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Abstract

The fully probabilistic design (FPD) of decision strategies models the closed
decision loop as well as decision aims and constraints by joint probabilities
of involved variables. FPD takes the minimiser of cross entropy (CE) of the
closed-loop model to its ideal counterpart, expressing the decision aims and con-
straints, as the optimal strategy. FPD: a) got an axiomatic basis; b) extended
the decision making (DM) optimising a subjective expected utility (SEU); c)
was nontrivially applied; d) advocated CE as a proper similarity measure for an
approximation of a given probability distribution; d) generalised the minimum
CE principle for a choice of the distribution, which respects its incomplete spec-
ification; e) has opened a way to the cooperation based on sharing of probability
distributions. When trying to survey the listed results, scattered in a range of
publications, we have found that the results under b), d) and e) can be refined
and non-trivially generalised. This determines the paper aims: to provide a
complete concise description of FPD with its use and open problems outlined.

Keywords: dynamic decision making, uncertainty, cross entropy, performance
indices

1. Introduction

Dynamic decision making under uncertainty, understood as a targeted choice
among available options, covers a substantial portion of human activities and
related theoretical domains. This paper describes FPD as its prescriptive theory.
The discussion of DM and of a huge amount of available results is minimised.

1.1. Terminology and Notation

The paper adopts terminology close to DM community but mixes it with
jargon used in control area where FDP arisen.

A solution of a DM task relies on a complete specification of its inputs called
DM elements. A real decision maker, referred as an agent with the “gender”
it, specifies them incompletely. Thus, the targeted algorithmic DM has their
mapping on formal DM elements as its indispensable part. The construction of
this mapping is a DM task. It is referred as the supporting DM. It serves to the
“original” supported DM. The adjective universal stresses that the described
DM theory serves to all decision makers dealing with the same behaviour set
and facing the same uncertainty. They are free to choose their preferences,
constraints and compared strategies.
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Small letters denote elements of the supported DM. The supporting DM uses
their capital counterparts. A set of z’s is z, |z| is its cardinality. R denotes the
extended real line. San serif fonts mark mappings, while Caligraphic fonts mean
functionals. Superscripts identify specific problem elements. Each probability
distribution is assumed to have probability density (pd). When operating on
pds, ∝ means proportionality. The conditioning by a prior knowledge is mostly
implicit. The proof presentation indicates the novelty of the proved proposition.

1.2. A Guide Through the Presented Theory

This part aims to simplify orientation within the paper.
Sec. 2 summarises the design of the optimal strategy solving DM under

uncertainty. It lists the adopted assumptions and generalises DM based on SEU
[26]. The assumptions require the existence of complete preferential ordering of
possible behaviours of closed DM loop and a complete ordering of compared DM
strategies. The demanded existence of their numerical representations and Prop.
1 restrict us to DM on ordered sets with a countable dense topology. Practically,
it allows us to derive various results for a finite number of behaviour realisations.
The use of Prop. 2 leads to SEU with random utility.

Sec. 3 adds assumptions under which the DM strategy choice becomes the
fully probabilistic design. It focuses on utilities, which assign the same values
to equally probable behaviours having the equal losses, Assu. 6. It shows that
the choice among equivalent utilities, leading to the same optimal closed DM
loop, guarantees Pareto’s optimality, Prop. 3. It characterises representatives
of equivalent utilities, Prop. 4. It singles out CE as the only representative,
which avoids the design-induced dependence between a pair independent DM
tasks artificially connected into single tasks, Prop. 5. The corresponding design
is called FPD. Props. 6, 7 show that SEU is a limiting and a special case FPD.
Props. 8 and Prop. 9 recall the solutions of FPD and the needed Bayesian
(stochastic) filtering.

Sec. 4 uses FPD for solving the key supporting DM tasks: an approximation
of a known pd, Prop. 10, and an extension of a partial specification to the joint
pd Prop. 11. Sec. 5 shows the use of these tools for an approximate Kalman
filtering, Prop. 13, an extension of deterministic models to probabilistic ones,
Prop. 14, the extension of marginal or conditional pds to a joint pd, Prop.
15, and the combination of several pds, Prop. 16. Sec. 6 provides concluding
remarks.

1.3. FPD-Related Applications

This part samples the published applications and numerical examples result-
ing from the presented DM theory. The features brought by FPD are stressed
and the exploited propositions are referred. The samples concern the works we
have been directly involved in. A full coverage would need a survey paper.

The probabilistic advisory system [15] rely on FPD, Props. 7, 8. Handling of
universally-approximating dynamic mixtures was made feasible via recursively
applied projections, Prop. 10. The universal system was used for guiding oper-
ators of rolling mils, medical doctors curing a thyroid-gland cancer and traffic-
control operators. Essentially, the advisory system serves as an upper-level, dy-
namic, adaptive feedback recommending the adequate actions to a human in a
complex decision loop. The unified probabilistic description of the environment,
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of the DM aims and of the designed decision rules, Prop. 5, allowed to create a
universal interface. It was well understood by rolling-mill operators (having just
a basic education) as well as by highly qualified medical doctors (their expertise
is out of a formalised and computerised DM). Moreover, the quantification of
DM aims, expressed by the ideal probability within FPD, was made adaptive
by deriving it from the learnt model [11]. A good mutual weighting of entries of
a 12-dimensional state was achieved as full-scale industrial experiments at the
rolling mill confirmed.

