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Abstract

Like Bayesian networks, compositional models may also be used for data mining. Nev-
ertheless, one can find several reasons why to prefer compositional models for this pur-
pose. Perhaps the most important is the fact that compositional models are assembled
from low-dimensional (unconditional) distributions so that computationally advanta-
geous formulas are known for information theoretic characteristics computation. The
other reason is that a decomposition is a natural way of complex tasks simplification.
Therefore, the inverse process of composition is easily understandable for specialists
from many fields of applications regardless of their level of mathematical education.
Keywords: Data mining, Mutual information, Compositional model, Conditional in-
dependence, Probability theory.

1 Introduction

The basic idea of compositional models is very simple: it is beyond human capabilities to describe
global knowledge from an application area - one always works only with pieces of local knowledge.
Such local knowledge can be, within probability theory, easily represented by low-dimensional
distributions and a multidimensional distribution is (in a special way) composed from a number
of such local pieces of knowledge — low-dimensional distributions. This analogy also explains
why the compositional models are (relatively) easily understandable to specialists from the area
of application - non-mathematicians. And it is also the reason why this technique can be, like
Bayesian networks [1, 2], included among the methods of data-mining.

The goal of a data mining process [3] is not a model itself but its interpretation in the form
of a distilled knowledge. Nevertheless, as we will see below, a greater part of knowledge is gained
already during the process of model construction. The supervised approach to model construction
enables the researchers to influence the resulting models in the way that these models are easily
comprehensible and interpretable. Further, the user can have some knowledge about data, based
on which the model is constructed. They may know that the data are not well stratified and some
properties should be suppressed some others highlighted. Quite often, they want to adapt the
constructed model to the purpose for which the model is constructed. Therefore, it is natural that
we cannot give general instructions on how to proceed when constructing a model. It is the reason
why we present in this paper just a simple example.

In this paper, we consider only finite-valued variables, which are denoted by upper-case Latin
characters. Groups of variables are denoted by bold-face characters: i.e., for example, M =
{X,Y,Z,V,W}. The set of values of variable X is denoted by Xx. Similarly, we use Xy, Xz, and
SO on.

By a state of a group of variables we understand any combination of values of the respective
variables, i.e., for a group of three variables X, Z, V', a state is an element of a Cartesian product
Xx x Xz x Xy . For the sake of simplicity, this Cartesian product is often denoted X(x 7 vy}. For
a state y € X(x z,v} and a subset of the respective variables, say, for variables X, V', by yHX V3
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we denote a projection of y into X(x v}, i.e., yH%V} is the state from X{x,v} that is got from y
by dropping out the value of variable Z.
Probability distributions are denoted by characters of Greek alphabet (k, v, m) (with possible
indices). Recall that it means that x(Y,V) : X¢y,v3 — [0,1], for which! erx{y,v) k(z) = 1.
Having a probability distribution (X, Z,V), and a subset of variables L C {X,2Z,V}, stl
denote a marginal distribution of x defined for each z € X, by the formula

@)= Y k()

yeXk:ytl=z

Note that we do not exclude situations when L = ), for which we get k¥ =1,
Everybody knows that two variables X and Z are independent with respect to probability
distribution 7 (X, Z) if 7(X, Z) = n(X) - 7(Z). This is because, in this case?,

_m(X,2) n(X)-n(Z) _
7T(‘X|Z)— W(Z) - 7T(Z) _W(X)a

which expresses the fact that the knowledge of the value of variable Z does not bear any new
information about the value of variable X, i.e., the conditional probability of X given Z equals the
(un)conditional probability of X. For the purpose of data mining, a generalization of the notion
of independence is very important. Therefore we introduce it in its general form.

Definition 1 Consider a probability distribution m(N), and three disjoint subsets of variables
K,LLM (KULUM C N). Let K and L be nonempty. We say that groups of variables K
and L are conditionally independent given M for distribution 7 i

pVKULUM M UKUM | JLUM

o+
In symbol, this property is expressed by K 1L LM [x].

