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Determination of a source term of an accidental release of radioactive material into
the atmosphere is very important for evaluating emergency situations and their con-
sequences. However, knowledge of the source term and its composition is typically
vague and uncertain. One possible way to obtain the source term is inverse model-
ing in which an atmospheric transport model is combined with field measurements.
The most accessible measurements are those from gamma dose rate (GDR) detec-
tors. However, GDR measurements represent a sum of contribution from all nuclides
from both plume and deposition which makes the problem particularly difficult. The
same difficulty arises when the measurements can not distinguish contribution from
another species in the release, such as nuclides attached to different particle sizes.
We propose a Bayesian method for recovery of the source term from GDR measure-
ments where a priori knowledge on ratios of different species is given in the form of
bounds. This knowledge is incorporated into the model of covariance matrix of the
source term. The Bayesian methodology allows to handle uncertain knowledge on
the nuclide ratios as well as unknown temporal correlations of the source term. We
evaluate and compare the proposed method with other state-of-the-art methods on a
twin experiment of a non-stationary release of 16 nuclides from the Czech nuclear
power plant Temelin being registered by the Austrian GDR monitoring network.
Real-world validation of the approach is performed on the latest measurements of
concentration and deposition of caesium-137 from the Chernobyl accident, where
we estimate composition of the source term from different particle sizes (species).
The estimated source term is in very good agreement with previously reported results
and the calculated species ratios are supported by the available observations.
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1 INTRODUCTION

Determination of the source term of an atmospheric release
of radioactive material is very important for nuclear acci-
dent emergency. However, information about the source
term is always incomplete and subject to many uncertain-
ties. One possible approach to estimation of the source
term is to combine field measurements together with an
atmospheric transport model (Nisbet and Weiss, 2010). The
most informative measurements are atmospheric activity

concentrations, which can be measured for each nuclide.
However, they need to be collected for a selected period,
typically several hours or even days (Leelössy et al., 2017).
Another type of measurements are surface activities that
can be measured using fallout for each nuclide and inte-
grated over period of time, daily at the best as in the case
of Fukushima (Saunier et al., 2013; Leelössy et al., 2018).
Therefore, gamma dose rate (GDR) measurements are mostly
adopted when rapid response is needed due to their avail-
ability (Katata et al., 2012; Kovalets et al., 2016). However,
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they represent a challenge for the inversion method since its
value is a sum of contributions from all nuclides forming
the plume radiation and deposition radiation (Saunier et al.,
2013; Zhang et al., 2017). This issue may arise even for sin-
gle nuclide when it is attached to different specie for example
with different particle sizes. Once again, the detector will
measure only a sum of contributions from these individual
sources.

A lot of effort has been spend on source term estimation
methods, also known as inverse methods, including opti-
mization methods, e.g., (Eckhardt et al., 2008; Davoine and
Bocquet, 2007), iterative ensemble Kalman filter (Zhang et
al., 2015), Monte Carlo methods, e.g., (Rajaona et al., 2015;
Liu et al., 2017), maximum entropy principle , e.g. (Bocquet,
2005; 2007; 2008), and variational Bayesian methods, e.g.
(Tichý et al., 2016). The application area range from nuclear
explosions (Issartel and Baverel, 2003) and accidents such as
Chernobyl (Davoine and Bocquet, 2007; Evangeliou et al.,
2017) or Fukushima (Winiarek et al., 2012; Stohl et al., 2012;
Liu et al., 2017), accidental release of radioactive materials
(Tichý et al., 2017), to emissions of volcanic ash during vol-
canic eruptions (Kristiansen et al., 2010; Stohl et al., 2011).
These methods were mainly tested in scenarios where the
measurements correspond to one specie in the source term,
such as concentration measurements of individual nuclides.
The number of estimation techniques for multi-specie source
terms with measurements of the sum of their contributions
is much smaller since it is much more challenging problem
due to uninformative measurements. An example of such
methods is estimation of multi-nuclide source terms from
GDR measurement (Saunier et al., 2013; Kovalets et al.,
2016; Zhang et al., 2017). The key ingredients for solu-
tion is prior information on the composition of the source
term.

In the case of multi-nuclide source terms, prior assump-
tions on nuclide ratios and their treatment has been found to
be important (Saunier et al., 2013; Zhang et al., 2017; Katata
et al., 2012). These can be obtained, e.g, from analysis of
the nuclide composition of the active power plant (reactor
inventory combined with assumptions on the accident type)
or from a few available nuclide-specific activity concentra-
tion samples. However, a methodology to incorporate this
information into the inverse methods remains a challenge.
One possible means to approach this problem is to use prior
nuclide ratios ranges which then constrain the optimization
problem in the form of barrier protection functions (Saunier
et al., 2013). This formulation can be also seen as a con-
vex optimization problem with nuclide ratios ranges forming
constraints and with an optional regularization term such as
Tikhonov (Golub et al., 1999) or least absolute shrinkage
and selection operator (LASSO) (Tibshirani, 1996). Opti-
mization formulation was also used by Hofman et al. (2015)
where a transport matrix is augmented using known nuclide
ratios. Recently, a probabilistic approach has been adopted
by Zhang et al. (2017) where the multi-nuclide source term

is sequentially estimated with use of update of source term
covariance using prior knowledge on nuclide ratios. Notably,
uncertainties of the source term are also output of the method.
However, these approaches are based on description of the
ratio uncertainty in the form of the covariance matrix of a
Gaussian distribution and their manual tuning. The choice
of tuning coefficients may be problematic in emergency
situations.

In this paper, we assume to have knowledge on the source
term composition in the form of intervals of admissible ratios
of the species as considered by Saunier et al. (2013). We
approach the problem in a Bayesian way and view the specie
ratios as unknown variable with the admissible interval
defining support of their prior distribution. The parameters of
the prior distributions are estimated together with the source
term. The estimation of the model parameter is performed
using the variational Bayes method, e.g. (Jordan et al., 1999;
Šmídl and Quinn, 2006), where iterative algorithm is derived.
This approximative method is a computationally simple alter-
native to Monte Carlo sampling. The Monte Carlo approach
to estimation of the source term from GDR has been presented
e.g. by Šmídl and Hofman (2014) but only for a single nuclide
scenario.

Validation of the inversion methods from GDR mea-
surements is an issue because there is no tracer exper-
iment. Hence, we design a realistic twin experiment to
theoretically validate the proposed method. The source
term consists of 16 nuclides released from the Czech
nuclear power plant Temelin. The Lagrangian particle dis-
persion model Flexpart (Stohl et al., 2005) was used
as the atmospheric transport model which is forced by
ECMWF Era-Interim meteorological fields. The topology
of the Austrian radiation monitoring network comprising
of 480 receptors was used to simulate the hypothetical
measurements. The proposed method is compared with
state-of-the-art methods including optimization formulation
with Tikhonov and LASSO regularization, and the method by
(Zhang et al., 2017).

