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ON THE PASSAGE FROM NONLINEAR TO LINEARIZED
VISCOELASTICITY∗

MANUEL FRIEDRICH† AND MARTIN KRUŽÍK‡

Abstract. We formulate a quasistatic nonlinear model for nonsimple viscoelastic materials at
a finite-strain setting in the Kelvin–Voigt rheology where the viscosity stress tensor complies with
the principle of time-continuous frame indifference. We identify weak solutions in the nonlinear
framework as limits of time-incremental problems for vanishing time increment. Moreover, we show
that linearization around the identity leads to the standard system for linearized viscoelasticity and
that solutions of the nonlinear system converge in a suitable sense to solutions of the linear one. The
same property holds for time-discrete approximations, and we provide a corresponding commutativity
result. Our main tools are the theory of gradient flows in metric spaces and Γ-convergence.

Key words. viscoelasticity, metric gradient flows, Γ-convergence, dissipative distance, curves
of maximal slope, minimizing movements

AMS subject classifications. 74D05, 74D10, 35A15, 35Q74, 49J45

DOI. 10.1137/17M1131428

1. Introduction. Neglecting inertia, a nonlinear viscoelastic material in Kelvin–
Voigt rheology obeys the following system of equations:

−div
(
∂FW (∇y) + ∂ḞR(∇y, ∂t∇y)

)
= f in [0, T ]× Ω.(1)

Here, [0, T ] is a process time interval with T > 0, Ω ⊂ Rd (d = 2 or d = 3) is a smooth
bounded domain representing the reference configuration, and y : [0, T ] × Ω → Rd
is a deformation mapping with corresponding deformation gradient ∇y. Further,
W : Rd×d → [0,∞] is a stored energy density, which represents a potential of the first
Piola–Kirchhoff stress tensor TE , i.e., TE := ∂FW := ∂W/∂F , and F ∈ Rd×d is the
placeholder of ∇y. Finally, R : Rd×d ×Rd×d → [0,∞) denotes a (pseudo)potential of
dissipative forces, where Ḟ ∈ Rd×d is the placeholder of ∂t∇y, and f : [0, T ]×Ω→ Rd
is a volume density of external forces acting on Ω. In the present contribution, we
consider a version of (1) for nonsimple materials where the elastic stored energy
density depends also on the second gradient of y. In this case, we get

−div
(
∂FW (∇y) + εLP (∇2y) + ∂ḞR(∇y, ∂t∇y)

)
= f in [0, T ]× Ω,(2)

where ε > 0 is small and LP is a first order differential operator which is associated to
an additional term

∫
Ω
P (∇2y) in the stored elastic energy; e.g., for P (G) := 1

2 |G|
2 with
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authors were also supported by the MŠMT ČR mobility project 7AMB16AT015.
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G ∈ Rd×d×d, we get −divLP (∇2y) = ∆2y. We refer to (12) for more details. Thus,
we resort to the so-called nonsimple materials, the stored energy density (and the
first Piola–Kirchhoff stress tensor, too) of which depends also on the second gradient
of the deformation. This idea was first introduced by Toupin [30, 31] and proved to
be useful in mathematical elasticity (see, e.g., [6, 8, 12, 23, 24, 26]) because it brings
additional compactness to the problem. The first Piola–Kirchhoff stress tensor, TE ,
then reads for all i, j ∈ {1, . . . , d}

TEij(F,G) := ∂FijW (F ) + ε
(
LP (G)

)
ij

= ∂FijW (F )− ε
d∑
k=1

∂k
(
∂GijkP (G)

)
,

where G ∈ Rd×d×d is the placeholder for the second gradient of y. The term ε∂GP (G)
is usually called hyperstress.

We standardly assume that W as well as P are frame-indifferent functions, i.e.,
that W (F ) = W (QF ) and P (G) = P (QG) for every proper rotation Q ∈ SO(d), every
F ∈ Rd×d, and every G ∈ Rd×d×d. This implies that W depends on the right Cauchy–
Green strain tensor C := F>F ; see, e.g., [11]. We wish to emphasize that, in the case
of nonsimple materials, no convexity properties of W are needed; in particular, we do
not have to assume that W is polyconvex; see [5, 11]. Moreover, it is shown in [21]
that if W satisfies suitable and physically relevant growth conditions (as W (F )→∞
if detF → 0), then every minimizer of the elastic energy is a weak solution to the
corresponding Euler–Lagrange equations.

The second term on the left-hand side of (1) is the viscous stress tensor S(F, Ḟ ) :=
∂ḞR(F, Ḟ ) which has its origin in viscous dissipative mechanisms of the material.
Notice that its potential R plays an analogous role as W in the case of purely elastic,
i.e., nondissipative processes. Naturally, we require that R(F, Ḟ ) ≥ R(F, 0) = 0.
The viscous stress tensor must comply with the time-continuous frame-indifference
principle, meaning that for all F ,

S(F, Ḟ ) = FS̃(C, Ċ),

where S̃ is a symmetric matrix-valued function. This condition constrains R so that
(see [3, 4, 22], also [17])

R(F, Ḟ ) = R̃(C, Ċ)(3)

for some nonnegative function R̃. In other words, R must depend on the right Cauchy–
Green strain tensor C and its time derivative Ċ.

In this work, we are interested in the case of small strains, i.e., when ∇u :=
∇y − Id is of order δ for some small δ > 0. Here, u := y − id is the displacement
corresponding to y with id and Id standing for the identity map and identity matrix,
respectively. Such a property is certainly meaningful if one considers initial values
y0 with ‖∇y0 − Id‖L2(Ω) ≤ δ. Therefore, it is convenient to define the rescaled
displacement u = δ−1(y− id). Introducing a proper scaling in the above equation we
get

−div
(
δ−1∂FW (Id + δ∇u) + ε̃LP (δ∇2u) + δ−1∂ḞR(Id + δ∇u, δ∂t∇u)

)
= f(4)

for ε̃ = ε̃(δ) appropriate. Note that to obtain (4) from (1) we write the latter equation
for f := δf and then divide the whole equation by δ. Formally, we can pass to the
limit and obtain the equation (for ε̃→ 0 as δ → 0)
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−div
(
CW e(u) + CDe(∂tu)

)
= f,(5)

where CW := ∂2
F 2W (Id) is the tensor of elastic constants, CD := ∂2

Ḟ 2R(Id, 0) is the

tensor of viscosity coefficients, and e(u) := (∇u+ (∇u)>)/2 denotes the linear strain
tensor.

The goal of this contribution is twofold: we first show existence of solutions to the
nonlinear system of equations (4). Afterwards, we make the limit passage rigorous;
i.e., we show that solutions to the nonlinear equations converge to the unique solution
of the linear systems as δ → 0. Interestingly, although the nonlinear viscoelastisity
system is written for a nonsimple material, in the limit we obtain the standard linear
equations without spatial gradients of e(u).

Our general strategy is to treat the system of quasistatic viscoelasticity in the
abstract setting of metric gradient flows (see [2]) which was, to our best knowledge,
formulated for the first time in [22] for simple materials (i.e., only the first gradient of
y is considered). However, in their setting, a passage from time-discrete problems to
a continuous one is only possible in a specific one-dimensional case. See also [7] for a
related approach in materials undergoing phase transition. This, in our opinion, also
supports models of nonsimple materials as their linearization leads to the usual small-
strain viscoelasticity model which seems unreachable (or at least rather difficult) in
the case of simple materials.

An abstract framework for the study of metric gradient flows along a sequence
of energies and metric spaces has been developed in [27, 28]. In practice, for each
specific problem the challenge lies in proving that the additional conditions needed to
ensure convergence of gradient flows are satisfied (we refer to [28] for some examples
in that direction). Our aim is to show that the passage of nonlinear to linearized
viscoelasticity can be formulated in this setting. Let us also mention that a rigorous
analysis of the static, purely elastic case without viscosity goes back to [15].

Heuristically, the idea of gradient flows in metric spaces stems from the observa-
tion that, having a Hilbert space (equipped with the dot product 〈·, ·〉), the inequality

|u′|2 + 2〈u′,∇φ(u)〉+ |∇φ(u)|2 ≥ 0

becomes equality if and only if
u′ = −∇φ(u),

i.e., if u solves the gradient flow equation. This approach can be extended to metric
spaces provided we are able to find analogies to |u′| and |∇φ| in metric spaces. These
are called the metric derivative and the upper gradient (or slope), respectively. Precise
definitions can be found in section 3.1 below.

The plan of the paper is as follows. In section 2, we introduce the nonlinear
and linear systems of viscoelasticity in more detail and state our main results. In
particular, Theorems 2.1 and 2.2 show the existence of solutions to the nonlinear and
linear problems, respectively. These solutions can be identified with so-called curves
of maximal slope introduced in [16]. Proofs of existence rely on semidiscretization in
time and on the theory of generalized minimizing movements and gradient flows in
metric spaces (see [2]), where the underlying metric is given by a dissipation distance
suitably related to the potential R (see (10)). Finally, Theorem 2.3 shows the rela-
tionship between the two systems. Besides convergence of solutions of (2) to solutions
of (5), we also get analogous convergences for semidiscretized problems. Moreover,
convergences for vanishing time step and δ → 0 commute; see Figure 1. (For a related
commutativity result in an abstract setting we refer to [10].)
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Section 3 is devoted to definitions of generalized minimizing movements and curves
of maximal slope. Here we also collect the necessary existence results proved in
[2]. Moreover, we present a statement similar to [25, 28] about sequences of curves
of maximal slope and their limits as well as a corresponding result for minimizing
movements.

Further, section 4 shows interesting properties of dissipation distances related to
our viscous dissipation. It turns out that by frame indifference (3) the dissipation
distances are genuinely nonconvex. However, due to the presence of the higher order
gradient we are able to obtain sufficiently good convexity properties in order to apply
the abstract theory (see [2, 28]). Finally, proofs of our results can be found in section 5.
In particular, we relate curves of maximal slope for the nonlinear system with limiting
curves of maximal slope as δ → 0 and identify these configurations as weak solutions
of (2) and (5).

In what follows, we use standard notation for Lebesgue spaces, Lp(Ω), which are
measurable maps on Ω ⊂ Rd integrable with the pth power (if 1 ≤ p < +∞) or
essentially bounded (if p = +∞). Sobolev spaces, i.e., W k,p(Ω), denote the linear
spaces of maps which, together with their derivatives up to the order k ∈ N, belong
to Lp(Ω). Further, W k,p

0 (Ω) contains maps from W k,p(Ω) having zero boundary
conditions (in the sense of traces). In order to emphasize its Hilbert structure, we
write H1(Ω) := W 1,2(Ω). We also work with the dual space to H1

0 (Ω) denoted by
H−1(Ω). We refer to [1] for more details on Sobolev spaces and their duals.

If A ∈ Rd×d×d×d and e ∈ Rd×d, then Ae ∈ Rd×d such that for i, j ∈ {1, . . . , d}
we define (Ae)ij := Aijklekl, where we use Einstein’s summation convention. An
analogous convention is used in similar occasions in what follows. Finally, at many
spots, we follow closely notation introduced in [2] to ease readability of our work,
because the theory developed there is one of the main tools of our analysis.

2. The model and main results.

2.1. The nonlinear setting. We adopt the usual setting of nonlinear elasticity:
consider Ω ⊂ Rd open, bounded with Lipschitz boundary. Fix δ > 0 (small), p > d,
and 0 < α < 1. The parameter ε̃(δ) introduced in (4) is defined as ε̃(δ) := δ1−pα.

Stored elastic energy and body forces. We introduce the nonlinear elastic
energy φδ : W 2,p(Ω;Rd)→ [0,∞] by

φδ(y) =
1

δ2

∫
Ω

W (∇y(x)) dx+
1

δpα

∫
Ω

P (∇2y(x)) dx− 1

δ

∫
Ω

f(x) · y(x) dx(6)

for a deformation y : W 2,p(Ω;Rd) → Rd. Here, W : Rd×d → [0,∞] is a single-well,
frame-indifferent stored energy functional with the usual assumptions in nonlinear
elasticity. Altogether, we suppose that there exists c > 0 such that the following
holds:

(i) W is continuous and C3 in a neighborhood of SO(d).

(ii) Frame indifference: W (QF ) = W (F ) for all F ∈ Rd×d, Q ∈ SO(d).

(iii) W (F ) ≥ cdist2(F, SO(d)), W (F ) = 0 iff F ∈ SO(d),

(7)

where SO(d) = {Q ∈ Rd×d : Q>Q = Id, detQ = 1}. Moreover, P : Rd×d×d → [0,∞]
denotes a higher order perturbation satisfying the following:
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(i) Frame indifference: P (QG) = P (G) for all G ∈ Rd×d×d, Q ∈ SO(d).

(ii) P is convex and C1.