Notice that in case of M = () we use only K Il L [7] and speak about an unconditional independence
(some authors call it marginal independence).

2 Decomposability

By a decomposition, we usually understand the result of a process that, with the goal of simplifi-
cation, divides an original object into its sub-objects. Thus, for example, a problem is decomposed
into two (or more) simpler sub-problems. General properties of such decomposition can be viewed
on an example familiar to everybody: decomposition of a positive integer into prime numbers.
In this case, an elementary decomposition is a decomposition of an integer into two factors, the
product of which gives the original integer. For this example, we see that

e the result of the decomposition are two objects of the same type as the decomposed object
— an integer is decomposed into two integers;

e Dboth these sub-objects are simpler (smaller) than the original object — both factors are smaller
than the original integer, we do not consider 1 x n to be a decomposition of n;

e not all objects can be decomposed — prime numbers cannot be decomposed;

e there exists an inverse operation (we will call it a composition) yielding the original object
from its decomposed parts — the composition of two integers is their product.

INotice that symbol (Y, V') is used to express the fact that probability distribution & is defined for variables Y
and V. k(z) for = € X(y,v} is a probability of state = € Xy, vy-

2Naturally, this computation is valid only for positive distributions.

3This expression means that for all = € XkuLum

W,LKULUM(E) . ﬂJ’M(x’J’M) — 71,,LKUM(ZLKUM) . ,”¢LUM(‘,E¢LUM).
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m(X,Y,Z,V,W)
/\
m(X,Y) (Y, Z,V,W)
e 7\
nX)  w(Y) Y, Z,V) (2, V,W)

/ \

Figure 1: Hierarchical decomposition of n(X,Y, Z,V, W).

What is a decomposition of a finite probability distribution? Consider a two-dimensional dis-
tribution 7(X,Y’). Simpler sub-objects are just one-dimensional distributions: a distribution of a
variable X and a distribution of a variable Y. To have a chance to reconstruct the original two-
dimensional distribution 7 from these one-dimensional distributions, we have to consider marginals
of m: ¥ and 7. Generally, the process of marginalization is unique, but, with the exception
of a degenerate distribution, we cannot unambiguously reconstruct the original two-dimensional
distribution from its one-dimensional marginals. To bypass this fact, we restrict the decomposi-
tion of two-dimensional distributions 7(X,Y) into their one-dimensional marginals only for the
case of independence: X I Y [r]. In this case, m(X,Y) can easily be reconstructed from its
marginals 7 and 7 7(X,Y) = 7 . 7YY where “” denotes pointwise multiplication, i.e.,
m(z,y) = wX(x) - 7 (y) for all states (z,y) € X(x,y}-

Analogously, three-dimensional distribution m(X,Y,Z) can be decomposed into two simpler
probability distributions (marginals of 7(X,Y, Z)) only if either a couple of variables (say X,Y)
is independent of the remaining third variable (in this case Z), or, if two variables (say X and Z2)
are conditionally independent given the remaining third variable (in this case Y):

e {X.Y} 1 Z [r], then m(X,Y, Z) can be reconstructed from 7+{X:¥} and 742,
e X Il Z|Y [r], then 7(X,Y, Z) can be reconstructed from 7H{*:¥} and 7H¥:2} |

This leads us to the following general definition.

Definition 2 We say that a probability distribution m(M) is decomposed into its marginals T%
and T if

1. KUL = M;
2. K£M, L#M;
3. (M) - oKL = 7K L

Notice that the third condition is nothing else than K\ L 1 L\ K|K NL [r], and that the
original distribution 7(M) can be uniquely reconstructed from the marginals 7K and 7+&.

