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Toward a Smart Car: Hybrid Nonlinear Predictive
Controller With Adaptive Horizon
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Abstract— This paper focuses on the development of an
optimization algorithm for car motion predictive control that
addresses both hybrid car dynamics and hybrid minimization cri-
terion. Instead of solving computationally demanding nonlinear
mixed-integer programming task or approximating the hybrid
dynamics/criterion, the Hamiltonian-switching hybrid nonlinear
predictive control algorithm developed in this paper incorporates
the information about hybridity directly into the optimization
routine. To decrease the time complexity, several adaptive pre-
diction horizon approaches are proposed, and for some of
them, it is shown that they preserve maneuverability-related
properties of the car. All developed alternatives are verified on
an example of a motion control of a racing car and compared
with the approximation-based nonlinear predictive control and a
commercial product. Moreover, a sensitivity analysis examining
robustness of the algorithm is included as well.

Index Terms— Autonomous vehicles, hybrid systems, nonlinear
model predictive control (MPC), optimization, vehicle control.

I. INTRODUCTION

AUTOMOTIVE industry is one of the most dynamic
engineering branches. Recently, huge progress toward an

autonomous car has been witnessed [1]–[5], and out of the
control methods able to replace a human driver, the model
predictive control (MPC) is the most perspective one.

The most frequent variant is the linear MPC [4], [6], [7].
Although computationally simple, simplifications of the non-
linear dynamics/criterion provide only suboptimal perfor-
mance. Some works present nonlinear MPC, however, they
usually focus only on steering control [1], [8], [9]. The
nonlinear MPC proposed in this paper manipulates steering,
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acceleration and braking and both satisfies the safety con-
straints and maximizes the performance indicators.

Complications arise from the strongly nonlinear sideslipping
effects. One option is to model them by a steering coefficient
being a piecewise continuous function of the forward veloc-
ity yielding a hybrid car dynamics model. Its attractiveness
consists in replacing one complicated nonlinear function with
a series of simpler subfunctions, as exploited in aerospace
applications, chemical or electrical engineering [10]–[13].

Usually, mixed-integer programming (MIP) is exploited
to handle the hybrid optimal control problems [14]–[16];
however, the nonlinear MIP tasks are NP-hard with exponen-
tially growing time/computational demands [17], [18]. Some
works [19], [20] propose alternatives, however, they either rely
on restrictive assumptions such as a priori knowledge of the
subdynamics sequence or perform a possibly time-consuming
preprocessing. In this paper, we develop an algorithm requir-
ing no such knowledge that avoids complex preprocessing,
exploits Hamiltonian-switcher and solves the given optimiza-
tion task directly as an ordinary nonlinear-programming task.

The computational burden is one of the weaknesses of
the optimization-based approaches. Although dividing the
“global” control task into smaller pieces and using decentral-
ized approach [21] decreases the computational complexity,
the price is the loss of optimality. However, since the com-
plexity of the optimization task depends on the length of the
optimization horizon, it can be reduced using adaptive horizon.
In this paper, several alternatives are proposed with certain
safety guarantees.

This paper is organized as follows. Section II introduces the
vehicle behavior description, control requirements and con-
straints. Section III deals with the mathematical aspects of the
problems the newly proposed algorithm focuses at, formulates
a novel Hamiltonian-switcher-based algorithm and explains
adaptive prediction horizon approaches. In Section IV,
the results obtained from the numerical experiments are pre-
sented. Section V inspects the robustness of the proposed
control algorithm with respect to parameter perturbations.
Section VI concludes this paper.

II. CAR MOTION MODELING, OBJECTIVES,
AND CONSTRAINTS

In the role of the test-bed system, a racing car with a hybrid
steering coefficient was chosen.

A. Car Modeling

Car dynamics modeling is a highly delicate task, since
the real car behavior is influenced by many factors, which
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Fig. 1. State variables.

1) are constant (car mass, size and wheelbase), through
those that 2) vary slightly/slowly (e.g., road inclina-
tion) up to those that 3) are highly nonlinear/stochastic
[aerodynamic (im)perfections and their influence, car/road
technical conditions and others].

In the literature, two main modeling branches are fol-
lowed: kinematic (nonholonomic) modeling [22] and dynamic
modeling [23]. While the dynamic modeling provides accurate
models useful for simulation and analysis, the kinematic (non-
holonomic) models are simpler and have low computational
requirements, which is attractive for model-based control sys-
tems. On the other hand, they do not capture more complicated
behavior, such as sideslipping. In this paper, this is overcome
by a hybrid coefficient that models sideslipping as a decrease
of the steering effectiveness.

The car dynamics is considered as follows:
x1,k+1 = (p1 − p2 Bk)x1,k + p3 Dk,

x2,k+1 = x2,k + p4α(x1,k) tan(Sk)x1,k,

x3,k+1 = x3,k + p5 cos(x2,k)x1,k,

x4,k+1 = x4,k + p5 sin(x2,k)x1,k, (1)

where the forward speed x1 (ms−1), vehicle orientation
x2 (rad) and its x- and y-position {x3, x4} (m) represent the
state vector x = [x1, x2, x3, x4]T. For visualization, see Fig. 1.
Regarding the manipulated variables u = [D, B, S]T, they cor-
respond to normalized acceleration force D (−), normalized
braking force B (−) and steering angle S (rad).