(iii) Growth condition: for all G ∈ Rd×d×d we have

c1|G|p ≤ P (G) ≤ c2|G|p, |∂GP (G)| ≤ c2|G|p−1

(8)

for 0 < c1 < c2. Finally, f ∈ L∞(Ω;Rd) denotes a volume force. From now on we
always drop the target space Rd for notational convenience when no confusion arises.
We remark that by minor adaptions of our arguments we can also treat potentials with
additional dependence on the material point x ∈ Ω. We scale the energy appropriately
with a (small) positive parameter δ as we will eventually be interested in the behavior
in the small strain limit δ → 0.

Dissipation potential and viscous stress. Consider a time-dependent defor-
mation y : [0, T ]×Ω→ Rd. Viscosity is related not only to the strain ∇y(t, x) but also
to the strain rate ∂t∇y(t, x) and can be expressed in terms of a dissipation potential
R(∇y, ∂t∇y), where R : Rd×d×Rd×d → [0,∞). An admissible potential has to satisfy
frame indifference in the sense (see [3, 22])

R(F, Ḟ ) = R(QF,Q(Ḟ +AF )) ∀Q ∈ SO(d), A ∈ Skew(d)(9)

for all F ∈ GL+(d) and Ḟ ∈ Rd×d, where GL+(d) = {F ∈ Rd×d : detF > 0} and
Skew(d) = {A ∈ Rd×d : A = −A>}.

Following the discussion in [22, section 2.2], from the point of modeling it is
much more convenient to postulate the existence of a (smooth) global distance D :
GL+(d) × GL+(d) → [0,∞) satisfying D(F, F ) = 0 for all F ∈ GL+(d), from which
an associated dissipation potential R can be calculated by

R(F, Ḟ ) := lim
ε→0

1

2ε2
D2(F + εḞ, F ) =

1

4
∂2
F 2

1
D2(F, F )[Ḟ, Ḟ ](10)

for F ∈ GL+(d), Ḟ ∈ Rd×d, where ∂2
F 2

1
D2(F1, F2) denotes the Hessian of D2 in direc-

tion of F1 at (F1, F2), being a fourth order tensor. We have the following assumptions
on D for some c > 0.

(i) D(F1, F2) > 0 if F>1 F1 6= F>2 F2,

(11)

(ii) D(F1, F2) = D(F2, F1),

(iii) D(F1, F3) ≤ D(F1, F2) +D(F2, F3),

(iv) D(·, ·) is C3 in a neigborhood of SO(d)× SO(d),

(v) separate frame indifference: D(Q1F1, Q2F2) = D(F1, F2)

for all Q1, Q2 ∈ SO(d), for all F1, F2 ∈ GL+(d),

(vi) D(F, Id) ≥ cdist(F, SO(d)) for all F ∈ Rd×d in a neighborhood of SO(d).

Note that conditions (i) and (iii) state that D is a true distance when restricted to
symmetric matrices. We cannot expect more due to the separate frame indifference
(v). We also note that (v) implies (9) as shown in [22, Lemma 2.1]. Note that in our
model we do not require any conditions of polyconvexity for either W or D [5]. For
examples of admissible dissipation distances we refer the reader to [22, section 2.3].
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Equations of nonlinear viscoelasticity. We will impose the boundary con-
ditions y(t, x) = x for (t, x) ∈ [0, T ] × ∂Ω, and for convenience we define the set
W 2,p

id (Ω) = {y = id + u ∈ W 2,p(Ω) : u ∈ W 2,p
0 (Ω)}, where id denotes the identity

function on Ω. We remark that our results can be extended to more general Dirichlet
boundary conditions, too, which we do not include here for the sake of maximizing
simplicity rather than generality. We now introduce a differential operator associated
to the perturbation P (cf. (8)). To this end, we use the notation (∇y)ik = ∂kyi and
(∇2y)ijk = ∂2

jkyi for i, j, k ∈ {1, . . . , d} and define(
LP (∇2y)

)
ij

= −
∑d

k=1
∂k(∂GP (∇2y))ijk, i, j ∈ {1, . . . , d},(12)

for y ∈W 2,p
id (Ω), where the derivatives have to be understood in the sense of distribu-

tions. The equations of nonlinear viscoelasticity then read as (respecting the different
scalings of the terms in (6))

−div
(
∂FW (∇y) + δ2−pαLP (∇2y) + ∂ḞR(∇y, ∂t∇y)

)
= δf in [0,∞)× Ω,

y(0, ·) = y0 in Ω,

y(t, ·) ∈W 2,p
id (Ω) for t ∈ [0,∞)

(13)

for some y0 ∈W 2,p
id (Ω), where ∂FW (∇y(t, x)) denotes the first Piola–Kirchhoff stress

tensor and ∂ḞR(∇y(t, x), ∂t∇y(t, x)) the viscous stress with R as introduced in (10).
The first goal of the present contribution is to prove the existence of weak solutions
to (13). More precisely, we say that y ∈ L∞([0,∞);W 2,p

id (Ω)) ∩W 1,2([0,∞);H1(Ω))
is a weak solution of (13) if y(0, ·) = y0 and for a.e. t ≥ 0∫

Ω

(
∂FW (∇y(t, x)) + ∂ḞR(∇y(t, x), ∂t∇y(t, x))

)
: ∇ϕ(x) dx

+

∫
Ω

δ2−pα∂GP (∇2y(t, x)) : ∇2ϕ(x) dx = δ

∫
Ω

f(x) · ϕ(x) dx

(14)

for all ϕ ∈ W 2,p
0 (Ω). In particular, we note that the first term in the second line is

well defined for a weak solution by (8)(iii) and Hölder’s inequality.

2.2. The linear problem. After rescaling with δ−1 and introducing the rescaled
displacement field u(t, x) = δ−1(y(t, x)− x), the partial differential equation (13) can
be written as

−div
(
δ−1∂FW (id + δ∇u) + δ1−pαLP (δ∇2u) + δ−1∂ḞR(id + δ∇u, δ∂t∇u)

)
= f

with an initial datum u0 = δ−1(y0 − id). For α small, letting δ → 0 we obtain, at
least formally, the equation

−div
(
CW e(u) + CDe(∂tu)

)
= f in [0,∞)× Ω,

u(0, ·) = u0 in Ω,

u(t, ·) ∈ H1
0 (Ω) for t ∈ [0,∞),

(15)

where CW := ∂2
F 2W (Id) and CD := 1

2∂
2
F 2

1
D2(Id, Id) (cf. (10)). Note that the frame

indifference of the energy and the dissipation (see (7)(ii) and (11)(v), respectively)
imply that the contributions only depend on the symmetric part of the strain e(u) =
1
2 (∇u+(∇u)>) and the strain rate e(∂tu) = 1

2 (∂t∇u+∂t(∇u)>). Let us also mention
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that the stress tensor is related to the linearized elastic energy φ̄0 : H1
0 (Ω) → [0,∞)

given by

φ̄0(u) =

∫
Ω

1

2
CW [e(u)(x), e(u)(x)] dx−

∫
Ω

f(x) · u(x) dx(16)

for u ∈ H1
0 (Ω). The goal of this article is to show that the above reasoning can

be made rigorous: we will prove that (15) admits a unique weak solution and that
solutions of (13) converge to the solution of (15) in a suitable sense. Here, similarly
as before, we say u ∈ W 1,2([0,∞);H1

0 (Ω)) is a weak solution of (15) if u(0, ·) = u0

and for a.e. t ≥ 0 and all ϕ ∈ H1
0 (Ω) we have∫

Ω

(CW e(u) + CDe(∂tu)) : ∇ϕ =

∫
Ω

f · ϕ

2.3. Main results. Let us introduce the global dissipation distance between two
deformations for the nonlinear and linear setting by

Dδ(y0, y1) = δ−1

(∫
Ω

D2(∇y0,∇y1)

)1/2

,

D̄0(u0, u1) =

(∫
Ω

CD[∇u0 −∇u1,∇u0 −∇u1]

)1/2
(17)

for y0, y1 ∈W 2,p
id (Ω) and u0, u1 ∈ H1

0 (Ω), respectively. (In many notations we include
an overline to indicate that the notion is related to the linear setting.) We also define
the sublevel sets SM

δ := {y ∈ W 2,p
id (Ω) : φδ(y) ≤ M}. (For convenience we do not

include Ω in the notation.) Our general strategy will be to show that the spaces
(SM

δ ,Dδ) and (H1
0 (Ω), D̄0) are complete metric spaces and to follow the approach in

[2] (see Theorems 4.5 and 4.6 below).
In particular, to show existence of solutions to (13) and (15), we will apply an

approximation scheme solving suitable time-incremental minimization problems and
show that time-continuous limits are curves of maximal slope for the elastic ener-
gies φδ, φ̄0, respectively. Finally, using the property that in Hilbert spaces curves of
maximal slope can be related to gradient flows, we find solutions to (13) and (15).

Moreover, to study the relation between the nonlinear and linear problems we will
apply some results about the limit of sequences of curves of maximal slope proved in
section 3.3.

For the main definitions and notation for discrete solutions, (generalized) mini-
mizing movements (abbreviated by MM and GMM; see Definition 3.2), and curves
of maximal slope we refer to section 3.1. In particular, we define Φδ and Φ̄0, respec-
tively, as in (20), replacing φ,D by φδ,Dδ and φ̄0, D̄0, respectively. Moreover, we
write |∂φδ|Dδ , |∂φ̄0|D̄0

for the (local) slopes and |y′|Dδ , |u′|D̄0
for the metric deriva-

tives, respectively (see Definition 3.1). Finally, discrete solutions for time step τ > 0
will be denoted by Ỹ δτ and Ũ0

τ , respectively.
Our first main result addresses the existence of solutions to the nonlinear problem.

Theorem 2.1 (solutions to the nonlinear problem). Let M > 0 and SM
δ = {y ∈

W 2,p
id (Ω) : φδ(y) ≤ M}. Then for δ > 0 sufficiently small only depending on M the

following holds:
(i) Existence of GMM. GMM(Φδ; y0) 6= ∅ for all y0 ∈ SM

δ .
(ii) Curves of maximal slope. For all y0 ∈ SM

δ each y ∈ GMM(Φδ; y0) is a curve
of maximal slope for φδ with respect to the strong upper gradient |∂φδ|Dδ ; in particular
for all T > 0 we have the energy identity
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1

2

∫ T

0

|y′|2Dδ(t) dt+
1

2

∫ T

0

|∂φδ|2Dδ(y(t)) dt+ φδ(y(T )) = φδ(y0).(18)

(iii) Relation to PDE. For all y0 ∈ SM
δ each y ∈ GMM(Φδ; y0) is a weak solution

of the partial differential equations of nonlinear viscoelasticity (13) in the sense of
(14).

For the linearized model we obtain the following results.

Theorem 2.2 (solutions to the linear problem). The limiting linear problem has
the following properties.

(i) Existence/uniqueness of MM. For all u0 ∈ H1
0 (Ω) there exists a unique u ∈

MM(Φ̄0;u0).
(ii) Curves of maximal slope. For all u0 ∈ H1

0 (Ω) the minimizing movement
u ∈ MM(Φ̄0;u0) is the unique curve of maximal slope for φ̄0 with respect to the
strong upper gradient |∂φ̄0|D̄0

.
(iii) Relation to PDE. For all u0 ∈ H1

0 (Ω) the unique u ∈MM(Φδ;u0) is a weak
solution of the partial differential equations of linear viscoelasticity (15).

In contrast to Theorem 2.1, we get that the weak solution to (15) for given initial
value u0 ∈ H1

0 (Ω) is uniquely determined and a minimizing movement (and not simply
a generalized one). Finally, we study the relation of the solutions to (13) and (15).

Theorem 2.3 (relation between nonlinear and linear problems). Fix a null se-
quence (δk)k and a sequence of initial data (yk0 )k∈N ⊂W 2,p

id (Ω) such that

supk∈N φδk(yk0 ) <∞, δ−pαk

∫
Ω

P (∇2yk0 )→ 0, δ−1
k (yk0 − id)→ u0 ∈ H1

0 (Ω).

Let u be the unique element of MM(Φ̄0;u0). Then the following holds:
(i) Convergence of discrete solutions. For all τ > 0 and all discrete solutions Ỹ δkτ

as in (21) below there is a discrete solution Ũ0
τ for the linearized system such that

δ−1
k (Ỹ δkτ (t)− id)→ Ũ0

τ (t) strongly in H1(Ω) for all t ∈ [0,∞).
(ii) Convergence of continuous solutions. Each sequence yk ∈ GMM(Φδk ; yk0 ),

k ∈ N, satisfies δ−1
k (yk(t)− id)→ u(t) strongly in H1(Ω) for all t ∈ [0,∞).

(iii) Convergence at specific scales. For each null sequence (τk)k and each sequence
of discrete solutions Ỹ δkτk as in (21) we have δ−1

k (Ỹ δkτk (t)−id)→ u(t) strongly in H1(Ω)
for all t ∈ [0,∞).