Analogously to the decomposition of integers to prime numbers, even probability distributions
can be hierarchically decomposed into a system of distributions that cannot be further decomposed.
An example of such a hierarchical process represented by a corresponding tree structure can be
seen in Figure 1, where distribution 7(X,Y, Z, V, W) is decomposed into a system of its marginal
distributions: 7+X, 7Y, pHY:ZV} pUHZV} 7 H{V-W} o Each decomposition was made possible
by the fact that the respective conditional independence relation holds for distribution 7. The
decomposition process from Figure 1 was made possible by the assumption that the following
system of conditional relations holds for distribution 7 (or, in other words, that the independence
structure [4] of distribution 7 is the following):
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X L {z,V,W}HY [x];
XULY [n];

o Y I WI{Z,V} [n];

o Z 1L WV [r].

Definition 3 A probability distribution w(N) is said to be decomposable if it can be decomposed
into a system of its marginals M1 Mz M Csyeh that the variable sets My, M, ..., M,,
can be reordered so that they meet the Running Intersection Property (RIP):

Vi=23,....m 3k(1<k<j) for which M; N (M;U...UM;_1) C M.

3 Compositional models

This section introduces an operator of composition, originally introduced in [5], which realizes a
process inverse to the process of decomposition discussed in previous section. For this, we need a
notion of a dominance: m(N) < v(N) if

VyeXn 7(y) >0 = v(y) >0.

Definition 4 For arbitrary two distributions x(K) and ML), for which kYKL « NEKOL - 4pein
composition is for each x € Xgur, given by the following formula*

k()N (z4)
(e ) ) = MKNL (/KAL)

In case that k5 & WKL the composition remains undefined.

The reader certainly noticed that the presented definition is slightly more general than just an
inverse operation to decomposition discussed above. We do not require that both K and L are
proper subsets of K U L. The main reason is that this generalization makes the formulation of
some theoretical properties simpler. Moreover, abandoning this requirement appears advantageous
when constructing compositional models and when reading a knowledge from the resulting models.
As we will see in Section 5, it enables the user to specify the required relations of (conditional)
independence, which would not be otherwise representable in a model.

This operator of composition enables us to set up multidimensional compositional models, i.e.
multidimensional probability distributions assembled from sequences of low-dimensional distri-
butions with the help of the operators of composition [6, 7, 8]. Considering a systems of low-
dimensional distributions x1(K1), #2(Ka), ..., &n(Ky), the formula k1 > Ko b ... > Kn, if defined,
specifies a distribution of variables K; UK, U...UK,. However, because of the fact that the
operator of composition is not associative, the order, in which the operators are performed in the
expression £ > kg ... > Ky, should be specified by parentheses. To simplify such expressions, we
will omit the parentheses if the operators are to be performed from left to right. Therefore

K1 KD ... DKy = (... ((K1>K2)DKR3)D ... D> Kp_1) D Kp.

Moreover. without loss of generality, in what follows, we will always assume that x; is a distri-
bution of variables K; and that the composition will be defined in all the formulas wherever the
operator appears.

To visualize the structure of a compositional model we use a tool called a persegram.

Definition 5 A persegram of a compositional model k1> ko > ... > K, is a table in which rows
correspond fo variables from K, U ... UK, (in an arbitrary order) and columns correspond to
distributions ;. . . .. #n in the respective ordering. A position in the table is marked if the variable
is among the arguments of the respective distribution. Markers for the first occurrence of each
variable (i.e.. the lefimost markers in rows) are box-markers, and for other occurrences there are
bullets.

4Define k =0
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For an example, the reader is referred to Figure 2a in Section 5, in which the persegram of
k1(D,N) > k2(B, R) > k3(R, W) > kg(N, R) > ks (T, W) is depicted.
Persegrams were designed mainly for reading conditional independence relations holding for

compositional models. For this, we have to learn what are the trails and avoiding trails in a
persegram.

