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Abstract
Many representations and rendering techniques have been proposed for presenting material appearance in computer graphics.
One outstanding problem is evaluating their accuracy. In this paper, we propose assessing accuracy by comparing human
judgements of material attributes made when viewing a computer graphics rendering to those made when viewing a phys-
ical sample of the same material. We demonstrate this approach using 16 diverse physical material samples distributed to
researchers at the MAM 2014 workshop. We performed two psychophysical experiments. In the first experiment, we exam-
ined how consistently subjects rate a set of twelve visual, tactile and subjective attributes of individual physical material
specimens. In the second experiment, we asked subjects to assess the same attributes for identical materials rendered as BTFs
under point-light and environment illuminations. By analyzing obtained data, we identified which material attributes and
material types are judged consistently and to what extent the computer graphics representation conveyed the experience of
viewing physical material appearance.

Keywords Material appearance · Rendering · BTF · Perception · Psychophysics · MAM2014

1 Introduction

An efficient transfer of realistic appearance of real-world
materials to virtual reality has been one of the ultimate
challenges of computer graphics. In entertainment and sto-
rytelling, a particular material appearance may be selected
to evoke a viewer response. For industrial design, material
appearance may be rendered to preview a physical design.
In either scenario, there is no reliable measure of the visual
fidelity of the virtual material’s appearance. Moreover, the
appearance needs to be faithful with changing view and illu-
mination conditions. In otherwords,we are looking for visual
equivalence but not in a sense of comparison of two vir-
tual representations as introduced in [23], but rather between
physical materials and their virtual representations.

In this paper, we propose using human judgements of
material attributes to assess the fidelity of virtual material
appearance. To explore this idea, we use physical speci-
mens of 16 materials presented at the Workshop on Material
Appearance Modelling (MAM) 2014 [25] (sample set No.
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26) as shown in Fig. 1. The collection includes one natu-
ral material mica and the rest are man-made utility materials
such as sandpaper, fabric, tile, burlap, plastic-weave, etc. This
set represents a diverse selection of materials the subjects
are familiar with from daily life. They vary in many physical
aspects, e.g., natural or man-made origin, opacity or translu-
cency, height, texture, structure, etc.

First, we perform a psychophysical study to identify the
main perceptual attributes of these physical material spec-
imens. We selected twelve visual, tactile and subjective
attributes to be analyzed. The outcome of this study is an
understanding of the consistency of judging these attributes
for the range of materials. For a second study, we acquired
all these materials as bidirectional texture functions (BTFs)
[3]. We selected BTFs since they capture samples with
height and opacity variations, and include non-local effects
such as occlusions, masking, subsurface scattering and inter-
reflections. We conducted the second study to find how well
renderings using BTF preserve appearance of the physical
samples. The results of the studies show the consistency of
human judgement of material appearance attributes, and how
these observations can be used to assess the effectiveness of
computer graphics presentations of material appearance.
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Fig. 1 Photos of 16 materials from MAM 2014 dataset

Contributions of this paper are:

– An openly accessible database of BTF measurements
from the MAM dataset.

– A proposal for evaluating the accuracy of material
appearance rendering.

– A psychophysical study of how consistently people judge
appearance attributes of material samples.

– A study of how judgements of material attributes from
standard BTF sample renderings compare to judgements
of real material samples.

The paper contents are as follows: Sect. 2 summarizes
relatedwork. Section 3 overviews the proposed approach and
Sect. 4 introduces selected perceptual attributes. Section 5
describes the perceptual assessment of real samples, while
Sect. 6 evaluates their renderings. Section 7 compares the
results of both studies, and Sect. 8 summarizes the paper.

2 Prior work

Understanding human perception of materials is one of the
primary challenges of research fields ranging from psychol-
ogy to computer graphics applications [1,8].

A large body of research has been devoted to identify links
between material perceptual attributes and physical proper-
ties [9] and to establish a link between texture perceptional
and computational spaces [15,20,24].