Real data sets, such as the Chernobyl and the Fukushima
accidents, do not provide ground truth of the source term
(Aliyu et al., 2015), and most of the measurements is
nuclide-specific (Evangeliou et al., 2016). However, the
Chernobyl source term is also composed from many species,
since the nuclides are attached to different particles sizes
(Evangeliou et al., 2017). The fractions of different particle
sizes in the total release (and thus their ratios) are approx-
imately known from measurements (Malá et al., 2013).
In this paper, we use this data as a validation experiment,
where we assume that the fractions of various particle
sizes are not known and we estimate them jointly in the
inversion problem. We show that the results of the pro-
posed method are in good agreement with the findings of
Malá et al. (2013).
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2 THEORY AND METHODS

We assume that the vector of measurements y can be
explained by linear model, e.g., (Seibert and Frank, 2004),

y = Mx. (1)

In this case, vector y ∈ Rp×1 contains the measurements;
M ∈ Rp×n is a known source-receptor-sensitivity (SRS)
matrix given by atmospheric transport model (Seibert and
Frank, 2004), and x ∈ Rn×1 is the unknown source term
vector. Note that y and M are prone to errors and cumulate
uncertainties from measurements and the atmospheric trans-
port model used for SRS calculations (including errors in the
meteorological data used to drive the transport model). In the
paper, we assume that the number of species is m and that
the number of time point is q; hence, the length of the vec-
tor of the source term is n = mq. For clarity, we assume the
composition of the source term x where activity rates of each
specie is stored in column vector as x =

[
xT

1 ,… , xT
m
]T

, where

source term of the kth specie is xk =
[
xk,1,… , xk,q

]T
for each

k = 1,… ,m.
The sensors measure only sum of contributions from dif-

ferent species. Separation of the species can be achieved only
from their different atmospheric transportation properties or
from different physical half-life in the case of nuclides. These
effects are reflected in the SRS matrix, however, they are very
weak and simple solution using least square method, xLS =(
MTM

)−1 MTy, fails since the problem is highly ill-posed.
Therefore, we aim to use additional information on ratios of
the kth specie in relation with the mth specie which can be
expressed for each time step t similarly to Saunier et al. (2013)
as

ak,t ≤
xk,t

xm,t
≤ bk,t, ∀k = 1,… ,m − 1, ∀t = 1,… , q, (2)

where ak,t and bk,t are known boundaries of the ratios. The
limits may be time-dependent or constant for the whole
release depending on available information.

2.1 Relation of cost optimization and Bayesian
approach

A wide range of papers based on linear model Equation 1
where the problem is formulated as an minimization problem
has been published, see e.g. (Seibert, 2000; Seibert and Frank,
2004; Eckhardt et al., 2008). The task is to minimize the cost
function J,

J = (y − Mx)T 𝜎−2
0 (y − Mx) + xTdiag

(
𝝈−2

x
)

x, (3)

where the first term models the deviation of the model from
the observation with standard observation and model error
𝜎0 and the second term penalizes higher values of the source
term x with error standard deviation in vector 𝝈x where sym-
bol diag() denotes square diagonal matrix with argument
vector on its diagonal and zeros otherwise. Then, the mini-
mization problem can be written as x∗ = arg minx J.

This minimization problem can be interpreted as a max-
imum a posteriori estimate of the following probabilistic
model

p (y|x) = (
Mx, 𝜎2

0Ip
)
∝ e

(
− 1

2
(y−Mx)T𝜎−2

0 (y−Mx)
)
, (4)

p (x) =
(
0, diag

(
𝝈2

x
))

∝ e
(
− 1

2
xT diag(𝝈−2

x )x
)
, (5)

where  denotes Gaussian (normal) distribution with given
mean and covariance and Ip denotes identity matrix of the
size given in the subscript and symbol ∝ denotes equality
up to normalizing constant. The logarithm of the posterior
probability of the unknown source term x is

log p (x|y) = −1
2

J + c, (6)

where c aggregates constants independent of x. Thus, maxi-
mization of log-likelihood Equation 6 is equivalent to mini-
mization of the cost function Equation 3. In the basic max-
imum likelihood approach, the parameters 𝜎0 and 𝝈x are
treated as tuning parameters and are often chosen manually.

However, in the full Bayesian approach, parameters 𝜎0

and 𝝈x can be considered to be unknown. After selection of
their prior distributions, they can be estimated from the data.
Using this principle, many more parameters can be relaxed,
including unknown correlations in the prior covariance matrix
(Tichý et al., 2016).

2.2 Proposed Bayesian formulation of linear inverse
problem

Here, we formulate the probabilistic model of the multi-specie
release where information on their ratios can be incorporated
into the covariance matrix of the source term.

The observation model is identical to Equation 4 where
isotropic Gaussian noise model is assumed. Here, we consider
equivalent formulation with the precision (inverse variance)
parametrized by 𝜔, i.e. 𝜔−1 = 𝜎2

0 , as

p(y|x, 𝜔) = 
(
Mx, 𝜔−1Ip

)
, (7)

The parameter𝜔 is considered to be unknown and therefore
subject to estimation; hence, we define its own prior distribu-
tion in the form of Gamma distribution similarly to (Winiarek
et al., 2011), which is conjugate for estimation of precision of
the Gaussian distribution, as

p(𝜔) =  (𝜗0, 𝜌0) . (8)

Here,  denotes the Gamma distribution and 𝜗0, 𝜌0 are
prior constants. When these constants are equal to zero, the
prior becomes non-informative Jeffrey’s prior. However, we
recommend to set them to a small number such as 10−10

since the resulting algorithms is more numerically stable, as
can be seen from Equtions 65–66. The same recommenda-
tion is valid for all subsequent prior constants of Gamma
distributions.

The main novelty of the proposed model is its model of
the source term. The model is based on a special role of a
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FIGURE 1 Example of the normal distribution  (1, 1), blue line, and the
truncated normal distribution  tr(1, 1, [0, 3]), red line. Truncated normal
distribution, see definition in Appendix 5, allows to analytically compute
moments of normal distribution truncated to a specific interval [Colour
figure can be viewed at wileyonlinelibrary.com]

selected specie denoted xm (the last sub-vector in vector x).
This specie is modelled independently. We use the smooth and
sparse prior by Tichý et al. (2016), i.e. prior model

p(xm,t|xm,t−1) =  tr (lm,txm,t−1, 𝜐
−1
t , [0,∞]

)
, (9)

p(lm,t|𝜓m,t) = 
(
l0, 𝜓−1

m,t
)
, (10)

p
(
𝜓m,t

)
=  (𝜁0, 𝜂0) , t = 2,… , q, (11)

p(𝜐t) =  (𝛼0, 𝛽0) , t = 1,… , q, (12)

where symbol  tr denotes truncated Normal distribution
with given support, see Appendix 5 and Figure 1, and where
lm,t, 𝜐t and 𝜓m,t are estimated from the data. Note that since
xm,t depends on xm,t−1, the model Equation 9 holds only
for t = 2,… , q while for t = 1, we assume p(xm,1) =
 tr

(
0, 𝜐−1

1 , [0,∞]
)
. The model essentially states that the two

subsequent elements of the source term are correlated with
unknown coefficient lm of which we know only prior mean l0.
In this study, we assume that l0 = 1 to favour smooth solu-
tions and 𝜁0, 𝜂0 are selected as 10−2 as suggested in Tichý
et al. (2016). However, the model allows for abrupt changes
if they are supported by the observations, see Tichý et al.
(2016) for discussion. The prior constants 𝛼0, 𝛽0 are chosen as
𝛼0 = 𝛽0 = 10−10 to represent non-informative prior .

