;: JjeMy, 2 J

and a little algebra yields the resulting mean vector and covariance matrix of the resulting Gaussian,

- -—1

. = —1 = —1
Pk =ik | D aZ i mej| and Tp=| ) ayT; . (4.18)
=1V e,

This result 1s known as covariance intersection. It 1s worth noting that the same rule applies to any
other distribution from the exponential family.

Which combination algorithm?

Both the presented algorithms that combine the posterior estimates are optimal in the Kullback-Leibler
sense, yet they may lead to significantly different results. The obvious question 1s which algorithm
should be used in a given situation. As mentioned above, the algorithm (4.11) should be used in
sttuations where model and parameter homogeneity are assumed. Further, 1ts analytical tractability
under conjugate priors 1s a very attractive feature. On the other hand, the second algorithm (4.15)
is better in situations where the agents use different models and/or parameters. Then, the algorithm
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provides a (mixture) density that better fits the regions where the neighbors™ densities are large enough
(for more details, see [42]). As pointed out, the algorithm requires an additional procedure tor pruning
and merging of the components to prevent the mixture from a rapid growth of its number of components.
A specific situation arises if (sequential) Monte Carlo methods are used for estimation or filtering, and
the posterior distribution 1s approximated by samples. Sampling from the mixture (4.15) 1s equivalent
to gathering a relevant number of samples from the neighbors. As this may be communication-
intensive, the posteriors may be approximated by a normal mixture at each agent as in the Gaussian
particle filter [44—46]. The combination rule (4.15) yields again a normal mixture from which sampling
is trivial.

Example
Let us briefly investigate the properties of the two combination algorithms on a simple example.
Assume that there are two normal posterior distributions available to agent 1,

m(@]) =N(0,1) with a;; =0
m(0]) = N(1,1) with a;p =0.

It 1s straightforward to prove that the combination rule (4.11) yields a normal distribution,
71(6]) = N(0.5, 1),

which 1s a good compromise between the two original distributions. The combination rule (4.15) yields
a mixture

71(0]-) = 0.5N(0, 1) + 0.5A/(1, 1), (4.19)

which preserves the available information about the location of the mean values, but at the cost of
higher complexity.
Now, assume two normal distributions that differ only in the variance,

71(0]-) = N(0,100) with ayy = 0.5,
75(0)) = N(0,1)  with a;» = 0.5.

The combination rule (4.11) produces a normal distribution
71(0]) = N(0, 1.98),
and the second combination rule (4.15) leads to a mixture
71(0)-) = 0.5N(0, 100) 4+ 0.5N(0, 1). (4.20)

I[f we assume that agent 1 joined the network with an initial prior while the second agent already
performed several updates and has a good knowledge of 0, we see that the former combination rule
significantly improves the distribution of agent 1. If agent 2 uses a>; = 0.5 and ax; = 0.5 (has the
same beliefs as agent 1), the combined distribution of this agent would be the same as that of agent 1.
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Hence, a combination of a distribution that refiects high-ignorance with one with low 1gnorance, does
not much affect the latter.

4.3 EXAMPLE: DIFFUSION KALMAN FILTER

The first diffusion Kalman filter was proposed in [30]. Later in [31], it was improved with a covariance
intersection-based procedure, which was applied in the combination step. Below we derive the diffusion
Kalman filter from a Bayesian viewpoint. More on the diffusion Kalman filter but derived from a
different perspective can be found in the chapter on Distributed Kalman and Particle Filtering.

To begin, we assume a hidden Markov model of the form'

xplxp—1.2 ~ N (Arl’r—l + Biz, Qr) : (4.21)
velxe ~ N (Hpxy, Ry), (4.22)

where x; 18 an n-dimensional state vector, y; 1s an /-dimensional observation vector, z; 18 a known input
vector of length m, A;, B;, and H; are matrices of compatible dimensions, Q; and R; are n x n and £ x £
state and observation covariance matrices, respectively.

The observation model (4.22) 1s normal, so we rewrite it by using the exponential family form (4.2),

. 1 -
J(ve|xr) ocexp —i(}"r — Hix;)TR, I{}*’r — Hr-fr}]

B of L= Ty R v ] 4.23
— expy Ir —5 X . HET s HI,T . (4.23)

! ' .

n(x;) I'(ye)

Because the model (4.22) 1s normal, 1t 1s advantageous to set the prior distribution to normal too, as
it 1s conjugate to the model and hence the posterior will be analytically tractable,

(X |Y0r—1-20:0—1) = N(x; Py, x, € R" Py e R™"
I T p ] ~
ocexp =5 —x ) (P ) —xp )

[ 1 [— 1T — — T
= exp- Tr(_i [_TII] [III] |:(Ifj)-r:| P! [{A;IJT} )] 4o

i
o a'

nixe) &

where [ 1s an identity matrix of appropriate dimensions. The minus superscripts denote parameters
of the Gaussian where the measurements from time ¢ have not been incorporated yet, whereas the
plus signs signify that they have been used. Also, the state transition x;_; — x; amounts to updating
N P ) — N(x;, P, ) according to Eq. (4.21).

Next, we return to the implementation of the Kalman filter over a network, where all the agents use
the same model. The matrices A;, B, and O, are the same for all the agents whereas H,;, and R, are

'We temporarily drop the agent’s indices for simplicity. Also, instead of @, the unknowns of interest here are the vectors x;.