p1 expresses how much the car velocity is preserved
in the no-gas-no-braking case and meaningful values are
those close to 1. Driving a noninclined road with a tar-
mac surface, p1 is typically slightly lower than 1 mainly
due to ubiquitous friction and air resistance. Lower sub-1
values are caused by driving a rougher terrain (increased
friction), uphill driving (effect of gravitational force) or aero-
dynamic imperfections (increased drag coefficient), while
slightly super-1 values indicate downhill driving. In this
paper, p1 = 0.999.

p2 represents the braking effect. Since the braking decel-
eration can vary from 4.5 up to almost 9.8 ms−2, with
the sampling period of 0.1 s and p1 = 0.999, p2 can
range from slightly less than 0.02 to slightly more than
0.04 depending on the velocity, vehicle/road conditions and
properties (wet/icy road, bald tires and mass distribution).
p2 = 0.03 used in model (1) yields a 100-to-0 kph braking
distance of around 85 m, a reasonable value for rather unpaved
surfaces.

TABLE I

SYSTEM PARAMETERS

Fig. 2. Hybrid steering coefficient α(x1).

The acceleration modeled by p3 is affected by factors
similar to those influencing p1 and p2. p3 = 0.35 ms−1 chosen
here corresponds to 0-to-100 kph time around 8.5 s.

p4 reflecting the influence of the car velocity and steering
command on the car orientation is obtained as a product of
the sampling period and the reciprocal of the wheelbase of the
vehicle. In this paper, p4 = 36.36 × 10−3 is assumed, which
corresponds to a wheelbase of 2.75 m.

As mentioned, nonholonomic models describe the vehi-
cle dynamics with sufficient accuracy at lower speeds and
considering perfect adherence, however, they do not reflect
sideslipping effects. In this paper, the sideslipping is inter-
preted as a decrease of steering effectiveness and is modeled
by a piecewise continuous coefficient α(x1) that equals 1 at
lower speeds x1 ≤ v1, decreases linearly between v1 and v2,
and decays exponentially at speeds x1 > v2:

α(x1) =

⎧
⎪⎨

⎪⎩

α1(x1) = 1 0 ≤ x1 ≤ v1,

α2(x1) = a1x1 + a2 v1 < x1 ≤ v2,

α3(x1) = a3 exp(a4 x1) v2 < x1.

(2)

For graphical interpretation of α(x1), see Fig. 2. The para-
meters {p1, p2, p3, p4, p5}, {v1,2} and {a1, a2, a3, a4} of (1)
and (2) are provided in Table I. Further information on car
dynamics and modeling can be found in [22]–[25].

B. Objectives and Constraints

In automobile racing, the lap time is usually minimized.
This can be transformed into speed x1 maximization, which
then stands for the performance part of the overall criterion.

The second aspect of the same (if not even greater) impor-
tance is the safety, which turns into a requirement that the car
stays on the track with a predefined width W . As usual in car
racing, some predefined tolerance �r is admitted.

The only technical constraints are those imposed on the
manipulated variables D, B and S:

D ≤ D ≤ D, B ≤ B ≤ B, S ≤ S ≤ S. (3)

The numerical values of {D, D}, {B, B} and {S, S} can be
found in Table I.
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III. CONTROLLER DESIGN

In this section, a novel optimization algorithm for hybrid
nonlinear predictive control is proposed and its application to
the investigated task is explained.

A. Hybrid Nonlinear Predictive Control Algorithm

Let us introduce a general description of a discrete-time
system with switched dynamics as follows:

xk+1 = F(xk, uk, sd,k) (4)

where the dynamics switcher sd,k = Sd(xk, uk) indicat-
ing the current system dynamics is obtained by a mapping
Sd : R

n+m �→ {1, 2, . . . , Nd }. Here, n and m are the dimen-
sions of states x and inputs u, and Nd ∈ N

+ is the number of
switched dynamics. Moreover, let

F(xk, uk, 1) = f1(xk, uk),

F(xk, uk, 2) = f2(xk, uk),
...

F(xk, uk, Nd ) = fNd (xk, uk), (5)

where fsd,k (xk, uk) expresses the particular subdynamics.
The hybrid optimization criterion J minimized at each time

k is considered in the following form:

J =
k+P∑

i=k+1

L(xi , ui , sc,i ) (6)

with prediction horizon P ∈ N
+. Next, assume that the

function L can be expressed as

L(xk, uk, 1) = l1(xk, uk),

L(xk, uk , 2) = l2(xk, uk),
...

L(xk, uk, Nc) = lNc (xk, uk), (7)

with lsc,k (xk, uk) being the particular subcriterion term. Here,
the criterion switcher sc,k = Sc(xk, uk) is obtained by a
mapping Sc : R

n+m �→ {1, 2, . . . , Nc}, where Nc ∈ N
+ is the

number of the hybrid parts of the cost criterion term L.
Then, the optimization task is summarized as follows.
For given initial condition x−, find

u∗ = arg minJ (x, u, sd , sc) (8)

with respect to

xk+1 = F(xk, uk, sd,k),

umin ≤ u ≤ umax,

sd,k = Sd(xk, uk) ∈ {1, 2, . . . , Nd },
sc,k = Sc(xk, uk) ∈ {1, 2, . . . , Nc}. (9)

The common implementation [further referred to as a priori
switching MPC (APS-MPC) algorithm] performed at each
sampling instance k is as described by Algorithm 1.

The APS-MPC approach eliminates the hybridity by eval-
uating Sd and Sc prior to solving the optimization task and
assuming sd and sc constant over the whole P , which enables

Algorithm 1 APS-MPC

use of the standard NLP solvers instead of more demanding
MINLP in step 2 of APS-MPC.

