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Abstract BRDF continues to be used as a
fundamental tool for representing material appearance
in computer graphics. In this paper we present a
practical adaptive method for acquisition of anisotropic
BRDF, based on sparse adaptive measurement of
the complete four-dimensional BRDF space by means
of one-dimensional slices, which form a sparse four-
dimensional structure in the BRDF space, and can
be measured by continuous movements of a light
source and sensor. Such a sampling approach is
advantageous especially for gonioreflectometer-based
measurement devices where the mechanical travel of
a light source and a sensor imposes a significant time
constraint. In order to evaluate our method, we have
performed adaptive measurements of three materials
and we simulated adaptive measurements of thirteen
others. This method has one quarter the reconstruction
error of that resulting from regular non-adaptive BRDF
measurements using the same number of measured
samples. Our method is almost twice as good as a
previous adaptive method, and it requires from two to
five times fewer samples to achieve the same results as
alternative approaches.
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1 Introduction

Realistic appearance of spatially homogeneous
materials is usually represented by means of
a bidirectional reflectance distribution function
(BRDF) as introduced in Ref. [1]. Precise
measurement of the BRDF is time consuming

1 Institute of Information Theory and Automation of the
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due to the very high number of samples of the
function that have to be taken. In this paper, we
introduce a method for adaptive measurement of the
BRDF that provides precise results even when using
a limited number of samples. The method does not
rely on a database of already measured materials
and scales well, so it is applicable where precision
is important. We build upon the method in Ref. [2]
which measures the BRDF by one-dimensional
slices, but substantially extend its contributions.

We note that the BRDF is a four-dimensional
vector-valued function fr(θi, θv, ϕi, ϕv) of the
illumination direction ωi = [θi, ϕi] and the viewing
direction ωv = [θv, ϕv]; it defines how light is
reflected from a material (see Fig. 1). The isotropic
BRDF is a three-dimensional simplification of the
BRDF which can represent only a subclass of
spatially homogeneous materials such as plastics
or paints. In contrast, the full-dimensional BRDF
is anisotropic. Anisotropic materials have variable
reflectance when rotated around a surface normal,
as commonly found for many real-world materials
that contain directional elements such as fabric
threads or wood grain.

The proposed method is based on our findings
concerning the typical behavior of anisotropic
BRDFs. We assume that each two-dimensional
BRDF subspace with fixed θi, θv (see Fig. 2) and
its important features can be captured by several

Fig. 1 Parameterization of the BRDF.
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Fig. 2 Visualization of a BRDF with highlighted axial (red),
diagonal (blue), horizontal (green), and vertical (cyan) slices. Note
that the BRDF is a four-dimensional continuous function and that
its axes are orthogonal.

diagonal and anti-diagonal cross-sections (so-called
slices), i.e., one-dimensional signals. Sampling the
BRDF subspace only along the slices greatly reduces
the number of samples needed (see Ref. [2]). Another
saving is made by choosing only certain subspaces
(e.g., by limiting values of θi, θv to multiples of 15◦:
see Fig. 2(left)). Subsequently, elevation-dependent
behavior is captured by another type of slice: see
Fig. 2(right). The slices form a sparse 4D structure
in BRDF space. Their ability to capture important
features of the BRDF depends on their density.
The more dense the sampling, the more precise
reconstruction that can be achieved, but at the cost
of more samples. In order to balance measurement
time and reconstruction quality, we thus provide
optimal configurations of such a sampling structure
with respect to a chosen number of samples.

Although the structure itself substantially reduces
the number of BRDF samples in comparison to dense
regular sampling, we must reduce further the number
of measured values to make the method practical.
This is done by using sparse, adaptive sampling along
individual slices.

Although there are approaches to efficient
material appearance measurement using specific
lighting systems, using, e.g., basis-illumination [3]
or linear light sources [4], we focus on a
sequential measurement process as typically used by
goniometric devices having a single point-light source
and a single accurate sensing device.

The main contribution of this paper is, to the
best of our knowledge, the first adaptive method
for precise measurement of the full 4D anisotropic
BRDF which does not rely on a database of already
measured materials.

Section 2 outlines our research in the context
of related work, while Section 3 explains the

principle of the BRDF slices. Section 4 proposes
a heuristic algorithm for adaptive measurement of
values along them. Missing data reconstruction from
the slices is explained in Section 5 and optimal
placement of the slices in BRDF space is analyzed
in Section 6. Section 7 compares the proposed
method with two interpolation methods that work
with nearly-uniformly distributed samples, using
simulated- and real-measurement scenarios. We
also compare our method with a previous adaptive
method [2]. Finally, Section 8 discusses advantages
and limitations of the method and Section 9
concludes the paper.