We remark that, in the formulation of [9, 10], property (iii) states that the con-
figuration u is a minimizing movement along φδk at scale τk. Let us emphasize that
the convergence in Theorem 2.3 is with respect to the strong H1(Ω)-topology. In par-
ticular, Theorems 2.1–2.3 imply a commutativity result which we illustrate in Figure
1. From now on we set f ≡ 0 for convenience. The general case indeed follows with
minor modifications, which are standard.

3. Preliminaries: Generalized minimizing movements and curves of
maximal slope. In this section we first recall the relevant definitions and also give a
convergence result for discrete solutions to curves of maximal slope proved in [2]. In
section 3.3 we then present a result about the limit of sequences of curves of maximal
slope being a variant of results presented in [13, 28].
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δ−1
k (Ỹ δkτn (t)− id) δ−1

k (yk − id)

Ũ0
τn u

k →∞

n→∞

n→∞

k →∞
n, k →∞

Fig. 1. Illustration of the commutativity result given in Theorems 2.1–2.3. The horizontal
arrows are addressed in Theorems 2.1 and 2.2, respectively. For the vertical and diagonal arrows we
refer to Theorem 2.3.

3.1. Definitions. We consider a complete metric space (S ,D). We say a curve
u : (a, b)→ S is absolutely continuous with respect to D if there exists m ∈ L1(a, b)
such that

D(u(s), u(t)) ≤
∫ t

s

m(r) dr ∀ a ≤ s ≤ t ≤ b.(19)

The smallest function m with this property, denoted by |u′|D, is called the metric
derivative of u and satisfies for a.e. t ∈ (a, b) (see [2, Theorem 1.1.2] for the existence
proof)

|u′|D(t) := lim
s→t

D(u(s), u(t))

|s− t|
.

We now define the notion of a curve of maximal slope. We only give the basic definition
here and refer to [2, sections 1.2 and 1.3] for motivations and more details. By
h+ := max(h, 0) we denote the positive part of a function h.

Definition 3.1 (upper gradients, slopes, curves of maximal slope). We consider
a complete metric space (S ,D) with a functional φ : S → (−∞,+∞].

(i) A function g : S → [0,∞] is called a strong upper gradient for φ if for every
absolutely continuous curve v : (a, b)→ S the function g ◦ v is Borel and

|φ(v(t))− φ(v(s))| ≤
∫ t

s

g(v(r))|v′|D(r) dr ∀ a < s ≤ t < b.

(ii) For each u ∈ S the local slope of φ at u is defined by

|∂φ|D(u) := lim sup
w→u

(φ(u)− φ(w))+

D(u,w)
.

(iii) An absolutely continuous curve u : (a, b) → S is called a curve of maximal
slope for φ with respect to the strong upper gradient g if for a.e. t ∈ (a, b)

d

dt
φ(u(t)) ≤ −1

2
|u′|2D(t)− 1

2
g2(u(t)).

We now introduce minimizing movements. In the following we will use an approx-
imation scheme solving suitable time-incremental minimization problems: consider a



NONLINEAR TO LINEARIZED VISCOELASTICITY 4435

fixed time step τ > 0, and suppose that an initial datum U0
τ is given. Whenever

U0
τ , . . . , U

n−1
τ are known, Unτ is defined as (if existent)

Unτ = argminv∈SΦ(τ, Un−1
τ ; v), Φ(τ, u; v) :=

1

2τ
D(v, u)2 + φ(v).(20)

Supposing that for a choice of τ a sequence (Unτ )n∈N solving (20) exists, we define the
piecewise constant interpolation by

Ũτ (0) = U0
τ , Ũτ (t) = Unτ for t ∈ ((n− 1)τ, nτ ], n ≥ 1.(21)

In the following, Ũτ will be called a discrete solution. Note that the existence of
discrete solutions is usually guaranteed by the direct method of the calculus of varia-
tions under suitable compactness, coercivity, and lower semicontinuity assumptions.
Finally, we introduce the modulus of the derivative

|Ũ ′τ |D(t) =
D(Unτ , U

n−1
τ )

τ
for t ∈ ((n− 1)τ, nτ ], n ≥ 1.

Definition 3.2 (minimizing movements). (i) We say a curve u : [0,∞) → S
is a minimizing movement for Φ as defined in (20), starting from the initial datum
u0 ∈ S , if for every sequence of time steps (τk)k with τk → 0 there exist discrete
solutions defined in (21) such that

lim
k→∞

φ(U0
τk

) = φ(u0), lim supk→∞D(U0
τk
, u0) <∞,

lim
k→∞

D(Ũτk(t), u(t)) = 0 ∀t ∈ [0,∞).
(22)

By MM(Φ;u0) we denote the collection of all minimizing movements for Φ starting
from u0.

(ii) Likewise, we say a curve u : [0,∞) → S is a generalized minimizing move-
ment for Φ starting from u0 ∈ S if there exists a sequence of time steps (τk)k with
τk → 0 and corresponding discrete solutions such that (22) holds. The collection of
all such curves is denoted by GMM(Φ;u0).

3.2. Compactness of discrete solutions and convergence to curves of
maximal slope. Suppose again that (S ,D) is a complete metric space. As discussed
in [2, Remark 2.0.5], it is convenient to introduce a weaker topology on S to have
more flexibility in the derivation of compactness properties. Assume that there is a
Hausdorff topology σ on S , which is compatible with D in the sense that σ is weaker
than the topology induced by D and satisfies

un
σ→ u, vn

σ→ v ⇒ lim inf
n→∞

D(un, vn) ≥ D(u, v).(23)

Consider a functional φ : S → [0,+∞) with the following properties:

(i) un
σ→ u, supn,mD(un, um) <∞ ⇒ lim inf

n→∞
φ(un) ≥ φ(u);

(ii) for all N ∈ N there is a σ-sequentially compact set KN such that

{u ∈ S : φ(u) +D(u, u∗) ≤ N} ⊂ KN for some point u∗ ∈ S .

(24)

Note that nonnegativity of φ can be generalized to a suitable coerciveness condition,
(see [2, Equation (2.1.2b)]), which we do not include here for the sake of simplicity.
From [2, Proposition 2.2.3, Theorem 2.3.3, Remark 2.3.4(i)] we obtain the following
compactness and convergence result.
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Theorem 3.3. Suppose that φ satisfies (24) and v ∈ S 7→ |∂φ|D(v) is a strong
upper gradient for φ and σ-lower semicontinuous. Then the following holds:

(i) Suppose that there is a sequence of initial data (U0
τk

)k∈N and u0 ∈ S with

supk D(U0
τk
, u0) < +∞, U0

τk

σ→ u0, and φ(U0
τk

) → φ(u0). Then there is an absolutely
continuous curve u : [0,∞) → S and a subsequence, not relabeled, of (τk)k∈N such

that a sequence of discrete solutions (Ũτk)k∈N defined in (21) satisfies Ũτk(t)
σ→ u(t)

for all t ∈ [0,∞).
(ii) Every u ∈ GMM(Φ;u0) for each u0 ∈ S is a curve of maximal slope for φ

with respect to |∂φ|D, and in particular u satisfies the energy identity

1

2

∫ T

0

|u′|2D(t) dt+
1

2

∫ T

0

|∂φ|2D(u(t)) dt+ φ(u(T )) = φ(u0) ∀T > 0.(25)

Moreover, for a sequence of discrete solutions (Ũτk)k∈N as in (i) we have

lim
k→∞

φ(Ũτk(t)) = φ(u(t)) ∀t ∈ [0,∞),

lim
k→∞

|∂φ|D(Ũτk) = |∂φ|D(u) in L2
loc([0,∞)),

lim
k→∞

|Ũ ′τk |D = |u′|D in L2
loc([0,∞)).

In particular, Theorem 3.3(i) states that the limit u is a generalized minimizing
movement, provided that σ coincides with the topology induced by D. We remark
that GMM(Φ;u0) could also be defined with respect to the weaker topology σ; see
[2, Definition 2.0.6]. For our purposes, however, a definition in terms of D is more
convenient.

The result can be considerably improved if Φ satisfies suitable convexity properties
(see [2, Theorems 4.0.4 and 4.0.7]).

Theorem 3.4. Suppose that φ is D-lower semicontinuous and φ ≥ 0. Moreover,
assume that for all τ > 0 and for all w, v0, v1 ∈ S there exists a curve (γt)t∈[0,1] ⊂ S
with γ0 = v0 and γ1 = v1 such that

Φ(τ, w; γt) ≤ (1− t)Φ(τ, w; v0) + tΦ(τ, w; v1)− t(1− t)
2τ

D(v0, v1)2 ∀t ∈ [0, 1].

Then for each u0 ∈ S there exists a unique u ∈MM(Φ;u0). Moreover, the assertion
of Theorem 3.3 (with σ being the topology induced by D) holds, and for a discrete
solution Ũτ with U0

τ = u0 we have D(Ũτ (t), u(t))2 ≤ 1
2τ

2|∂φ|2D(u0) for all t > 0.

Note that in contrast to Theorem 3.3, Theorem 3.4 yields also a uniqueness result
for minimizing movements. Observe that (24)(ii) is not necessary for Theorem 3.4
since the solvability of the problem argminv∈S Φ(τ, u; v) for τ > 0 and u ∈ S (cf.
(20)) follows from a convexity argument. In this setting, much more refined results
can be established, and we refer to [2, section 4] for more details.

3.3. Limits of curves of maximal slopes. We now consider a set S and a
sequence of metrics (Dn)n on S as well as a limiting metric D. We again assume
that all metric spaces are complete. Moreover, let (φn)n be a sequence of functionals
with φn : S → [0,∞]. Suppose that there is a Hausdorff topology σ on S which is
weaker than the topology induced by each Dn,D and satisfies similarly to (23)

un
σ→ u, vn

σ→ v ⇒ lim inf
n→∞

Dn(un, vn) ≥ D(u, v).(26)
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Moreover, assume that (φn)n satisfy (24)(ii), i.e., for allN ∈ N there is a σ-sequentially
compact set KN and u∗ ∈ S such that for all n ∈ N

{u ∈ S : φn(u) +Dn(u, u∗) ≤ N} ⊂ KN .(27)

To ensure the existence of limiting curves of maximal slope, we will apply the following
refined version of the Arzelà–Ascoli theorem.

Theorem 3.5. Let T > 0, and let metrics Dn, D and functionals (φn)n be given
such that (26) holds with respect to the topology σ. Let K ⊂ S be a σ-sequentially
compact set. Let un : [0, T ]→ S be curves such that

un(t) ∈ K ∀n ∈ N, t ∈ [0, T ], lim sup
n→∞

Dn(un(s), un(t)) ≤ ω(s, t) ∀s, t ∈ [0, T ]

for a symmetric function ω : [0, T ]2 → [0,∞) with

lim
(s,t)→(r,r)

ω(s, t) = 0 ∀r ∈ [0, T ] \ C ,

where C is an at most countable subset of [0, T ]. Then there exists a (not relabeled)
subsequence and a limiting curve u : [0, T ]→ S such that

un(t)
σ→ u(t) ∀t ∈ [0, T ], u is D-continuous in [0, T ] \ C .

Proof. We follow the proof of [2, Proposition 3.3.1] with the only difference being
that the lower semicontinuity condition for the metric is replaced by our condition
(26) along the sequence of metrics.

Now consider also a limiting functional φ : S → [0,∞]. We suppose lower
semicontinuity of the functionals and the slopes in the following sense: for all u ∈ S
and (uk)k ⊂ S we have

uk
σ→ u ⇒ lim inf

k→∞
|∂φk|Dk(uk) ≥ |∂φ|D(u), lim inf

k→∞
φk(uk) ≥ φ(u).(28)

We now obtain the following result about limits of curves of maximal slope.

Theorem 3.6. Consider a set S , metrics (Dn)n∈N and functionals φn : S →
[0,∞], n ∈ N, as well as D and φ : S → [0,∞]. Suppose that there is a weaker
topology σ on S such that (26), (27), and the implication (28) hold. Moreover,
assume that |∂φn|Dn , |∂φ|D are strong upper gradients for φn, φ with respect to Dn,
D, respectively.

Let T > 0 and ū ∈ S . For all n ∈ N let un be a curve of maximal slope for φn
with respect to |∂φn|Dn such that

(i) sup
n∈N

sup
t∈[0,T ]

(
φn(un(t)) +Dn(un(t), ū)

)
<∞,

(ii) un(0)
σ→ ū, φn(un(0))→ φ(ū).