While for simple tasks, potential issues with the valid-
ity of the approximation are not crucial, a suitable
alternative needs to be found for less trivial cases.
Here, one such alternative—Hamiltonian-switching hybrid
nonlinear predictive control (HaSH-NPC) algorithm—is
derived as an adaptation of the Hamiltonian-based gradient
method [26], [27].

The original gradient algorithm makes use of the Hamil-
tonian H (x, u, λ) = λT

k+1 F(xk, uk) + L(xk, uk). In the hybrid
case with system dynamics (5) and criterion term (7), it can
be derived that

H(x, u, λ)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λT
k+1 f1(xk, uk) + l1(xk, uk) iff sd = 1, sc = 1,

λT
k+1 f1(xk, uk) + l2(xk, uk) iff sd = 1, sc = 2,

...

λT
k+1 f1(xk, uk) + lNc (xk, uk) iff sd = 1, sc = Nc,

λT
k+1 f2(xk, uk) + l1(xk, uk) iff sd = 2, sc = 1,

...

λT
k+1 fNd (xk, uk) + lNc (xk, uk) iff sd = Nd , sc = Nc.

To make the above description more compact, let us introduce
a Hamiltonian-switcher sh = Sh(sd , sc)

Sh : {1, 2, . . . , Nd } × {1, 2, . . . , Nc} �→ {1, 2, . . . , Nh }. (10)

Here, Nh ∈ N
+ corresponds to the number of all possible

Hamiltonian relations for the hybrid optimization problem.
The mapping Sh can be with advantage chosen as

Sh(sd , sc) = (sd − 1)Nc + sc. (11)

Then, the hybrid-problem Hamiltonian can be constructed as

H(x, u, λ, sh)= Hsh(x, u, λ)=λT
k+1 fsd (xk, uk)+lsc(xk, uk).

(12)

Instead of approximating the hybridity, the HaSH-NPC
algorithm handles the problem correctly as described by
Algorithm 2.

Let us note that the search step length choice is a highly
complicated and still open question. While computationally
least demanding, constant search steps often provide poor
convergence. On the other hand, search steps obtained by a line
search usually yield best convergence, however, their, calcu-
lation might be prohibitively time-consuming. A fair tradeoff
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Algorithm 2 HaSH-NPC

is offered by the heuristically chosen cost-function-dependent
search steps that 1) are small (and prevent oscillations) if the
cost criterion decreases rapidly and 2) increase (and speed
up the convergence) if the cost criterion change is small.
Moreover, their computational demands are negligible, since
they can be expressed analytically. In this paper, the search
step length αl is considered as a function of the cost criterion
value decrease �Jl−1 = |J (Ul−1) − J (Ul−2)| as follows:

αl = β max(α, min(α,− log10(�Jl−1))), (14)

where β � 0 and α > α � 0 shape and constrain the step.

B. Control Design

As indicated, the performance part of the criterion mini-
mized over prediction horizon P ∈ N

+ is expressed as

Jp =
k+P∑

i=k+1

−x1,i . (15)

TABLE II

CASE STUDY PARAMETERS

The satisfaction of the safety requirements can be accom-
plished in several ways. The first option is to track the central
line given by {xcent,k, ycent,k}, which, however, disables speed
optimization. Rather than that, keeping the x- and y-position
within admissible limits is more advantageous. To handle this,
a new state x5 (m) representing the total driven distance is
introduced, and the model (1) is extended as follows:

x{1,...,4},k+1 =̂ (1),

x5,k+1 = x5,k + p5x1,k . (16)

As in [28], [29], feasibility issues are eliminated introducing
relaxed safety part of the criterion formulated as follows:

Js =
k+P∑

i=k+1

L(x3,i , x4,i , CX (x5,i), CY (x5,i )), (17)

where

L =

⎧
⎪⎨

⎪⎩

0 ri < R,

|ri − R| R ≤ ri < R + �r ,

ω3(ri − R)2 R + �r ≤ ri .

(18)

Here,

ri =
√

(x3,i − CX (x5,i))2 + (x4,i − CY (x5,i))2 (19)

represents the distance of the car from the central line
[CX , CY ], R = W/2 is the half-width of the track, �r is
the considered tolerance, and ω3 is a weighting parameter.

Having specified a set of discrete points {xcent, ycent} lying
on the central line and the corresponding driven distances
{dcent} and exploiting spline interpolation techniques [30],
functions CX (x5) and CY (x5) can be obtained as CX ≈
xcent(dcent), CY ≈ ycent(dcent), and then directly incorporated
into the cost criterion (20).

To avoid simultaneous use of gas and brake, additional
minimization term Dk Bk is considered. The overall criterion
for the predictive controller is then formulated as

Jk = ω1 Jp + ω2 Js +
P∑

i=k

Di Bi . (20)

Jp and Js correspond to (15) and (17), respectively, and
ω1 and ω2 are user-defined weights. The values of ω{1,2,3},
R and �r are listed in Table II. Last of all, let us note that the
solution is required to respect the hybrid dynamics (16) with
Nc = 3 and Nd = 3 and satisfy constraints (3).
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C. Adaptive Prediction Horizon

Prediction horizon is one of the key parameters specifying
the tradeoff between computational complexity and optimality.
The idea of adaptive prediction horizon comes in very natu-
rally in case of car motion control—intuitively, the higher the
velocity is, the longer horizon is needed to handle the car
satisfactorily and respect the track constraints. In this paper,
three adaptive prediction horizon approaches are considered.