Definition 6 A sequence of markers mg,...,my in the persegram of a compositional model ki >
Ko > ...> Ky is called an M-avoiding trail (M C K; UK, U ... UK,,) that connects mg and m; if
it meets the following five conditions:

1. neither mg nor my corresponds to a variable from M;

2. for each s = 1,...,t, the couple (ms_1,m;) is either in the same row (i.e., a horizontal
connection) or in the same column (a vertical connection);

3. each vertical connection must be adjacent to a boz-marker (i.e., at least one of the markers
in the vertical connection is a box-marker) - the so-called regular vertical connection;

4. mo horizontal connection corresponds to a variable from M;

5. wertical and horizontal connections reqularly alternate with the following possible exception:
at most, two vertical connections may be in direct succession if their common adjacent
marker is a boz-marker of a variable from M.

If an M-avoiding trail connects two markers corresponding to variables X andY , we say that these
variables are connected by an M-avoiding trail. This situation is denoted by X «~n Y [k1 D Ko >
co DRy Symbol X oo M Y (K1 D KD ... D kn] denote the situation when there does not exist an
M-avoiding trail connecting variables X andY in the corresponding persegram. If M = () we speak
about a simple trail, and use simplified symbol X «~ Y.

For a simple trail (i.e. (-avoiding trail) connecting variables B and T see Figure 2b. A rela-
tionship between the existence of avoiding trails and the conditional independence of variables in
a compositional model is expressed in the following assertion, which was originally proven in [9]
(an alternative proof was published in [10]).

Theorem 7 Consider a compositional model K1, Ka, ..., kn, and the corresponding persegram. Let
X and Y be two different variables from K1 UKoU...UK,,, and M C K; UKy U... UK, \{X,Y}.
Then

Xotsm Y [k, 62,00 6n) = X LY|M [K1,K2,...,Kn]

4 Information-theoretic notions

In this section we consider a probability distribution 7(N), and three disjoint subsets K,L, M C N,
such that KUL UM = N. Moreover, we assume that K and L are nonempty.
The basic notion, from which all the remaining ones are derived, is the famous Shannon entropy

defined
H(m)=— Z 7(x)log, w(x).
z€XN:7(z)>0

This concept measures an uncertainty connected with the probability distribution. Its value is
always nonnegative, less or equal log, |Xn|. It equals zero if and only if the distribution is degen-
erated and expresses certainty. In other words, H () equals zero, if and only if there exists a state
z* € X, for which m(2*) = 1. The entropy achieves its maximum only for a uniform distribution,
ie.,

H(m) =log,  Xn| <= 7(2) for all z € Xn.

-
IXn|
To measure the strength of dependence between the groups of random variables we employ a

notion of mutual information defined by the formula

MI(K:L) = 3 AVKUL (2 Jog < VL () > '
| r€XKuLmHEUL (2)>0 mHK (K - il (gl)
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The higher this value, the stronger dependence exists between two disjoint groups of variables:
K and L. If the reader likes, this property can also be expressed in another way. The higher
this value, the more information about variables K we get when learning values of variables L (or
equivalently, because MI.(K;L) = MI,(L;K), the more information about variables L we get
when learning values of variables K).

Let us summarize the most important properties of mutual information supporting the fact
that it is used as the measure of the strength of the dependence.

e 0 < MIL(K;L) < min(H(7+¥), H(7'L)).
e MI,(K;L)=0 <= K I L[]

e MI.(K;L) = H(m*¥) if and only if variables K are functionally dependent on variables L.
It means that in this case for the conditional distribution 7%/ it holds that

Vy € Xp, 3z € Xk such that 7XIF(z|y) = 1.

In many practical situations, it is useful to normalize the measure of mutual information, to
get a measure achieving values from the interval [0, 1]. This value suggested by A. Perez [11], who
called it information measure of dependence, is in this text denoted ID:

MI-(K;L)
min(H (mt¥), H(mL))’

ID;(K:L) =

It may help the reader to understand the notion of mutual information, if we show that it is
actually the measure of similarity of two distributions. In probability theory, several measures of
similarity for distributions have been introduced. One of them, having its origin in information
theory, is a Kullback-Leibler divergence defined for m(N) and v(N) by the formula

Div(muv) =<{ zexXym(z)>0
00, otherwise.