2 Related work
The main objective of this paper is an approach
for adaptive acquisition of the BRDF that uses a
limited set of samples. Our methods of adaptive
measurement and data interpolation are closely
related, as our task is to reconstruct an unknown
function well by optimal placement of novel
samples based on previously measured values.
This optimal placement depends on the chosen
interpolation method. Good candidates are global
interpolation methods [5] based on radial basis
functions (RBF) or kriging. Although these methods
might seem suited to solving the problem of adaptive
sampling for measurement of material appearance,
they have high computational demands which
become intractable when the number of samples
exceeds several thousands. Adaptive measurement
of material appearance is investigated in Ref. [6],
but only in two dimensions; the approach samples
the reflectance field. An adaptive approach for
image-based BRDF measurement is proposed in
Ref. [7], with planning of viewing and illumination
directions based on minimization of uncertainty in
parameters of an analytical model. Nauyoks et al. [8]
fit six isotropic BRDF models to the measured
data. They iteratively add new samples by including
illumination and viewing directions where the models
predict different outputs, i.e., the models disagree.
Some goniometers [9] use a two pass adaptive
method, first making a full pass over the outgoing
hemisphere, and then making a fine pass around
the detected specular peak in the form of a spiral
pattern.

Matusik et al. [10] represent isotropic BRDFs using
a wavelet basis or a linear combination of BRDFs.
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Similarly, Nöll et al. [11] represent the same BRDFs
using basis functions; however, deviations of their
reconstruction from the reference are approximated
by a basis of correction functions. Nielsen et al. [12]
present an approach to reconstructing isotropic
BRDFs from basis functions using extremely sparse
measurements, while Vavra and Filip [13] have
extended their approach to anisotropic BRDFs.
These approaches optimize a set of appropriate
directional samples based on information in a
database; however, they are not adaptive (except for
Ref. [13]) according to the measured materials. As a
result, they cannot precisely measure materials with
features not present in the database.

None of the methods above provide a reliable
way to effectively acquire dense BRDF data without
knowledge of previously recorded BRDFs. On the
other hand, several interpolation methods applicable
to measured samples exist, based on, for instance,
barycentric interpolation [14], thin plate splines [15],
or a Gaussian pyramid in the so-called pull–
push algorithm [16]. Recently, Ward et al. [9]
reconstruct uniformly sampled BRDF measurements
by interpolated radial basis functions using a mass-
transport solution.

Another option is displacement interpolation
[17] based on solving the generalized mass-
transport optimization problem. It performs
well, but its computational demands increase
dramatically when the number of samples is in the
order of thousands, and therefore factorization is
required. An alternative approach to BRDF data
interpolation is to use data factorization by Tucker
decomposition [18]. This can represent both isotropic
and anisotropic BRDFs with quality comparable to
analytic BRDF models in reasonable reconstruction
time.

As these interpolation methods differ in quality
and speed, we have tested several of them and
selected two as references for evaluation of our
proposed approach based on adaptive measurement.

Our paper builds on Ref. [2] which uses slices to
capture the main features of 2D subspaces of the
BRDF. Values on the slices are measured adaptively
to minimize the number required. Although
individual subspaces can be captured very precisely,
the whole BRDF is obtained by simple interpolation
and is therefore rather inaccurate. In this paper,
we introduce two new types of slices that enable

us to capture all important features and to achieve
better BRDF reconstruction quality. The adaptive
sampling algorithm is enhanced to enable very
efficient sampling of the slices based on a chosen
count of samples. This allows control over the time
needed by the measurement process, which is very
important in industrial practice. We also consider
the optimal placement of the slices, which is very
important for achieving good results. This topic is
completely overlooked in Ref. [2].

3 One-dimensional BRDF slices

3.1 Introduction
The BRDF is a four-dimensional vector-valued
function of the elevation angles θi, θv and the
azimuthal angles ϕi, ϕv. To enable efficient sampling
of the entire BRDF, we propose to use four types
of one-dimensional slices. Two types, axial and
diagonal slices, were introduced in Ref. [19], where
only one slice of each type per 2D BRDF subspace
is used. We propose to use up to dozens of slices
per subspace to capture subtle details of the BRDF.
Moreover, we suggest extending the concept to
additional horizontal and vertical slices.

3.2 Axial and diagonal slices
Axial and diagonal slices are made in the 2D BRDF
subspaces defined by fixed θi and θv. These slices are
designed to optimize capture of specular reflections
and anisotropic reflections. Axial slices sA (red in all
figures) are perpendicular to anisotropic reflections,
while diagonal slices sD (blue in all figures) are
perpendicular to specular reflections (see Fig. 3):

sA,θiθvα(ϕv) = fr(θi, θv, ϕi = ϕv − α,ϕv)
sD,θiθvβ(ϕv) = fr(θi, θv, ϕi = β − ϕv, ϕv)

where α or β determines the position of the slice
in the 2D subspace chosen by elevation angles
θi, θv. Each subspace is typically measured using

Fig. 3 A schema of axial (red, perpendicular to anisotropic
highlights) and diagonal (blue, perpendicular to specular highlights)
slices placed in the 2D subspace (fixed both θi = 60◦ and θv = 60◦)
and their function values. Note that the subspace is periodic.
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several axial and several diagonal slices to accurately
capture all reflections and their shapes (see Fig. 3).

