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Abstract

A compositional model encodes probabilistic relationships among variables of interest.
In connection with various statistical techniques, it represents a practical tool for data
modeling and data mining. Structure of the model represents (un)conditional inde-
pendencies among all variables. Relationships of dependent variables are described by
low-dimensional probability distributions. Having a compositional model, a data miner
can easily apply an intervention on variables of interest, fix values of other variables
(conditioning), or to narrow the context of a problem (marginalization). The model
learning process can be controlled to avoid overfitting of data.

In this paper, we present a new semi-supervised web application that will enable re-
searchers to design probabilistic (compositional) models (both causal and stochastic).
Thanks to the web architecture of the system, the researchers will always have a pos-
sibility to influence the data-based model construction process from any place of the
world. It is also expected that the application of this methodology to practical prob-
lems will open new problems that will be an inspiration for further theoretical research.

Keywords: Data mining, Mutual information, Compositional model, Conditional in-
dependence, Probability theory.

1 Introduction

This paper is a first introduction to a new computer system trying to implement the theory of
compositional models for data-mining. We hope that it will attract researchers to apply the theory
and encourage them in studying it because there are still blanks to be filled.

The basic idea of compositional models is very simple: it is beyond human capabilities to
represent /express/understand global knowledge of an application area - one always has to work
with pieces of local knowledge only. Such local knowledge can be, within probability theory, easily
represented by a low-dimensional distribution. It should be stressed out that, based on the laws
of mathematical statistics, it is evident that the dimensionality of the estimated distributions is
strictly limited by the application of data-based models. Whatever size of data is at our disposal, we
can hardly expect to obtain reliable estimates of probabilities of a 20-dimensional distribution (even

for binary variables). Typically, one can assume that dimensionality of the considered distributions
is between 2 and 8.

1.1 Compositional models

When pieces of local knowledge are represented by low-dimensional distributions, the global knowl-
edge should be represented by a multidimensional probability distribution. The technique of com-
positional models describes directly how the multidimensional distribution is computed/composed
from a system of low-dimensional distributions. Usually, one starts constructing such a model
from a (usually great) number of low-dimensional distributions. Such a model resembles a jig-saw
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puzzle that has a large number of parts, each bearing a local piece of a picture. The goal is to
figure out how to assemble them in a way that the global picture makes sense and re.ﬂec.ts a%l of
the individual small parts. The only difference is that we look for a linear ordering of distributions

in our case.

1.2 Data mining

Generally, data mining is understood to be the process of discovering patterns in large data sets
involving various methods from machine learning, statistics, and database systems. The goal of a
data mining process is not a model itself but its interpretation in the form of a distilled knowledge.

One possible usage of compositional models in data mining stands in the process of model
construction. For example, constructing compositional models from two data files collected in
different cultural environments enables the user to compare the structures of the two models,
revealing qualitative differences between the studied societies, and the comparison of the respective
probability tables enables the researchers to describe the quantitative differences. The already
mined data can serve also in the opposite direction. The supervised approach to model construction
enables the researchers to influence the resulting models in the way that these models are easily
comprehensible and interpretative. The user can have some knowledge about data, based on which
the model is constructed.

1.3 Notation

In this paper, we consider only finite-valued variables, which are denoted by upper-case Latin
characters. Groups of variables are denoted by bold-face characters: i.e., for example, M =
{X,Y,Z,W}. The set of values of variable X is denoted by Xx. Similarly, we use Xpy. Generally,
we use the same notation as in the second paper by same authors in this proceedings [1].

Let us highlight that by a state of a group of variables we understand any combination of values
of the respective variables.

Probability distributions are denoted by characters of Greek alphabet (k, v, ). To highlight
that the given probability distribution is defined over variables a set of variables K we write x(K)
A marginal distribution of k(K) defined for variables L is denoted as kL.

2 Compositional models

The key element of the theory of compositional models is the operator of composition. To be able
to introduce these models, let us briefly recall its definition and a couple of its most important
properties (to read more about basic properties of the operator of composition, we refer the reader
to [2] and [3]).

For arbitrary two distributions #(K) and A(L), for which ! KL« \MKNL jg t}eip composition
given by the following formula2

1K v
(52 @) = S )

Otherwise, the composition remains undefined.