Extensive tests with FPD-based, automated knowledge elicitation serving
to a widely-applied autoregressive-regressive model confirmed a significant im-
provements of critical transient behaviour of the gained adaptive predictors [14].
The elicitation respects incompleteness and uncertainty of the processed knowl-
edge via Prop. 11.

The approximation of pds according to Prop. 10 forms the core of approx-
imate Bayesian recursive estimation [12]. Its excellent properties were demon-
strated on recursive estimation of the regression model with Cauchy noise,
which well models time-series with heavy outliers. The application to high-
order Markov chains [13] led to an efficient predictor whose performance was
illustrated on predicting pewee song phrases and a prediction of sales demands.

Extensive encouraging simulation results of fully-scalable distributed, FPD-
based, control and cooperation are in [18], Props. 15, 16.

Other tests concerned of softly cooperating heating systems as well as of
Kalman filters, of balancing exploration with exploitation, of a predictor-based
feeding external knowledge into learning. Sec. 5 offers other direct contribu-
tions to applications, namely, approximate Kalman filtering, Prop. 13 and to an
extension of deterministic models to probabilistic ones, Prop. 14.

1.4. Related Works

References to related works are mostly given during the presentation. Thus,
it makes sense just to mention the key clusters of the related research.

Seminal works connected with SEU are [8, 26]. All fall under the top down
view of cybernetics and artificial intelligence. Excellent works reflecting back-
bone of the current main research stream are [3, 22].

FPD related theories can be tracked back to the first systematic relation
of entropy (CE to uniform pd) and control (dynamic DM) [25]. Probabilistic
modelling of closed DM loops origins in [29]. The closed-loop models are also
called strategic measures and studied in connection with Markov decision pro-
cesses. A use of CE for supporting DM tasks can be tracked to [2, 27]. FPD
was proposed in [11], elaborated to general case in and axiomatised in [19]. An
independently derived KL1 control [10] or KL-constrained optimisation [5] can
be seen as FPD versions.

The related theory of rational inattention has a strong impact in economy
[28]. Probabilistic description of aims overcomes problem of deductive combina-
tion of multiple attributes of SEU [30]. Moreover, it lets multiple agents cooper-
ate [17] without falling into the complexity trap of the systematic methodology
of Bayesian games.

1Kullback-Leibler divergence is one of many alternative names for CE, [20].
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2. Prescriptive DM Theory

The presented SEU generalisation makes the involved utility random.

2.1. DM and Quantified Ordering of Closed-Loop Behaviours

DM selects actions a|t| = (at ∈ at)t∈t. They realise at discrete time moments
t ∈ t = {1, . . . , |t|}, |t| < ∞. The actions influence the closed-loop states
(xt ∈ xt)t∈t. The actions and states constitute the closed-loop behaviour

b =
(
x|t|, a|t|

)
= (xt, at)t∈t ∈ b. (1)

The agent generates its actions by an optional decision strategy s ∈ s consisting
of decision rules st, t ∈ t. The rule st maps the knowledge kt−1, the accessible
part of the behaviour enriched by a prior knowledge k0, on the action at

s = (st : kt−1 → at)t∈t ∈ s. (2)

The actions are chosen in order to reach agent’s aims while respecting its con-
straints. The agent’s aims and constraints provide a preferential ordering 4b of
behaviours bα, bβ ∈ b (1). The adopted interpretation of this relation is

bα 4b bβ means that bα is preferred against bβ . (3)

The agent may specify its preferences only on some behaviour pairs. The speci-
fication can always be completed. It suffices to include a “pointer” to all mean-
ingful completions of the preferential ordering into the unseen state part.

The reviewed prescriptive DM theory supports consistent agents with tran-
sitive preferential orderings. This is general enough. Even the behaviourally
observed intransitivity can be respected by considering an appropriate unseen
agent’s state.

Assumption 1 (Transitivity of Complete Ordering 4b). The preferential
ordering 4b (3) is: a) non-empty; b) complete; c) transitive. The transitivity
means that for bα, bβ , bγ ∈ b

(bα 4b bβ and bβ 4b bγ) ⇒ bα 4b bγ . �

The complete preferential ordering 4b induces the indifference ≈b and the strict
preference ≺b

bα ≈b bβ ⇔ (bα 4b bβ and bβ 4b bα) (4)

bα ≺b bβ ⇔ (bα 4b bβ and bα 6≈b bα).

The complete ordering 4b determines open intervals (bα, bβ)

(bα, bβ) = {b ∈ b : bα ≺b b ≺b bβ}. (5)

They serve as neighbourhoods of bs in them and they enter the continuity defi-
nition of numerical functions defined on b.

The targeted algorithmic DM requires a quantification of 4b.

4



Assumption 2 (Ordering Quantification). A continuous quantification qb :
b→ R = [−∞,∞] exists for which

bα ≺b bβ ⇔ qb(bα) < qb(bβ) (6)

bα ≈b bβ ⇔ qb(bα) = qb(bβ). �

The value of qb is known when knowing its argument. This trivial, but
methodologically important, fact makes qb suitable only for a posteriori evalu-
ation of the behaviour preferability.