1) Linear Adaptive Horizon (θ − P Approach): The predic-
tion horizon is calculated using [θx−

1 ] being the nearest integer
to a θ -multiple of x−

1

P = max(1, [θx−
1 ]), (21)

where θ > 0 is a tuning parameter. Despite simple calculation,
the choice of the parameter θ is tricky and depends on the
current track—combination of long straight parts where the car
velocity increases rapidly and short sharp curves demanding
intensive braking requires higher θ , while presence of only
low-curvature passages might also allow for lower θ . Absence
of such information degrades the control performance. This
shortcoming is eliminated by the more advanced alternatives
for adaptive prediction horizon.

2) Nominal Logarithmic Adaptive Horizon (nom-log −P
Approach): In this case, the horizon P is calculated as

P =
⎧
⎨

⎩

1 x−
1 ≤ v1,

1 +
⌈

logp

(
v1
x−

1

)⌉

v1 < x−
1 ,

(22)

where p = p1 − p2 B < 1 represents the velocity dynamics
coefficient with maximum braking and minimum acceleration.
Here, 	ε
 denotes the smallest integer not less than ε. Now,
let us define the nominal car dynamics as dynamics (1) with
x1 ≤ v1, i.e., α(x1) = 1, and let us specify the preservation of
nominal maneuverability as the physical capability of the car
to drive over a trajectory that is realizable by the nominal car
dynamics. Then, the following statement can be made.
Theorem 1. Consider a vehicle with dynamics (16) with
p = p1 − p2 B < 1 and D = 0. Let us assume that
given initial conditions x−, an optimal controller OC∞ with
prediction horizon P = ∞ with respect to criterion (20) and
constraints (3) results in sup(rk) ≤ R + �r . Then, given the
same initial conditions x−, an optimal controller OC	 with
prediction horizon P	 calculated according to (22) preserves
nominal maneuverability and also leads to sup(rk) ≤ R +�r .
Proof: The only difference between the nominal car dynamics
and the dynamics of the real car is caused by the fact that
α(x1,k) < 1 ⇔ x1,k > v1. Assuming an optimal controller,
it can be expected that given enough information about the
upcoming trajectory (represented by infinite prediction horizon
P = ∞), the controller decreases the velocity x1,k , such that
α(x1,k) = 1 when necessary. Here, it should be noted that
infinite prediction horizon, in fact, collapses to a horizon of
such a finite length that the whole track is covered. A controller
with shorter P (not covering the whole track) is able to ensure
such a decrease only in case that P is large enough to bring x1
from x1,0 = x−

1 to x1,P < v1 with Dk ≡ D, Bk ≡ B. Directly
substituting Dk ≡ D, Bk ≡ B and P	 calculated according

Fig. 3. pM (x1) and supernominal maneuverability range 〈0, v+
1 〉, detail.

to (22) into the dynamics of the car (1), the nonlinear velocity
dynamics turns into a linear one,

x1,k+1 = px1,k, (23)

with p = p1 − p2 B < 1. Then, x1,P	 = pP	
x−

1 . Obviously,
x−

1 ≤ v1 yields P	 = 1, x1,P	−1 ≤ v1, and α(x1,P	−1) = 1.
For x−

1 > v1, the substitution leads to

x1,P	 =
⎛

⎝p

(

1+
⌈

logp

(
v1
x−
1

)⌉)⎞

⎠ x−
1 ≤ p

v1

x−
1

x−
1 < v1. (24)

Furthermore,

x1,P	−1 ≤ v1

x−
1

x−
1 ≤ v1 ⇔ α(x1,P	−1) = 1, (25)

which means that x2,P	 evolves from x2,P	−1 according to
the nominal car dynamics. Therefore, P	 calculated according
to (22) provides enough information to preserve nominal
maneuverability. �

3) Supernominal Logarithmic Adaptive Horizon (S-nom-
log −P Approach): Inspecting the dynamics (1), it can be
seen that the function tan(S) is multiplied not only by α(x1)
but by the maneuverability product pM (x1) = x1α(x1) that
specifies the resulting efficiency of the steering S. Looking at
Fig. 3, it is obvious that the value of pM can be even higher
than v1α(v1). Let us call such values supernominal values of
pM , and let us define the supernominal maneuverability range
as

〈0, v+
1 〉 = {x1| pM(x1) ≥ v1α(v1) ∨ α(x1) = 1}.

The value of v+
1 can be found as the higher solution of the

equation pM(x1) = v1α(v1). Let us also specify the preser-
vation of supernominal maneuverability as the capability of
achieving that x2,P−1 evolves to x2,P with either supernominal
pM or nominal α = 1.

Now, let us have P calculated based on x−
1 as follows:

P =
⎧
⎨

⎩

1 x−
1 ≤ v+

1 ,

1 +
⌈

logp

(
v+

1
x−

1

)⌉

v+
1 < x−

1 ,
(26)

and formulate the following statement.
Theorem 2. Consider a vehicle with dynamics (16) with
p = p1 − p2 B < 1 and D = 0. Let us assume that
given initial conditions x−, an optimal controller OC∞ with
prediction horizon P = ∞ with respect to criterion (20)
and constraints (3) results in sup(rk) ≤ R + �r . Then,
given the same initial conditions x−, an optimal controller
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OCs	 with prediction horizon Ps	 calculated according to (26)
preserves supernominal maneuverability and also leads to
sup(rk) ≤ R + �r . Furthermore, the following holds for the
average value of prediction horizon exploited by controllers
OCs	 and OC	:

mean(Ps	|OCs	) ≤ mean(P	|OC	).