Although, originally researchers used textural images
[2] to represent materials, this changed with advent of

illumination- and view-dependent scanning facilities cap-
turing bidirectional reflectance distribution functions BRDF
[22], spatially-varying bidirectional reflectance distribution
functions SVBRDF or BTF [3] representations. Various per-
ceptual studies related to these representations have been
performed. For example, the impact of object shape on the
perception ofmaterial appearance represented by an isotropic
BRDF model was studied in [30]. In other work [5], a psy-
chophysical study demonstrated that a reduction of BTF data
without compromising visual quality, is directly related to
BTF data variance and to the complexity of illumination and
object geometry. BTF datawere also used in [6] to investigate
the effect of shape and texture on subjects’ visual attention.
The authors concluded that a flat textured surface receives
only half of the fixations in comparison with shaped surface,
and that average local variance of a curved surface texture
can predict observers’ gaze attention to both texture and its
underlying geometry, i.e., the more higher frequencies and
regularities are present in the material texture, the easier it
is to identify possible differences, requiring a lower number
of shorter fixations. The perceptual effects of BTF filtering
were analyzed in spatial and angular domains in [13]. It was
shown that preserving contrast is more important in static
than in dynamic images and indicates that greater levels of
spatial filtering are possible for animations. Filtering can be
performed more aggressively in the angular domain than in
the spatial domain. Mylo et al. [21] exploited a link between
certain perceived visual properties of a material and specific
bands in its spectrum of spatial frequencies. They applied the
results for editing of BTFs that produces plausible results.

Researchers have derived a number of attributes in psy-
chophysical studies to evaluate as to what extent they are
possessed by a virtual material in a form of texture [19],
BRDF [17,27] or by a real specimen [16].

Several different techniques have been proposed to assess
the quality of renderings.Meseth et al. [18] used virtual stim-
uli to psychophysically compare performance of material
photographs, BTF renderings, and flat textures modulated
by BRDFs under identical illumination conditions. Rama-
narayanan et al. [23] developedmetrics that predict the visual
equivalence of rendered objects under warping and blurring
of illumination and warping of object surfaces. Havran et
al. [10] developed a surface, optimized to a high coverage of
illumination and viewing angles, that can be used for a single
image comparison of various material representations.

Although many studies were done analyzing material
appearance either of real materials or their digital repre-
sentations, we are not aware of any study systematically
comparing the perception of physical and virtual materials
from a set of widely available samples. This is important as it
allows researchers to follow up and compare or complement
our results with their future findings.
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Fig. 2 An overview of the proposed material appearance accuracy assessment approach

3 Proposed appearance evaluationmethod

When it comes to the evaluation ofmaterial appearance accu-
racy, standard computational assessment methods are often
unreliable, even when they use photographs of the material.
Many materials, especially in the consumer market, are care-
fully designed to deliver a specific user experience that often
cannot be reproduced using a single photograph. Therefore,
industrial designers have started to use virtual light booths,
allowing the direct comparison of a real product and its digi-
tal representation rendered under strictly controlled lighting
and viewing conditions. In this paper, we continue in this
direction and assume that material appearance is accurately
rendered if people would draw the same conclusions ofmate-
rial attributes based on renderings that they would make
looking at the real, physical materials. A basic scheme of
the approach is shown in Fig. 2. Therefore, we suggest two
psychophysical visual studies. The first assesses subjects’
experience from real material specimens, while the second
does the samewith virtual representation, in our case BTF, of
the same materials. To obtain information of user experience
from the material, we asked subjects to rate a preselected
group of perceptual attributes described in the following sec-
tion.

4 Selectedmaterial attributes

Our goal is to analyze as many aspects of the tested materials
as possible; however, as the number of assessed materials
is relatively high, we chose a lower number of attributes
to make the study more workable for human subjects. We
intentionally avoided using high-level class predictors, e.g.,
plastic-like, as used in [17,27] and focused on important low-
level attributes identified in prior work.