Assu. 2 restricts us to orderings 4b with a countable dense subset of open
intervals. It is seen from the next rewording of Theorem II from [6].

Proposition 1 (Existence of Quantification). Let 4b meet Assu. 1. Then,
Assu. 2 is met if a countable subset of open intervals (5) exists such that any
open interval is a union of intervals from this subset. �

The work [6] also provides an example of 4b, which lacks the mentioned
countable subsets and has no quantification. Prop. 1 supports the conjecture
exploited when dealing with supporting DM tasks in Sec. 4:

The results obtained for the countable amount of behaviour realisations
continuously extend to all preferential orderings meeting Assu. 2.

(7)

2.2. Quantified Strategy Ordering

The agent wants to select the best strategy sopt ∈ s. Thus, it deals with an
ordering 4s of compared strategies sα, sβ ∈ s

sα 4s sβ means that sα is better than sβ . (8)

The constructed universal ordering 4s is to be complete. It has to admit the
restriction of the strategy set (2) to the subsets of compared strategies containing
strategy pairs. This completeness justification is the only difference from the
preferential-ordering discussion. The exposition from Assu. 1 up to Prop. 1
applies with the superscript s replacing b. The next assumption covers and
extends Assus. 1, 2.

Assumption 3 (Transitivity and Quantification of 4s). The strategy or-
dering 4s (8) is: a) non-empty; b) complete; c) transitive; d) continuously
quantifiable by qs : s→ R.

Moreover, the optimal strategy sopt ∈ s exists

sopt 4s s, ∀s ∈ s. (9)

This relaxable request avoids an ε-optimality machinery. �

2.3. DM Under Uncertainty

DM is hard due to the always present uncertainty. It prevents the assignment
of a unique behaviour to a given strategy. Its DM consequences are inspected
here without caring about its causes. They are immaterial for DM. The uncer-
tainty primarily makes hard the “harmonisation” of the strategy ordering 4s

with the given preferential ordering 4b.
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Assumption 4 (Harmonised2 Orderings 4s and 4b ). No strategy s ∈ s
exists leading, irrespectively of uncertainty, to behaviours preferred against those
resulting from the optimal strategy sopt (9) . �

All uncertainty models take behaviours as images of strategy-dependent
mappings bs of the uncertainty n ∈ n 6= ∅

bs : n→ b, s ∈ s. (10)

The ordered set b then consists of the union of bs-images

b = {b : ∃n ∈ n so that b = bs(n)}s∈s . (11)

The uncertainties n and the mappings bs, s ∈ s, have to respect key properties
of b even when seen as the set (11). Primarily, they should preserve the lattice
structure of (b,4b). Thus, bs are quantum-mechanical observables, see [7] and
the sketch in Appendix 7. The further treatment takes bs as a less general
b-valued random variable. It maps σn-algebra on uncertainties n to Borel’s
σb-algebra constructed on b.

The mapping bs (10) transforms the quantification qb (6) into the real-valued
function of uncertainties qb◦bs : n→ R. Through this, the compared strategies

s ∈ s and the quantification qb generate the set qnq
b

of uncertainty functions

qnq
b

=
{

qn : ∃s ∈ s such that qn(n) = qb(bs(n)), ∀n ∈ n
}
. (12)

For a fixed quantification qb, the of strategy ordering 4s (8) defines the

equivalent ordering 4qn of functions in qnq
b

qb ◦ bsα 4qn qb ◦ bsβ ⇔ sα 4s sβ . (13)

The definition (13) makes the quantification qs of a strategy ordering 4s equiv-
alent to the quantification Q of the ordering of 4qn . It orders real-valued un-

certainty functions. The quantifying functional Q acts on qnq
b

. The universal
functional Q acts on the set qn covering all sets (12)

qn = ∪qb∈qbq
nqb =

{
qn : n→ R, ∃(s ∈ s, qb ∈ qb)

such that qn(n) = qb(bs(n)), ∀n ∈ n
}
. (14)

The set qn (14) includes all uncertainty functions arising in DMs dealing with
the behaviours b = bs(n), generated by common uncertainties n ∈ n and by
strategies s ∈ s from the widest set s of compared strategies. Individually, DM
tasks consider their specific subsets of compared strategies and their quantifica-
tions qb of preferential orderings.

After specifying the functional Q : qn → R, its restriction to the set qnq
b

(12), given by a specific quantification qb (6) of preferential ordering 4b (3),
quantifies the strategy ordering 4s (8) via the equivalence (13).