The remaining species are modelled using linear model of
correlation. Multiplying Equation 2 by xm,t, we can consider
the constraint Equation 2 to be a constraint on a coefficient of
linear regression:

xk,t = lk,txm,t, ak,t < lk,t < bk,t, (13)

where lk,t is the regression coefficient. To allow for model
inaccuracy, we propose to use the probabilistic model

p(xk,t|xm,t) =  tr (lk,txm,t, 𝜐
−1
t , [0,∞]

)
, (14)

p(lk,t|𝜓k,t) =  tr
(

0, 𝜓−1
k,t , [ak,t, bk,t]

)
, (15)

p
(
𝜓k,t

)
=  (𝜅0, 𝜈0) , (16)

for t = 1,… , q, k = 1,… ,m − 1, where lk,t, 𝜐t and 𝜓k,t
will be also estimated from the data. Prior constants 𝜅0, 𝜈0 are
selected non-informatively as 10−10. Note that this is the same
structure that is used for xm. Precision of model Equation 14 at
time t is assumed to be the same for all elements of xk,t and xm,t
using the same precision coefficient 𝜐t that is estimated from
the data. A significant change from the model for xm,t is that

the regression coefficient is a priori restricted to be within the
prescribed bounds using the truncated Normal distribution in
Equation 15.

Joining models Equations 9 and 14 we can write prior
model of the full vector of unknowns x, x =

[
xT

1 ,… , xT
m
]T

to
be:

p(x|𝛀) =  tr (0,𝛀−1, [0,+∞]
)
, (17)

where 𝛀 denotes precision matrix. The precision matrix 𝛀
has a specific form:

𝛀 = L𝚼LT , (18)

where L is a lower triangular matrix with structure

L =

⎛⎜⎜⎜⎜⎝

It 0 0 0 0
0 It 0 0 0
0 0 ⋱ 0 0
0 0 0 It 0

L1 L2 · · · Lm−1 Lm

⎞⎟⎟⎟⎟⎠
, (19)

where sub-matrices Lm and Lk, k = 1,… ,m − 1, are
composed of unknown regression coefficients of models
Equations 9 and 14 as follows:

Lm =
⎛⎜⎜⎜⎝

1 0 0 0
−lm,1 1 0 0

0 ⋱ ⋱ 0
0 0 −lm,q−1 1

⎞⎟⎟⎟⎠
, (20)

Lk =
⎛⎜⎜⎜⎝
−lk,1 0 0 0

0 −lk,2 0 0
0 0 ⋱ 0
0 0 0 −lk,q

⎞⎟⎟⎟⎠
, k = 1,… ,m − 1 (21)

The matrix 𝚼 is a diagonal matrix with positive entries on
the diagonal. Similarly to the model of the matrix L, we aim
to model the matrix 𝚼 related to the mth specie. Again, we
assume block structure of the matrix 𝚼 as

𝚼 =
⎛⎜⎜⎜⎝
𝚼m 0 0 0
0 ⋱ 0 0
0 0 𝚼m 0
0 0 0 𝚼m

⎞⎟⎟⎟⎠
, (22)

where 𝚼m is diagonal matrix of the size q with diagonal
entries are denoted as 𝜐1,… , 𝜐q.

2.2.1 Variational Bayes solution
Estimation of all unknown model parameters can be done
by the Bayes’ rule. This task is, however, intractable. There-
fore, we seek an approximate solution. Here, we employ the
variational Bayes (VB) methodology (Jordan et al., 1999;
Šmídl and Quinn, 2006) where the posterior distributions are
assumed in a specific form of conditional independence:

p
(
x, 𝜐t, lk,t, 𝜓k,t, 𝜔|y) ≈ p (x|y) p (𝜐t|y)

p
(
lk,t|y) p

(
𝜓k,t|y) p (𝜔|y) . (23)

The best possible approximation can be obtained using
minimization of Kullback-Leibler divergence (Kullback and
Leibler, 1951) between the posteriors and the restricted from

http://wileyonlinelibrary.com
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of the solution. This minimization uniquely determines the
forms of the posterior distributions as

p̃ (x|y) = tr (𝜇x,Σx, [0,+∞]) , (24)

p̃ (𝜐t|y) = (𝛼t, 𝛽t) , t = 1,… , q, (25)

p̃
(
lm,t|y) = (

𝜇lm,t ,Σlm,t
)
, t = 1,… , q − 1, (26)

p̃
(
𝜓m,t|y) = (𝜁m,t, 𝜂m,t

)
, t = 1,… , q − 1, (27)

p̃
(
lk,t|y) = tr (𝜇lk,t ,Σlk,t , [ak,t, bk,t]

)
, t = 1,… , q, (28)

p̃
(
𝜓k,t|y) = (𝜅k,t, 𝜈k,t

)
, t = 1,… , q, (29)

p̃ (𝜔|y) = (𝜗, 𝜌) , (30)

for k = 1,… ,m − 1, where the shaping parame-
ters 𝜇x,Σx, 𝛼t, 𝛽t, 𝜇lm,t ,Σlm,t , 𝜁m,t, 𝜂m,t, 𝜇lk,t ,Σlk,t , 𝜅k,t, 𝜈k,t, 𝜗, 𝜌 are
derived using the VB method in Appendix 5. These shap-
ing parameters are functions of standard moment of posterior
distribution denoted, e.g., as ⟨x⟩ where brackets ⟨.⟩ denotes
expected value. The shaping parameters together with stan-
dard moments form a set of implicit equation which need to
be solved iteratively. The first probability distribution evalu-
ated in the iterations is Equation 24 with ⟨L⟩ and ⟨𝚼⟩ set to
identity matrices and ⟨𝜔⟩ = 1

max MT M . The remaining distri-
butions are evaluated in the order of Equations 24–30. The
resulting code can be downloaded from http://www.utia.cz/
linear_inversion_methods.

Note that similarly to Zhang et al. (2017), the algorithm
allows to sequential updates on receding (moving) window.
Here, arbitrary subset of time-index [1,… , t] can be consid-
ered for each specie at each moving step. However, to study
this computational scheme is beyond the scope of this paper.

2.3 Other methods for incorporation of ranges on
ratios

2.3.1 Convex optimization with constraints
The inverse problem Equation 1 together with constraints
Equation 2 can be reformulated as an optimization problem.
Ordinary minimization of the quadratic norm of ||y − Mx||22
yields typically poor results due to ill-conditioned matrix
M; however, constraints and regularization terms can be
employed to achieve more reliable results. In our case, the
minimization problem is formulated as follows:

x∗ = arg min
x

{||y − Mx||22 + 𝛼g(x)
}
,

subject to x ≥ 0, ak,t ≤
xk,t

xm,t
≤ bk,t, ∀k, ∀j, (31)

where 𝛼 > 0 is selected weight of the regularization term
g(x), source term x is assumed to be positive and constrained
according to Equation 2. We consider two regularization
terms commonly used in literature, Tikhonov regularization,
see (Golub et al., 1999), and LASSO regularization, see
(Tibshirani, 1996),

gTikhonov(x) =||x||22, (32)

gLASSO(x) =||x||1, (33)

where ||x||1 =
∑

i |xi| denotes l1-norm of the vector x. We
stress that the solution strongly depends on the selection of
the weight of the regularization, on the parameter 𝛼. In the fol-
lowing experiments, we select this parameter manually after
considering many possible choices.