Our goal was a comprehensive multi-modal analysis of
the materials. For the visual characteristics, we focused on
general textural attributes [19,24,29] and selected six of
them spanning reflectance, color, and structural properties
of materials: glossiness, colorfulness, directionality, diver-

Table 1 The twelve material attributes evaluated within the experiment

Id Attribute Ranges [1–9]

Visual

L glossiness Matte Glossy

B colorfulness Single-color Multiple-colors

S directionality No-directionality Directional

R diversity Simple Complex

H graininess Smooth Rough

P regularity Random Regular

Tactile

T hardness Soft Stiff

D roughness Smooth Rough

V height Flat Deep

Subjective

O genuineness Man-made Natural

K quality Ordinary Luxurious

A attractiveness Usual Attractive

sity, graininess, and regularity. As our study uses a physical
material specimens,we extendedour attributes also to the tac-
tile and subjective domain similar to [16]. Tactile attributes
are included for other researchers who are interested in eval-
uating tactile interfaces and they are not used in the second
experiment. In the tactile domain, we focus on attributes hav-
ing clear physical interpretation: hardness, roughness and
height. In the subjective domain, we found it interesting to
assess the authenticity and quality of materials and selected:
genuineness, quality, and attractiveness. Thus, our final list
of attributes includes six visual, three tactile, and three sub-
jective attributes as shown in Table 1.

5 A psychophysical assessment of physical
specimens

In our study, we asked subjects to rate individual preselected
attributes of physical specimens of 16 materials as shown in
Fig. 1. For this experiment, we paid particular attention on
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Fig. 3 Analyzed materials as seen in the psychophysical experiment

analysis how consistently the subjects rate individual percep-
tual attributes across the set of materials.

5.1 Participants and experimental procedure

Twenty-two paid subjects performed the experiment. There
were 12 male and 10 female participants aged from 20 to 60.
All subjects had normal or corrected to normal vision and all
were uninformed with respect to the purpose and design of
the experiment.

All samples of a typical size of 6×6 cmwere laid down on
the table as shown in Fig. 3. The table was positioned near a
window to avoid direct sunlight. Subjects also had available
a LED point-light with a turntable that they could use freely
for amore detailed examination ofmaterial properties. At the
beginning of the session, the meaning of individual attributes
were explained to the subject and she/he could freely review
all samples. Then, the subject assessed individual attributes
for all materials using a score ranging from 1 to 9 (represent-
ing the lowest and the highest intensity of the attribute, see
Table 1), while the range should represent only the samples
within the study.

Subjects always started with assessment of visual
attributes. To avoid confusion between visual and tactile
attributes, subjects were not allowed to touch the sample
when assessing visual attributes. Also subjects were prohib-
ited from turning samples over so as to prevent identifying
the authenticity of materials. There were no strict time lim-
its, and subjects finished their evaluation of all materials in
between 10 and 30 minutes.

5.2 Results

First of all, we analyzed the reliability of subjects’ responses
by means of the Krippensdorff’s alpha [11] αK – a statis-
tical measure of the agreement generalizing several known
statistics. The key requirement is agreement observed among
independent observers. Output αK = 1 represent unambigu-
ous indicator of reliability, while 0 not. Results given in Fig. 4

Fig. 4 Statistical analysis of the agreement across subjects in the
real-samples experiment for individual attributes using Krippensdorff’s
alpha across: a attributes and b materials

demonstrate subject agreements for individual attributes (a)
and tested materials (b). The highest agreement (αK =
0.55 − 0.65) was achieved for attributes L–glossiness, T–
hardness, D–roughness, while the other attributes had similar
values (αK = 0.3−0.4). The lowest agreement (αK = 0.25)
was obtained for H–graininess.

Materials with the highest agreement (αK over 0.5)
are 04–burlap, 11–silver-gold, 13–glass-tile, 14–blue-black-
gold-tile. Surprisingly, low agreement (αK = 0.006) was
recorded for material 09–basketball.

The data were also analyzed using a single factor repeated
measures ANOVA demonstrating that all p-values are below
confidence level 0.05 and favoring an alternative hypothesis
that means for individual materials are draw from statisti-
cally different populations at significance level 95%.We also
successfully verified that data normality, the basic ANOVA
assumption, using the Shapiro–Wilk parametric test.