3.3 Horizontal and vertical slices
Horizontal and vertical slices are 1D subspaces of
the BRDF. They are designed to capture changes
in reflectance values when the viewing elevation
angle θv (horizontal slice, green) or the illumination
elevation angle θi (vertical slice, cyan) is changed
while other parameters are fixed (see Fig. 2(right)):

sH,θiϕiϕv(θv) = fr(θi, θv, ϕi, ϕv)
sV,θvϕiϕv(θi) = fr(θi, θv, ϕi, ϕv)

Each horizontal or vertical slice passes through
the intersection of axial and diagonal slices at all
sampled elevations (i.e., 0◦, 15◦, 30◦, 45◦, 60◦,
75◦). Note that due to Helmholtz reciprocity, values
for corresponding horizontal and vertical slices are
equal, i.e., sH,θiϕiϕv(θv) = sV,θiϕvϕi(θv), so only, e.g.,
the horizontal slices need to be measured.

All four types of slices together represent a sparse
4D structure in the four-dimensional BRDF space
that effectively captures the main visual features of
the measured BRDF (see Fig. 2(right)).

4 Adaptive sampling along the slices

Each slice can be interpreted as an unknown one-
dimensional signal that we need to measure and
reconstruct. For axial and diagonal slices, the signal
is periodic with a period of 360◦. To adaptively place
samples, we use an enhanced version of the heuristic
which was first introduced in Ref. [2].

Any slice can be sampled uniformly with a defined
step (e.g., 1◦), or adaptively, the latter decreasing
the number of samples on one hand and increasing
reconstruction accuracy in areas with high variance
of the signal on the other. As the behavior of the
signal is unknown, the adaptive algorithm must rely
on already measured samples, adding new samples
in areas where doing so improves the accuracy of
the reconstructed signal. When samples are taken in
appropriate directions and their count is sufficient,
values for the entire slice can be interpolated
sufficiently well using, e.g., piecewise cubic splines.

Our proposed heuristic in Algorithm 1 enables
very efficient adaptive sampling of the slices using
a given count of samples n. The algorithm is
based on a simple assumption. If the value of a
sample can be predicted well by neighboring samples,

Algorithm 1 Algorithm for adaptive sampling along the
slices

Input: n, k, p1, p2.
Output: T , a table of measured directions and their
values.

1: Measure values of all n0 samples at all intersections
of the BRDF slices to create T .

2: p1-times perform: T = ASI(T, [n− n0]k/p1).
3: p2-times perform: T = ASI(T, [n− n0][1− k]/p2).

the neighborhood of the sample can probably be
predicted well too. Therefore, there is no need to
place new samples there. On the other hand, if
the value of any sample cannot be predicted well
by the neighboring samples, it is possible that the
neighborhood of the sample cannot be predicted well
even by the sample itself together with its neighbors.
Therefore, we should place new samples there.

The algorithm comprises three steps as shown
in Fig. 4. In the first step, the algorithm samples
the signal only in directions corresponding to
intersections of slices, to collect initial information
about the signals. Then, several iterations of
adaptive measurement are performed relying on
the ASI (adaptive sampling iteration) function,
which adaptively selects and measures ni sampling
candidates. See Algorithm 2.

The number of samples ni in each iteration
depends on parameters k, p1, p2. The parameter
k defines the ratio of the count of samples measured
in the second step of Algorithm 1 to the count of
samples taken in the third step. We have found
experimentally that a reasonable choice is k = 0.9.
The parameters p1 and p2 define how many iterations
are performed in each step; our default choice is
p1 = p2 = 5. Using these parameters, the algorithm
forces division even of intervals on the slices where
the error is lower in the second step, as there could
be some hidden variation of the signal. In the third
step, only intervals still having high cross-validation
error are divided. Although the algorithm is not very

1 21 2 3

Fig. 4 Individual steps of the adaptive sampling algorithm, and the
cross-validation procedure (right).
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Algorithm 2 Adaptive sampling iteration function
function T = ASI(T, ni)
1: Evaluate the leave-one-out cross-validation

error for each direction in T (for each slice
independently): interpolate the value of a sample
in T based on neighboring samples and evaluate
the error by comparison with the true value of the
sample.

2: Make a list of potential directions (see crosses
in Fig. 4) ordered by descending weight. A
potential direction lies at the center of each pair
of neighboring already measured directions in T .
Its weight is the maximal error at the neighboring
directions.

3: Measure values of the first ni directions in the list
and append them to T .

sensitive to the parameters, one should not decrease
the total number of iterations p1 + p2 too much, as
intervals on the slices would then be insufficiently
divided. However, using too many iterations (up to
addition of only one new sample during an iteration)
is not recommended either, as the algorithm would
become too focused on the specular highlights and
might overlook variations of the signal in unexplored
intervals.