Proof: The first part of the proof is similar to the previous
case and consists in direct substitution of Dk ≡ D, Bk ≡ B,
and Ps	 calculated by (26) into (1). Having accomplished this,
it can be shown that with x−

1 > v+
1 and Ps	,

x1,Ps	−1 =
⎛

⎝p

⌈

logp

(
v+
1

x−
1

)⌉⎞

⎠ x−
1 ≤ v+

1

x−
1

x−
1 ≤ v+

1 , (27)

i.e., the velocity can be decreased from x−
1 > v+

1 such that the
supernominal maneuverability range is reached at k = Ps	 −1
and x2,Ps	 can evolve from x2,Ps	−1 with supernominal pM .

The second part of the proof comes from the comparison of
expressions (22) and (26)—since v1 ≤ v+

1 , Ps	(x−
1 ) calculated

according to (26) is not higher than P	(x−
1 ) calculated by (22)

for any value of x−
1 . �

Remark. Considering r as an additional system output and
Radm = 〈0, R+�r 〉 as admissible set for r , a controller can be
found stabilizable if it ensures that rk ∈ Radm ∀k ≥ 0 iff r0 ∈
Radm or limk→∞ rk = ra ∈ Radm iff r0 /∈ Radm. Then, it can
be deduced that starting from initial conditions r0 ∈ Radm,
a suitably tuned optimal controller with the proposed adaptive
prediction horizon is able to keep r within the admissible
bounds given that this is achievable by the nominal car, i.e.
Radm = 〈0, R + �r 〉 is forward invariant with the proposed
predictive controller and the adaptive predictive horizon. This
covers the first part of the stability requirements. Their second
part is covered by incorporating the track violation into the
criterion (20). Since the controller makes control moves in the
direction of negative gradient of the cost function, choosing
suitable weights makes the nonzero safety part of the criterion
decrease gradually from time k − 1 to k, i.e., Js,k ≤ Js,k−1.
Therefore, if r0 /∈ Radm, the controller produces a series
of control moves uk such that limk→∞ rk = ra ∈ Radm,
which covers the second part of the stability requirements.
As such, Theorems I and II and their proofs guarantee the
recursive feasibility when using the nom-log-P and S-nom-
log-P prediction horizons.

IV. RESULTS

Several numerical experiments were performed on different
tracks to examine the performance of all presented alternatives.
Their results are presented in this section.

A. APS-MPC Versus HaSH-NPC Comparison

At first, the hybrid predictive control algorithms were tested
on Track 1 with the nominal prediction horizon P = 25
samples. Fig. 4 shows the behavior of the car on the track.

Looking at Fig. 4, it seems that both algorithms respect
the safety constraints satisfactorily. However, more details are

Fig. 4. Track 1. Black line: HaSH-NPC. Red line: APS-MPC.

Fig. 5. Track 1—r , x1, and sd . Black line: HaSH-NPC with P = 25.
Red line: APS-NPC with P = 25. Blue dashed line: APS-NPC with P = 30.

provided by the topmost subfigure of Fig. 5, where the distance
of the car from the central line is shown. The yellow line
r = R indicates the inner zero-penalized part of the track,
while the green line r = R + �r indicates the transition
between the linear penalization and quadratic penalization.

It can be seen that while the HaSH-NPC algorithm (rep-
resented by black solid line) almost never allows the car to
leave the inner zero-penalized part of the track r < R and
very safely satisfies the condition r < R + �r , APS-MPC
(represented by red solid line) working with the approximated
description of the optimization problem happens to violate
even the additional tolerance on the distance from the central
line. Such a significant track violation can eventually bring the
car to a point at which it is not able to return back to track
and continue racing any more. This negative effect can be
eliminated considering APS-MPC with increased prediction
horizon P = 30 (represented by the blue dashed line).
Although the use of longer prediction horizon complies with
the expectations and helps to keep the car on the track, increase
of the computational time can also be expected.

Fig. 5 also shows the x1 profiles for the three above-
mentioned variants (middle subfigure). Since the velocity
determines the current system subdynamics, the velocities v1
and v2 of expression (2) are indicated by the green and yellow
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Fig. 6. Track 2. Black line: HaSH-NPC. Red line: APS-MPC.

dashed lines, and also the dynamics-switcher profiles sc are
provided (see the bottommost subfigure).

It is obvious that the assumption on a priori known
sequence of the system subdynamics cannot hold in this
case, and therefore, the approaches relying on it could not
be used. Given that the velocity (and thus the dynamics
switcher) profiles are quite similar for the three depicted
alternatives, while the track satisfaction differs significantly for
HaSH-NPC versus APS-MPC with P = 25, it can be con-
cluded that with equal prediction horizon, the HaSH-NPC
handles the switching dynamics in a more appropriate way.

To obtain a more reliable comparison, another set of numer-
ical experiments with the longer and more complicated Track
2 was performed. Track 2 and the behavior of the car with
the two hybrid predictive control algorithms are presented
in Fig. 6. Also in this case, nominal P = 25 was used.