For aggregation of the subjects’ values, we applied the
mean opinion score (MOS) obtained as an average rating
across all subjects. This is a standard methodology for sub-
jective quality assessment used especially in the audio and
video industries, and recommended by standard international
organizations such as the ITU [12] or ISO [14]. We also per-
formed outliers rejection by removing values differing more
than 60% of score range from MOS (a total 29 values out of
4224). MOS in range 1–9 for individual perceptual attributes
and testedmaterials are shown as blue bars in Fig.5. Errorbars
in the graphs represent the standard deviation across subjects.
On the left are graphs representing visual attributes, while on
the right are graphs for tactile and subjective attributes.

Next, to analyze attributes relationship, we computed
Pearson andSpearman correlation coefficients betweenmean
opinion scores of all attributes across all testedmaterials. The
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Fig. 5 Perceptual attributes for all materials obtained as mean values
across tested subjects. Errorbars represent standard deviation across
subjects. The green and red subbars represent positive and negative

deviations, respectively, from the original values when the attributes
were assessed from materials’ rendering using BTFs. Note that tactile
attributes (T,D,V ) were not assessed this way

results were similar (mean and maximum differences 0.014
and 0.237 respectively), and thus, we report only the Pear-
son correlation values ρ in Fig. 6. Each cell contains both
color-coded and numerical correlation value and p-value.

Colors toward red represent a positive correlation while
those toward blue represent negative ones. Each pair of
attributes in the figure show correlation coefficient (−1,1) at
the top of the cell and corresponding p-values at its bottom.
One can find strong statistically significant positive correla-
tions (ρ > 0.7, p-value< 0.01) between:

– glossiness and attractiveness (ρ = 0.81),
– glossiness and quality (ρ = 0.90),
– quality and attractiveness (ρ = 0.91),
– graininess and roughness (ρ = 0.78),
– graininess and height (ρ = 0.76),

– directionality and diversity (ρ = 0.84).

The strongest negative correlation was found ρ = − 0.64
between regularity and genuineness.

To further investigate relationships of attributes, we
performed a one-way Multivariate Analysis of Variance
(MANOVA) for comparing the multivariate means of sub-
jects’ responses grouped by attributes. This analysis tests
the null hypothesis that the means of attributes are the same
n-dimensional multivariate vector, and that any difference
observed in the data is due to random chance. We estimated
dimensionality is d = 8 at a significance level 5% and can
reject the null hypothesis, and thus expect the data means lie
in 8-dimensional manifold. As a product of the multivariate
analysis, we also obtain a dendrogram depicting attributes
proximity as shown in Fig. 7. The clusters are computed by
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Fig. 6 A Pearson correlation matrix between the tested attributes. Col-
ors toward red represent positive correlation, while those toward blue
represent negative ones. In each cell the top number specifies correlation
value and the bottom one specifies corresponding p-value

Fig. 7 Multivariate analysis—dendrogram illustrating proximity of
attributes

applying the single linkage method to the matrix of Maha-
lanobis distances between the groups means.

These results support the findings of the correlation
analysis in Fig. 6. The dimensionality d = 8 and den-
drogram suggest that the most distinct attributes in order
of difference are P–regularity, O–genuineness, T–hardness,
B–colorfulness, D–roughness, while the rest attributes are
due to their proximity grouped three groups: (1) K–quality,
A–attractiveness, L–glossiness, (2) S–directionality and R—
diversity, (3) H–graininess and V—height.

Further, multivariate analysis provides us with so called
canonical vectors, which are linear combinations of original
variables, chosen to maximize separation between groups.
Fig. 8 depicts dependencies of the first three canonical
vectors, providing an insight on variability and overlap of
subjects’ responses to individual attributes (each attribute
marker in the graphs corresponds to one of the subjects).

Finally, in Fig. 9, we show pairs of materials having
the highest and the lowest perceived response to individual
attributes.