Since the optimization problem Equation 31 remains con-
vex, we use the CVX toolbox (Grant et al., 2008; Grant and
Boyd, 2014) which is a Matlab toolbox where the problem
Equation 31 can be implemented and solved.

2.3.2 Sequential multi-nuclide emission rate estimation
method
Recently, a method for sequential estimation of the source
term composition and nuclide emission rates has been intro-
duced by Zhang et al. (2017). The key is the minimization
of the cost function of a regularized weighted least square
problem

x∗ = arg min
x

[
(y − Mx)T R−1 (y − Mx) + xTB−1

0 x
]
, (34)

where R represents the error covariance matrix of measure-
ment and B0 represents covariance matrix for the source term
constructed using knowledge of nuclide ratios. At each time
step i, the estimated source term is updated and recalculated
with use of incoming measurement as

Ki =BiMT
i
(
Ri + MiBiMT

i
)−1

, (35)

xi =
(

xi−1
x0,i

)
+ Ki

(
yi − Mi

(
xi−1
x0,i

))
, (36)

where subscript i denotes sub-selection of part of respected
measurement or variable related to time 1,… , i and Bi is
composed of information on nuclide ratios and its uncertain-
ties, see Zhang et al. (2017) for details. Since this inversion
method may yield negative estimates in x, suppression of
these negative estimates are proposed using artificial observa-
tions with zero mean and large uncertainty. We use reference
implementation provided by its authors online.

However, we stress that the original algorithm is suitable
only for well conditioned problems since under realistic con-
ditions, the inversion in Equation 35 may be ill-conditioned
and numerically unstable as in our experiment. Therefore, we
modified the Equation 35 using the regularization term as

K̃i = BiMT
i

(
Ri + MiBiMT

i +

+ norm
[
Ri + MiBiMT

i
]

Isize(Ri)

)−1
(37)

where norm[ ] denotes the largest singular value of the given
matrix. This regularization improve the results in the follow-
ing experiments significantly. Nevertheless, we will refer to
this method as Zhang_2017 in the following experiments.

Note on computational cost

The computational time of all methods is in the range of tens
of seconds on standard PC for cases studied in this paper.

http://www.utia.cz/linear_inversion_methods
http://www.utia.cz/linear_inversion_methods
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FIGURE 2 Gamma dose rate from the cloud shine and deposition 12 hr
after the start of the release [Colour figure can be viewed at
wileyonlinelibrary.com]

Exact runtimes vary with different settings and tuning param-
eters, different methods also use different numbers of cores
on the used four-core CPU. Since none of the methods was
optimized for execution speed, we provide only relative com-
parison. On average, the shortest runtimes has the method
Zhang_2017 while the longest has the convex optimization
via the CVX toolbox. The proposed method is between those
two.

3 TWIN EXPERIMENT OF
MULTI-NUCLIDE RELEASE

In this section, we will use simulated twin experiment sce-
nario, i.e. SRS matrix M and measurement vector y are
simulated using a model.

3.1 Twin experiment

For the purpose of this twin experiment, we use the source
term designed by the Czech National Radiation Protec-
tion Institute (NRPI) for the Czech nuclear power plant
Temelin. Here, the reactor type is Water-Water Energetic
Reactor (VVER) delivering 1000 MW of electrical power
(VVER-1000). For the purpose of testing dispersion models
and nuclear safety assessment, the NIPR designed a sim-
plified source term (Kuc̆a et al., 2012) consisting of 16
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FIGURE 3 Plot of singular values of the SRS matrix M [Colour figure can
be viewed at wileyonlinelibrary.com]

nuclides from the former RODOS source term (Savushkin et
al., 1998) called VVER1000-ST2 assuming severe accident
of the VVER-1000 nuclear reactor with fuel melting, steam
explosion, destruction of containment.

We follow the NIPR source term (Kuc̆a et al., 2012) and
consider a simulated release of a mixture of 16 nuclides,
m = 16: Cs-136, Cs-134, Cs-137, I-133, I-131, I-135, I-132,
I-134, Kr-85m, Kr-88, Kr-87, Sr-90, Sr-89, Te-132, Xe-135,
Xe-133 with details on the release given in Table 1. We
assume the release to happen from an existing facility, namely
the Czech nuclear power plant Temelin. We aim to reconstruct
the release using topology of the Austrian radiation monitor-
ing network comprising of 480 receptors, see Figure 2. We use
the Lagrangian atmospheric dispersion model Flexpart 9.2
(FLEXible PARTicle dispersion model) (Stohl et al., 1998;
Stohl et al., 2005) which is forced by the ECMWF Era-Interim
meteorological fields (Dee et al., 2011) with horizontal reso-
lution 0.5°. Runs were done with convection turned on. Time
resolution of both source and receptors was 1 hr. Calculations
of the measurements were done in a nested grid with horizon-
tal resolution approx 10×10 km (at the latitude of the source)
whereas global mother grid had horizontal resolution 1 × 1
degree. We used three vertical output layers: 0–150, 150–500
and 500–2000 m. Every hour of the release is simulated using
500 000 particles from the stack with a given height above the
ground in the first layer. The concentration and consequently
the gamma dose rate at receptors is assumed to be that of the
ground layer 0-150 m. In this experiment, the total time of
measurement is 14 hr (with 6 hr release in the middle of the
interval given in Table 1), q = 14, implying y ∈ R6720×1

and M ∈ R6720×224. In this case, the condition number of
the matrix M is 9.478 × 1017 and the plot of singular values
of the matrix M is given in Figure 3 implying significantly
ill-condition problem. The starting time of the simulation is
selected on March 14, 2013 in 2300 UTC.

http://wileyonlinelibrary.com
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TABLE 1 The complete description of the simulated release of 16 nuclides. Note that in hours 1–4 and hours 11–14, zero
activity release is considered

Nuclide 5h (Bq/h) 6h (Bq/h) 7h (Bq/h) 8h (Bq/h) 9h (Bq/h) 10h (Bq/h)