It is known that Kullback-Leibler divergence is always nonnegative and equals 0 if and only if
7 =v (see [12, 13]). Its only disadvantage is that it is not symmetric, i.e., generally Div(m 11 v) #
Div(v n 7). Nevertheless, since it is very easy to show that 7KWl « 73K . 7L we gee that

MI;(K;L) = Dip(q+EUL ) p¥K . piL)

is always finite, and, as we already said above, equals zero if and only if 7+KYL = 73K . 7L which
is nothing else than K 1L L [x].

As the reader can expect, not only there is a relationship between independence and mutual
information, but there is also an analogous relationship between conditional independence and
conditional mutual information, defined by

KUL|M
ML(KLM)= > =(z)log, <TI.K|M(_T¢IZFUM) .Wg.flvlz/[(ziLUM)> :

zeXn:m(z)>0

(Notice that MI,(K;L|0) = MI,(K;L).)

Again, the higher the value of conditional mutual information the stronger the conditional

dependence between the respective groups of variables. Since we have not introduced the notion of

conditional entropy, in this case, we can precisely formulate only a part of the properties holding
for conditional mutual information.

o MI,(K;LM) > 0.
o MI,(K;LM)=0 <= K 1 LM [r].
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5 Data mining example

This is the main section of the paper presenting a supervised model construction, during which we
gain a knowledge from data. We consider six variables M = {B, D, N, R, T, W} with Xp = {1,2,3}
and Xp = Xy = Xg = Xp = Xy = {1,2}. We are about to construct a compositional model
for these variables from a data file containing 1000 records. Taking into account the fact that the
cardinality of the considered state space is [Xp| = 3 x 2° = 96, we can hardly expect to get any
reasonable (i.e., interpretable) knowledge from the respective frequency table depicted in Table 1.

Table 1: Frequencies of states from X;p p v, RT,W}-

R=0 R=1
T=0 =1 T=0 =1
W=0 W=1 W=0 W=1 W=0 W=1 W=0 W=1
B=1,D=1,N=1 0 8 4 15 2 9 23 3
B=1,D=1,N=2 0 0 0 0 0 1 3 0
B=1,D=2,N=1 0 0 0 L 3 0
B=1,D=2, N=2 0 147 12 66 5 9 0
B=2,D=1,N=1 0 2 0 10 10 34 70 0
B=2,D=1,N=2 0 10 0 3 8 1 2
B=2,D=2,N=1 0 0 0 0 i 6 13 0
B=2, D=2, N=2 0 61 4 31 14 45 22 1
B=38,D=1,N=1 0 0 4 20 40 78 4
B=3,D=1,N=2 0 0 2 il 9 3 0
B=3, D=2, N=1 0 0 1 0 3 5 13 0
B=3D=2,N=2 0 13 1 i 23 57 20 0

It is not a bad idea to start with computing the value of entropy for all considered variables:

H(B) =158, H(D)=098, H(N)=0.96,
H(R) =099, H(T)=0.99, H(W) =0.93.

From this, we do not get any knowledge about the relationship among the considered variables, but
we get some information as for how to proceed further. Since the entropy of all binary variables
is close to 1, it means that a minimum of entropies for any pair of variables is close to one, either.
Therefore, when considering a strength of dependence between two variables, the value of mutual
information M1 and the value of information measure of dependence ID do not significantly differ
from each other. Therefore we compute only values of mutual information. But keep in mind
that when the considered variables achieve different numbers of values, there may be substantial
differences between the values of the entropy of individual variables. In such a case, considering
the information measure of dependence is preferable.