Discussion—The study has revealed that although none
of the attributes or materials was judged consistently, we
learned which of the attributes are themost reliable as well as

how they are mutually related. Themost consistent data were
obtained for L–glossiness, T–hardness andD–roughness. We
assume that this is due to the fact that the meaning of these
attributes is easy to understand, and they are even com-
monly instrumentally measured as physical properties of
materials. Another important finding is that attributes K–
quality andA–attractiveness have almost identical perceptual
responses. The same can be said about pairs S– directionality,
R–diversity and H–graininess, V–height. However, here we
should note that while for S,R the response is possibly due to
missing materials with random diverse structure and the per-
ception of diversity comes mainly from regular patterns, for
H,V it is due to that subjects judged height as span of height
variability within structure grains, e.g., relatively thick tiles
samples (materials 12,13,14) received lower judgement of
this attribute than thin crinkle paper (material 15).

6 A psychophysical assessment of
renderings

In the second experiment, we evaluated the selected material
attributes on rendered images which reproduced the appear-
ance of physical material samples bymeans of a bidirectional
texture function (BTF).

6.1 BTF data acquisition and processing

For BTF data acquisition, we used a gonioreflectometer [7]
to capture the appearance of tested specimens. This setup
consists of the measured sample on a rotating stage, and two
independently controlled arms with a camera (one axis) and
a light source (two axes). This allows for flexible measure-
ments of nearly arbitrary combinations of illumination and
viewing directions. Although camera view occlusion by the
arm with the light source may occur, it can be analytically
detected, and in most cases, alternative positioning is possi-
ble. The angular repeatability of light and camera positioning
is 0.03◦ across all axes. The inner arm holds the LED light
source 1.1 m from the sample and produces a narrow and
uniform beam of light. The outer arm holds an industrial,
full-frame 16Mpix RGB camera AVT Pike 1600C. The sen-
sor’s distance from the sample is 2m. In our experiments, we
used a lens achieving maximum resolution of 353 dpi (i.e.,
72µm/pixel). The hemispheres of incoming and outgoing
directions were uniformly sampled by means of 81 direc-
tions [26] giving a total of 81 × 81 = 6 561 HDR images,
where each image was taken for a unique bidirectional pair
of camera and light positions.

Once the BTF data are captured, we seek a minimal spa-
tial sample whose repetition conveys an original material’s
appearance. To achieve this, the image stitching algorithm
[28] is applied, resulting in a seamless spatially repeatable
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Fig. 8 Multivariate analysis of material attributes showing their separation of the first three canonical components

Fig. 9 Each attribute with materials having the highest (the top row) and lowest (the bottom row) average attribute values

tile. Note that this technique cannot in principle produce
seamless repetition for materials with a non-regular structure
or low-frequency features, e.g.,mica or blue-black-gold-tile.

Each captured BTF generates thousands of HDR images.
As the handling of such a large number of files is incon-
venient due to time-demanding IO operations, we introduce
a new straightforward format encapsulating all images into
one binary file together with meta-information (e.g., image
size, color-space, spatial resolution, etc.). The format is called
BIG—Big Image Group and the recommended file exten-
sion is .big. The data are stored in a uncompressed form
so as they can be quickly accessed using several application-
dependent query functions.We implemented the IO functions
in C++ as publicly available software (http://btf.utia.cas.cz).
The format allows significantly faster and more convenient
manipulation of the measured data. We use this format for
storing and sharing captured data with the greater research
community. More details on data format are given in the
Appendix of this paper.

Due to the variable size of structural patterns of materials,
the size of a stored BTF tile varies between 100 × 100 and
400 × 400 pixels. Thus, the captured and tiled BTF data
stored in the BIG format range in size between 0.8 and 11.3
giga-bytes for each material from the MAM2014 dataset as
shown in Table 2.

Materials visualized from captured BTFs are shown for
point-light illumination in Fig. 10. Note that rendering is
obtained from the raw data and no data compression is
applied.