Assumption 5 (Smooth Local Harmonised Functionals Q). The consid-
ered universal quantifying functionals Q ∈Q:
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(a) are sequentially and boundedly uniformly continuous3,
(b) are locally additive

(qnαqnβ = 0 on n)⇒ Q(qnα + qnβ) = Q(qnα) +Q(qnβ), (15)

(c) harmonise 4s with 4b, i.e. meet Assu. 4. �

Proposition 2 (Representation of Local Functionals). The universal func-

tional Q : qn → R, meeting Assu. 5 and restricted to functions in qnq
b

(12)
generated by a quantification qb of the preferential ordering 4b, has the form

Q(qn) =

∫
n

κ(qn(n), n)µ(dn). (16)

There µ is a probabilistic measure on (n, σn) while the measurable kernel4 κ
increases in qn(n) and κ(0, n) = 0. �

The measure µ is assumed to have the probability density (pd) with respect
to a dominating measure denoted d•. Then, the back-substitution of (10) within
the integral (16) gives

Q(qn) = Q(qb) =

∫
b

κ(qb(b), (bs)−1(b))cs(b) db = E s(is)

is(b) = κ(qb(b), (bs)−1(b)) is called perfomance index. (17)

This quantifies the strategy ordering in a way harmonised with the agent’s aims
and defines the optimal strategy (9)

sopt ∈ Arg min
s∈s
E s(is). (18)

Unlike SEU [26], the quantification of the strategy ordering is non-linear in
the optimised strategy. The non-standard dependence of the performance index
is (17) on the strategy s comes from the second argument of the kernel in (16).
It appears due to weakening of the usually assumed additivity of the functional
Q to its local additivity (15). Importantly, the measure µ, and thus the pd cs,
serves to all agents facing the same uncertainties. In this sense, the pd cs is the
objective model of the closed decision loop. The chain rule for pds [22], together
with the state and knowledge definitions, implies, ∀b ∈ b (1),

cs(b) =

m(b)︷ ︸︸ ︷∏
t∈t

m(xt|at, xt−1)

s(b)︷ ︸︸ ︷∏
t∈t

s(at|kt−1) = m(b)s(b). (19)

The conditional pds m(xt|at, xt−1), t ∈ t, describe the transitions from the state
xt−1 to the state xt for the action at. They model the agent’s environment5. The
pds s(at|kt−1), t ∈ t, assign the probability to the action at under the knowledge

kt−1 = (aτ , x
s
τ )τ≤t−1 enriching a prior knowledge k0. (20)

3[24] defines exactly these notions intuitively understandable for the considered functions of
finite uniform norm. The used representation Theorem 9.3-5 in [24] operates on such functions
but it holds for more general function spaces.

4It acts as the randomised utility function.
5The agent is a part of its environment and xt also models its state.
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There, xst is the seen part of the closed-loop state, i.e.

xt = (xst , x
u
t ) = (seen,unseen) state parts. (21)

The pds s(at|kt−1), t ∈ t, model the strategy.

3. Fully Probabilistic Design

Assumptions formulated here single out FPD as the relevant DM theory.

3.1. FPD as Prescriptive DM Theory

Performance indices is
α

, is
β

(17) resulting into the optimal strategies soptα, soptβ

(18), which give the same closed-loop model ci(b), ∀b ∈ b,

cs
optα

= cs
optβ

= ci are equivalent. (22)

The choice of the equivalent performance indices can be replaced by the specifi-
cation of ci (22) referred as the ideal closed-loop model. Any representant of the
corresponding equivalence class of performance indices then serves for the strat-
egy design. Such a representant is here constructed under additional, broadly
acceptable, assumptions.

Assumption 6 (Equally Probable Indifferent Behaviours). For a strat-
egy s ∈ s, let the behaviours bα, bβ ∈ b be equally probable cs(bα) = cs(bβ) and
let the agent be indifferent to them bα ≈b bβ ⇔ qb(bα) = qb(bβ). Then, the
performance index assigns them the same values is(bα) = is(bβ). �

Assu. 6 restricts performance indices (17) to those dependent on the function
qb and the closed-loop model cs

is(b) = κ(qb(b), (bs)−1(b)) = κ(qb(b), cs(b)). (23)

The next proposition confirms that under Assu. 6 the use of a representant
of equivalent performance indices does not violate the harmonisation Assu. 4.

Proposition 3 (Equivalent Indices Harmonise 4s with 4b). Optimal stra-
tegies of performance indices equivalent with respect to an ideal closed-loop model
(22) meet Assu. 4.

Proof Let ci be a fixed ideal closed-loop model (22). It delimits equivalent
performance indices (23) that use preferential ordering quantified by qα, qβ .
Let soptα, soptβ ∈ s be the corresponding optimal strategies (18). The mapping
(10) bs : n→ b allows us to express the harmonisation violation

qα(bsoptβ (n)) ≤ qα(bsoptα(n)), ∀n ∈ n, (24)

with a sharp inequality on a subset of n having a positive probability given by
the universal measure µ (16). Such a violation, the universality of the kernel

κ (16), the assumed equivalence cs
optα

= cs
optβ

= ci and the substitutions b =
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bsoptα(n), b = bsoptβ (n) give the next inequality, which contradicts the optimality
of soptα with respect to the preferential ordering quantified by qα,∫

b

κ(qα(b), cs
optα︸ ︷︷ ︸
=ci

(b))cs
optα

(b)db =

∫
b

κ(qα(b), cs
optβ︸ ︷︷ ︸
=ci

(b))

×cs
optα

(b)db <︸︷︷︸
(24)

∫
b

κ(qα(b), cs
optα

(b))cs
optα

(b)db. �

Assumption 7 (Support of the Ideal Closed-Loop Model). The support
supp[ci] of the ideal closed-loop model ci meets

supp[ci] = {b ∈ b : ci(b) > 0} k ∪s∈ssupp[cs]. �

Proposition 4 (Jensen’s Representant). Let us consider performance in-
dices (17) meeting Assus. 6, 7. Then,

is(b) = w(ρs(b)), with ρs(b) =
cs(b)

ci(b)
, (25)

where the function ρw(ρ) is strictly convex for ρ > 0, represents the equivalent
performance indices leading to the given ideal closed-loop model ci (22).