Kr-85m 3.33e13 4.66e16 2.68e15 2.68e15 2.68e15 2.68e15

Kr-87 7.03e15 9.84e16 5.63e15 5.63e15 5.63e15 5.63e15

Kr-88 1.04e14 1.45e16 8.30e15 8.30e15 8.30e15 8.30e15

Sr-89 4.49e12 1.35e16 5.63e14 5.63e14 5.63e14 5.63e14

Sr-90 4.82e11 1.45e15 6.03e13 6.03e13 6.03e13 6.03e13

I-131 1.57e14 1.10e16 3.15e15 3.15e15 3.15e15 3.15e15

I-132 2.28e14 1.60e16 4.55e15 4.55e15 4.55e15 4.55e15

I-133 3.20e14 2.24e16 6.40e15 6.40e15 6.40e15 6.40e15

I-134 3.51e14 2.46e16 7.00e15 7.00e15 7.00e15 7.00e15

I-135 3.00e14 2.10e16 6.00e15 6.00e15 6.00e15 6.00e15

Te-132 1.80e13 6.50e15 1.10e15 1.10e15 1.10e15 1.10e15

Cs-134 2.10e12 2.36e16 1.31e15 1.31e15 1.31e15 1.31e15

Cs-136 5.04e11 5.67e15 3.15e14 3.15e14 3.15e14 3.15e14

Cs-137 1.32e12 1.48e16 8.23e14 8.23e14 8.23e14 8.23e14

Xe-133 3.21e14 4.49e17 2.58e16 2.58e16 2.58e16 2.58e16

Xe-135 6.83e14 9.56e16 5.45e15 5.45e15 5.45e15 5.45e15

To save computational time, we propagate in Flexpart just
two species (one for noble gases and one for particulates - we
do not distinguish here between aerosol-bound and gaseous
iodine since we do not consider it important here). The result-
ing matrices are converted to matrices for each nuclide by
applying post-processing for radioactive decay with differ-
ent physical half-life. . Gamma dose rate contribution from
both cloudshine and groundshine is calculated. SRS matrix
for activity concentration provided by FLEXPART is con-
verted into SRS matrix for cloudshine using gamma dose rate
conversion coefficients for semi-infinite cloud approxima-
tion. Similarly, deposited activity yielded by FLEXPART for
particulates is converted into groundshine contribution using
gamma dose conversion coefficients for infinite plane approx-
imation. Dose conversion coefficients for both coudshine and
groundshine are taken from (Joint working group of Radiation
Protection Bureau, 1999).

In our twin experiment, the measurement vector y is
corrupted by noise added to each element of yexact =
Mxtrue. In reality, the measured value is a sum of activ-
ity from the release and a natural background radiation.
We assume that the natural background radiation is 𝜇bg =
10−7 Sv/h (Šmídl and Hofman, 2014) with 𝜎bg = 0.25 ×
10−7. Moreover, the radiation dose sensors are corrupted by
error of measurement which is typically proportional to the
measured gamma dose by the factor in the range 7–20%
(Thompson et al., 2000). Therefore, we assume five fac-
tors, denoted as noise levels, elevel = {1, 5, 10, 20, 30}%. In
summary,

y ∼ 
(

yexact + 𝜇bg, 𝜎
2
bg + (elevelyexact)2

)
, (38)

where negative elements of y are cropped to zero when occur.
Since yexact is not known, we approximate the variance of
Equation 38 by the realization, i.e. cov(y) = 𝜎2

bg + (elevely)2.
An illustration of the generated level of degradation is given

in Figure 4 where scatter plot between y and Mxtrue for each
noise level is shown.

Nuclide ratios are the key additional information in this
study. Although we know them exactly since we simulate the
source term, we aim for much realistic approximate knowl-
edge of nuclide ratios in the form of intervals Equation 2. For
this, we calculate the exact ratios

xk,t

xm,t
and assume boundaries

ak,t = 0.5
xk,t

xm,t
and bk,t = 2.5

xk,t

xm,t
. These intervals [ak,t, bk,t] are

inputs for the proposed algorithm, Section 2.2, and convex
optimization algorithms, Section 2.3.1. Note that the selec-
tion of ak,t and bk,t may be too narrow and it is used only as
an example and for validation purpose. In realistic release, the
intervals may cover a few orders of magnitude Saunier et al.
(2013). For the Zhang_2017 algorithm, we set the mean val-
ues to be equal to the exact ratios and standard deviations to
be equal to these means as proposed in their implementation
of the algorithm.

3.2 Evaluation criteria

The use of the twin experiment described in Section 3.1 allow
us to compare the estimated source terms from various inver-
sion methods with the simulated ground truth source term
from the twin experiment. The methods can be compared
using statistical Monte Carlo studies for various realizations
of the noise. We have selected the following statistical coef-
ficients: figure of merit in space (FMS) (Abida and Bocquet,
2009), normalized mean square error (NMSE), and fractional
bias (FB) (Chang and Hanna, 2004), which are standard
parameters in evaluation of hazardous release models.

The figure of merit in space is defined as

FMS =
∑n

j=1 min
(
xtrue,j, ⟨x⟩j

)
∑n

j=1 max
(
xtrue,j, ⟨x⟩j

) (39)
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and is classically used in space analysis where it is defined by
the ratio between the intersection of the areas, and their union.
This implies that higher values of FMS correspond to a better
performance of the model. The normalized mean square error
is defined as

NMSE =
1
n

∑n
j=1

(
xtrue,j − ⟨x⟩j

)2(
1
n

∑n
j=1 xtrue,j

)(
1
n

∑n
j=1 ⟨x⟩j

) . (40)

The NMSE criterion shows the most striking differences
between the original source term and the model; hence, higher
value of NMSE does not necessarily mean that the model is
completely wrong. The fractional bias is defined as

FB = 2

1
n

∑n
j=1 xtrue,j − 1

n

∑n
j=1 ⟨x⟩j

1
n

∑n
j=1 xtrue,j + 1

n

∑n
j=1 ⟨x⟩j

, (41)

so that FB ∈ [−2,+2] where the ideal value is zero.

3.3 Multi-nuclide source term estimation

Here, we demonstrate and discuss results of the studied
methods on one particular realization of measurement vec-
tor y degraded by noise level of 10%. We aim to provide
more intuitive comparison on a single example. Statisti-
cal comparison on multiple realizations will be given in
the next section. The methods from Section 2 are used:
convex optimization formulation with LASSO regulariza-
tion term (denoted as CO_LASSO), convex optimization
formulation with Tikhonov regularization term (denoted as

CO_Tikhonov), the method by Zhang et al. (Zhang et al.,
2017) (denoted as Zhang_2017), and our proposed method.
The CO_LASSO and CO_Tikhonov methods need to prese-
lect the regularization parameter 𝛼. For this dataset, we pro-
pose the following selection: 𝛼LASSO = 10−2 and 𝛼Tikhonov =
10−2. These selections have been made based on the L-curve
method (Hansen, 1992), see Figure 5, where plot of log ||⟨x⟩||
against log ||y − M⟨x⟩|| has been made and parameter 𝛼
corresponding to elbow of the plot is selected.

The results from CO_LASSO and CO_Tikhonov methods
are shown in Figure 6. The estimated CO_LASSO source
term is displayed using blue line, the estimated CO_Tikhonov
source term is displayed using green line, and the origi-
nal source term, denoted as the ground truth, is displayed
using dashed red line. The source term is given for each spe-
cific nuclide in subplots. Note that these two methods do not
provide uncertainties on the estimated source term. In this
particular realization of the noise, the timing of the source
term is estimated well, however, this is not generally the case.
The results from Zhang_2017 are given in Figure 7 where
the estimated source term is displayed using blue line accom-
panied by the 99% highest posterior density region which is
denoted by the green filled region. The original source term is
displayed using dashed red line. Here, the original source term
not always match with the estimated one; however, it is within
uncertainty boundaries covering the original source term.
Notably, the source term is estimated with huge uncertainty
for all nuclides. The results from the proposed method are
given in Figure 8 with the same line meanings as in the case

http://wileyonlinelibrary.com
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of Zhang_2017. Here, the estimated source term well matches
with the simulated source term. Note also that the uncertainty
boundaries are tighter then in the case of Zhang_2017. In
cases where the match is not estimated well, high level of
uncertainty is estimated, as in the cases of Kr-88 or Sr-90. In
some cases, the source term is underestimated while uncer-
tainty boundaries are tight to estimates. The underestimation

of variance is a known drawback of the variational Bayes
method (Bishop, 2006), see e.g. I-135, Kr-87, or Xe-133
in Figure 8. Better results can be obtained using Monte
Carlo sampling, however, at much higher computational
cost.