(29)

Then there exists a limiting function u : [0, T ] → S such that up to a subsequence,
not relabeled,

un(t)
σ→ u(t), φn(un(t))→ φ(u(t)) ∀t ∈ [0, T ]

as n→∞ and u is a curve of maximal slope for φ with respect to |∂φ|D.
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The result is an adaption of a statement in [28] where condition (26) is replaced
by a lower bound condition on the metric derivatives along the sequence. We also refer
to [13], where a similar result is proved without the assumption that the slopes are
strong upper gradients (cf. [2, Definitions 1.2.1 and 1.2.2] for the definition of strong
and weak upper gradients), which comes at the expense that a suitable continuity
condition along (φk)k for sequences (uk)k converging with respect to the metric has
to be imposed.

Proof. From the properties of a curve of maximal slope we have (cf. (25))

1

2

∫ t

0

|u′n|2Dn(s) ds+
1

2

∫ t

0

|∂φn|2Dn(un(s)) ds+ φn(un(t)) = φn(un(0))(30)

for all t ∈ [0, T ]. (Here, we have used that |∂φn|Dn are strong upper gradients for φn
with respect to Dn.) From (30) and the equiboundedness of φn(un(t)) (see (29)(i))
we get

sup
n∈N

∫ T

0

|u′n|2Dn(t) dt+ sup
n∈N

∫ T

0

|∂φn|2Dn(un(t)) dt <∞.

Consequently, there is a function A ∈ L2((0, T )) such that |u′n|Dn ⇀ A weakly in
L2((0, T )) up to a subsequence, not relabeled. In particular, this yields

lim sup
n→∞

Dn(un(s), un(t)) ≤ lim sup
n→∞

∫ t

s

|u′n|Dn ≤ ω(s, t) :=

∫ t

s

A(r) dr(31)

for all 0 ≤ s ≤ t ≤ T by (19). Using (27), (29)(i), and (31), we can apply Theorem
3.5 and obtain an absolutely continuous curve u : [0, T ] → S as well as a further

subsequence (not relabeled) such that un(t)
σ→ u(t) for all t ∈ [0, T ]. Moreover,

recalling (26) we get D(u(s), u(t)) ≤
∫ t
s
A(r) dr, which gives |u′| ≤ A. By (28) we get

|∂φ|D(u(t)) ≤ lim inf
n→∞

|∂φn|Dn(un(t)), φ(u(t)) ≤ lim inf
n→∞

φn(un(t))

for t ∈ [0, T ]. This together with the fact that |u′n|Dn ⇀ A weakly in L2((0, T )) and
|u′| ≤ A gives

1

2

∫ t

0

|u′|2D(s) ds+
1

2

∫ t

0

|∂φ|2D(u(s)) ds+ φ(u(t))

≤ 1

2

∫ t

0

A2(s) ds+
1

2

∫ t

0

lim inf
n→∞

|∂φn|2Dn(un(s)) ds+ lim inf
n→∞

φn(un(t))

≤ lim inf
n→∞

(
1

2

∫ t

0

|u′n|2Dn(s) ds+
1

2

∫ t

0

|∂φn|2Dn(un(s)) ds+ φn(un(t))

)
for all t ∈ [0, T ], where in the second step we used Fatou’s lemma. Using (29)(ii),
(30), and ū = u(0) we get

1

2

∫ t

0

|u′|2D(s) ds+
1

2

∫ t

0

|∂φ|2D(u(s)) ds+ φ(u(t)) ≤ lim inf
n→∞

φn(un(0)) = φ(u(0)).

On the other hand, as |∂φ|D is a strong upper gradient for φ with respect to D, we
obtain (recall Definition 3.1)

φ(u(0)) ≤ φ(u(t)) +

∫ t

0

|∂φ|D(u(s))|u′|D(s) ds.
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Therefore, combining the previous estimates and using Young’s inequality we derive

|u′|D(t) = |∂φ|D(u(t)), φ(u(0))− φ(u(t)) =

∫ t

0

|∂φ|D(u(s))|u′|D(s) ds

for a.e. t ∈ [0, T ] and limn→∞ φn(un(t)) = φ(u(t)) for all t ∈ [0, T ]. It follows that u
is absolutely continuous, and for a.e. t ∈ [0, T ] we have

d

dt
φ(u(t)) = −|∂φ|D(u(t))|u′|D(t).

This concludes the proof.

We now study discrete solutions along the sequence of functionals (φn)n.

Theorem 3.7. Consider a set S , metrics (Dn)n∈N, and functionals φn : S →
[0,∞), n ∈ N, as well as D and φ : S → [0,∞). Suppose that there is a weaker
topology σ on S such that (26), (27), and the implication (28) hold. Moreover,
assume that |∂φ|D is a strong upper gradient for φ with respect to D.

Let T > 0. Consider a null sequence (τk)k and initial data (U0
τk

)k, ū with

supk Dk(U0
τk
, ū) < +∞, U0

τk

σ→ ū, φk(U0
τk

)→ φ(ū).

Then for each sequence of discrete solutions (Ũτk)k starting from (U0
τk

)k there is a
curve u of maximal slope for φ with respect to |∂φ|D such that up to a subsequence,

not relabeled, Ũτk(t)
σ→ u(t) and φk(Ũτk(t))→ φ(u(t)) for t ∈ [0, T ].

For the proof we refer to [25, section 2]. Let us also mention the recently obtained
variant [10] where, similarly to [13], the lower semicontinuity along the sequence (φn)n
(see (28)) is replaced by a continuity condition. Note that in their setting it is not
necessary to require that |∂φ|D is a strong upper gradient.

4. Properties of energies and dissipation distances. In this section we
prove several properties about the energies and dissipation distances. Let δ > 0 and
0 < α < 1 and recall the definition of the nonlinear energy in (6)–(8) as well as (11).
We recall that SM

δ = {y ∈ W 2,p
id (Ω) : φδ(y) ≤ M}. In the whole section, C ≥ 1 and

0 < c ≤ 1 indicate generic constants, which may vary from line to line and depend on
M , Ω, the exponent p > d (see (8)), and on the constants in (7), (8), and (11), but
are always independent of the small parameter δ.

4.1. Basic properties. We start with some properties about the Hessian of
W and D. By ∂2D2 we denote the Hessian and by ∂2

F 2
1
D2, ∂2

F 2
2
D2 the Hessian in

the direction of the first or second entry of D2, respectively. Moreover, we define

sym(F ) = F+F>

2 for F ∈ Rd×d and recall the definition of CW ,CD in (15). By
Id ∈ Rd×d we again denote the identity matrix.

Lemma 4.1 (properties of the Hessian). Let F1, F2 ∈ Rd×d and Y ∈ Rd×d in a
neighborhood of Id such that ∂2D2(Y, Y ) exists.

(i) We have ∂2D2(Y, Y )[(F1, F2), (F1, F2)] = ∂2
F 2

1
D2(Y, Y )[F1 − F2, F1 − F2] =

∂2
F 2

2
D2(Y, Y )[F1 − F2, F1 − F2].

(ii) We have ∂2D2(Id, Id)[(F1, F2), (F1, F2)] = CD[sym(F1 − F2), sym(F1 − F2)].
(iii) There is a constant c > 0 independent of F such that CW [F, F ] ≥ c|sym(F )|2,

CD[F, F ] ≥ c|sym(F )|2.
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Proof. (i) Set H = ∂2D2(Y, Y ) for brevity. By symmetry (11)(ii) we find two
fourth order tensors H1, H2 : Rd×d × Rd×d → R such that H[(F1, F2), (F1, F2)] =
H1[F1, F1] + 2H2[F1, F2] + H1[F2, F2] and H2[F1, F2] = H2[F2, F1]. Note that H1 =
∂2
F 2

1
D2(Y, Y ) = ∂2

F 2
2
D2(Y, Y ). As D(F, F ) = 0 for all F ∈ GL+(d), we get that

H[(F, F ), (F, F )] = 0 for all F ∈ Rd×d. Thus, we obtain H1[F, F ] = −H2[F, F ] for all
F ∈ Rd×d, and we compute

H1[F1 − F2,F1 − F2]

= −H2[F1 − F2, F1 − F2] = −H2[F1, F1] + 2H2[F1, F2]−H2[F2, F2]

= H1[F1, F1] + 2H2[F1, F2] +H1[F2, F2] = H[(F1, F2), (F1, F2)].

Property (ii) follows from frame indifference (11)(v) by an elementary computation.
Finally, the growth condition for CW and CD stated in (iii) follow from (7)(iii) and
(11)(vi), respectively.

In the following, by id we again denote the identity function.

Lemma 4.2 (rigidity). There is constant C > 1 independent of δ such that for δ
sufficiently small for all y ∈ SM

δ we have
(i) ‖y − id‖H1(Ω) ≤ C‖ dist(∇y, SO(d))‖L2(Ω),

(ii) ‖∇y − Id‖L∞(Ω) ≤ Cδα, ‖y − id‖L∞(Ω) ≤ Cδα.

Proof. (i) is a typical geometric rigidity argument, see, e.g., [15, 19]. By [19,
Theorem 3.1] and Poincaré’s inequality we find a rotation Q ∈ SO(d) and b ∈ Rd
such that

‖y − (Q ·+b)‖H1(Ω) ≤ C‖ dist(∇y, SO(d))‖L2(Ω).(32)

Passing to a trace estimate and using y = id on ∂Ω, we get ‖id− (Q ·+b)‖L2(∂Ω) ≤
C‖ dist(∇y, SO(d))‖L2(Ω). Using [15, Lemma 3.3] we then find |b| + |Q − Id| ≤
C‖id− (Q ·+b)‖L2(∂Ω) for a constant only depending on Ω. This together with (32)
implies (i).

We now prove (ii). By the definition of φδ and (8)(iii) we get ‖∇2y‖pLp(Ω) ≤
CMδpα for all y ∈ SM

δ . As p > d, Poincaré’s inequality yields some F ∈ Rd×d and
b ∈ Rd such that

‖y − (F ·+b)‖W 1,∞(Ω) ≤ Cδα(33)

for a constant additionally depending on Ω, M, and p. Using φδ(y) ≤M , (7)(iii), and
(i) we compute

‖(F ·+b)− id‖2H1(Ω) ≤ C‖ dist(∇y, SO(d))‖2L2(Ω) + C|Ω|δ2α ≤ Cδ2M + C|Ω|δ2α.

Since α ≤ 1, this gives |b|+ |F − Id| ≤ Cδα, which together with (33) yields (ii).

In the following we set for shorthand HY := 1
2∂

2
F 2

1
D2(Y, Y ) = 1

2∂
2
F 2

2
D2(Y, Y ) for

Y ∈ GL+(d), and given a deformation y ∈ W 2,p
id (Ω) we also introduce the mapping

H∇y : Ω→ Rd×d×d×d by H∇y(x) = H∇y(x) for x ∈ Ω. Recall the definition of Dδ, D̄0

in (17) and CW below (15).

Lemma 4.3 (dissipation and energy). There are constants 0 < c < 1, C > 1
independent of δ such that for all y, y0, y1 ∈ SM

δ for δ sufficiently small we have
(i)
∣∣δ2Dδ(y0, y1)2 −

∫
Ω
H∇y0 [∇(y1 − y0),∇(y1 − y0)]| ≤ C‖∇(y1 − y0)‖3L3(Ω),
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(ii) c‖y1 − y0‖H1(Ω) ≤ δDδ(y0, y1) ≤ C‖y1 − y0‖H1(Ω),

(iii)
∣∣Dδ(y0, y1)2 − D̄0(u0, u1)2

∣∣ ≤ Cδα,

(iv)
∣∣δ−2

∫
Ω
W (∇y)−

∫
Ω

1
2CW [e(u), e(u)]

∣∣ ≤ Cδα,
where u = δ−1(y − id) and ui = δ−1(yi − id), i = 0, 1. In particular, (ii) shows that
the topologies induced by Dδ and ‖ · ‖H1(Ω) coincide.

Proof. Recall that D2 is C3 in a neighborhood of (Id, Id). In view of the uniform
bound on ∇y0,∇y1 (see Lemma 4.2(ii)) and a Taylor expansion of D2 at (∇y0,∇y0),
we derive by Lemma 4.1∫

Ω

D2(∇y0,∇y1) =

∫
Ω

H∇y0 [∇(y1 − y0),∇(y1 − y0)] +O(‖∇(y1 − y0)‖3L3(Ω)).

This gives (i). We obtain ‖H∇y0 − CD‖L∞(Ω) ≤ Cδα by regularity of D and Lemma
4.2(ii). This together with (i), Lemma 4.2(ii), and Lemma 4.1 yields∫

Ω

D2(∇y0,∇y1) =

∫
Ω

CD[e(y1)− e(y0), e(y1)− e(y0)]

+O(δα‖∇y1 −∇y0‖2L2(Ω)).

(34)

Now by (34), Lemma 4.1(iii), and Korn’s inequality we derive for δ small enough∫
Ω

D2(∇y0,∇y1) ≥ c‖e(y1)− e(y0)‖2L2(Ω) +O(δα‖∇y1 −∇y0‖2L2(Ω))

≥ c‖∇y1 −∇y0‖2L2(Ω).