The operator of composition is used to construct multidimensional compositional models. Com-
posing two distributions, we can define a distribution of a higher dimensionality than any of the
original ones.

By a compositional model of a multidimensional probability distribution we understand a se-
quence of low-dimensional distributions that assembled together using the operator of composition
somehow models the original multidimensional distribution that would be difficult to handle oth-
erwise.

Denoting the low-dimensional distributions k1(K1), k2(K2), ...,k (Kp), we get the composi-
tional multidimensional model by the application of the operator of composition & to this sequence

1k(M) < A(M) denoted that the distribution is absolutely continues with respect to distribution A, which in
our finite settings means that whenever « is positive also Amustbepositive.
?Define -0(‘)—0 =0,
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from left to right: ki>ko>...>ky. (Note that the operator is neither commutative nor associative.)
This sequence of probabilistic distributions, if all compositions are defined, is called the generating
sequence of the compositional model. The sequence of sets of variables the generating sequence is
defined for — K;,Ko,...,K,, — is called a compositional model structure. To visualize the struc-
ture we use a tool called a persegram - a table of markers where rows correspond to variables and
columns to sets from the structure in the given ordering. A position in the table is marked if the
variable is among variables of the respective variables sets. Markers for the first occurrence of each
variable (i.e., the leftmost markers in rows) are box-markers, and for other occurrences there are
bullets.

We say that a generating sequence is perfect if all elements are marginals of the resulting
multidimensional distribution. It is worth noting that among all models, perfect models play an
important role because they faithfully reflect the information contained in the individual distribu-
tions. This property is thus important from the point of view of potential applications: when the
individual low-dimensional distributions x; represent pieces of local knowledge, then k1>Ko>. . .>K,
is a proper representative of global knowledge.

Note that compositional models can be also used for the representation of causal models [4]. In
that case, interventions can be easily modeled by composing the model with a simple degenerated
probability distribution.

3 Implementation

It is always beneficial for a theoretical work to experiment with a real problem. To evaluate various
hypotheses and to support further theoretical research, it is necessary to have an experimental tool
for calculations with compositional models. In this section, we would like to describe the basic
ideas standing behind the implementations. As already written above, we have implemented a
semi-supervised web application that enables a researcher to design the probabilistic compositional
model (both causal and stochastic). We assume that the web architecture of the system will make
it easily accessible and open for the wide range of audience.

The system is implemented in R environment [5] using Shiny web application framework [6]
and data.table package [7].

3.1 Probability distribution

The key problem is the representation of a probability distribution in a computer memory. Because
we restricted random variables to finitely valued discrete variables only, it seemed like a natural
step to store probability distributions not as multidimensional arrays (hypercubes) where individual
dimensions correspond to random variables, but as a listing of states in form of a table. Actually,
we have been inspired by relational database theory [8]. We store a probability distribution as a
database table - a data.table [7] in R.

Example 1 Having a probability distribution over e.g. three random variables Y, Z, W - the cor-
responding table has four columns. First three columns correspond to random variables, the last
column corresponds to an amount of probability dedicated to each row. FEvery row represents a
unique state - a combination of values of the respective random variables. In case of a zero proba-
bility state, it does not have to be listed in the table.

| Y | Z [ W | probability

010 |1 0.3
080 O 0.4
01110 0.1
110 |1 0.2

Table 1: Representation of A\(Y, Z, W) - table lambda

It turns out that this approach is convenient for basic computations needed when working with
compositional models.
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3.1.1 Marginalization

It appears that marginalization procedure is a simple example of aggregation in relational databases.
Indeed, to calculate A¥*Z from A(X,Y, Z) defined in Example 1, it is enough to provide the fol-
lowing query:

SELECT Y, Z, SUM(probability) AS probability
FROM lambda
GROUP BY (Y,Z);

It results in the following table

| Y | Z | probability |
010 0.90
0 |1 0.10

Table 2: A*Y+Z . table lambda_marginal

3.1.2 Composition operator

In case of the operator of composition, the situation is quite similar. We split the fraction from
(1) into a product of two terms:

(k> X) (2,9, 2,w) = corll (m(y,z,w))M

X2 (y, Z) X2 (ya Z)
The term
5\ vt )\(.’L‘, Y, Z)
"y, 2)

can be computed using the following SQL query:
COPY lambda INTO lambda_bar;