Proof The form of is in (25) meets Assu. 6, see (23), as Assu. 7 allows to express
it as a function of the ratio ρs. By definition, the optimal strategies, assigned to
the equivalent performance indices, give the same closed-loop model ci. Their
addition to (25) with a positive weight does not change the optimisation result.
Jensen’s inequality for convex ρw(ρ), [24], implies, for any s ∈ s,

E s[is] =

∫
b

ρs(b)w(ρs(b))ci(b) db (26)

≥
∫
b

ρs(b)ci(b) db︸ ︷︷ ︸
=1

×w

(∫
b

ρs(b)ci(b) db︸ ︷︷ ︸
=1

)
= w(1).

The minimiser of the expected performance index (26) leads to ρs
opt

= 1 ⇔
cs
opt

= ci. �

Assumption 8 (Avoiding a Design-Induced Dependence). The optimal
strategy gained for concatenated but independent DM problems consists of the
optimal strategies obtained for the individual DM problems. �

This assumption selects cross entropy (CE, [20]) among I-divergences deter-
mined by functions w (25), [19].

Proposition 5 (FPD). The function w(ρ) = ln(ρ) (25) meets Assu. 8. It
defines the optimal strategy sopt as the minimiser of the cross entropy D(cs||ci) =
E s[ln(cs/ci)]

sopt ∈ Arg min
s∈s

∫
b

cs(b) ln

(
cs(b)

ci(b)

)
db = Arg min

s∈s
D(cs||ci). (27)

The optimisation (27) is called fully probabilistic design of decision strategies.
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Proof An artificially connected pair of independent DM tasks operates on be-
haviours b = (bα, bβ) ∈ b = bα × bβ , bα ∩ bβ = ∅, and employs the ideal
closed-loop model ci(b) = ciα(bα)ciβ(bβ). The optimised functional is to be the
sum of functionals corresponding to the involved particular DM tasks. It gives

0 =

∫
bα

∫
bs

cs
α

(bα)cs
β

(bβ)

×
[
w(ρs

α

(bα)ρs
β

(bβ))− w(ρs
α

(bα))− w(ρs
β

(bβ))
]

dbαdbβ .

This implies the functional equation w(ρs
α

ρs
β

) = w(ρs
α

) + w(ρs
β

) for w, operat-
ing on ρs > 0. It has w(•) = ln(•) as its only smooth solution. �

Assu. 7 is restrictive. It excludes ideal closed-loop models resulting from
generic deterministic SEU strategies. The next proposition, however, shows
that any such DM, delimited by a strategy-independent performance index i,
can always be arbitrarily well approximated by FPD, [19].

Proposition 6 (SEU as an FPD Limit). Let the performance index i be stra-
tegy-independent. Let us consider FPD with the ideal closed-loop model of the
next form, meeting Assu. 7,

ciλ =
c exp(−i/λ)

ζλ
. (28)

There, λ > 0 and the optional pd c with supp[c] = b makes the pd ciλ normal-
isable, ζλ < ∞. Then, the corresponding FPD-optimal strategy soptλ converges
for λ→ 0+ to the SEU-optimal strategy sopti ∈ Arg mins∈s E s[i].

Proof It holds

soptλ ∈ Arg mins∈s
[
E s[i] + λD(cs||c)

]
= Arg mins∈sD

(
cs
∣∣∣∣∣∣ c exp(−i/λ)ζλ

)
.

The choice sopti, soptλ gives

0

def. sopti︷︸︸︷
≤ E s

optλ

[i]− E s
opti

[i]

λD
(
cs
optλ
∣∣∣∣c)≥0︷︸︸︷

≤ E s
optλ

[i] + λD
(
cs
optλ

||c
)
− E s

opti

[i]

def. soptλ︷︸︸︷
≤ λD

(
cs
opti

||c
)
→λ→0+ 0. �

3.2. FPD with Leave to the Fate Option (LFO)

This part serves to supporting DM tasks discussed in Sec. 4 and connects
SEU and FPD more tightly than Prop. 6.

Often, a decisive subpart bd of b delimits the preferential ordering 4b=
(4b

d|br )br∈br . The rest br complements bd to b

b = (bd, br) ∈ bd × br. (29)

FPD (27) deals with the ideal closed-loop model on whole b

ci(b) = mi(b)si(b) = ci(bd, br) = ci(bd|br)ci(br). (30)

The first factor of the last chain-rule factorisation is implied by agent’s prefer-
ences and constraints on bd, both possibly dependent on br. The rest dr just
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informs the agent about its environment. Thus, it makes sense to apply the
following leave to the fate option (LFO)

ci(br) = cs(br). (31)

It simply takes the optimised factor cs(br) as the ideal one. Under it, a tighter
connection of FPD and SEU is seen.