Statistical coefficients introduced in Section 3.2 together
with total estimated activities are computed for results

http://wileyonlinelibrary.com
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TABLE 2 Computed FMS, NMSE, FB, and total activity of estimated source
terms from CO_LASSO and CO_Tikhonov methods, Figure 6, Zhang_2017
method, Figure 7, and the proposed method, Figure 8. Note that true total
activity is 1190 PBq

Method
Proposed

CO_LASSO CO_Tikhonov Zhang_2017 method

FMS 0.421 0.492 0.361 0.603

NMSE 9.711 6.664 5.786 2.839

FB 0.686 0.361 −0.005 −0.092

total activity in
PBq (true total
is 1190 PBq)

459 638 1846 759

from the CO_LASSO and CO_Tikhonov methods, Figure 6,
Zhang_2017 method, Figure 7, and the proposed method,
Figure 8, and summarized in Table 2. On this example, the
proposed method is comparable or outperforms all other
methods based on computed statistical coefficients.

3.4 Statistical comparison

The statistical comparison will be given for each noise level
where 50 realizations of the noise on each noise level were
simulated as described in detail in Section 3.1. Three statisti-
cal coefficients are computed comparing the estimated ⟨x⟩ for
each method and common xtrue: FMS, NMSE, and FB; and
are accompanied by total estimated activities.

The results for FMS are summarized in Figure 9 using box-
plots for each noise level specified in title, where red lines
denote median values and blue square surrounds denote lower

and upper quartiles. Note that higher value denotes better
performance in the case of the FMS. The results for NMSE
are summarized in Figure 10 using boxplots. The results
for FB are summarized in Figure 11 where also zero level
(best fit) is displayed using dashed blue lines. The total esti-
mated mean activities are summarized in Figure 12 using
boxplots while the total acitivity of the simulated source term
is given using dashed lines. The results show that even rel-
atively simple approaches such as optimization formulation
with constraints and either LASSO or Tikhonov regular-
ization terms provide reasonable results; however, with no
information on uncertainty of the resulting estimates. The
direct comparison between CO_LASSO and CO_Tikhonov
methods suggests that the Tikhonov regularization term is
more appropriate for multi-nuclide source term estimation.
The Zhang_2017 method is comparable to CO_Tikhonov in
terms of NMSE while it is systematically worse in terms of
FMS but has great performance in terms of FB (due to the
nuclide ratio means being set to true values). The performance
of the proposed method is comparable with the Zhang_2017
method in terms of mean value of FB. However, it system-
atically outperforms all tested methods in terms of FMS and
NMSE. The comparison of total estimated mean activities
shows that the proposed method is more proximate to the total
of simulated source term especially for more realistic noise
levels 20 and 30.

In summary, the results suggest that the proposed method
systematically improves the estimation of the multi-nuclide
source term when constraints on nuclide ratios Equation 2 are
available.
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4 ESTIMATION OF CHERNOBYL
CAESIUM-137 MULTI-SPECIE SOURCE
TERM

In this section, the studied methods are applied to case of
the Chernobyl Nuclear Power Plant (ChNPP) caesium-137
(Cs-137) source term reconstruction. For this purpose, we use
the recently published dataset (Evangeliou et al., 2016) that
consists of 12,281 observations for Cs-137 in the form of both,
deposition observations (10,682) and atmospheric concentra-
tions (1,599). The same experimental setup (with exceptions
described bellow) was used as by Evangeliou et al. (2017).

4.1 Basic setup

The Lagrangian particle dispersion model FLEXPART ver-
sion 10 (Stohl et al., 1998; Stohl et al., 2005) was used to
simulate the transport and deposition of radionuclides. FLEX-
PART was driven by the ERA-Interim (Dee et al., 2011)
atmospheric reanalysis that includes four-dimensional varia-
tional analysis (4D-Var) with temporal resolution of 12 hr and
spatial resolution of approximately 80 km on 60 vertical levels
(from surface up to 0.1 hPa). The emissions from the ChNPP
site are discretized into six vertical layers (0–0.5, 0.5–1.0,
1.0–1.5, 1.5–2.0, 2.0–2.5, 2.5–3.0 km) and 3 hr intervals from
0000 UTC on April 26, to 2100 UTC on May 5, 1986 for

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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which the forward run of FLEXPART is done. After this
time-period, it is reported that the activity declines approxi-
mately six times (De Cort et al., 1998). This setup discretized
the temporal-spatial domain to 480 elements for which the
simulations quantify sensitivities of atmospheric activity con-
centrations and depositions using 300,000 particles for each
release. Similarly to (Evangeliou et al., 2017), we take into
the account uncertainties connected with the use of deposition
measurements highlighted, e.g., by Gudiksen et al. (1989) or
Winiarek et al. (2014) regarded with an unknown mass of
Cs-137 already deposited over Europe (mainly as a results of
nuclear weapons test). However, decades after the accident,
this mass has been reported (De Cort et al., 1998) and already
removed from the data set, see (Evangeliou et al., 2017) for

details. Still, this increases the uncertainty of deposition mea-
surements. Therefore, we assume relative measurement error
of 30% for concentration measurement and double (60%) for
deposition measurement as suggested in (Evangeliou et al.,
2017). The absolute uncertainties are handled in the same way
as in Stohl et al. (2012).

Similarly to (Evangeliou et al., 2017), we assume the
aerosol tracer Cs-137 subject to wet and dry deposition with
four different particle sizes with aerodynamic mean diame-
ters of 0.4, 1.2, 1.8, and 5.0 μm. Each particle is given a fixed
particle size distribution that is characterised by an aerody-
namic mean diameter and a logarithmic standard deviation,
see Evangeliou et al. (2017) for details. For more informa-
tion about the dry deposition scheme, we refer to (Stohl et

http://wileyonlinelibrary.com
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FIGURE 14 Daily estimated emissions of Cs-137 in the case of Chernobyl accident from April 26, to May 5, 1986. The mean of previously published
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and the proposed method estimate is displayed using blue line accompanied by 95% uncertainty bounds (gray fill regions) [Colour figure can be viewed at
wileyonlinelibrary.com]

al., 2005), and for the wet scavenging scheme of FLEX-
PART considering cloud liquid water content and cloud ice
water content directly from ECMWF (European Centre for
Medium-Range Weather Forecasts) fields), we refer to (Gry-
the et al., 2017). In (Evangeliou et al., 2017), it was assumed
that the emitted mass is distributed as 15, 30, 40, and 15%
following measured results of Malá et al. (2013) between the
particle sizes of 0.4, 1.2, 1.8, and 5.0 μm respectively. The
estimation of the source term for each fraction was calcu-
lated independently by running an inversion model using the
SRS matrix for each fraction and the vector of measurements
scaled by the corresponding coefficient of Malá et al. (2013).
The fractions of these particle sizes is however unknown for
new releases. Therefore, we apply the proposed methodology
to the source term determination with unknown ratios of the
particle sizes.