UPDATE lambda_bar
SET probability = probability / SUM(probability)
GROUP BY (Y,Z);

The, using A, one can proceed with a standard JOIN operator. To guarantee that the operator
is defined, i.e. whether Vy € Xgnr, #*€™(y) > 0 = MK™L(y) > 0 it is enough to use LEFT
OUTER JOIN operator and then check whether the resulting table does not contain NULL value in
columns corresponding to variables K \ L. If it is the case then the composition remains undefined
and the compositional process is stopped.

In case of probability distributions x(Y, Z, W) and A(X,Y, Z) the query has the following form:

SELECT X, Y, Z, W, kappa.probability * lambda_bar.probability AS probability
FROM kappa LEFT OUTER JOIN lambda
USING (Y, Z);

Example 2 To illustrate the operator of composition, we will compose probability distribution k
from Table 3b with distribution A\ from Ezample 1. The updated \ distribution can be found in
Table 3a and the result corresponding to distribution (k> \) is in Table Jc.

3.1.3 Point-wise multiplication

For other more advanced operations with compositional models (like anticipating operator [2]), we
also need the so-called point-wise multiplication of two probability distributions. The point-wise
multiplication can be easily implemented using CROSS JOIN operator. In the case of k and A
from previous Examples, the result is in Table 3c and the query has the following form:

SELECT X,Y,Z,W kappa.probability*lambda.probability AS probability
FROM kappa CROSS JOIN lambda
USING (Y,Z);
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|Y | Z | W | probability | [ X [V

Z | probability | [ X [ Y | Z | W | probability |

0|01 1.0 0 0|0 0.20 0 010 |1 0.20
0|11 0.8 0 ]0 |1 0.15 1 10 |0 |1 0.40
0|10 0.2 1. 0 |1 0.25 0 0 |1 |L 0.12
110 |1 1.0 1 010 0.40 0 |0 |1]0 0.03
(a) A(Y,Z,W) - table lambdabar  (b) x(X,Y, Z) - table kappa 1 0 111 0.20
1 0|10 0.05

(c) Representation of (k> A)(X,Y, Z, W)
- table composition

Table 3: Process of table composition

| X | Y | Z | w | Probability ’

0 [0 |0 |1 0.060
1 (0|0 |1 0.120
0 [0 |11 0.060
001|110 0.015
100 |1 |1 0.100
1 [0 |10 0.025
Table 4: k- A

3.2 Compositional model

Every compositional model is fully defined using its generating sequence - the sequence of low-
dimensional probability distributions that composed together from left to right using operator of
composition > create a multidimensional probability distribution. To represent the compositional
model in a computer memory, it is enough and desirable to keep its generating sequence. In the
case of e.g. marginalization, conditioning, perfectization (conversion of a model to a perfect one
representing the same multidimensional distribution), etc. of the model, all computations are
made locally. E.g. algorithm to perform marginalization of a compositional model locally using
its generating sequence can be found in [9]. In case of conditioning, it has been proven that the
conditioning process is easy if the compositional model is perfect (see [2]) and decomposable [3].
Note that decomposability is a structural property - the model is decomposable if the sequence
variables meet the running intersection property.

To simplify the calculations, we keep the structure of the model aside. The reason is simple.
For example, the marginalization process of a compositional model employs several heuristics that
depend on structure only [10].

So far, we have implemented the following methods to work with compositional models:

e marginalization - removal of given variables from the given model

perfectization - conversion of the model to a perfect one

to perform interventions

e conversion to a decomposable model

conditioning by a variable value

3.2.1 Learning

The first step in using the compositional model in case of data-mining is learning it from data.
The learning process can be split into two parts. In the first part, a model structure is found. In
this particular case, we have used hill climbing (HC) [11] algorithm. The main reason is that its
implementation is a good trade-off between CPU requirements, the accuracy of the obtained model,
and ease of implementation. Note that this method guarantees to obtain a minimal independence
relations map and therefore it is especially appropriate to deal with high dimensional domains.
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The second part of the compositional model learning process states in the estimating of the
low-dimensional probabilistic distributions over a given set of variables (from the already learned
model structure). In this case, we simply use frequencies of given states.