Proposition 7 (FPD with LFO and Direct Relation to SEU). Let br 6=
∅. Then, FPD with LFO (31) reduces to

sopt ∈ Arg min
s∈s

∫
br

cs(br)

(∫
bd

cs(bd|br) ln
(cs(bd|br)

ci(bd|br)

)
dbd

)
dbr (32)

For LFO with br = a|t| ⇔ si = s, FPD is SEU with the performance index
i = ln

(
m
mi

)
and a|t| = {a|t| : i(b) <∞}.

Proof The common factor in the ratio cs/ci cancels. It gives (32). The next
statement is obvious from (32), (19), (30). �

3.3. Solution of FPD

The next factorisation of the ideal closed-loop model, mimicking (19), serves
to the solution of the general FPD6

ci(b) =

mi(b)︷ ︸︸ ︷∏
t∈t

mi(xt|at, xt−1)

si(b)︷ ︸︸ ︷∏
t∈t

si(at|kt−1) . (33)

Proposition 8 (The FPD Solution). For cs (19) and ci (33), the FPD-optim-
al strategy (27) has the rules, t ∈ t,

soptt (at|kt−1) =
sit(at|kt−1) exp[−ω(at, k

t−1)]

γ(kt−1)
(34)

γ(kt−1) =

∫
at

sit(at|kt−1) exp[−ω(at, k
t−1)] dat

ω(at, k
t−1) = E

[
ln
( m(xt|at, xt−1)

γ(kt)mi(xt|at, xt−1)

)∣∣∣∣∣at, kt−1
]

This backward run starts with γ(k|t|) = 1, ∀k|t| ∈ k|t|. �

Prop. 8 is a version of stochastic dynamic programming [3] with − ln(γ(kt))
being the optimal value function. The minimising randomised decision rules
are found explicitly. The expectation E [•|at, kt−1] used in (34) is made over
the next state xt and the unseen xut−1, cf. (20) and (21). The next proposition
provides the estimator e(xt, x

u
t−1|at, kt−1), the pd needed for the evaluation of

E [•|at, kt−1], [22].

6The assumption that the ideal decision rules uses the knowledge available to the optimised
ones can be relaxed. It just simplifies the presentation.
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Proposition 9 (Bayesian Filtering). Starting from a prior pd e(x1|a1, k0) =∫
xu0

e(x1, x
u
0 |a1, k0)dxu0 , Bayesian filtering recursively evaluates the estimator de-

scribed by the pd

e(xt, x
u
t−1|at, kt−1) (35)

=
m(xt|at, xt−1)

∫
xut−2

e(xt−1, x
u
t−2|at−1, kt−2) dxut−2∫

xut−1

∫
xut−2

e(xt−1, xut−2|at−1, kt−2) dxut−2 dxut−1
.

Proof

e(xt, x
u
t−1|at, kt−1) = e(xt|at, xut−1, kt−1)e(xut−1|at, kt−1)

= m(xt|at, xt−1)e(xut−1|kt−1)

= m(xt|at, xt−1)
e(xst−1, x

u
t−1|at−1, kt−2)∫

xut−1
e(xst−1, x

u
t−1|at−1, kt−2) dxut−1

=
m(xt|at, xt−1)

∫
xut−2

e(xt−1, x
u
t−2|at−1, kt−2) dxut−2∫

xut−1

∫
xut−2

e(xt−1, xut−2|at−1, kt−2) dxut−2 dxut−1
.

The derivation of (35) sequentially uses: a) the chain rule; b) the identity
kt−1 = (xst−1, at−1, kt−2), the definition of the state xt−1 = (xst−1, x

u
t−1), the

environment model (19) and fact that at is generated from kt−1 (2), [22]; c)
conditioning by xst−1 and marginalisation over xut−2. �

This explicates DM elements of FPD, see Tab. 1. They are probability den-
sities. Props. 8, 9 provide the optimal strategy sopt and the needed estimator
e. The remaining pds are gained by knowledge and preference elicitation. DM
feasibility adds the need for systematic approximations. Sec. 4 solves, via FPD,
these supporting DM tasks.

Table 1: DM Elements in FPD
DM Element PD: named f in Sec. 4 Gained by
environment model (m(xt|a, xt−1))t∈t knowledge elicitation
prior pd e(x1|a1, k0) and approximation
optimal strategy (sopt(at|kt−1))t∈t FPD, Prop. 8, and

approximation
estimator e(xt, x

u
t−1|at, kt−1) filtering, Prop. 9, and

∀t ∈ t approximation
ideal strategy and (si(at|kt−1))t∈t preference elicitation
environment model (mi(xt|a, xt−1))t∈t and approximation

4. Supporting DM Tasks

Tab. 1 lists the approximation, the knowledge and preference elicitation as
the basic supporting DM tasks. Their solutions rely on (7) assuming |b| < ∞,
possibly with |b| → ∞. Static FPDs with the unit decision horizon suffice the
supporting DM tasks. They use capital counterparts of DM elements of the
supported DM task and operate on

B = (X, A) = (an unseen state, an action)

K = an explicitly expressed prior knowledge. (36)
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Pds f ∈ f, related to supported DM tasks, concern behaviour fragments, f ∈ f ,
of the supported DM task. Such pds f are referred as fragmental pd.