The ASI function requires the table T of already
measured directions and their values and the count
ni of samples to be identified and measured by
the function. The output of the function is the
appended table T . The function itself has three
steps. First, the leave-one-out cross-validation error
is evaluated for each already measured sample. The
error is evaluated independently for each slice, so the
sample at the intersection of the slices has several
error values. Evaluation for each sample is done by
excluding the evaluated sample from the dataset,
linear interpolation of a value at the location of
the evaluated sample from those of the neighboring
samples, and computation of the difference between
the interpolated value and the actual value of the
evaluated sample (see Fig. 4(right)).

As a distance measure, we use the maximum
difference over all color channels. Then, in the
second step of the ASI function, a list of all
directions where new measurements might be
performed is prepared. Each direction is assigned a
weight equal to the maximum of the cross-validation
errors of its already measured neighbors (see
Fig. 4(right)). The list is then sorted in descending

manner, and values for the first ni directions from
the list are measured. The table T is expanded by
appending the newly measured directions and their
values.

5 Reconstruction of BRDF
Once the measurement is done, we want to
reconstruct values of the four-dimensional BRDF.
In this section, we show how to rewrite equations
introduced by Filip et al. [2] which serve for
reconstruction of a two-dimensional BRDF subspace
as a step in computing the four-dimensional BRDF
space. Then, equations for interpolation of any value
in the BRDF space from the sparse 4D structure (in
the form of the four types of BRDF slices) can be
easily derived.

We start with the same data as in Ref. [2]: the four
values at the corners of the square formed by slice
intersections cx̄ȳ, where x̄, ȳ ∈ {0, 1}, the two values
px0, px1 on the axial slices and the two values q0y,
q1y on the diagonal slices. First, we apply bilinear
interpolation of the corner values:

cxy = (1− x) · [(1− y) · c00 + y · c01]
+ x · [(1− y) · c10 + y · c11] (1)

Values of the slices are interpolated linearly and
differences are computed as

pxy = (1− y) · px0 + y · px1

qxy = (1− x) · q0y + x · q1y

∆pxy = pxy − cxy
∆qxy = qxy − cxy

The final value of the reconstructed function is
rxy = max(cxy + ∆pxy + ∆qxy,minxy)

= max(pxy + qxy − cxy,minxy) (2)
minxy = min(px0, px1, q0y, q1y)

Extension to four dimensions is straightforward
and is shown in Section S4 in the Electronic
Supplementary Material (ESM). We apply multi-
linear interpolation to all sixteen corners of the four-
dimensional hyper-cube cx̄ȳz̄w̄, where x̄, ȳ, z̄, w̄ ∈
{0, 1}. Then, values of the slices are interpolated in
the three remaining dimensions and the final value
of the reconstructed function is computed.

6 Optimal placement of slices

6.1 Basics

Although values along individual slices are measured
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adaptively, the positions of the slices in BRDF space
must be determined in advance. Here we investigate
how to place the slices optimally for a given number
of samples. Due to a lack of available anisotropic
BRDF measurements with high angular density and
high accuracy, we performed a study on ten materials
represented by the state-of-the-art analytical BRDF
model of Kurt et al. [20]. We selected ten materials,
four of them measured in Ref. [21] and fitted in
Ref. [20], and the remaining materials came from
our own measurements. All of these materials are
anisotropic and include fabrics, brushed aluminum,
and untreated wood. Their fitted BRDFs are shown
in Fig. 5 and the model parameters are included in
Section S2 in the ESM.

6.2 Placement theory

The axial and diagonal slices are placed into
2D subspaces selected by θi and θv. The most
straightforward approach is to deploy the slices
regularly into the subspaces using:

α, β ∈ {kas; k ∈ {0, . . . , an − 1} , an = 2π/as}
where an is the number of slices of one type in one
subspace and as is the azimuthal step between two
consecutive slices. The single parameter as has to be
chosen. While the positions of the axial and diagonal
slices might be chosen arbitrarily, for simplicity, we
limit ourselves to regular distribution of both types
of slices using a common step parameter.

Similarly, 2D subspaces are selected by a single

Brushed
alum

Purple
satin

Red
velvet

Yellow
satin

fabric002

fabric041 fabric112 fabric135 fabric139 wood01

Fig. 5 Ten test materials represented by the BRDF model in
Ref. [20], rendered on spheres, with visualizations of their BRDFs.

parameter, the elevation step es:
θi, θv ∈ {kes, θmax; k ∈ {0, . . . , en − 2}}

where en = dθmax/ese+1 is the number of elevations
used and θmax is the maximal elevation. Measured
subspaces are those resulting from all combinations
of θi, θv. Finally, horizontal and vertical slices are
placed through every intersection of the axial and
diagonal slices (see Fig. 2).

6.3 Analysis of optimal placement

We performed an experiment to determine the
optimal positions of the slices based on a user-
chosen number of samples n. We used all
ten BRDFs of the ten materials (Fig. 5) and
computed reconstructions of these BRDFs for various
combinations of azimuthal step as, elevation step es,
and number of samples n. To make the precalculation
computationally feasible, we restricted the resolution
of the reconstructed BRDFs to 2◦ and we used a
maximal elevation angle θmax = 80◦ due to unstable
fitting of the BRDF by the analytical model for
high elevation angles. Values of the azimuthal
step parameter were as ∈ {12◦, 20◦, 36◦, 60◦, 180◦},
and values of the elevation step parameter were
es ∈ {6◦, 8◦, 10◦, 12◦, 14◦, 16◦, 20◦, 28◦}. In total,
we performed 20,646 simulated measurements and
reconstructions of BRDFs, which consumed over 20
days of computation time using four cores on an Intel
Xeon E5-2643 3.3 GHz processor.