4 Web application

In this paper, we present a new semi-supervised web application called MUDIM online where
acronym MUDIM stands for a system for MULti DImensional Models. Thanks to the web archi-
tecture of the system, the researchers will always have a possibility to influence the data-based
model construction process from any place of the world without the need of any restriction. The
application can be found at http://gogo.utia.cas.cz/mudim.

o>c D o

%{n'udi‘n;‘ - ‘gﬁi N @

MUDIM online 1.0

MUDIM is a system for MUIti Dimensional compositional Mcdels. This new approach for probability distribution representation and processing is
based on the idea that a multidimensional distribution is computed - composed - from a system of oligodimensional distributions by terative
application of a special operator of composition. The purpose of compositional models is simiar to graphical Markov models, namely Bayesian
networks.

This is a concept applicaticn - studying a possitility to create a web-based appication with a simple interface for a wide range of users

Data
Input " i 2, , , ,
ata file has been loadec with variables Tuberculosis.or.Cancer, Tuberculosi, Lung.Cancer,
Here you tan upoad your file with Smoxing, Visit Asiz. Dyspnea, Bronchitis, XRay.Result . Cata file contains 10000 different
problem definition/measurements. observations.

CnseCSViEIe Autorratic structure | Manual structure

Browse..  No file selecled
Model structure - persegram
Pradalined data gt K1 K2 K3 K4 KE K& K7 K8 nference
Tuberculosis.cr.Cancar
To illustrate the prototype, use the - LA LS LA ot
following predefined data: ARher et lll B
Lung.Cancer " .
Asia Smoking =
Visit Asia L
Dyspnea = e
Eronchitis = .
XRayResult =

Compute one-dimensional marginals |~ Apoly nference

Compositional model

Having a structure, a system will estimate marginal probability distributions defined by it.
Remove Model

One-dimensional marginals
The model has been cregted Ycu can compute wth that
Model dztalils:

* length: 8

« variables: Visit Asiz Smoking Bronchitis Lung.Cancer XRay.Result
Tuberculosis.orCancer Tuberculosi Dyspnea

+ reduced FALSE

Figure 1: The look of MUDIM online web application

Having a compositional model, a data miner can easily apply an intervention on variables
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of interest, fix values of other variables (conditioning), or to narrow the context of a problem
(marginalization). To do that, the application expects a data file for observations/measurement
at its input. The file has to be comma-separated values (CSV) file.

The basic interface of MUDIM online is visualized on Figure 1. The user can read that a data
file has been loaded. The problem at hand has 8 random variables. To learn the structure of the
model, the user can choose between automatic and manual mode. The structure is depicted using
a persegram.

When the structure is finished, the model can be created. By creating the model we understand
that corresponding low-dimensional probability distributions are estimated from data and aligned
in a generating sequence in the order given by the structure. In case of the problem from Figure
1, the model has 8 low-dimensional probability distributions in its generating sequence. Reading
the persegram, each distribution has dimension maximally 3. When the model is created the
user is allowed to perform intervences, fix the value of a random variable by conditioning, display
one-dimensional marginals (see Figure 2), etc.

5 - . 8 =0 .
: g
B 15 215
e ey
=
D [
_8 [sXu 5] 025 0.50 07s (1% o] 028 050 ars
2 MUDIM.frequency MUDIM frequency
g | - LR
215 =
z 3
[ &] 0.25 0.50 075 100 oo o2 04 [+12)
MUDIM.frequency MUDIM.frequency
=
2. G - BE
= a1}
FRE X5
S )
=
0o 025 0.50 075 100 000 025 0.50 075
MUDIM.frequency MUDIM.frequency

Figure 2: Visualisation of one-dimensionl marginals in MUDIM online

5 Future plans

There is a lot of work to do. First of all, we would like to implement all theoretical foundations
known so far. We would like to implement more methods of learning the structure from data,
information-theoretic notions like Kullback-Leibler divergence, multi-information, etc. We have
several ideas on how the model learning process can be controlled to avoid overfitting of data - the
system needs that for sure. Last but not least we hope that the application of this methodology
to practical problems will open new problems that will be an inspiration for further theoretical
research.
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