4.1. Approximation of a Known PD

Tab. 1 stresses ubiquity of approximation of a pd f, acting on a behaviour
fragment f ∈ f of the supported DM task. The approximation, solved in [16],
deals with B = (X,A)

X = f = an unseen behaviour fragment in f

A = f̂ = a feasible approximation of f opted in f̂

K = f = a known pd on f to be approximated. (37)

It has the closed-loop model (the knowledge K is explicit)

CS(B|K) = CS(X|A,K)CS(A|K) = f(f)S(̂f|f). (38)

It follows from the chain rule and the assumption that the pd f models f ∈ f .
Its approximation f̂ is the action, with no influence on f. The optimised decision
rule S chooses f̂ ∈ f̂. The wish to select the pd f̂ ∈ f̂, which models well f ∈ f ,
and LFO (31) with Br = A determine the ideal pd

CI(B|K) = CI(X|A,K)CI(A|K) = f̂(f)S(̂f|f). (39)

An independent justification of Prop. 10 in [2] supports (7).

Proposition 10 (Approximation of a Known PD). The FPD-optimal de-
cision rule for the closed-loop model (38) and the ideal pd (39) is deterministic.

It selects the approximating pd f̂opt via the approximation principle

f̂opt ∈ Arg min
f̂∈̂f
D(f||̂f). (40)

Proof For CS (38), CI (39), the CE-optimisation over S reads

Sopt ∈ Arg min
S∈S

∫
f̂×f

f(f)S(̂f|f) ln

(
f(f)

f̂(f)

)
df df̂

= Arg min
S∈S

∫
f̂

S(̂f|f)D(f||̂f) df̂

= the determistic rule concentrated on f̂opt (40). �

4.2. Minimum Cross-Entropy Principle

An analogy of the approximation task is solved here. The pd f modelling
f ∈ f is, however, specified incompletely. Its complete specification is needed.
The behaviour B and knowledge K, relevant to this supporting DM [16], read

X = f = an unseen behaviour fragment in f

A = f the opted pd in the set of pds f (41)

K = f0 a prior guess of the pd f and the set f.

The corresponding closed-loop model is

CS(B|K) = CS(X|A,K)CS(A|K) = f(f)S(f|K). (42)
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This follows from the chain rule and the assumption that the pd f models f ∈ f .
The optimised decision rule is S. The guess f0 a priori models f ∈ f . This and
LFO applied to actions A (31) give

CI(B|K) = CI(X|A,K)CI(A|K) = f0(f)S(f|K). (43)

It directly leads to the result derived in [27]. This again supports (7).

Proposition 11 (Minimum CE Principle). The FPD-optimal decision rule
for CS (42) and CI (43) is deterministic. It optimally completes an incomplete
specification of the fragmental pd to fopt via the minimum CE principle

fopt ∈ Arg min
f∈f
D(f||f0). (44)

4.3. General Minimum CE Principle

The minimum CE principle is here generalised as in [16]. The pd f ∈ f of
f ∈ f is uncertain and the model of f is required. The relevant behaviour B and
knowledge K are

X = (f, f) = (an unseen behaviour fragment, its model)

A = A(f|K) the opted pd on fragmental pds f ∈ f

K = A0(f|K) a prior guess of the optimal action Aopt(f|K). (45)

The corresponding closed-loop model is

CS(B|K) = CS(X|A,K)CS(A|K) = f(f)A(f |K)S(A|K). (46)

It follows from the chain rule, the assumptions that f models f , A models f and
S is the optimised decision rule.

The guess A0 a priori models f ∈ f. This and LFO applied to A (31) give

CI(B|K) = CI(X|A,K)CI(A|K) = f(f)A0(f|K)S(A|K). (47)

Proposition 12 (General Minimum CE Principle). The FPD-optimal de-
cision rule for the closed-loop model (46) and the ideal pd (47) is deterministic.
It selects Aopt(f|K), describing the unknown pd f, via the general minimum CE
principle

Aopt ∈ Arg min
A∈A
D(A||A0). (48)

5. On Use of the Solved Supporting DM Tasks

This section illustrates the use of the solved supporting tasks without the
ambition to cover their full applicability.

5.1. Approximation in Kalman Filtering

Computational feasibility motivates an approximation. Approximate Kalman
filtering (KF) operating on real vectors xt = (xst , x

u
t ) (21) is the widespread case

of this type. It approximates the estimator e(xt, x
u
t−1|at, kt−1) (35) by the nor-

mal pd. The approximation principle (40) provides the approximator.
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Proposition 13 (Approximate Kalman Filter). Let us consider the Bayes-
ian filtering at time t ∈ t. The environment model m(xt|at, xt−1) and the pd
e(xt−1, x

u
t−2|at−1, kt−2) are given. The best normal approximation, Prop. 10,

êopt(xt, x
u
t−1|at, kt−1) of the pd e(xt, x

u
t−1|at, kt−1), gained by (35), preserves its

1st and 2nd moments. �

Prop. 13 recommends a simple moment fitting unconditional with respect
to xut−1. This disqualifies techniques like extended KF and supports unscented
KF-type algorithms.