Table 2 Sizes of image tiles and data files

Material Tile size [pix.] Data size [GB]

01-mica 160 × 160 1.88

02-sand-fine 112 × 106 0.89

03-sand-coarse 130 × 116 1.11

04-burlap 154 × 126 1.42

05-cork 112 × 110 0.93

06-towel 197 × 87 1.26

07-green-cloth 110 × 155 1.25

08-green-felt 110 × 108 0.89

09-basketball 103 × 98 0.76

10-flocked-paper 395 × 389 11.27

11-silver-gold 236 × 253 4.38

12-brown-tile 169 × 160 1.98

13-glass-tile 100 × 107 0.80

14-blue-black-gold-tile 224 × 225 3.70

15-crinkle-paper 224 × 190 3.12

16-basket-weave 190 × 224 3.12

6.2 Participants and experimental procedure

Once the BTFs of materials were captured, we moved to the
assessment of their perceptual attributes. To obtain a suf-
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Fig. 10 Materials from MAM 2014 dataset (set 26) captured as BTFs rendered for a point-light

ficient number of anonymous volunteers, we performed a
web-based study, i.e., run in an uncontrolled environment
and at various screens, while subjects were advised to run it
in a dim room environment. The materials are not rendered
in the same way as the materials were presented physically,
since a flat surface would provide low angular variations and
becomes unattractive for observers [6]. Instead, we mapped
materials on a spherical shape as has become standard for pre-

senting BTF data. We render appearance on spheres directly
from the raw BTF data and used a single point-light source,
best exposing high frequency features [4], as well as environ-
ment illumination (fixed orientation of grace environment).
We combine this information in stimuli images as shown in
example in Fig. 11. To allow subjects anchoring perceptual
scales, each stimuli image features on its top an overview of
thumbnails of all assessed materials for point-light illumina-
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Fig. 11 An example of material rendering stimulus image showing
material rendering for point-light and environment illumination side-
by-side with thumbnails of all materials under point-light illumination

Fig. 12 Statistical analysis of the agreement across subjects in web-
based experiment for individual materials using Krippensdorff’s alpha
across: a attributes and b materials

tion. As subjects could assess the materials only visually, we
removed the three tactile attributes from the study. Individual
attributes were evaluated by between 30 and 43 participants
(the number of finished sessions varies across attributes).
Subjects were advised to perform the study in full-screen
mode and in a dark environment.

6.3 Results

First,we again assessed data reliability usingKrippensdorff’s
alpha as shown in Fig. 12. In contrast to the values in the first
experiment, better agreement was achieved for individual
materials rather than for individual attributes. Attributes hav-
ingαK > 0.5were onlyL–glossiness andH–graininess. Low
agreement, i.e., αK < 0.2, was recorded for S–directionality,
P–regularity and all subjective attributes. In contrast, the
agreement for individual materials was relatively high for
all of them, i.e., αK between 0.45 and 0.75.

Fig. 13 Two examples of material appearance change for different ori-
entations of a material

The obtainedmean opinion scores for individual attributes
and materials are compared to results from the first exper-
iment in Fig. 5. Differences from the first experiment are
shown as green and red subbars indicating higher and lower
values, respectively. The standard deviations across subjects
are not shown, but the values resembled those in the first
experiment.

Discussion—The second experiment has shown that
assessment of any representation is influenced by several
aspects. Users in our experiment could not move with the
material and relied only on a span of viewing and illumina-
tion angles as defined by the illumination environment and
surface geometry. This might be insufficient as the appear-
ance of some materials changes substantially with regard to
their orientation as shown in Fig. 13. Also the sphere used
as test geometry could look unnatural for some materials
that are typically available as flat, e.g., mica or tiles. More-
over, agreement between subjects across different materials
is more balanced for rendered representations (see Fig. 12b);
whereas it is more scattered for the experiment with real sam-
ples (see Fig. 4b). This might suggest that rendered images
in some sense “filtered” some unique material properties.