Here we used that y1−y0 = 0 on ∂Ω. The first inequality in (ii) follows from Poincaré’s
inequality. The other inequality can be seen along similar lines. By Lemma 4.2(i),
(7)(iii), and the fact that y0, y1 ∈ SM

δ we get

‖∇yi − Id‖2L2(Ω) ≤ C‖dist(∇yi, SO(d))‖2L2(Ω) ≤ Cφδ(yi) ≤ CMδ2(35)

for i = 0, 1. Recalling the definition of Dδ, D̄0, we now obtain (iii) by (34).
Finally, to see (iv), an argument very similar to (i), essentially relying on a Taylor

expansion and Lemma 4.3(ii), yields∣∣∣δ−2

∫
Ω

W (∇y)−
∫

Ω

1

2
CW [e(u), e(u)]

∣∣∣ ≤ Cδα−2‖∇y − Id‖2L2(Ω),

which together with (35) implies the claim.

We close this section with proving differentiablity of
∫

Ω
W (∇y).

Lemma 4.4 (differentiablity of
∫

Ω
W (∇y)). For (yn)n ⊂ SM

δ and y ∈ SM
δ with

Dδ(yn, y)→ 0, we have

lim
n→∞

∫
Ω
W (∇yn)−

∫
Ω
W (∇y)−

∫
Ω
∂FW (∇y) : (∇yn −∇y)

Dδ(yn, y)
= 0.

Proof. By a Taylor expansion we find a universal constant C ′ > 0 such that
|W (F2) −W (F1) − ∂FW (F1) : (F2 − F1)| ≤ C ′|F1 − F2|2 for all F1, F2 with |F1 −
Id|, |F2 − Id| ≤ Cδα, where C is the constant in Lemma 4.2(ii). This together with
Lemmas 4.2(ii) and 4.3(ii) gives the result.
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4.2. Metric spaces and convexity. In this section we show that (SM
δ ,Dδ),

(H1
0 (Ω), D̄0) are complete metric spaces and derive convexity properties for the ener-

gies and dissipation distances.

Theorem 4.5 (properties of (SM
δ ,Dδ) and φδ). For δ > 0 small enough we

have the following:
(i) (SM

δ ,Dδ) is a complete metric space.
(ii) Compactness: If (yn)n ⊂ SM

δ , then (yn)n admits a subsequence converging
weakly in W 2,p(Ω), strongly in W 1,∞(Ω), and with respect to Dδ.

(iii) Lower semicontinuity: Dδ(yn, y)→ 0 ⇒ lim infn→∞ φδ(yn) ≥ φδ(y).

Proof. First, recalling (6) and (8)(iii), we have ‖∇2y‖pLp(Ω) ≤ CMδpα for all

y ∈ SM
δ , which together with Lemma 4.2(ii) shows supy∈SM

δ
‖y‖W 2,p(Ω) < ∞. This

implies (ii) recalling p > d and also using Lemma 4.3(ii). In particular, for a sequence
(yn)n converging to y with respect to Dδ we have yn ⇀ y weakly in W 2,p(Ω) and
yn → y strongly in W 1,∞(Ω). Then (iii) follows from Fatou’s lemma and the fact that
lim infn→∞

∫
Ω
P (∇2yn) ≥

∫
Ω
P (∇2y) by (8)(ii).

We now finally show (i). Apart from the positivity, all properties of a metric
follow directly from (11) and (17). To show that if Dδ(y0, y1) = 0 for y0, y1 ∈ SM

δ ,
then y0 = y1, we apply Lemma 4.3(ii). Finally, it remains to show that (SM

δ ,Dδ)
is complete. Let (yk)k be a Cauchy sequence with respect to Dδ. By (ii) we find
y ∈W 2,p(Ω) and a subsequence (not relabeled) such that yk → y in W 1,∞(Ω). Then
also limk→∞Dδ(yk, y) = 0 by Lemma 4.3(ii). By (iii) we get y ∈ SM

δ . The fact that
(yk)k is a Cauchy sequence now implies that the whole sequence yk converges to y
with respect to Dδ. This concludes the proof.

Similar properties can be derived in the linear setting. Recall the definition of D̄0

in (17).

Theorem 4.6 (properties of (H1
0 (Ω), D̄0) and φ̄0). We have the following:

(i) (H1
0 (Ω), D̄0) is a complete metric space.

(ii) Continuity: D̄0(un, u)→ 0 ⇒ limn→∞ φ̄0(un) = φ̄0(u).

Proof. By Lemma 4.1(iii) we find a constant c > 0 such that

D̄0(u0, u1)2 ≥ c‖e(u0)− e(u1)‖2L2(Ω) ≥ ‖u0 − u1‖2H1(Ω),

where the last step follows from Korn’s and Poincaré’s inequality. This show that
(H1

0 (Ω), D̄0) is a complete metric space, where D̄0 is equivalent to the metric induced
by ‖ · ‖H1(Ω). Recalling (16) we find that φ̄0 is continuous with respect to D̄0.

The following properties are crucial to use the theory in [2].

Theorem 4.7 (convexity and generalized geodesics in the nonlinear setting).
There is a constant C ≥ 1 independent of δ such that, for δ small and for all y0, y1 ∈
SM
δ ,

(i) Dδ(ys, y0)2 ≤ s2Dδ(y1, y0)2(1 + C‖∇y1 −∇y0‖L∞(Ω)),

(ii) φδ(ys) ≤ (1− s)φδ(y0) + sφδ(y1),

where ys := (1− s)y0 + sy1, s ∈ [0, 1].

Note that ys is not a geodesic in the sense of [2, Definition 2.4.2], but ys can be
understood as a generalized geodesic. We also refer to [22, sections 3.2 and 3.4] for a
discussion about generalized geodesics in a related setting.
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Proof. Let ys = (1− s)y0 + sy1. By Lemma 4.3(i) we obtain

δ2Dδ(y1, y0)2 ≥
∫

Ω

H∇y0 [∇(y1 − y0),∇(y1 − y0)]− C
∫

Ω

|∇y1 −∇y0|3.

Likewise, we get

δ2Dδ(ys, y0)2 ≤ s2

∫
Ω

H∇y0 [∇(y1 − y0),∇(y1 − y0)] + Cs3

∫
Ω

|∇y1 −∇y0|3.

Combining the two estimates, we therefore obtain

Dδ(ys, y0)2 ≤ s2
(
Dδ(y1, y0)2 + Cδ−2‖∇y1 −∇y0‖3L3(Ω)

)
,

which together with Lemma 4.3(ii) shows (i). To see (ii), it suffices to show that∫
Ω
W (∇ys) ≤ (1 − s)

∫
Ω
W (∇y0) + s

∫
Ω
W (∇y1) since P is convex (see (8)(ii)). A

Taylor expansion gives
∫

Ω
W (∇y) = 1

2

∫
Ω
CW [∇y,∇y]+ω(∇y) for a (regular) function

ω : Rd×d → R with ∂Fω(0) = 0 and ∂2
F 2ω(0) = 0. We get∫

Ω

CW [∇ys,∇ys] = (1− s)
∫

Ω

CW [∇y0,∇y0] + s

∫
Ω

CW [∇y1,∇y1]

− s(1− s)
∫

Ω

CW [∇(y1 − y0),∇(y1 − y0)].

(36)

Denote by B2Cδα(Id) ⊂ Rd×d the ball with center Id and radius 2Cδα with the
constant C from Lemma 4.2(ii). Since F 7→ ω(F ) + 1

2‖∂
2
F 2ω‖L∞(B2Cδα (Id))|F |2 is

convex on B2Cδα(Id), we get by Lemma 4.2(ii)∫
Ω

ω(∇ys) ≤ s
∫

Ω

ω(∇y0) + (1− s)
∫

Ω

ω(∇y1)

+
1

2
s(1− s)‖∂2

F 2ω‖L∞(B2Cδα (Id))

∫
Ω

|∇y1 −∇y0|2.

By the fact that ∂2
F 2w(0) = 0 and the regularity of ω we find ‖∂2

F 2ω‖L∞(B2Cδα (Id)) ≤
Cδα. Combining the previous three estimates and recalling that∫

Ω

W (∇y) =
1

2

∫
Ω

CW [∇y,∇y] + ω(∇y),

we conclude∫
Ω

W (∇ys)− (1− s)
∫

Ω

W (∇y0)− s
∫

Ω

W (∇y1)

≤ −s(1− s)
∫

Ω

CW [∇(y1 − y0),∇(y1 − y0)] +
1

2
s(1− s)Cδα

∫
Ω

|∇(y1 − y0)|2 ≤ 0

for δ small enough, where the last step follows from Lemma 4.1(iii) and Korn’s in-
equality.

We note without proof that by a similar reasoning as in (ii) one can show that
for given w ∈ SM

δ

Dδ(ys, w)2 ≤ (1− s)Dδ(y0, w)2 + sDδ(y1, w)2 − s(1− s)(1− Cδα)Dδ(y1, y0)2.

This implies that Dδ is 2(1−Cδα)-convex in the sense of [2, Assumption 4.0.1]. Note
that this property is not strong enough to apply directly the results in [2, sections 2.4
and 4]. Nevertheless, we will be able to derive representations and lower semicontinu-
ity properties for the slopes by direct computations (see Lemmas 4.9 and 5.3 below.)
However, in the linear setting we obtain 2-convexity, as the following result shows.
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Lemma 4.8 (convexity in the linear setting). For all u0, u1 ∈ H1
0 (Ω) and v ∈

H1
0 (Ω) with us := (1− s)u0 + su1 we have

D̄0(us, v)2 ≤ (1− s)D̄0(u0, v)2 + sD̄0(u1, v)2 − s(1− s)D̄0(u1, u0)2.

Proof. The property follows from an elementary computation as in (36) taking
into account that D̄2

0 is quadratic.

4.3. Properties of local slopes. We now derive representations and properties
of the slopes corresponding to φδ and φ̄0. Recall Definition 3.1.

Lemma 4.9 (slopes). (i) For δ > 0 small enough the local slopes in the nonlinear
setting admit the representation

|∂φδ|Dδ(y) = sup
w 6=y

(φδ(y)− φδ(w))+

Dδ(y, w)(1 + C‖∇y −∇w‖L∞(Ω))1/2
∀y ∈ SM

δ ,

where C is the constant from Theorem 4.7. The slopes are lower semicontinuous with
respect to both H1(Ω) and Dδ and are strong upper gradients for φδ.

(ii) The local slope for the linear energy φ̄0 admits the representation

|∂φ̄0|D̄0
(u) = sup

v 6=u

(φ̄0(u)− φ̄0(v))+

D̄0(u, v)

and is a strong upper gradient for φ̄0.

Proof. Before we start with the actual proof, let us recall from [2, Lemma 1.2.5]
that in a complete metric space (S ,D) with energy φ one has that |∂φ|D is a weak
upper gradient for φ in the sense of [2, Definition 1.2.2]. We do not repeat the
definition of weak upper gradients but only mention that weak upper gradients are
also strong upper gradients if for each absolutely continuous curve z : (a, b) → S
with |∂φ|D(z)|z′|D ∈ L1(a, b), the function φ ◦ z is absolutely continuous.

Moreover, [2, Lemma 1.2.5] also states that if φ is D-lower semicontinuous, then
the global slope

Sφ(v) := sup
w 6=v

(φ(v)− φ(w))+

D(v, w)
(37)

is a strong (and thus also weak) upper gradient for φ.
We now give the proof of (i). We partially follow the proofs of Theorem 2.4.9

and Corollary 2.4.10 in [2]. To confirm the representation of |∂φδ|Dδ , we use the
definition of the local slope in Definition 3.1 and obtain, with C being the constant
from Theorem 4.7(i),

|∂φδ|Dδ(y) = lim sup
w→y

(φδ(y)− φδ(w))+

Dδ(y, w)
= lim sup

w→y

(φδ(y)− φδ(w))+

Dδ(y, w)(1 + C‖∇y −∇w‖∞)1/2

≤ sup
w 6=y

(φδ(y)− φδ(w))+

Dδ(y, w)(1 + C‖∇y −∇w‖∞)1/2
,

where in the second equality we used that w → y (with respect to Dδ) implies ‖∇w−
∇y‖L∞(Ω) → 0 by Theorem 4.5(ii). To see the other inequality, it is not restrictive to
suppose that y 6= w and

φδ(y)− φδ(w) > 0.(38)
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By Theorem 4.7(ii) with y0 = y and y1 = w we get

φδ(y)− φδ(ys)
Dδ(y, ys)

≥ φδ(y)− φδ(w)

Dδ(y, w)

sDδ(y, w)

Dδ(y, ys)

for all s ∈ [0, 1], where ys = (1 − s)y + sw. Then we derive by (38) and Theorem
4.7(i)

|∂φδ|Dδ(y) ≥ φδ(y)− φδ(w)

Dδ(y, w)(1 + C‖∇y −∇w‖∞)1/2
.