From the point of view of model construction, we are interested in couples of variables, which
are closely (strongly) connected, and in couples of independent variables. Therefore, when com-
puting values of mutual information for all pairs of variables, we sort the couples according to the
value of mutual information. In the present example, we get

ﬁﬁ ((g; 23) :00-24837516, MI(N;T) = 0.0709
MI(R’W) — 0.2578, DETLM317.] =10.UGGY
MI(N;R) = 0.2070, (B; N) = 0.0619
MI(T; W) =0.1813, MI(D;T) = 0.0421
MI(N; W) = 0.1546 MI(B, ) = 0.0342
MI(D;R) = 0.0958 { MI(R;T) = 0.0019,
MI(B;W) = 0.0814 11(B;T) = 0.0007.

The head of this sequence contains the couples of closely connected variables, the tail of this
sequence suggests which pairs of variables may be considered independent. The first five couples
are grouped together because these first five couples cover the whole M. Therefore, let us start
building compositional models from two-dimensional distributions defined for these couples of
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varables. To get their best ordering in a model, the multi-information of the whole model should
be taken into account. The higher multi-information, the better model because it incorporates
more information from data.

K1 KZ_.. K3 K4 /;5 K1 54 K2 K3 /?5
Bt B
B s
N P N om
R 50 0. R
T e n T
W " e W
(a) wlznl§‘n2>mé>m4l>ﬁ5‘ (b) 7r2.:1s1>/~.:4l>nzbn3l>f;5

Figure 2: Persegrams of models 7; and To.

Consider estimates of the first five two-dimensional distributions and denote them respectively:
#1(D, N), k2(B, R), k3(R, W), ka(N, R), t5(T, W). If considering model 7; = k; > ko 5 K3 > Ky K5
(see persegram in Figure 2a) we can immediately see that 7, = k1 b ko b k3 > k5. Distribution sy
may be deleted from the model because both the respective markers in the persegram are bullets.
This model is decomposable (the reader may easily check RIP) and perfect (data file does not
contain missing values, and therefore the estimates of marginals are consistent). Therefore?,

IC(m) = IC(k1) + IC(ka) — IC(k3?) + IC(k3) — IC(k4™)

+IC(ks) = IC(=E") = Y IO(r:) = 11618,
i=1,2,3,5

because IC(k1) = MI(D;N),IC(k2) = MI(B; R), and so on, and because the multi-information
of probability distribution x(K) for |K| < 2 equals zero. However, it is evident that also 7y =
k1P Kq P K2 > K3 > K5 s a decomposable model, for which

5
IC(m2) = Y " IC(k;) = 1.3687.

=1

In fact, this model is the best possible among those assembled from distributions K1, K2, K3, K4, K5,
in case the amount of multi-information is taken as the only criterion of optimality. This is because
this model utilizes all the information contained in the distributions from which it is assembled.
However, this model does not reflect the other information we obtained from computing the mutual
information for all couples of variables: the two smallest values of mutual information suggest that
variables 7" and R, and variables T and B are independent. And, as the reader can deduce from the
persegram corresponding to 7 (see persegram in Figure 2b), one can find simple trails connecting
all couples of variables, i.e., also B «w T [my] and R «w T [T2]. Therefore, the independence
relations B L T [mp] and R UL T' [my] are not guaranteed by the model structure.

To incorporate this knowledge into the model, one can consider, e.g., model 73 = I€J5'T(>,"€2 > K3 D>
kaPRsP>r1. However, as the reader can see from the persegram in Figure 3a, 73 = IﬂéTDHQDR3D/€4l>K/1,

and therefore i

IC(m3) = > IC(x;) = 1.1874,
i=1
The decrease of the multi-information is due to the fact that 73 dos not incorporate the information
from k5.
Thus, it may seem that one can incorporate the knowledge about the two independence relations
into the model only at the cost of a decrease of multi-information, i.e., at the cost of the loss of

5Such a simple formula holds only for decomposable models.
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’iéT K2 K3 K4 K5 K1 ”éR ”éT Ke K2 K4 K1
B | B |
D | D ‘ |
N | ([ J N | B
R H e o R N e o o
T N ; L T . = J |
W W@ W m
(a) w3 = ngTbnzbny, > K4 D K5 DKL (b) 75 = néRDnéT DIK/GDK,Q > K4 D K1