7 Comparison of physical and rendered
material appearance

This section combines data obtained from subjects observing
real samples and their digital representations using aBTF.We
computed a correlation between mean opinion scores from
both experiments as shown in Fig. 14. While the bar’s height
corresponds to the correlation between the perception of
physical samples and corresponding rendered images, their
darkness is proportional to data agreement across subjects as
obtained by the multiplication of αK from both experiments.
There are separate results for individual attributes and mate-
rials, and individual bars include p-values.
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Fig. 14 Peason’s correlation coefficients computed between values
obtained from assessment of physical samples and their renderings for
individual: a attributes, b materials. Each bar includes correlation p-
value and its darkness is proportional to data agreement across subjects

For attributes (a), we observe comparably high values
(ρ > 0.75) for most of the attributes with L–glossiness
having by far best subjects responses agreement. The only
exceptions were P–regularity and O–genuineness where ρ

dropped below 0.5. This indicates that a real experience of
these attributes was not delivered by means of BTF.

For materials (b) the results are more challenging to inter-
pret. We observe high correlations (ρ > 0.75) for man-made
materials having an obvious regular structure. In contrast,
natural material or materials with random structure have gen-
erally lower correlations. As mentioned earlier, the material
with a familiar structure 09–basketball (see Fig. 11) was
one of the three materials having ρ < 0.3. We hypothesize
that subjects were able to identify properties of materi-
als with a clearly regular structure due to their familiarity
from everyday-life; therefore, they evaluated their perceptual
attributes more consistently than for materials with random
structures.

Although we consider these results as one of first steps
toward analyzing the perceptual quality of material appear-
ance representations, there are still open questions. For
instance, how the perception improves when HDR or stereo
displays are used? Or how a user’s experience changes when
animation is used instead of static images? An important
aspect is also an interaction of material appearance with
shape and illumination. It is clear that all these aspects should
be covered in future research to obtain unequivocal conclu-
sions on the quality of rendered material appearance.

8 Conclusions

This paper assessed the perceptual accuracy of material
appearance reproduction by directly comparing it with sub-

ject judgement of real physical samples. We analyzed six-
teen materials of MAM 2014 dataset and captured their
appearance using a bidirectional texture function (BTF) and
assessed differences in perception of real material samples
and their rendered counterparts. The results suggest that BTF
representations conveyed the majority of observed visual
attributes; however, there are differences in perception of
different material types. The perception of man-made mate-
rials with regular structure was better delivered in virtual
reproduction than that of naturalmaterialswith randomstruc-
ture. To stimulate further work on the measurement and
understanding of material appearance, we publicly provide
captured and uncompressed BTFs of the MAM 2014 dataset
for research purposes.
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Appendix: BIG data format description

The format stores image data by providing a list of image
files to be included (so far PNG and EXR (half/float) image
files are supported) together with optional meta data such
as list of corresponding incoming and outgoing directions,
color-space, spatial resolution, measured material name and
descriptions. The stored binary data can be either loaded to
the RAM or alternatively, for large datasets one can open a
datafile and seek the requested data froma hard drive. The lat-
ter option is considerably slower but still acceptable formany
off-line rendering scenarios. Once the file is loaded/opened
one can use a standard “get-pixel” query function returning
RGB triplet for specific spatial UV coordinate and image
index. A transformation between image index and incom-
ing/outgoing angles is up to the user and depends on an initial
ordering of files during the saving process. Also we do not
attempt to provide any compression of data as this could
potentially impact visual quality and rendering speed. The
compression can be easily added by extension of the format.

Since the proposed format is universal (it can include any
LDR/HDR data), it allows an unified representation of any
image-based information, e.g., movies, dynamic textures.
The format also enables management of numerous scattered
files that are difficult to handle without any metadata. The
source codes for saving/loading of data to/from the format
aremade publicly available (http://btf.utia.cas.cz) to promote
its wide usage and allowing easy adoption by various users
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Fig. 15 A list of data chunks available in the BIG format

for visualization and data analysis software packages. The
format is composed of data chunks consisting of chunk ID,
its size and data, as shown in a list of current data chunks and
their brief description in Fig. 15.
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