Specifically, we assume that the ratios between the first par-
ticle size and the others is known only in the form of hard
bound on the ratios in the same way as in Equation 2, using
bounds

0.3 ≤
xk,t

xm,t
≤ 3, (42)

for each particle size k and each time-step t = 1,… , 80,
where the specie with particle size 0.4 μm is selected as the
reference. This interval is wide enough to cover the mea-
sured ratios of the Chernobyl release which are

x1.2𝜇m

x0.4𝜇m
= 2,

x1.8𝜇m

x0.4𝜇m
= 2.66,

x5.0𝜇m

x0.4𝜇m
= 1 corresponding to fractions (15, 30,

40, and 15%). In our approach, the source term of all frac-
tions is estimated from one inverse model that explains the
measurements by a sum of contributions from all fractions.

Another significant difference from (Evangeliou et al.,
2017) is the use of the prior source term (also known as the
first guess). In (Evangeliou et al., 2017), the prior source
term was calculated from six previously published Chernobyl
source terms, (Brandt et al., 2002), (Persson et al., 1987),
(Izrael et al., 1996), (Abagyan et al., 1986), (Talerko, 2005a),
and from (Talerko, 2005b), as their mean emission estimate,

and then used in inversion scheme. In the proposed method,
we do not assume any prior information on the source term
other than the ratios. Therefore, we will not use previous esti-
mates in any way. They will serve only for validation of the
obtained results.

4.2 Results

Here, we summarize and discuss the results of the stud-
ied methods. Note that only results from the CO_Tikhonov,
CO_LASSO, and the proposed method are available since
the method Zhang_2017 assumes data in specific format and
time discretization which is not compatible with the studied
Chernobyl case.

The inversion setup for Chernobyl Cs-137 source term is
non-standard in a way that we have six different vertical lay-
ers with four different particle sizes. Hence, we calculate the
source term for each vertical layer separately with four parts
of the source term related to each specie with different parti-
cle size. This results in an estimated source term (10 days with
temporal resolution of 3 hr) for each vertical layer and each
specie, which can be summed up to obtain the overall source
term for each method.

Similarly as in the previous twin experiment, the
CO_LASSO and CO_Tikhonov methods need to preselect
the regularization parameter 𝛼. Therefore, we calculate the
L-curves (Hansen, 1992) for each method as displayed in
Figure 13. There are calculated total estimated activities
depending on selected 𝛼 (top row) and L-curves (bottom
row). We selected the regularization parameter 𝛼 as follows:
𝛼LASSO = 10−2.5 and 𝛼Tikhonov = 10−1. As can be seen from
Figure 13, the sensitivity on selection of the regularization
parameter is relatively high. The proposed method may also
yield different results when initialized from different starting
point. We have identified that the most sensitive initialization
parameter in is the initial value 𝚼init = 𝛼initIn. The sensitivity
of the results to this choice is also displayed in Figure 13,

http://wileyonlinelibrary.com
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TABLE 3 Summarized fractions of particle sizes in the estimated source
terms accompanied by the total estimated activity. The fraction values in
the bottom line of the table are experimentally obtained results of Malá et
al. (2013)

Total estimated
Method F1 (%) F2 (%) F3 (%) F4 (%) activity (PBq)

CO_LASSO 22 22 24 32 176

CO_Tikhonov 21 24 23 32 155

Proposed
method

13 33 35 19 79 ± 14

Mean of previ-
ously published
source terms

15 30 40 15 74 ± 15

top right. In the case of the proposed method, the default
selection is 𝛼init = 1 yielding 𝚼init = In.

The estimated daily posterior emissions are displayed in
Figure 14 associated with the total estimated activity in
Table 3. The consensus of previously reported values is dis-
played as dashed red line in Figure 14 with a total of 74 ± 15
PBq and will be used for comparison with our results.

The CO_LASSO method (purple line in Figure 14) esti-
mated the total activity of 176 PBq which is more then twice
higher then the consensus with high Cs-137 emissions espe-
cially in the first day and in the ninth day of the Chernobyl
accident. The CO_Tikhonov method (green line in Figure 14)
estimated the total activity of 155 PBq with estimated activity
approximately twice higher then the consensus Cs-137 total
emission. Note that temporal profiles from the CO_LASSO
and CO_Tikhonov methods are similar in the middle of the
studied period while CO_LASSO estimates are higher in the
beginning and at the end of the studied period. The proposed
method (blue line with 95% uncertainty bounds using gray
color in Figure 14) estimated the total activity of 79 ± 14
PBq which is in agreement with the consensus as well as with
recently published results by (Liu et al., 2017) with range
70–130 PBq and with results by Evangeliou et al. (2017)
with estimated total emission 86 ± 5 PBq. The source term
was underestimated in the middle of the 10-day period and
overestimated at the end of the studied period.

The fraction of the particle sizes that were assumed to be
approximately known from Malá et al. (2013) were calculated

from the results of the estimation methods as follows

Fi =
||xi||1∑
i ||xi||1 . (43)

The results are displayed in Table 3. Interestingly, the frac-
tions computed from posterior estimates of the proposed
method are in good agreement with the measured results of
Malá et al. (2013) which are given in brackets bellow. Esti-
mated percentage of the proposed method for emitted mass for
particle size of 0.4 𝜇m is 13% (15%), for 1.2 𝜇m is 33% (30%),
for 1.8 𝜇m is 35% (40%), and for 5.0 𝜇m is 19% (15%). Note
that such agreement is not obtained neither by CO_Tikhonov
method nor CO_LASSO method, see Table 3.

Figure 15 shows the scatter plots of measurements y and
reconstructions M⟨x⟩. Note that on the level of y ≈ 10−1

source terms from all methods (including the consensus
source term) yield estimates significantly lower than the mea-
surement. The predicted values using source term from the
proposed method are closer to the ideal correspondence than
others.

5 CONCLUSION

The problem of multi-species source term reconstruction
from unspecific measurements is studied in two special cases:
estimation of multi-nuclide source term from the gamma
dose rate (GDR) measurements and estimation of the sin-
gle nuclide source term composed of different particle sizes.
Since the problem itself is ill-conditioned, similarly to Saunier
et al. (2013) we assume approximate knowledge on ratio of
the species as a prior information about the problem. We
proposed a Bayesian formulation of problem where a prior
bounds on the specie ratios are used to restrict the covari-
ance matrix of the source term using prior distributions on
elements of the covariance matrix. All other parameters of
the proposed model have their own prior distributions and are
estimated within the model. We propose an estimation pro-
cedure using the variational Bayes method that leads to an
iterative algorithm which is publicly available for download.