In this case, the difference between the performances of
the two algorithms is more significant. While the HaSH-NPC
handles the complex track as well as the simpler one, certain
problems in keeping the car on the track can be observed
in case of APS-MPC. This is demonstrated by Fig. 7, where
several details of the track are provided. Especially when
driving at limit speed and cornering, the APS-MPC with
nominal prediction horizon sometimes happens to get out of
the track. Fig. 8 shows the velocity profiles and distances from
the central line in one such situation in more detail. In the
first subfigure, black and red lines represent the distance r
reached by HaSH-NPC and APS-MPC at particular distance
driven from the start d . Dashed lines mark r = R (yellow
line) and r = R + �r (green line). In the second subfigure,
black and red lines show velocity reached by HaSH-NPC/APS-
MPC, and green and yellow dashed lines mark v1 and v2,
respectively.

From Fig. 8, it can be seen that due to the approximation,
APS-MPC does not decrease the speed sufficiently when
cornering. This is not the case of HaSH-NPC, which acts
appropriately and successfully satisfies the track tolerance.
By increasing prediction horizon to P = 45 samples in case

Fig. 7. Track 2. Black line: HaSH-NPC. Red line: APS-MPC.

Fig. 8. Track 2—r and x1. Black line: HaSH-NPC with P = 25. Red line:
APS-NPC with P = 25. Blue dashed line: APS-NPC with P = 30.

TABLE III

COMPARISON OF HYBRID PREDICTIVE CONTROL ALGORITHMS

of APS-MPC (blue dashed line), even the algorithm working
with approximation achieves satisfactory performance.

The results of all experiments with constant prediction
horizon are summarized in Table III, where T1 and T2
indicate the particular track. Several numerical evaluators were
chosen as follows to provide a comprehensive comparison.
As the first evaluator, the average velocity x1 was considered.
The second evaluator TV = max{TVk} corresponds to the
maximal track violation TV k = max(0, rk − R), where rk

is defined by (19). Let us remind the tolerance for the track
violation �r = 0.5 m. The last evaluator d�r V represents
the distance driven by the car when violating even the track
tolerance (rk > �r ). For HaSH-NPC, prediction horizon
P = 25 samples was considered, while in case of the other
algorithm, the prediction horizon is indicated by the subscript
(e.g., APS-MPC35 means APS-MPC with horizon P = 35
samples).

Inspecting Table III, it can be seen that all algorithms
achieve similar average velocities on particular track with
slight superiority of HaSH-NPC results and (as expected),
increase of prediction horizon results in increase of x1 in case
of APS-NPC algorithm. However, a big difference can be
noticed comparing TV and d�r V . On Track 1, the HaSH-NPC
algorithm never violates the track tolerance (see TV = 0.1 <
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TABLE IV

COMPARISON OF ADAPTIVE PREDICTIVE HORIZON APPROACHES

�r and d�r V = 0). On the other hand, APS-MPC with
P = 25 drives 34 m violating the track by more than 0.5
m with a maximal violation of 1.8 m. To make APS-MPC
achieve acceptable performance the prediction horizon needs
to be increased to P = 30 samples.

The situation is even more significant in case of the more
complicated Track 2. Although TV of HaSH-NPC rises to 0.4
m, it stays within the defined track tolerance �r with P as low
as 25 samples. The APS-MPC algorithm, however, is not able
to achieve desirable track-satisfaction performance even with
P = 35 for which it still violates the track by up to 0.9 m.
The satisfaction of the track tolerance is achieved with as long
predictions as P = 45 samples. The poorer behavior of the
APS-MPC algorithm is caused mainly by the approximation
of the hybrid dynamics/cost criterion. MPC is a model-based
controller, and therefore, neglecting/approximating the system
dynamics in a significant way comes hand in hand with
performance degradation. On the other hand, increasing P can
remedy these negative effects, since more time is provided to
take the corrective action. This explains why APS-MPC is
outperformed by HaSH-NPC with equal prediction horizons
and why also APS-MPC can satisfy the safety requirements
with increased P .

B. Adaptive Prediction Horizon Approaches Comparison

To inspect the performance of the adaptive predic-
tion horizon approaches, only HaSH-NPC algorithm was
evaluated. Track 2 was considered because of its more com-
plicated shape and a need for more aggressive car handling
and maneuvering.

To obtain an illustrative and reliable comparison of dif-
ferent approaches, several evaluators were inspected. The
first one was the average achieved velocity x1 representing
the performance part of the criterion, while the safety part
SP of the criterion, max(rk − R) ≤ �r , was evaluated
binarily ( —passed and —failed). As the computational
complexity and efficiency markers, average prediction horizon
P considered by particular controller and “efficiency ratio”
E = x1/P were evaluated as well. The results are summarized
in Table IV. For the sake of completeness, results of algorithm
with constant prediction horizon denoted as c-HaSH-NPC are
provided as well.

At first, θ -P approach was tested with
θ ∈ {0.2, 0.4, 0.6, 0.8, 1}. It can be seen that while all
θ -P variants with θ ≥ 0.6 passed the safety requirements,

Fig. 9. Pareto optimality ( —0.6-P , —0.8-P , —1.0-P , —c-HaSH-NPC,
—nom-log-P , —S-nom-log-P , and —Pareto frontier).

those with θ ≥ 0.8 might not be regarded as competitive due
to their excessive computational complexity demonstrated
by P ≥ 27.3. This comes hand-in-hand with a decrease of
the efficiency ratio E , which degrades from E = 1.68 (for
θ = 0.6) to as low as E = 1.05 (for θ = 1.0). The efficiency
ratio for variants that did not pass the safety requirements
was not evaluated.