The claim now follows by taking the supremum with respect to w. To confirm the
lower semicontinuity, we consider yh → y in Dδ or equivalently in H1(Ω) (see Lemma
4.3(ii)). If w 6= y, then w 6= yh for h large enough, and thus

lim inf
h→∞

|∂φδ|Dδ(yh) ≥ lim inf
h→∞

(φδ(yh)− φδ(w))+

Dδ(yh, w)(1 + C‖∇yh −∇w‖∞)1/2

≥ (φδ(y)− φδ(w))+

Dδ(y, w)(1 + C‖∇y −∇w‖∞)1/2
,

where we used Theorem 4.5(ii),(iii). By taking the supremum with respect to w the
lower semicontinuity follows.

It remains to show that |∂φδ|Dδ is a strong upper gradient. With Lemma 4.2(ii),
for δ small enough we find Sφδ(y) ≤ 2|∂φδ|Dδ(y) with Sφδ as introduced in (37).
Recalling the remarks at the beginning of the proof, to show that |∂φδ|Dδ is a strong
upper gradient we have to check that for all absolutely continuous z : (a, b) → SM

δ

with |∂φδ|Dδ(z)|z′|Dδ ∈ L1(a, b), the function φδ ◦ z is absolutely continuous. First, it
follows Sφδ(z)|z′|Dδ ∈ L1(a, b) as Sφδ ≤ 2|∂φδ|Dδ . Since φδ is Dδ-lower semicontinous,
Sφδ is a strong upper gradient. Thus, we indeed get that φδ◦z is absolutely continuous;
see Definition 3.1.

We now concern ourselves with (ii). The representation of the local slope fol-
lows from the convexity property in Lemma 4.8 as was shown in [2, Theorem 2.4.9].
Therefore, Sφ̄0

= |∂φ̄0|D̄0
, which is D̄0 lower semicontinous by Lemma 4.6(ii), and

thus |∂φ̄0|D̄0
is a strong upper gradient.

5. Proof of the main results. In this section we give the proof of Theorems
2.1–2.3.

5.1. Existence of curves of maximal slope. In this section we prove the
first two parts of Theorems 2.1 and 2.2, which essentially follow from the properties
of the metric spaces established in sections 4.2 and 4.3 by applying the general results
recalled in section 3.2.

Proof of Theorem 2.1(i),(ii). First, we note that the assumptions of Theorem 3.3
are satisfied by Lemmas 4.9(i) and 4.5(ii),(iii), where we let S = SM

δ and let σ be
the topology induced by Dδ.

(i) Fix y0 ∈ SM
δ . Define the initial data U0

τ = y0 for all τ > 0. Applying
Theorem 3.3(i) we find a curve y which is the limit of a sequence of discrete solutions
with y(0) = y0. Thus, in view of Definition 3.2, y ∈ GMM(Φδ; y0), which is therefore
nonempty.

(ii) To see that generalized minimizing movements are curves of maximal slope,
it suffices to apply Theorem 3.3(ii).



4446 MANUEL FRIEDRICH AND MARTIN KRUŽÍK

Proof of Theorem 2.2(i),(ii). In the linear setting the convexity property given in
Lemma 4.8 holds, and φ̄0 is convex by (16) and Lemma 4.1(iii). Thus, Theorem 3.4
is applicable. Apart from uniqueness, the result then follows from Theorem 3.4. It
remains to show that the unique minimizing movement is also the unique curve of
maximal slope for φ̄0 with respect to the strong upper gradient |∂φ̄0|D̄0

. To this end,
we follow an idea used, e.g., in [20].

We first observe that the metric derivative |u′|2D̄0
is convex. Indeed, let u1, u2 :

[0,∞) → H1
0 (Ω) be two curves. We get for u3 = 1

2 (u1 + u2) by Young’s inequality
(define vi = ui(s)− ui(t), i = 1, 2, for brevity)

D̄0(u3(s), u3(t))2 =

∫
Ω

CD[e((v1 + v2)/2), e((v1 + v2)/2)]

=
∑

i=1,2

1

4

∫
Ω

CD[e(vi), e(vi)] +
1

2

∫
Ω

CD[e(v1), e(v2)]

≤
∑

i=1,2

1

2

∫
Ω

CD[e(vi), e(vi)] =
1

2
D̄0(u1(s), u1(t))2 +

1

2
D̄0(u2(s), u2(t))2.

Dividing by |s− t|2 and letting s go to t we obtain the claim. We also anticipate from
Lemma 5.4 below that u 7→ |∂φ̄0|2D̄0

(u) is convex.

Assume there were two different curves of maximal slope u1, u2 starting from
u0; i.e., we find some T such that e(u1(T )) 6= e(u2(T )) since otherwise the curves
would coincide by Korn’s inequality. Set u3 = 1

2 (u1 + u2), and compute by the strict
convexity of CW on Rd×dsym (see Lemma 4.1(iii)), the convexity properties of the slope
and metric derivative, and (25)

φ̄0(u0) =
1

2

∑
i=1,2

(
1

2

∫ T

0

|(ui)′|2D̄0
(t) dt+

1

2

∫ T

0

|∂φ̄0|2D̄0
(ui(t)) dt+ φ̄0(ui(T ))

)

>
1

2

∫ T

0

|(u3)′|2D̄0
(t) dt+

1

2

∫ T

0

|∂φ̄0|2D̄0
(u3(t)) dt+ φ̄0(u3(T )),

which contradicts the fact that |∂φ̄0|D̄0
is an upper gradient (see Definition 3.1(i), and

use Young’s inequality). This contradiction establishes uniqueness and concludes the
proof.

5.2. Γ-convergence and lower semicontinuity. As a preparation for the pas-
sage to the linear problem, we recall and prove Γ-convergence results for the energies
and lower semicontinuity for the slopes. In the following it is convenient to express
all quantities in terms of the linear setting. To this end, recalling (6) and (17), for
u, v ∈W 2,p

0 (Ω) and τ, δ > 0 we define

φ̄δ(u) = φδ(id + δu), φ̄δ,P (u) = δ−pα
∫

Ω

P (δ∇2u), φ̄δ,W (u) = φ̄δ(u)− φ̄δ,P (u),

D̄δ(u, v) = Dδ(id + δu, id + δv), Φ̄δ(τ, v;u) = φ̄δ(u) +
1

2τ
D̄δ(u, v)2,

|∂φ̄δ|D̄δ(u) = |∂φδ|Dδ(id + δu).

We extend φ̄δ to a functional defined on H1
0 (Ω) by setting φ̄δ(u) = +∞ for u ∈

H1
0 (Ω)\W 2,p

0 (Ω). Likewise, we extend Φ̄δ. Moreover, we say u ∈ S̄M
δ if id+δu ∈ SM

δ .
We obtain the following Γ-convergence results. (For an exhaustive treatment of Γ-
convergence we refer the reader to [14].)
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Theorem 5.1 (Γ-convergence). Let (δn)n be a null sequence.
(i) The functionals φ̄δn : H1

0 (Ω) → [0,∞] Γ-converge to φ̄0 in the weak H1(Ω)-
topology.

(ii) For each τ > 0, M > 0, and each sequence (v̄n)n with v̄n ∈ S̄M
δn

and v̄n →
v̄ strongly in H1(Ω), the functionals Φ̄δn(τ, v̄n; ·) : H1

0 (Ω) → [0,∞] Γ-converge to
Φ̄0(τ, v̄; ·) in the weak H1(Ω)-topology.

Proof. (i) The result is essentially proved in [15], and we only give a short sketch
highlighting the relevant adaptions. Since φ̄δn,P ≥ 0, for the lower bound it suffices
to prove lim infn→∞ φ̄δn,W (un) ≥ φ̄0(u) whenever un ⇀ u weakly in H1(Ω). This
was proved under more general assumptions in [15, Proposition 4.4]. In our setting
it follows readily by using Lemma 4.3(iv) and the lower semicontinuity of φ̄0 (see
Lemma 4.1(iii)).

By a general approximation argument in the theory of Γ-convergence it suffices
to establish the upper bound for smooth functions u; cf. [15, Proposition 4.1]. For
such a function, setting un = u, we find limn φ̄δn,W (un) = φ̄0(u) (see Lemma 4.3(iv)
or [15, Proposition 4.1]), and moreover it is not hard to see that φ̄δn,P (un) → 0 by
the growth of P and the fact that α < 1. This concludes the proof of (i).

(ii) We first suppose that the sequence (v̄n)n is constantly v̄. Then Φ̄δn(τ, v̄; ·)
Γ-converges to Φ̄0(τ, v̄; ·) repeating exactly the proof of (i), where, in addition to
Lemma 4.3(iv), we also use Lemma 4.3(iii). To obtain the general case, it now suffices
to prove that for every sequence (un)n uniformly bounded in H1

0 (Ω) and un ∈ S̄M
δn

for some M large enough we obtain

limn→∞ |D̄δn(un, v̄n)2 − D̄δn(un, v̄)2| = 0.

In view of Lemma 4.3(iii), it suffices to show limn→∞ |D̄0(un, v̄n)2 − D̄0(un, v̄)2| = 0.
To this end, we note that (recall (17))

D̄0(un, v̄n)2 − D̄0(un, v̄)2 =

∫
Ω

CD[∇v̄n,∇v̄n]−
∫

Ω

CD[∇v̄,∇v̄]

− 2

∫
Ω

CD[∇un,∇v̄n −∇v̄],

which by the assumption on (v̄n)n and (un)n converges to zero.

We remark that by a general result in the theory of Γ-convergence we get that
(almost) minimizers associated to the sequence of functionals converge to minimizers
of the limiting functional. We obtain the following strong convergence result for
recovery sequences which in various settings has been derived in, e.g., [15, 18, 29].

Lemma 5.2 (strong convergence of recovery sequences). Suppose that the as-
sumptions of Theorem 5.1 hold. Let M > 0, and let (un)n be a sequence with
un ∈ S̄M

δn
. Let u ∈ H1

0 (Ω) such that un ⇀ u weakly in H1(Ω) and

(i) φ̄δn(un)→ φ̄0(u) or (ii) Φ̄δn(τ, v̄n;un)→ Φ̄0(τ, v̄;u).

Then un → u strongly in H1(Ω).

Proof. If φ̄δn(un)→ φ̄0(u), we find φ̄0(un)→ φ̄0(u) by Lemma 4.3(iv), and thus
by Lemma 4.1(iii)

‖e(un − u)‖2L2(Ω) ≤ C
∫

Ω

CW [e(un − u), e(un − u)]

= C

(∫
Ω

CW [e(un), e(un)] +

∫
Ω

CW [e(u), e(u)]− 2

∫
Ω

CW [e(un), e(u)]

)
→ 0



4448 MANUEL FRIEDRICH AND MARTIN KRUŽÍK

as n → ∞. The assertion of (i) follows from Korn’s inequality. The proof of (ii) is
similar, where one additionally takes Lemma 4.3(iii) into account.

We close this section with a lower semicontinuity result for the slopes.

Lemma 5.3 (lower semicontinuity of slopes). For each sequence (un)n ⊂ S̄M
δn

with un ⇀ u weakly in H1(Ω) we have lim infn→∞ |∂φ̄δn |D̄δn (un) ≥ |∂φ̄0|D̄0
(u).

Proof. For ε > 0 fix u′ ∈ C∞c (Ω;Rd) with ‖u′−u‖H1(Ω) ≤ ε. Fix v ∈ C∞c (Ω;Rd),
v 6= u′, u. We first note that with wn := un − u′ + v we have by Lemma 4.9(i)

|∂φ̄δn |D̄δn (un) = sup
w 6=un

(φ̄δn(un)− φ̄δn(w))+

D̄δn(un, w)(1 + C‖Id + δn∇un − (Id + δn∇w)‖L∞(Ω))1/2

≥ (φ̄δn(un)− φ̄δn(wn))+

D̄δn(un, wn)(1 + Cvδn)1/2
,

where Cv is a constant depending also on v and u′. Note that, since u′, v are smooth,
we indeed get wn = un − u′ + v ∈ S̄M

δn
for n large enough for some possibly larger

M > 0. Consequently, by Lemma 4.3(iii),(iv) we get

lim inf
n→∞

|∂φ̄δn |D̄δn (un) ≥ lim inf
n→∞

(φ̄0(un)− φ̄0(wn) + φ̄δn,P (un)− φ̄δn,P (wn))+

D̄0(un, wn)
.(39)

Recalling (16) (for f ≡ 0) we obtain by a direct computation

lim
n→∞

(
φ̄0(un)− φ̄0(un − u′ + v)

)
= lim
n→∞

(
−φ̄0(v − u′)− 2

∫
Ω

CW [e(un), e(v − u′)]
)(40)

= −φ̄0(v − u′)− 2

∫
Ω

CW [e(u), e(v − u′)]

= φ̄0(u)− φ̄0(v)− φ̄0(u′ − u) + 2

∫
Ω

CW [e(u′ − u), e(v)].