To evaluate the quality of the reconstructed
BRDFs, we computed the mean relative error (MRE)
between the reference BRDF fr(θi, θv, ϕi, ϕv) and its
reconstruction f ′r(θi, θv, ϕi, ϕv):

MRE = 1
N

∑
λ,θi,θv,ϕi,ϕv

∣∣frλ
− f ′rλ

∣∣
frλ

where N = |λ| × |θi| × |θv| × |ϕi| × |ϕv| is the
number of data points and λ ∈ {R,G,B} is a
color channel. Individual color channels are treated
separately and the results summed. We express
MRE as a percentage.

We computed graphs of MRE as a function of
the number of adaptive samples n. This resulted
in |as| × |es| × |m| = 5 × 8 × 10 = 400 graphs of
errm,as,es(n), where m stands for one of 10 materials.
Each graph captures the reconstruction error for a
large range of samples n. Figure 6 plots some of those
graphs averaged across all the materials. The first
group of graphs in Fig. 6(a) shows the error on fixing
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Table 1 Optimal values of the parameters as, es for various chosen
numbers of samples

n 6 es as n 6 es as

667 28◦ 180◦ 17096 12◦ 36◦

932 20◦ 180◦ 20969 10◦ 36◦

1034 16◦ 180◦ 22291 8◦ 36◦

1060 28◦ 60◦ 33879 12◦ 20◦

2272 20◦ 60◦ 38735 10◦ 20◦

3230 16◦ 60◦ 79469 8◦ 20◦

4928 14◦ 60◦ 184655 6◦ 20◦

5645 16◦ 36◦ ∞ 6◦ 12◦

9660 14◦ 36◦

(a)

(b)

Fig. 6 MRE of the reconstructed BRDF as a function of the number
of samples, averaged across all materials (a) for five values of the
azimuthal step with a fixed value of es = 14◦ and (b) for eight values
of the elevation step with a fixed value of as = 20◦.

the parameter es = 14◦ and varying the parameter
as. The second group of graphs in Fig. 6(b) shows
the error when fixing the parameter as = 20◦ and
varying the parameter es. The fast convergence of
the individual graphs confirms the efficiency of the
adaptive sampling algorithm.

From the graphs, it is possible to conclusively
select the best combination of the parameters as
and es for a selected number of samples n, for a
given material m. Unfortunately, these values differ
according to material, as each exhibits individual
behavior with respect to changes in the azimuthal
and elevation angles. Therefore, we select optimal
values âs, ês of these parameters for a given number
of samples n so that the sum of errors across
all materials relative to the achievable error is
minimized using

(âs, ês)(n) =

argmin
(a′s∈as,e′s∈es)

|m|∑
m=1

errm,a′s,e′s(n)
min

(a′′s ∈as,e′′s ∈es)
errm,a′′s ,e′′s (n) (3)

The resulting optimal values for as, es are
summarized in Table 1; when a new material is
measured, one should select appropriate values of the
parameters for the chosen number of samples.

7 Results

This section presents results of using the proposed
method. Firstly, due to lack of reliable data, we
use synthetic data generated by the BRDF model
(see Fig. 5). Thus, we can easily and quickly obtain
a BRDF value in any direction and results of the
experiment are not influenced by errors caused by
a measurement process. To evaluate the method
on real data, we used a 3D scene (see Fig. 11)
and measured all data needed to visualize the scene
using a gonioreflectometer. Finally, we compare
our method with the previous adaptive method in
Ref. [2].

7.1 Simulated measurement experiment

We evaluated accuracy of the proposed method in
comparison to use of uniformly distributed samples,
taken in directions according to one of the thirty
sampling schemes we designed (see Fig. 7 and
Section S1 of the ESM). These schemes produced
in total from n = 435 to n = 354,061 reciprocal
samples. Values of the samples were interpolated
using barycentric [14] or RBF [5] interpolation. Note
that the second method is global while the first is
local, and is therefore suitable for fast rendering on
a GPU. Both methods compute results for each color
channel separately. We interpolated the BRDF to a
four-dimensional array using a uniform step of 2◦ and
a maximal elevation of 80◦, so the dimensions of the
array were |θi|×|θv|×|ϕi|×|ϕv| = 41×41×180×180.

Note that the error values can be compared only
for the given number of samples as the barycentric
and RBF interpolation methods operated on the 30
predefined sampling schemes. The average MRE
(over all materials and schemes) for barycentric
interpolation was almost 7.5 times as large as for
the BRDF slices. RBF interpolation was better, but
its average MRE was still almost 3.9 times as large
as for the BRDF slices.
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01: 29 dirs. 14: 133 dirs. 30: 841 dirs.
435 samples 8911 samples 354,061 samples

Fig. 7 Three of thirty sampling schemes used for uniform sampling
of the hemisphere in conjunction with the barycentric and RBF based
methods.