Figure 3: Persegrams of models 73 and 5.

information. To get out of this trap, let us start studying the way, how variable T is connected
with all others. Let us compute from the data the conditional mutual information of 7" and B
given the remaining variables, and similarly, the conditional mutual information of 7" and R given
the remaining variables. We get

MI(T; B|D) =0.002,  MI(T;R|D) = 0.001,
MI(T; B|N) = 0.006,  MI(T;R|N) = 0.013,
MI(T; B|W) =0.024,  MI(T; R|W) = 0.084.

How to explain the fact that 7" and R are independent but not conditionally independent? A
straightforward explanation is that 7" and R are independent and jointly influence other variables.
In case we know the meaning of the variables, we should choose the one, which is, in our knowledge,
directly influenced by 7" and R (or 7' and B). Otherwise, we choose the one indicated by the
highest value of conditional mutual information: MI(T; R|W). It makes us believe that two
independent variables 7" and R influence W, and the only way how to incorporate this knowledge
into the model is to start considering a three-dimensional distribution: let rg(R,T, W) be the
corresponding estimate got from data. Naturally, this three-dimensional distribution is a bearer of
all the information expressed by both x3 and x5, which can be now dropped off from the further
consideration. Naturally, kg contains more information than x5 and x5. It describes the combined
influence of 7" and R on T, which cannot be expressed by two two-dimensional distributions.®

After adding ke and deleting k3 and k5, the remaining distributions x1, kg, k4, K¢ can easily
be ordered to meet RIP: e.g., my = Kg > K2 > kg b K1 is a decomposable model expressing all the
knowledge we consider. Nevertheless, the above discussed independence of variables is not visible
from the respective persegram, it is only encoded in the distribution kg. Therefore, we can prefer
model 75 = KéB > néT > Kg > Ko > kg > K1, from the persegram of which in Figure 3b the considered
independence relations are obvious.

What are the differences between the models 74 and 75?7 Model 74 is decomposable, and
therefore more advantageous when used for computations. On the other hand, model 75 explicitly
manifests the independence 7' 1. {R, B}|W [r5]. When computing the multi-information of these
models we get

IC(ms) = > IC(k;) = 0.5234 +0.2871 + 0.2070 + 0.4356 = 1.4531,
i=6,2,4,1

and
IC(ms)= Y IC(k;) — IC(k§™ ™) = IC(ns) — MI(T, R) = 1.4512.
i=6,2,4,1

6To illustrate the fact that a three-dimensional distribution may bear more information than a collection if its
two-dimensional marginals, consider the following simple example. Children have usually more fun if the weather
is warm. Similarly, they prefer sunny days to days with precipitation. However, in winter, the precipitation in very
cold days usually means snowing, which is a great fun for children. And this type of knowledge cannot be expressed
just by describing two separate relations: day temperature and children fun, and precipitation and children fun.
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The imperceptible decrease of the value of multi-information when transforming 7, into s is due
to small changes necessary for introducing the independence of 7" and R.

Model 75 seems to meet all the requirements made for data-based models. Nevertheless, espe-
cially when considering supervised approaches, one should not miss the realization of important
subsequent steps belonging to a process of model verification rather than to the process of model
construction. Let us illustrate these steps by verifying model 5. Consider the respective perseg-
ram in Figure 3b, which enables us to list all (conditional) independence relations holding for the

model:
B 1. DM for M containing either N or R,

BIANM for ReM,

BIATM forReM,or W¢gM,
BLW|M for ReM,

D1 RM for NeM,

DLTM forNeM,or ReM,or W ¢M,
D 1L WM for M containing either N or R,
NITM forReM,or We&M,

N L WM for ReM,

10 RALTM for We¢M.

From this list, the eights relation covering also the unconditional independence N 1L T is in

contradiction with MI(N;T) = 0.0709. To set this imperfectness right, we substitute x4(N, R) by

k7(N,R,T), and consider model g = néB > né’T > Kg > Ko > K7 > k1. For this model we have

© NSO A W

IC(m) = Z IC (k) — IC(Eé{R’T}) = IC(F;#{R’T})

i=6,2,7,1

0.5234 + 0.2871 4 0.3236 + 0.4356 — 2 x 0.0019 = 1.5659.