The proposed method is evaluated and compared with
state-of-the-art methods on a twin experiment of a release
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FIGURE 15 Scatter plots between measurements and reconstructions for each tested method and for mean of previously reported estimates [Colour figure
can be viewed at wileyonlinelibrary.com]
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consisting of 16 nuclides from the Czech nuclear power
Temelin, while response on the Austrian GDR measurement
network is considered. We have shown that the proposed
method outperforms other state-of-the-art methods under dif-
ferent noise conditions without the necessity of manual tun-
ing. The proposed method could also be used for sequential
estimation on receding window and thus used for continuous
monitoring and assessment evaluation.

The method is validated on the problem of estimation of
the caesium-137 source term from the Chernobyl acciden-
tal release (Evangeliou et al., 2016), where the source term
is composed from four species differing in particle sizes.
We have set the prior range on the ratios of the species and
estimated them jointly with the source term. The total emis-
sion estimated using the proposed method, 79 ± 14 PBq, is
in agreement with previously reported total emission rates.
Moreover, the estimated fractions of the particle sizes were
13% for 0.4 μm, 33% for 1.2 μm, 35% for 1.8 μm, and 19% for
5.0 μm which is in agreement with measured results of Malá
et al. (2013) with fractions 15, 35, 40, and 15% respectively.
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APPENDIX: TRUNCATED GAUSSIAN
DISTRIBUTION

Truncated Gaussian distribution, denoted as  tr, of a scalar
variable x on interval [a; b] is defined as

 tr(𝜇, 𝜎, [a, b]) =

√
2 exp

(
− 1

2𝜎
(x − 𝜇)2

)
√
𝜋𝜎(erf (𝛽) − erf (𝛼))

𝜒[a,b](x), (44)

where 𝛼 = a−𝜇√
2𝜎

, 𝛽 = b−𝜇√
2𝜎

, function 𝜒[a,b](x) is a characteristic

function of interval [a, b] defined as 𝜒[a,b](x) = 1 if x ∈ [a, b]
and 𝜒[a,b](x) = 0 otherwise. erf() is the error function defined
as erf(t) = 2√

𝜋
∫ t

0 e−u2
du.

https://doi.org/{10.1002/qj.3403}
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The moments of truncated Gaussian distribution are

⟨x⟩ = 𝜇 −
√
𝜎

√
2[exp(−𝛽2) − exp(−𝛼2)]√
𝜋(erf(𝛽) − erf(𝛼))

, (45)

⟨
x2⟩ = 𝜎 + 𝜇x̂ −

√
𝜎

√
2[b exp(−𝛽2) − a exp(−𝛼2)]√

𝜋(erf(𝛽) − erf(𝛼))
. (46)

Multivariate truncated Gaussian distribution

Truncation of the multivariate Normal distribution of the vec-
tor x, x ∼  tr (𝝁,Σx, [a, b]), is formally simple, however,
analytically intractable. Hence, we approximate the moments
of the vector x of the truncated Normal distribution using
moments of

x̃ ∼  tr (𝝁, diag(𝝈x), [a, b]) , (47)

where 𝝈x is a vector of diagonal elements of Σx correspond-
ing to the approximation of the posterior by a product of
marginals Equation 44 with mean value ⟨x⟩ with elements
given by Equation 45 and

⟨
xxT⟩ = ⟨x⟩⟨x⟩T + diag(⟨𝝈⟩),

where ⟨𝜎⟩i =
⟨

x2
i

⟩
− ⟨x⟩2

i . However, it may be too coarse
approximation since it ignores covariance of the elements. An
alternative is to approximate⟨

xxT⟩ = ⟨x⟩⟨x⟩T + diag(o)Σxdiag(o), (48)

where o is a vector of elements oi = ⟨𝜎⟩1∕2
i 𝜎

−1∕2
i . Heuristics

Equation 48 is motivated by the observation that for a Normal
distribution with the main mass far from the truncation lines,
oi → 1 and Equation 48 becomes equivalent to the moment
of the non-truncated Normal distribution.

SHAPING PARAMETERS OF POSTERIOR
DISTRIBUTIONS

The shaping parameters of the posterior distributions
Equations 24–30 as follows:

Σx =
(⟨𝜔⟩MTM +

⟨
L𝚼LT⟩)−1

, (49)

𝜇x =Σx
(⟨𝜔⟩MTy

)
, (50)

𝜶 =𝛼0 +
1
2

1q,1, (51)

𝜷 =𝛽0 +
1
2

diag
(⟨

LT
mxmxT

mLm
⟩
+ (52)

+ 1
𝛿

(m−1)∑
k=1

⟨
LT

k xkxT
k Lk

⟩)
, (53)

Σlm,t =
(⟨
𝜐q(m−1)+t

⟩⟨
xq(m−1)+txq(m−1)+t

⟩
+ (54)

+ diag(⟨𝜓m,t⟩))−1
, (55)

𝜇lm,t =Σlm,t

(⟨
xq(m−1)+t+1xq(m−1)+t

⟩
× (56)

×
⟨
𝜐q(m−1)+t

⟩
+ l0diag(⟨𝜓m,t⟩)), (57)

𝜁m,t =𝜁0 +
1
2
, t = 1,… , q − 1, (58)

𝜂m,t =𝜂0 +
1
2

⟨
l2m,t

⟩
− l0⟨lm,t⟩ + 1

2
l20, (59)

Σlk,t =
(⟨
𝜐q(k−1)+t

⟩⟨
xq(k−1)+txq(k−1)+t

⟩
+ (60)

+ diag(⟨𝜓k,t⟩))−1
, (61)

𝜇lk,t =Σlk,t
(⟨
𝜐q(k−1)+t

⟩⟨
xq(k−1)+txq(m−1)+t

⟩)
, (62)

𝜅k,t =𝜅0 +
1
2
, t = 1,… , q, (63)

𝜈k,t =𝜈0 +
1
2

⟨
l2k,t

⟩
, k = 1,… , (m − 1), (64)

𝜗 =𝜗0 +
p
2
, (65)

𝜌 =𝜌0 +
1
2

tr
(⟨

xxT⟩MTM
)
− yTM⟨x⟩ + 1

2
yTy. (66)

The required moments of Gamma distributions are:

⟨Υ⟩ = diag
((
𝜶◦𝜷−1) ,… ,

(
𝜶◦𝜷−1) ,𝜶◦𝜷−1) ,

⟨𝜓m,t⟩ = 𝜁m,t

𝜂m,t
, t = 1,… , q, (67)

⟨𝜓k,t⟩ = 𝜅k,t

𝜈k,t
, k = 1,… ,m − 1, t = 1,… , q, (68)

⟨𝜔⟩ = 𝜗

𝜌
, (69)

where symbol ◦ denotes Hadamard product (element-wise).
The moments forming Lm are computed as

⟨lm,t⟩ = 𝜇lm,t , (70)⟨
l2m,t

⟩
= 𝜇2

lm,t
+ Σlm,t , (71)

and moments ⟨x⟩, ⟨xxT⟩, and ⟨lk,t⟩, ⟨l2k,t
⟩

, k = 1,… , (m−1),
are computed according to the truncated Gaussian distribu-
tion moments defined in 5.