Figure 8 shows reconstruction error as a function
of the number of samples for all tested methods, for
two materials (for other materials see Section S3 of
the ESM). Convergence of the proposed algorithm to
low MRE values as the number of samples increases
is very fast (see the green line in Fig. 8). While
the RBF method performs well for lower number of
samples, the proposed method has better accuracy
for higher number of samples. With more than 5000
samples, our method achieves high quality results
that are significantly better than those achieved
using uniform interpolation methods.

To evaluate quality of the reconstructed BRDF,
we computed the MRE between the reference BRDF
and its reconstruction at N = 3 × 41 × 41 ×
180 × 180 =163,393,200 data points. Improvement
in the MRE due to usage of the proposed method

Fig. 8 MRE as a function of the number of samples for two
materials.

instead of barycentric or RBF interpolation for
sampling schemes 14 (8911 samples) and 19 (18,721
samples) is shown in Fig. 9. In Fig. 10, we compare
all three methods with a reference rendering for
three materials and 8911 reciprocal samples. We
used the grace environment represented by means
of 256 lights. (Results for additional materials
are shown in Section S3 in the ESM.) The results
achieved show that our method provides the best
reproduction of the specular reflections and the
anisotropic highlights.

7.2 Practical measurement experiment

The previous experiment was performed using
reference BRDFs represented by an analytical
model. However, such an approach sacrifices
some visual features of the original reflectance
behavior that cannot be reliably represented by
the model. Therefore, we performed practical
BRDF measurement experiments, collecting 8911
samples. Firstly, we recorded these samples
uniformly (using sampling scheme 14, see Fig. 7
and Section S1 of the ESM) and interpolated them
using barycentric and RBF methods. Then, we
recorded the same number of samples adaptively
using our proposed method. Altogether, we
measured two datasets for each of three materials
(fabric112, fabric135, fabric136) publicly available at
http://btf.utia.cas.cz.

Fig. 9 MRE of the proposed method, barycentric interpolation,
and RBF interpolation. Top: for sampling scheme 14 (8911 samples).
Bottom: for sampling scheme 19 (18,721 samples).
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(a)Reference (b) Barycentric (c) RBF (d) Proposed
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0.5 / 50.21 0.3 / 54.84 0.2 / 57.99
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1.0 / 43.75 0.4 / 51.28 0.2 / 55.19
Fig. 10 BRDF rendering on a sphere in the grace environment. The reference BRDF (a) is compared with its reconstruction from 8911
samples using (b) barycentric interpolation, (c) RBF interpolation, and (d) our proposed method. Difference images are scaled 10× and
difference values are given as CIE ∆E / PSNR (dB).

All measurements were performed using the UTIA
gonioreflectometer [2] that allows for the placement
of an almost arbitrary combination of illumination
and viewing directions with high angular accuracy.
Acquisition time for the adaptive method was about
10% longer than for uniform sampling of the same
number of samples due to the data processing
overhead required by the adaptive algorithm. It took
approximately 25 hours to acquire 8911 samples.

We compared the data in an applied situation
using a 3D scene comprised of four spheres
illuminated by a single point-light source as shown
in Fig. 11.

Therefore, many combinations of illumination
and view directions were covered providing a
comprehensive visualization of the properties of
these materials. The rendered images were divided
into a sparse raster with only 6195 occupied
pixels representing the directions reachable by the
gonioreflectometer; therefore, only this number of
BRDF values was measured for the three materials.

Fig. 11 3D scene used for tests on real measured BRDF data.

The entire scene was then rendered using those
pixels, which we call control samples; we used them
as our reference. Note that pixels representing
directions unreachable by the gonioreflectometer due
to occlusion of view of the camera by the light
source are not included into the control samples
(resulting in a white spot in the difference images in
Fig. 12, on the leftmost sphere). Their values were
interpolated from regular measurements for purposes
of visualization.

The insufficient precision of analytical models, and
also of non-adaptive measurement, is shown by our
experiment in Fig. 12. Renderings using tabulated
data (rows 2, 3, and 4) outperform analytical models
(rows 5 and 6) in terms of precision. Therefore,
tabulated functions should be used whenever high
accuracy is important.

We also rendered the same scene using values
obtained by the three methods to be compared
and evaluated their results at all control samples.
Figure 12 shows the reference scene side-by-side with
its reconstruction using all tested methods as well as
results of two tested analytical anisotropic models
due to Kurt et al. [20] and Ward [22]. From the
accompanying error values, we conclude that our
method has by far the best accuracy for real BRDF
data.