Moreover, by convexity of P and the definition wn := un − u′ + v we find

φ̄δn,P (un)− φ̄δn,P (un − u′ + v) ≥ δ−pαn

∫
Ω

∂GP (δn∇2wn) : δn(∇2u′ −∇2v),(41)

which vanishes as n → ∞ by (8)(iii), Hölder’s inequality, 1 + α(p − 1) − αp > 0,
and the fact that ‖δn∇2wn‖pLp(Ω) ≤ CMδpαn . (The latter follows from wn ∈ S̄M

δn
.)

Combining (39)–(41), using D̄0(un, wn) = D̄0(v, u′), and recalling un ⇀ u, we get
after some calculations

lim inf
n→∞

|∂φ̄δn |D̄δn (un) ≥
(φ̄0(u)− φ̄0(v)− φ̄0(u′ − u) + 2

∫
Ω
CW [e(u′ − u), e(v)])+

D̄0(v, u′)

≥ (φ̄0(u)− φ̄0(v))+

D̄0(v, u)
− Cε

for some C > 0 depending only on u, u′, and v. Letting first ε → 0 and taking then
the supremum with respect to v we get

lim inf
n→∞

|∂φ̄δn |D̄δn (un) ≥ sup
v∈C∞c (Ω),v 6=u

(φ̄0(u)− φ̄0(v))+

D̄0(v, u)
.

In view of Lemma 4.9(ii), the claim now follows by approximating each v ∈ H1
0 (Ω)

by a sequence of smooth functions noting that the right-hand side is continuous with
respect to H1(Ω)-convergence.
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5.3. Passage from nonlinear to linear viscoelasticity. In this section we
now give the proof of Theorem 2.3. For the whole section we fix a null sequence (δk)k
and sequence of initial data (yk0 )k∈N ⊂W 2,p

id (Ω) such that δ−1
k (yk0−id)→ u0 ∈ H1

0 (Ω).
Moreover, we fix M > 0 so large that yk0 ∈ SM

δk
for k ∈ N.

Proof of Theorem 2.3(i). Let τ > 0, and let Ỹ δkτ as in (21) be a discrete solution.
For each k ∈ N we then have the sequence (Unk )n∈N with Unk = δ−1

k (Ỹ δkτ (nτ)− id) ∈
S̄M
δk

for n ∈ N. We need to show that there exists a sequence (Un0 )n∈N with U0
0 = u0

such that

(i) Un0 = argminv∈H1
0 (Ω)Φ̄0(τ, Un−1

0 ; v), (ii) Unk → Un0 strongly in H1(Ω)

for all n ∈ N. We show this property by induction.
Suppose (U i0)ni=0 have been found such that the above properties hold. In partic-

ular, we note that (ii) holds for n = 0 by assumption. We now pass from step n to
n+ 1.

As Unk → Un0 strongly in H1(Ω) and thus by Theorem 5.1(ii) Φ̄δk(τ, Unk ; ·) Γ-
converges to Φ̄0(τ, Un0 ; ·), we derive by properties of Γ-convergence that the (unique)
minimizer of Φ̄0(τ, Un0 ; ·), denoted by Un+1

0 , is the limit of minimizers of Φ̄δk(τ, Unk ; ·).
Consequently, we obtain Un+1

k ⇀ Un+1
0 weakly in H1(Ω) and Φ̄δk(τ, Unk ;Un+1

k ) →
Φ̄0(τ, Un0 ;Un+1

0 ). Thus, Lemma 5.2 implies that the sequence even converges strongly
in H1(Ω). This concludes the induction step.

In the following let u be the unique element of MM(Φ̄0;u0).

Proof of Theorem 2.3(ii). We let σ be the weak H1(Ω)-topology. We consider the
sequence of metrics Dk = D̄δk on H1

0 (Ω) and the functionals φk = φ̄δk as well as the
limiting objects D̄0 and φ̄0. We note that (26) is satisfied due to Lemma 4.3(iii) and
the fact that D̄0 is quadratic and convex (see Lemma 4.1(iii)). Moreover, (28) is also
satisfied by the Γ-liminf inequality in Lemmas 5.1(i) and 5.3.

Finally, (27) holds also. In fact, by the rigidity estimate in Lemma 4.2(i) and (6),
(7)(iii) we find for all k ∈ N and u ∈ S̄M

δk
letting y = id + δku

‖u‖2H1(Ω) = δ−2
k ‖y − id‖2H1(Ω) ≤ Cδ

−2
k ‖ dist(∇y, SO(d))‖2L2(Ω)

≤ Cδ−2
k φδk(y) ≤ CM.

(42)

Now consider a sequence (yk)k of generalized minimizing movements starting
from yk0 with δ−1

k (yk0 − id) → u0 in H1(Ω). For convenience we also introduce the
curves uk = δ−1

k (yk − id). Fix M > 0 so large that yk0 ∈ SM
δk

for k ∈ N. As

φ̄δk(uk(t)) ≤ φδk(y0
k) for all t ≥ 0, we get supk supt(φδk(uk(t)) + Dk(uk(t), u0)) < ∞

by (42) and Lemma 4.3(iii).
Consequently, (29)(i) also holds, and (29)(ii) is satisfied by the assumption on the

initial data and Lemma 4.3(iv). Since the slopes are strong upper gradients by Lemma
4.9, we can apply Theorem 3.6, and the existence of a limiting curve of maximal slope
follows. As this curve is uniquely given by u (see Theorem 2.2(ii)), we indeed obtain
uk(t) ⇀ u(t) weakly in H1(Ω) for all t ∈ [0,∞) up to a subsequence. Since the limit
is unique, we see that the whole sequence converges to u by Urysohn’s subsequence
principle.

It remains to observe that the convergence is actually strong. This follows from
the fact that limk→∞ φ̄δk(uk(t)) = φ̄0(u(t)) for all t ∈ [0,∞) (see Theorem 3.6) and
Lemma 5.2.
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Proof of Theorem 2.3(iii). Proceeding as in the previous proof, we see that all
assumptions of Theorem 3.7 are satisfied. Therefore, we get that for any sequence
of discrete solutions there is a subsequence converging pointwise weakly in H1(Ω)
to a curve of maximal slope for φ̄0 which can again be identified as u. The strong
convergence as well as the convergence of the whole sequence follow exactly as in the
previous proof.

5.4. Fine representation of the slopes and solutions to the equations.
In this section we derive fine representations for the slopes which will allow us to
relate curves of maximal slope with solutions to (13) and (15).

Recall that CD as defined in (15) is a fourth order symmetric tensor inducing a
quadratic form (F1, F2) 7→ CD[F1, F2] which is positive definite on Rd×dsym (cf. Lemma

4.1). Moreover, it maps Rd×d to Rd×dsym , denoted by F 7→ CDF in the following. More

precisely, the mapping F 7→ CDF from Rd×dsym to Rd×dsym is bijective. By
√
CD we denote

its (unique) root and by
√
CD
−1

the inverse of
√
CD, both mappings defined on Rd×dsym .

We start with a fine representation of the slope in the linear setting.

Lemma 5.4 (slope in the linear setting). There exists a linear differential oper-
ator L0 : H1

0 (Ω;Rd)→ L2(Ω;Rd×dsym) satisfying divL0(u) = 0 in H−1(Ω;Rd) such that
for all u ∈ H1

0 (Ω) we have

|∂φ̄0|D̄0
(u) = ‖

√
CD
−1(

CW e(u) + L0(u)
)
‖L2(Ω).

Particularly, we note that |∂φ̄0|2D̄0
is convex on H1

0 (Ω).

Proof. Recalling (16) (for f ≡ 0), (17), Definition 3.1(ii), and Lemma 4.1, we
have

|∂φ̄0|D̄0
(u) = lim sup

v→u

(φ̄0(u)− φ̄0(v))+

D̄0(u, v)
(43)

= lim sup
v→u

(∫
Ω
CW [e(u), e(u− v)]− 1

2CW [e(v − u), e(v − u)]
)+

(
∫

Ω
CD[e(u− v), e(u− v)])1/2

= lim sup
v→u

∫
Ω
CW [e(u), e(u− v)]

‖
√
CDe(u− v)‖L2(Ω)

= sup
w 6=0

∫
Ω
CW [e(u), e(w)]

‖
√
CDe(w)‖L2(Ω)

,

where in the second step we used
∫

Ω
CW [e(v− u), e(v− u)]/‖

√
CDe(u− v)‖L2(Ω) → 0

as v → u. Let w̄ be the unique solution to the minimization problem

min
v∈H1

0 (Ω)

∫
Ω

(
1

2
|
√
CDe(v)|2 −

∫
Ω

CW [e(u), e(v)]

)
.

Clearly, w̄ necessarily satisfies∫
Ω

(√
CDe(w̄) :

√
CDe(ϕ)− CW [e(u), e(ϕ)]

)
= 0

for all ϕ ∈ H1
0 (Ω). This condition can also be formulated as

L0(u) : e(ϕ) = 0 ∀ϕ ∈ H1
0 (Ω), where L0(u) := CDe(w̄)− CW e(u).(44)

As the solution w̄ depends linearly on u, we also get that L0 is a linear operator. By
(43) and the property of L0 we now find
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|∂φ̄0|D̄0
(u) = sup

w 6=0

∫
Ω

(CW e(u) + L0(u)) : e(w)

‖
√
CDe(w)‖L2(Ω)

= sup
w 6=0

∫
Ω

(√
CD
−1

(CW e(u) + L0(u))
)

:
√
CDe(w)

‖
√
CDe(w)‖L2(Ω)

≤ ‖
√
CD
−1

(CW e(u) + L0(u))‖L2(Ω),

where in the last step we used the Cauchy–Schwarz inequality. On the other hand,
by definition of L0 in (44), we get

|∂φ̄0|D̄0
(u) ≥

∫
Ω

(√
CD
−1

(CW e(u) + L0(u))
)

:
√
CDe(w̄)

‖
√
CDe(w̄)‖L2(Ω)

= ‖
√

CDe(w̄)‖L2(Ω) = ‖
√
CD
−1

(CW e(u) + L0(u))‖L2(Ω).

This concludes the proof.

Recall the definition of the symmetric fourth order tensor HY = 1
2∂

2
F 2

1
D2(Y, Y )

for Y ∈ GL+(d) (see before Lemma 4.3). Let Y ∈ Rd×d be in a small neighborhood
of Id such that Y −1 exists. Similarly to the discussion before Lemma 5.4, we get that
HY induces a bijective mapping from Y −>Rd×dsym to Y Rd×dsym by using frame indifference

(11)(v) and the growth assumption (11)(vi). We then introduce
√
HY as a bijective

mapping from Y −>Rd×dsym to Y Rd×dsym . In a similar fashion, we introduce the inverse
√
HY
−1

.
For a given deformation y : Ω → Rd we introduce a mapping H∇y : Ω →

Rd×d×d×d by H∇y(x) = H∇y(x) for x ∈ Ω. We note by Lemma 4.2(ii), the fact
that D ∈ C3, and a continuity argument that∥∥∥√HId −

√
H∇y

∥∥∥
L∞(Ω)

≤ Cδα(45)

for all y ∈ SM
δ for a sufficiently large constant C > 0. Moreover, recall the definition

of the operator LP : {∇2u : u ∈ W 2,p
id (Ω)} → W−1, p

p−1 (Ω;Rd×d) in (12). We write
β = δ2−αp in the following for convenience. Note that

∫
Ω
∂GP (∇2y) : ∇2ϕ = LP (y) :

∇ϕ for all y ∈ W 2,p
id (Ω) and ϕ ∈ W 2,p

0 (Ω), where the boundary term vanishes due to
∇ϕ = 0 on ∂Ω. We now obtain the following result.

Lemma 5.5 (slope in the nonlinear setting). There exists a differential oper-
ator L∗P : {y ∈ W 2,p

id (Ω) : divLP (∇2y) ∈ H−1(Ω;Rd)} → L2(Ω;Rd×d) satisfying
divL∗P (y) = divLP (∇2y) in H−1(Ω;Rd) such that for δ > 0 small enough and for all
y ∈ SM

δ we have

|∂φδ|Dδ(y) =

{
1
δ ‖
√
H∇y

−1(
∂FW (∇y) + βL∗P (y)

)
‖L2(Ω) if divLP (∇2y) ∈ H−1(Ω),

+∞ else.

Remark 5.6. We remark that the expression is well defined in the following sense:
if∇y(x) = Y (x) in the above notation, then we indeed have ∂FW (∇y(x))+βL∗P (y(x))
∈ Y (x)Rd×dsym for a.e. x ∈ Ω.