Unlike the θ -P variants, nom-log-P and S-nom-log-P
approaches provide both safety constraints satisfaction and
attractive performance with high computational efficiency.
While nom-log-P approach achieves the highest x1, the S-
nom-log-P approach is clearly the most computationally effi-
cient with E = 1.95.

Considering multiple evaluative criteria Ji , i ∈ {1, . . . , ni }
and a set of solutions X, solution x̃ ∈ X is said to dominate
solution x̌ ∈ X iff Ji (x̃) ≤ Ji (x̌) for all i and at least for one
j ∈ {1, . . . , ni }, Jj (x̃) < Jj (x̌). A solution x̂ ∈ X is said to
be Pareto optimal iff it is not dominated by any other solution
x̌ ∈ X. Further details on Pareto optimality might be found
in [31]–[33] and references therein.

With three evaluative criteria J1 = −x1, J2 = P and J3 =
−E , it can be shown that out of all alternatives that passed
the safety requirements, only nom-log-P and S-nom-log-P
approaches are not dominated by any other solution and thus
are Pareto optimal. This is demonstrated in Fig. 9—the Pareto
frontier [31] comprising the Pareto optimal solutions consists
exclusively of logarithm-based (nom-log-P and S-nom-log-P)
approaches.

Fig. 10 shows the tradeoff between the efficiency E and the
safety-requirements satisfaction by depicting Pk (horizon at
time k) as a function of x1,k . The S-nom-log-P approach splits
the approaches into two groups—those lying completely above
the S-nom-log-P-profile are safety-acceptable yet efficiently
suboptimal while those that “undercrawl” it significantly are
in turn more efficient but might be safety-unacceptable.

The overview is completed by a comparison with a com-
mercially available MINLP solver provided in Table V. In this
role, ga function implementing genetic algorithm being part of
MATLAB Global Optimization Toolbox was employed with
three different settings denoted as ga1, ga2, and ga3. CTR (−)
expressing the ratio between the average computational time
of ga and HaSH-NPC was evaluated as well.

This comparison shows the main advantage of the HaSH-
NPC algorithm against the MINLP solvers—elimination of
high computational complexity. While with the computation-
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Fig. 10. Pk as a function of x1,k ( —0.2-P , —0.4-P , —0.6-P , —0.8-P ,
—1.0-P , —nom-log-P , and —S-nom-log-P).

TABLE V

MINLP SOLVER RESULTS

TABLE VI

p1 SENSITIVITY ANALYSIS

ally least demanding settings (which still consumes about 40×
more time), the ga velocity performance is about 5% worse,
the best achieved ga solution comparable with the HaSH-NPC
one requires more than 1000× longer computations.

V. SENSITIVITY ANALYSIS

To evaluate the robustness of the proposed control algo-
rithms, a detailed scenario-based sensitivity analysis was per-
formed exploiting a subsection of the second track encircled
in Fig. 6 by the blue dashed line. In each of the analyzed
cases, nom-log-P and S-nom-log-P approaches were tested
and x1 and TV were evaluated. Out of the model parameters,
p5 was excluded from the sensitivity analysis. The other “p”
parameters (i.e., p1−4) were perturbed separately, while the
α-formula (i.e., a1−4 and v1,2 parameters) was changed as a
whole. Let us note that the MPC model parameters correspond
to Table I unless otherwise stated, and for completeness,
the unperturbed cases are presented in the tables in blue.

A. p1 Sensitivity Analysis

Six values ranging from 0.99 to 1.004 were chosen, which
can be interpreted as uphill/rough terrain driving, noninclined
road driving, and downhill driving. The results are presented
in Table VI.

From the TV results it can be seen that none of the tested
values causes safety problems, which means that the algorithm
is sufficiently robust against the p1 mismatch.

TABLE VII

p2 SENSITIVITY ANALYSIS

B. p2 Sensitivity Analysis

Robustness against p2 perturbation was tested on a set of ten
scenarios with p2 ranging from 0.04 to 0.006 to cover both the
situations where the braking effectiveness is underestimated
and those where the braking effect decreases (which can
happen due to rain or snow) and MPC overestimates it. The
results are listed in Table VII.

Inspecting the results obtained for p2 = 0.04 to 0.024 (the
first subtable), it can be seen that both variants are successful
without any adaptations. Decreasing p2 to 0.02, S-nom-log-
P violated �r , and therefore, the following workaround was
proposed. Calculation of prediction horizon was performed
considering “worst case guess” p2,wg = 0.01, while for the
MPC model itself, the original p2 = 0.03 was used. Basically,
only the prediction horizon was increased, while the dynamics
remained the same. This was successfully tested for p2 = 0.02
to 0.01 (see the second subtable). For p2 = 0.008, �r was
again violated, and another workaround consisting in use of
“worst case guess” for both the prediction horizon calculation
and the MPC model was implemented with p2,wg = 0.005.
The usefulness of this adaptation is demonstrated by the
results presented in the third subtable. Last of all, a p2
estimator was designed according to (1) using x1, D, and B
measurements, and as the parameter for the optimizer, moving
average calculated from p2 estimates over the last ten samples
was used. These results presented in the last subtable show
that while already the original “no-estimator” algorithm had
satisfied the safety requirements, the optimality in the sense
of x1 improved with the estimator.

C. p3 Sensitivity Analysis

Regarding the p3 parameter, eight values ranging from
0.2 to 0.7 corresponding to 0–100 kph acceleration times
of 4–15 s were used. The results can be found in Table VIII.