To accept a model the user should verify that

e the independence relations deduced from the corresponding persegram do not contradict the
intuition of the supervising user,

e the independence relations deduced from the corresponding persegram are not in contradic-
tion with the values of (conditional) mutual information values computed from data,

e the marginals from which the resulting model is set up do not differ substantially from the
corresponding estimates from data.

To follow these instructions let us transform model 7 into a form that all the low-dimensional
distributions, from which the model is composed, are marginals of the model itself:

vi(R) = wg"(R),

T) = s (T),

R.T.W) =v1(R) > va(T) > ke(R, T, W),
B,R) = v1(R) > k2(B, R) = k2(B, R),
N.R,T) =v1(R)>vo(T) > 57(N, R, T),
D,N) =N (N) >k (D, N).

S

=

(
3(
(

& S

X

(
6(

Thus, m6 = 1 > D Y3 b Yy > s b g, all y; (for i = 1,...,6) are marginals of 7. The
respective probability distributions generating this model are depicted in Table 2, and the respective
persegram is in Figure 4. From this persegram the following list of conditional independence
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Table 2: Probability distributions 11 — vg.

100

1741 (R)
v1(1) = .437 v1(2) = .563
VQ(T)
1/2(1) = .566 1/2(2) = .434
v3(R, T, W)

vsl,1,1) =.000 ws(1,1,2) =.247 15(1,2,1) = .024 15(1,2,2) — 166
v5(2,1,1) = 085 1s(2,1,2) = 233 15(2,2,1) = 235  15(2,2,2) = .010
vs(B, R)

va(1,1) =280  wa(2,1)=.125  14(3,1) = 032
va(1,2) = 057 1a(2,2) =230  14(3,2) = 276
vs(N,R,T)
vs(1,1,1) =010  vs(1,1,2) =.036 w5(1,2,1) = 136 15(1,2,2) = 197
v5(2,1,1) = 238 vs(2,1,2) =153 5(2,2,1) = 182 15(2,2,2) = .048
vs(D,N)
ve(1,1) = 45 v6(1,2) = .05 v6(2,1) = .05 v6(2,2) = .45

relations can be deduced:

B 1L DIM  for M containing either N or R,
BIUNM for ReM,

BLTM forM=0,orReM,

BIL WM for ReM,

DI RM for NeM,

DITM for NeM,

DULWM for NeM,or{RT}CM,
NLWM for{RT}CM,

RILTM  forM=0, or M= {B},

neither of which is in contradiction with anything what has been said about the modeled distribu-
tion up to now. Distributions vy, vs and vy are the original estimates from data. The remaining
distributions v3, vs and vg are slightly different from the originally estimated distributions. This
is due to the modification realized in the process of computation of distributions ;. Nevertheless,
the deviations from the original data-based estimates are very small, as it can also be seen from
the values of Kullback-Leibler divergence

Div(ke 11 v3) = 0.00192,
Div(k7 1v5) = 0.00192,
Div(ky 11 vg) = 0.00002.

Vi Vo V3 Vg Vs Vg

N @ 2 0w
u
]

Wi -

Figure 4: Persegram of model 7g = V1D Vo D U3 > vy b s D g,
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(Notice, it is not a pure incidence that Div(kg 1l v3) = MI(R,T); it can be deduced from other
properties the information-theoretic characteristics.) Thus we may say that mg is a reasonable
model of the distribution generating the data.
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