140 CHAPTER 4 BAYESIAN APPROACH TO COLLABORATIVE INFERENCE

distinctive as are the variables z; ;. The adaptation step of the diffusion Kalman filter 1s similar to the
ordinary Kalman filter update. First, the state transition given by Eq. (4.21) 1s performed as usual,

(X e | Er—1 1) = fTF(ILH-TI—]E:\J'J’TM-’W—] & —1g)dx,

= Nic (AF | + Brago AP AT + O1)
— .-'I\'b'll}c{.l:f:k., Pf._k)j {\425}

and followed by the Bayesian update by the neighbors’ measurements

Tt S i) o€ gl cr—10) [ | S Onilaeg)
jeM;

= Ni(x, . P (4.26)

Taking the exponential family form (4.23) and the conjugate form (4.24) into account, we see that

T
. Nt j —1 | ¥y ,
Sk =81k + ) [HJ y [H,J , (4.27)

JeI
Ve = Ve—1k + [Tl (4.28)

Simple algebra reveals the recursions

-1
-+ L —
Pho=1P ™"+ > HIR H; | | (4.29)
_,rli'—_ﬁh, ]
S Tp ' s o
=X+ Ph Y HIREY (v = Hijxy) (4.30)
JE‘”A

The above two equations describe the adaptation step.
The combination step operates directly with &;; according to Eq. (4.11). Application of Eq. (4.18)
from Section 4.2.3 shows that

~ root pty R P -
Aluale) = [ [N P = NGl PR (4.31)
JEIY,
with the hyperparameters
- - —1
]
5t _ +
Prx = Z akj (‘pu) ; (4.32)
e i
]
-+ _ pt (pt)
Bo=Ph > ag(Pf) xf (4.33)
jei;

The algorithm is summarized in Algorithm 4.1.
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Algorithm 4.1 DIFFUSION KALMAN FILTER WITH ADAPT-THEN-COMBINE
(ATC) STRATEGY

Initialize agents k = 1,2,..., K with the prior densities 7y (# |y o)- Set the weights ag;. Forr = 1,2,... and each agent
k do:

Kalman prediction:
» Update the prior densities N} [xr'_l i P:_] p) ,-“n.-’}f(,tr Py ) Bq. (4.25).

Kalman update:

1. Acquire observations y; ; of neighbors j € ;.

2. Adaptation: Perform Kalman adaptation according to Eq. (4.26) by updating the hyperparameters via Eq. (4.27).
3. Obtain posterior densities m;(x; ;| j) of neighbors j € 91 by acquiring their respective hyperparameters & j, vy ;.
4. Combination: Combine posterior densities according by implementing Eqs. (4.32) and (4.33).

4.3.1 SIMULATION EXAMPLE

We 1llustrate the performance of the diffusion Kalman filter with a two-dimensional tracking problem.
The matrices of the model were time-invariant, and they were defined as follows:

_ _ _&.5 &E =]
1 0 A 0 ;y U 7 0
ﬂ-:l ﬂ._
g 3 0 [1] T 0 A0
- : 0 5 0 A
10 0 0 > 10
=10 1 o0 n}’ R=r '[n 1]

where A = 0.1, g = 5.0, r = 0.1k, and k = 1,...,15 1s the agent’s number. That is, the agents
had different observation noise covariance matrices. The simulation was started from the origin of the
coordinate system. The state vector elements represent the position of the target in the plane and its
velocity components.

Figs. 4.1 and 4.2 show the topology of the network and the simulated trajectory with noisy
observations of agents 1 and 15, respectively. The Kalman filters were imtialized with PJ P = 100014+ 4

and zero vectors X{T*;:* The combination weights ai; were uniform and constant. Four strategies were
tested: (1) no cooperation (nocoop), (2) adaptation only (A-only), (3) combination only (C-only), and
(4) adapt then combine (ATC). Fig. 4.3 depicts the box plots of the mean square errors (MSEs) of the
estimation of all four elements of the state vector. We see that the collaboration among agents improved
the estimation performance. Further, the performance of the C-only strategy was superior to that of the
A-only strategy.

4.4 CONCLUSION

The Bayesian approach to the inference of unknown parameters of probabilistic models has numerous
attractive features. One of the most prominent is its wide applicability. Further, regardless of whether
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FIG. 4.1

Network layout.
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FIG. 4.2

Simulated trajectory and observations of agents 1 and 15.

one deals with linear or nonlinear regression, state-space models, hierarchical models, or any other
model type, Bayesian inference relies on the same principles. Unlike in classical (frequentist) statistics,
the estimate 1s represented by a posterior distribution, quantifying not only its expected location but also
the uncertainty associated with it. The representation of estimates by posterior distributions remains
a cornerstone of the use of Bayesian principles in networked systems, where agents collaborate to
improve their own estimates. The main idea is that less-informed agents improve their knowledge while
well-informed ones do not reduce it.

There are many open problems that could be investigated. For instance, the determination of
combination weights is one, although several methods for choosing them have already been proposed
[37,47]. The described combination methods are a small sample from the set of possible approaches,
too. For instance, in [48], yet another approach was proposed where the agents fuse received
information from neighbors by using mixtures with weights proportional to predictive distributions
obtained from the posteriors of the respective agents. Furthermore, the topic of heterogeneous models
and/or parameters has attained a huge interest in the last years, but the only Bayesian treatment the
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FIG. 4.3

MSEs of various strategies.

authors are aware of was proposed in [42]. Naturally, the robustness to failures and the communication
and computational limitations of the agents form other interesting topics for research on collaborative
inference in networks of agents.
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