The influence of the p3 parameter perturbation on
the performance is in some sense proportional to
the p3 perturbation—p3 decrease/increase results in
decrease/increase of both x1 and TV, nevertheless,
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TABLE VIII

p3 SENSITIVITY ANALYSIS

TABLE IX

p4 SENSITIVITY ANALYSIS

the satisfaction of safety requirements remains unharmed for
the whole inspected range.

D. p4 Sensitivity Analysis

The p4-perturbation robustness of the control algorithm was
verified on a series of seven numerical experiments, where p4
varied from 33.33 × 10−3 to 41.67 × 10−3. Such values can
be interpreted as wheelbase ranging from 2.4 to 3 m, which
covers the vast majority of the race cars. The obtained results
are shown in Table IX.

While the nom-log-P approach handles all evaluated p4
values without violating the track constraints, the S-nom-log-
P approach encounters difficulties with the lowest p4 values
representing a car with 3-m wheelbase. The difference between
the two approaches is in their prediction horizon—although
both algorithms optimize considering the same dynamics,
slightly longer prediction horizon of nom-log-P approach
provides it with enough time to take the corrective action.
This weakness of the S-nom-log-P approach can be remedied
by increasing the safety penalty ω2 from 200 to 500. The
results of such a configuration are presented in Table IX in
the corresponding row after the slash mark. As can be seen,
the unacceptable track violation was successfully eliminated.

Inspecting x1, it can be concluded that both understeering
and oversteering lead to x1 decrease.

E. α Sensitivity Analysis

The α expression was perturbed as a whole to preserve
monotonicity of the coefficient. These perturbations mean
that multiple parameters were changed at time. Therefore,

Fig. 11. Perturbations of α.

TABLE X

α SENSITIVITY ANALYSIS

the perturbed coefficients are plotted instead of exact numer-
ical perturbations of the particular parameters.

At first, the inclination of α varied from 0.7 up to 3. These
perturbations are in Fig. 11 denoted as αinc=i (i stands for
the inclination). Next, α was “shifted” by −4 up to +6 ms−1

as shown in Fig. 11, where the corresponding profiles are
denoted as αs (s is the velocity shift). Following the results
from Section V-D, ω2 = 500 was used for S-nom-log-P with
α{−2,−3,−4}. Three cases were added (see αalt,1, αalt,2 and αalt,3
in Fig. 11). The results can be found in Table X.

Table X demonstrates that although inaccurate α expression
degrades x1, no significant interventions are needed for the
algorithms to keep the car on the track with TV ≤ �r .
It should be noted that this also holds for the inspected
cases where not only the parameters of the α-expression were
perturbed, but even completely different mathematical func-
tions (higher powers of x1, their reciprocals and logarithms)
were used, which is represented by αalt,1, αalt,2 and αalt,3.
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TABLE XI

PERFORMANCE ENHANCEMENT WITH PARAMETER ESTIMATORS

F. Performance Enhancement

It can be expected that the performance might further
improve with an estimator providing regular parameters cor-
rections. To verify this, p2,real = 0.01 and αreal = αalt,1
were used in the real system dynamics. The other para-
meters were kept at their original values, since either their
influence was insignificant or they are not expected to be
misestimated. The x1 and x2 measurements were corrupted
by white noises with the variances of σ1 = 0.5 and
σ2 = 35 × 10−3. Estimates of p2 were obtained as described
in Section V-B. Regarding α coefficient, its current value was
regularly estimated as well, and the obtained {x1, α(x1)} pairs
were used for recursive approximation of α(x1) expression.
These estimates were used for both nom-log-P and S-nom-
log-P algorithms. Table XI presents the results achieved
without and with parameter estimator and those obtained
with perfect knowledge of the system parameters. The results
demonstrate that even though the original MPC parameters
might be inaccurate, their continuous estimation can change
the performance from unsatisfactory to almost equivalent to
the ideal case.

VI. CONCLUSION

In this paper, the HaSH-NPC being a new hybrid nonlinear
MPC algorithm for vehicular control was designed. Unlike
the commonly used solution approximating the optimization
problem (APS-MPC), the HaSH-NPC handles the hybridity
in the system dynamics/cost criterion directly exploiting an
auxiliary variable—the Hamiltonian-switcher. The HaSH-NPC
algorithm was verified on an example of a race car with
hybrid dynamics considering hybrid cost criterion. The results
show a very attractive performance of the HaSH-NPC, which
even with short prediction horizon outperforms the APS-MPC
algorithm.

The second part of this paper focused on adaptive predic-
tion horizons. Linear and logarithm-based prediction horizon
approaches were proposed. Their results show that while
also linear prediction horizons improve the computational
burden when compared with the constant prediction hori-
zon, they might not be able to provide acceptable safety-
requirements satisfaction. This is overcome by the logarithm-
based approaches, which are also shown to be Pareto optimal
with respect to multiple evaluative criteria. Additional com-
parison with a commercially available MINLP solver provided
the same prediction horizons demonstrates that the HaSH-NPC
requires only a fraction of MINLP solver computational time
with comparable performance.

In the last part, the results of a detailed sensitivity analysis
were presented demonstrating the robustness of the HaSH-
NPC with respect to various system parameters perturbations.
Several performance enhancements that can further improve
the robustness and the overall functionality of the algorithm
were also proposed.

The results encourage practical use of the algorithms that
provide a “recipe” for computationally effective nonlinear
MPC for the automotive area.
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