Proof. We prove the lower bond (i) first in the case divLP (∇2y) ∈ H−1(Ω) and
(ii) afterwards if divLP (∇2y) /∈ H−1(Ω). Finally, (iii) we establish the upper bound.
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(i) Suppose that divLP (∇2y) ∈ H−1(Ω). Consider the minimization problem

min
w∈H1

0 (Ω)

∫
Ω

(
1

2
|
√
H∇y∇w|2 − (∂FW (∇y) + βLP (∇2y)

)
: ∇w.

By (45), the fact that
√
HId =

√
CD, Lemma 4.1(iii), and Korn’s inequality we have

‖
√
H∇y∇w‖2L2(Ω) ≥ ‖

√
HId∇w‖2L2(Ω) − Cδ

2α‖∇w‖2L2(Ω)

≥ C‖e(w)‖2L2(Ω) − Cδ
2α‖∇w‖2L2(Ω) ≥ C‖∇w‖

2
L2(Ω)

for δ sufficiently small for all w ∈ H1
0 (Ω). Moreover, we have |

∫
Ω
LP (∇2y) : ∇w| ≤

‖divLP (∇2y)‖H−1(Ω)‖w‖H1(Ω) for all w ∈ H1
0 (Ω). Thus, the solution w̄ of the problem

exists, is unique, and satisfies

(∂FW (∇y) + βLP (∇2y)) : ∇ϕ =
√
H∇y∇w̄ :

√
H∇y∇ϕ = H∇y∇w̄ : ∇ϕ

for all ϕ ∈ H1
0 (Ω). Define L∗P (y) := β−1(H∇y∇w̄ − ∂FW (∇y)) and note that

L∗P (y) : ∇ϕ = LP (∇2y) : ∇ϕ ∀ ϕ ∈ H1
0 (Ω)(46)

as well as L∗P (y) ∈ L2(Ω). Moreover, since βL∗P (y) + ∂FW (∇y) = H∇y∇w̄, recalling
the properties of H∇y we see that Remark 5.6 applies. Fix ε > 0, and choose wε ∈
C∞c (Ω;Rd) with ‖w̄ − wε‖H1(Ω) ≤ ε. Letting wn = y − 1

nwε we get by a Taylor
expansion

nδ2(φδ(wn)−φδ(y)) = n

∫
Ω

∂FW (∇y) : (∇wn −∇y) + nO
(
‖∇wn −∇y‖2L2(Ω)

)
+ nβ

∫
Ω

∂GP (∇2y) : (∇2wn −∇2y) + nβO
(
‖∇2wn −∇2y‖2L2(Ω)

)
= −

∫
Ω

∂FW (∇y) : ∇wε − β∂GP (∇2y) : ∇2wε +O(1/n),

where O(1/n) depends on the choice of wε. Similarly, we get by Lemma 4.3(i)

n2δ2Dδ(y, wn)2 = n2

∫
Ω

H∇y[∇(y − wn),∇(y − wn)] + n2O
(
‖∇wn −∇y‖3L3(Ω)

)
= ‖
√
H∇y∇wε‖2L2(Ω) +O(1/n).

For brevity we introduce

Φ(w) =

(∫
Ω

(∂FW (∇y) + βLP (∇2y)) : ∇w
)
‖
√
H∇y∇w‖−1

L2(Ω).

Since Dδ(y, wn)→ 0, we now obtain

δ|∂φδ|Dδ(y) ≥ lim sup
n→∞

δ(φδ(y)− φδ(wn))+

Dδ(y, wn)

≥
∫

Ω
∂FW (∇y) : ∇wε +

∫
Ω
β∂GP (∇2y) : ∇2wε

‖
√
H∇y∇wε‖L2(Ω)

= Φ(wε),

where in the last step we used the definition of LP in (12). Recalling the definition
of L∗P and (46) we now derive
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Φ(w̄)− Φ(wε) + δ|∂φδ|Dδ(y) ≥ Φ(w̄) =

∫
Ω
H∇y∇w̄ : ∇w̄

‖
√
H∇y∇w̄‖L2(Ω)

=

∫
Ω

√
H∇y∇w̄ :

√
H∇y∇w̄

‖
√
H∇y∇w̄‖L2(Ω)

= ‖
√
H∇y∇w̄‖L2(Ω)

= ‖
√
H∇y

−1(
∂FW (∇y) + βL∗P (y)

)
‖L2(Ω).

By definition of wε we get |Φ(w̄)− Φ(wε)| → 0 as ε→ 0 and the lower bound in the
case divLP (∇2y) ∈ H−1(Ω) follows.

(ii) Now suppose that divLP (∇2y) /∈ H−1(Ω). Let (yn)n be a sequence of smooth
functions converging to y in W 2,p(Ω). Then L∗P (yn) is not bounded in L2(Ω). Indeed,
otherwise we would get by the definition of LP , (8)(iii), and (46) that∣∣∣ ∫

Ω

LP (∇2y) : ∇ϕ
∣∣∣ =

∣∣∣ ∫
Ω

∂GP (∇2y) : ∇2ϕ
∣∣∣ = lim

n→∞

∣∣∣ ∫
Ω

∂GP (∇2yn) : ∇2ϕ
∣∣∣

= lim
n→∞

∣∣∣ ∫
Ω

L∗P (yn) : ∇ϕ
∣∣∣ ≤ C‖∇ϕ‖L2(Ω)

for all ϕ ∈ W 2,p
0 (Ω). This, however, contradicts the assumption divLP (∇2y) /∈

H−1(Ω). As energy and dissipation are W 2,p(Ω)-continuous (see (7), (8), and Lemma
4.3(ii)), we find for some fixed ε > 0 and n large enough by Lemma 4.9(i)

ε+ |∂φδ|Dδ(y) ≥ sup
w 6=yn

(φδ(yn)− φδ(w))+

Dδ(yn, w)(1 + C‖∇yn −∇w‖L∞(Ω))1/2
= |∂φδ|Dδ(yn).

By the representation of the slope at yn and the fact that L∗P (yn) is not bounded in
L2(Ω), the right-hand side tends to infinity for n→∞, as desired.

(iii) For the upper bound, we first use Lemmas 4.3(i),(ii) and 4.5(ii) to get

1 = lim
w→v

Dδ(v, w)2

Dδ(v, w)2
≥ lim sup

w→v

‖
√
H∇v∇(w − v)‖2L2(Ω) − C‖∇v −∇w‖

3
L3(Ω)

δ2Dδ(v, w)2

≥ lim sup
w→v

‖
√
H∇v∇(w − v)‖2L2(Ω)

δ2Dδ(v, w)2
− C lim sup

w→v
‖∇v −∇w‖L∞(Ω)

= lim sup
w→v

‖
√
H∇v∇(w − v)‖2L2(Ω)

δ2Dδ(v, w)2
.

This together with Lemma 4.4 and the convexity of P gives

δ|∂φδ|Dδ(y) = lim sup
w→y

δ2(φδ(y)− φδ(w))+

δDδ(y, w)

≤ lim sup
w→y

∫
Ω
∂FW (∇y) : ∇(y − w) +

∫
Ω
β∂GP (∇2y) : ∇2(y − w)

‖
√
H∇y(∇w −∇y)‖L2(Ω)

.

Recalling the definition of LP and using (46) as in the lower bound, we get

δ|∂φδ|Dδ(y) ≤ lim sup
w→y

∫
Ω

(∂FW (∇y) + βL∗P (y)) : ∇(y − w)

‖
√
H∇y(∇w −∇y)‖L2(Ω)

.

Finally, the Cauchy–Schwarz inequality gives

δ|∂φδ|Dδ(y) ≤ lim sup
w→y

∫
Ω

√
H∇y

−1
(∂FW (∇y) + βL∗P (y)) :

√
H∇y∇(y − w)

‖
√
H∇y(∇w −∇y)‖L2(Ω)

≤ ‖
√
H∇y

−1
(∂FW (∇y) + βL∗P (y))‖L2(Ω).
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Finally, following [2, section 1.4] we relate curves of maximal slope with solutions
to (13) and (15). Similar to [2, Corollary 1.4.5], this relies on the fact that the stored
energy can be written as a sum of a convex functional and a C1 functional on H1(Ω).

Proof of Theorem 2.1(iii) and Theorem 2.2(iii). We only give the proof for the
nonlinear equation. The proof for the linear equation is easier and can be seen along
similar lines.

First, the fact that φδ(y(t)) is decreasing in time, together with (6)–(8), gives
y ∈ L∞([0,∞);W 2,p

id (Ω)). Moreover, since |y′|Dδ ∈ L2([0,∞)) by (18) and Dδ is
equivalent to the H1(Ω)-norm (see Lemma 4.3(ii)), we observe that y is an absolutely
continuous curve in the Hilbert space H1(Ω). By [2, Remark 1.1.3] this implies that
y is differentiable for a.e. t with ∂t∇y(t) ∈ L2(Ω) for a.e. t, that

∇y(t)−∇y(s) =

∫ t

s

∂t∇y(r) dr a.e. in Ω ∀ 0 ≤ s < t,(47)

and that y ∈ W 1,2([0,∞);H1(Ω)). More precisely, by Fatou’s lemma and Lemma
4.3(i) we get for a.e. t

|y′|Dδ(t) = lim
s→t

Dδ(y(s), y(t))

|s− t|
= lim
s→t

δ−1

(
δ2Dδ(y(s), y(t))2

|s− t|2

)1/2

≥ δ−1

(∫
Ω

lim inf
s→t

(
H∇y(t)

[
∇y(s)−∇y(t)

|s− t|
,
∇y(s)−∇y(t)

|s− t|

]
+|s− t|−2O(|∇y(t)−∇y(s)|3)

))1/2

= δ−1

(∫
Ω

H∇y(t)[∂t∇y(t), ∂t∇y(t)]

)1/2

= δ−1‖
√
H∇y(t)∂t∇y(t)‖L2(Ω).

(48)

We now determine the derivative d
dtφδ(y(t)) of the absolutely continuous curve φδ ◦y.

Fix t such that lims→t
Dδ(y(s),y(t))
|s−t| exists, which holds for a.e. t. Then by Lemma 4.4

we find

lim
s→∞

∫
Ω
W (∇y(s))−

∫
Ω
W (∇y(t))−

∫
Ω
∂FW (∇y(t)) : (∇y(s)−∇y(t))

s− t
= 0.

The previous estimate together with the convexity of P yields

d

dt
φδ(y(t)) = lim

s→t

φδ(y(s))− φδ(y(t))

s− t

≥ lim inf
s→t

1

δ2(s− t)

∫
Ω

(
∂FW (∇y(t)) : (∇y(s)−∇y(t))

+ β∂GP (∇2y(t)) : (∇2y(s)−∇2y(t))
)

= lim inf
s→t

1

δ2(s− t)

∫
Ω

(
∂FW (∇y(t)) + βL∗P (y(t))

)
: (∇y(s)−∇y(t)),

where as before β = δ2−αp. In the last step we integrated by parts and used
div(L∗P (y(t))) = div(LP (∇2y(t))) by Lemma 5.5. Note that the last term is well
defined as L∗P (y(t)) ∈ L2(Ω) for a.e. t by Lemma 5.5 and (18). Now (47) implies
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d

dt
φδ(y(t)) ≥ δ−2

∫
Ω

√
H∇y(t)

−1(
∂FW (∇y(t)) + βL∗P (y(t))

)
:
√
H∇y(t)∂t∇y(t).

We find by Lemma 5.5, (48), and Young’s inequality

d

dt
φδ(y(t)) ≥ −1

2

(
|∂φδ|2Dδ(y(t)) + |y′|2Dδ(t)

)
≥ d

dt
φδ(y(t)),

where the last step is a consequence of the fact that y is a curve of maximal slope
with respect to φδ. Consequently, all inequalities employed in the proof are in fact
equalities, and we get√

H∇y(t)

−1(
∂FW (∇y(t)) + βL∗P (y(t))

)
= −

√
H∇y(t)∂t∇y(t)

pointwise a.e. in Ω. Equivalently, recalling ∂ḞR(F, Ḟ ) = 1
2∂

2
F 2

1
D2(F, F )Ḟ = HF Ḟ

from (10), we obtain

(∂FW (∇y(t)) + βL∗P (y(t))) + ∂ḞR(∇y(t), ∂t∇y(t)) = 0

pointwise a.e. in Ω. Multiplying the equation with ∇ϕ for ϕ ∈ W 2,p
0 (Ω), using

again
∫

Ω
L∗P (y(t)) : ∇ϕ =

∫
Ω
LP (∇2y(t)) : ∇ϕ by Lemma 5.5 and the definition of

LP (∇2y(t)), we conclude that y is a weak solution (see (14)).

Acknowledgment. We wish to thank Ulisse Stefanelli for turning our attention
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