In addition, we show how our method compares
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Fig. 12 All reachable directions in the virtual scene (see Fig. 11) measured and compared with barycentric and RBF interpolations of
uniformly measured data, fits of two analytical models ([20, 22]), and our proposed adaptive measurement. 8911 samples were used. Difference
values are given as CIE ∆E / RMSE / PSNR (dB). The last row shows results of dense BRDF measurement [23].

to an approach to dense BRDF measurements in
Ref. [23]. It relies on spatial homogeneity of measured
material and slight variations of illumination and
viewing angles within each captured image. A total
of 8505 images capture nearly three million BRDF
samples. After interpolation of missing samples, the
data are uniformly resampled with a sampling step
of 2◦ in all four dimensions; these data currently
represent one of the best anisotropic BRDF datasets
available. The last row of Fig. 12 uses such data
performance for our test scene, giving difference
images and CIE ∆E, RMSE, and PSNR values.

When compared to the proposed method (using 8911
samples) in the previous row, one can observe the
comparable accuracy of both methods, but while the
sequential measurement time for over 8000 images is
comparable, the proposed method does not assume
largely homogeneous material with the associated
challenges related to sample preparation.

7.3 Comparison with a previous adaptive
method

We have compared our method with the method of
Filip et al. [2] using synthetic data and our own
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reimplementation of that method. Its results
were much worse than ours when we use 12 axial
and 12 diagonal slices per subspace as suggested
in Ref. [2]. Moreover, its parameter t must be
tuned carefully to achieve the chosen number of
samples, which would not be possible in a real
measurement scenario. Thus, we have also enhanced
the method with our approach to adaptive sampling
(see Section 4) which enables us to choose the
number of samples easily. Also, we have taken our
conclusions on the optimal placement of samples (see
Section 6) into account, which helps greatly. This
allows us to evaluate the additional contribution due
to the horizontal and vertical slices over and above
that of the axial and diagonal slices. Results of the
comparison are summarized in Fig. 13. Our method
on average has only about half the error of even the
enhanced version of the method of Filip et al. [2].

7.4 Validation on specular anisotropic
materials

Finally, we validated our method on several
highly specular anisotropic materials. As such
ground truth measurements are not available with
sufficient angular density, we have to rely on an
anisotropic BRDF model again. We selected three
highly reflective self-adhesive aluminum foils with
directional finishing. We captured their BRDFs
uniformly using 81 samples per hemisphere [24]
and fitted this data using an anisotropic BRDF
model [20]. Photographs of the foils and the captured
BRDFs are shown in Fig. 14.

The fitted BRDF model was used to generate
dense ground truth data for testing of the compared
methods. Figure 15, last column, shows that
the proposed method clearly performs better
than uniform sampling with barycentric or RBF
interpolation. One can observe the contribution of

Fig. 13 Percentage MRE for the proposed method and the method
in Ref. [2] for two numbers of samples (schemes 14 and 19).

aluminum1 aluminum2 aluminum3

Fig. 14 Photographs of brushed aluminum samples and
corresponding captured BRDFs.
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Fig. 15 Renderings of three specular anisotropic materials using
different sampling approaches and 8911 samples, compared with the
ground truth (GT). The difference images are scaled.

the proposed method in comparison to its variant
without horizontal and vertical slices [2].

Similar results are obtained for the two sampling
schemes when the MREs are computed between the
ground truth and the values reconstructed by the
tested methods, as shown in Table 2. Also see
additional results in Section S6 of the ESM.

8 Discussion

This section discusses advantages and limitations

Table 2 MRE of the compared methods for two numbers of samples
(schemes 14 and 19)

Material Baryc. RBF Ref. [2] Ours
8911 aluminum1 6.9% 8.7% 5.4% 3.3%
samples aluminum2 5.2% 3.9% 1.5% 1.2%

aluminum3 4.9% 5.2% 2.6% 1.7%
18,721 aluminum1 5.0% 5.6% 2.7% 2.0%
samples aluminum2 3.9% 2.6% 0.7% 0.7%

aluminum3 3.6% 3.4% 1.1% 0.9%



12 R. Vávra, J. Filip

of the proposed method, and gives timings for
the interpolation methods used. Furthermore, we
discuss reliability of the proposed approach that finds
the optimal placement of the slices.

8.1 Advantages

In contrast to competitive methods, the main
advantage of our proposed adaptive sampling
approach is its faster decrease in reconstruction
errors with increasing number of samples (especially
for lower counts, see Fig. 6). On average, we achieve
almost four times lower relative errors given the same
number of samples, and between two to five times
fewer samples are necessary to achieve the same
reconstruction errors. Additionally, the proposed
adaptive sampling method operates along the one-
dimensional slices in the BRDF space, allowing data
acquisition by continuous movement of a light source
and a sensor. It is especially beneficial for accurate
gonioreflectometer-based measurement devices.

8.2 Limitations

Common to all tested methods is their decreasing
improvement in accuracy as increasing number of
samples, approaching an asymptotic value. One
reason for this behavior is lack of samples at locations
representing specular and anisotropic highlights.
They are not sampled properly by the uniform
sampling used in the RBF and barycentric methods,
nor by the uniform positioning of the slices in BRDF
subspaces by the proposed method. We believe
that the development of a better parameterization
in combination with an adaptive placement of the
slices would further improve performance.

As the proposed method is particularly designed
to represent features perpendicular to the slices, it
can suffer from improper representation of curved
highlights or visual features occurring between the
slices. Such behavior is typical for subspaces with
a large difference between viewing and illumination
elevation angles, as shown in Fig. 16. These errors
can be suppressed by an elevation-angle dependent
interpolation method [25] that interpolates data
along the anisotropic highlights. Unfortunately, this
method is not yet elaborate enough to reconstruct
the whole 4D BRDF space.

8.3 Timings

Reconstruction of the entire BRDF space with

Reference Barycentric RBF Proposed
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tin
fa
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13
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Fig. 16 Example of a limitation of the proposed interpolation
method, when highlights are not perpendicular to the axial or
diagonal slices (θi = 30◦, θv = 75◦).

a uniform step of 2◦ requires about 45 seconds
using barycentric interpolation, whereas RBF
interpolation takes about 22 minutes; neither
depends on the number of samples. Reconstruction
of the whole BRDF array by the proposed method
using our MATLAB implementation typically takes
4 minutes. All timings were obtained using a
single core of an Intel Xeon E5-2643 at 3.3 GHz.
Implementation of the method for interpolation of
an arbitrary value on a GPU is described in Section
S5 of the ESM.

8.4 Stability of placement of slices

To test stability of the proposed placement
optimization, we performed the following
experiment. We computed the optimal values
of the parameters m times using Eq. (3), each time
with one material left out of the computation. This
provides m different results, which we graphically
compare in Fig. 17 to the results in Table 1. The
first line in Fig. 17 corresponds to the computation
for all materials, and each other line corresponds to
the computation with one material left out.
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Fig. 17 Top row: The color coded optimal placement of slices in
terms of es/as for various numbers of samples. Other rows: Stability
test of optimal placement of slices: in each row, one material is left
out from computation of the optimal placement.
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As one can see, boundaries of individual regions
(representing combinations of parameters es/as) vary
slightly but not dramatically. When we leave out
Red velvet, there is a green region (14/20) which does
not appear on other lines substituting purple (10/36)
and blue (8/36) regions. When we leave Brushed
alum, fabric041, or wood01 out, the blue region
(8/36) is missing. Note that usage of the parameters
for neighboring regions leads to only slightly worse
reconstruction errors.

We evaluated the increase in MRE due to usage of
the optimal placement of the BRDF slices according
to Table 1, instead of usage of the best placement for
the tested material (which is unknown for a newly
measured material). Evaluation was performed
across a broad range from 55 samples (resulting
from the number of slice intersections in the sparsest
configuration es = 28◦, as = 180◦) to 354, 061
samples (resulting from the densest tested uniform
distribution of samples across a hemisphere, see
Fig. 7). Results are summarized in Table 3. While
the maximal increase in the error is almost 1.5
times, the average MRE across all materials is only
1.2 times worse than if we use the best possible
placement of the slices. We conclude that usage of
the optimal placement according to Eq. (3) works
well in practice for measurement of an unknown
material.

9 Conclusions

Our paper deals with efficient sampling and
reconstruction of anisotropic BRDFs using a chosen
number of samples. Firstly, we sample a four-
dimensional dataspace by means of one-dimensional
slices, with adaptive density of samples along the
slices according to material properties. To find
the optimal placement of the slices in the 4D
BRDF space, we perform an extensive study on ten
materials, and we provide parameters for optimal
placement based on the required number of measured

samples.
We have compared the accuracy of our method

with barycentric and RBF interpolation approaches
as applied to 30 uniform sampling schemes
with varying numbers of samples. In simulated
measurements that use an analytical anisotropic
BRDF model as a source of reference data, the
proposed method achieves on average almost four-
times lower reconstruction errors than uniform
sampling combined with either of two interpolation
methods. Alternatively, for a given reconstruction
error, our method requires between two to five times
fewer samples than the competing approaches.

In real measurement of the anisotropic BRDFs,
our method achieves half the reconstruction error
of other approaches, and our further experiments
suggest that the captured BRDF data are amongst
the best publicly available anisotropic BRDFs.
We have also verified that the proposed method
performs almost twice as well as a previous adaptive
method [2], mainly due to its use of two additional
types of BRDF slices. Moreover, the proposed
method readily allows reconstruction of a BRDF on
a GPU.

In our future work, we plan to enhance the
interpolation method proposed in Ref. [25] to
eliminate the main disadvantage of our method,
reconstruction artifacts. Also, we plan to extend
our method to a more time- and resource-efficient
measurement of spatially-varying representations
such as SVBRDFs or BTFs.
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Table 3 Increase in MRE using determined optimal placement of the slices, instead of the best possible placement

Brush. Purple Red Yellow fabric fabric fabric fabric fabric wood Mean
alum satin velvet satin 002 041 112 135 139 01
1.31× 1.19× 1.49× 1.32× 1.02× 1.03× 1.05× 1.27× 1.11× 1.17× 1.20×
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