Prop. 13 serves well if the prior pd e(xt−1, x
u
t−2|at−1, kt−2) is known. If an ap-

proximation replaces the prior pd the approximation errors may accumulate. It
is critical when the unseen xu is time-invariant, when an estimation is addressed.
Due to previous approximations, the approximated pd e(xt, x

u
t−1|at, kt−1) is un-

known and the minimum CE principle is relevant. It leads to estimation with
forgetting [12].

5.2. Knowledge Elicitation

Knowledge elicitation leads to the environment model (m(xt|at, xt−1))t∈t
and the prior pd e(x1|a1, k0). The minimum CE principles, Props. 11, 12,
support it.

Proposition 14 (Completion of Deterministic Models). Let a domain the-
ory (say, 1st principles of physics) provide a multivariate deterministic mapping
d : at,xt−1 → xt, which approximately relates triples (xt, at, xt−1)

∆t = xt − d(at, xt−1) ≈ 0 seen as E [∆t|at, xt−1] = 0. (49)

Let a rough qualitative model (m0(xt|at, xt−1))t∈t be chosen7. Then, the mini-
mum CE principle, Prop. 11, and the constrained optimisation recommend the
environment model

m(xt|at, xt−1) ∝ m0(xt|at, xt−1) exp
(∑
i∈i

λi∆t;i

)
. (50)

Lagrangian multipliers (λi = λi(at, xt−1))i∈i solve, cf. (49),∫
xt

xtm0(xt|at, xt−1) exp
(∑
i∈i

λixt;i
)

dxt = d(at, xt−1). �

Usually, the elicitation processes several knowledge pieces, [14]. Tab. 2 provides
some examples.

A combination of pds modelling different behaviour fragments f ∈ f requires
their extension. Each processed pd f is to be extended to a pd c of behaviours
b = (f, fr) ∈ b = f × fr, fr 6= ∅. This induces the supporting DM with

X = (b, c(fr|f)) = (an unseen behaviour, pd on the rest fr)

A = c(b), b ∈ b,= the opted behaviour model (51)

K =

{
f = a given pd on the behaviour fragment f ∈ f
c0 = a prior description of the behaviour b ∈ b.

The next proposition applies the minimum CE principle, Prop. 11, to the ex-
tension problem structured according to (51).

7It typically delimits the domain (a,x) and the range x of the mapping d.
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Table 2: Some Knowledge Pieces

Description Definition Fragmental PD
a data sample (xt, at, xt−1) Dirac on the data sample
a function d(xt, at) ≈ 0 E [d(xt, at)] = 0 f(xt, at)
a fuzzy rule if xt−1 then the member- f(xt|xt−1)

ship of xt is dxt−1
(xt) ∝ dxt−1

(xt)

Proposition 15 (Extension of a Fragmental PD). The pd c(b) =
c0(b)f(f)/c0(f) extends the given pd f on f to b. �

Sec. 5.6 addresses the potentially critical choice of the prior guess c0(f |fr) =
c0(f, fr)/c0(f).

Props. 14, 15 process an incomplete but granted knowledge. This is unreal-
istic when addressing the supporting task combining several pds into single pd
c. The combined pds need not be mutually absolutely continuous (compatible),
[24]. This fact drives our formulation and solution of this classical pds’ pool-
ing, see the next section. The solution serves both to knowledge and preference
elicitation. The choice of the prior pd e(x1|a1, k0) is then a special case of the
general solution requiring extensions only to f = (x1, a1, k0), [14].

5.3. Pooling of PDs

The supporting pooling DM task combines given pds (cj(b))j∈j , b ∈ b, j =
{1, . . . , |j|}, |j| < ∞. Prop. 15 makes the used assumption that the combined
pds (cj)j∈j operate on a common behaviour b ∈ b unrestrictive.

Behaviour B and knowledge K of this DM are

X = (b, c) = (an unseen behaviour in b, its model in c)

A = A(c|K) the opted pd on c ∈ c modelling b ∈ b (52)

K = A0(c|K) a prior guess of the optimal Aopt(c|K)

supp[A0] =
{

c is a pd on b : (E [D(cj ||c)|A,K] ≤ νj)j∈j
}
, (νj > 0)j∈j given.

Prop. 10 determines the adequate proximity measure and motivates the
knowledge specification used in (52), which otherwise copies (45). The spec-
ification demands the probable pd c to approximate well the given pds (cj)j∈j .

The optional non-negative bounds ν = (νj)j∈j should be as small as possible
while keeping supp[A0] non-empty. This choice copes with incompatibility of the
combined pds (cj)j∈j . It, however, requires the multi-valued minimisation over
ν ≥ 0. This minimisation is converted into the scalar minimisation guaranteeing
Pareto’s optimality

νopt ∈ Arg min
ν∈ν

∑
j∈j

αjνj . (53)

The optional probabilistic weights α = (αj)j∈j select the specific point νopt on
Pareto’s frontier. A discussion of their choice is postponed to Sec. 5.6.

The need for supp[A0] 6= ∅ and the wish to make all constraints in (52) active
delimit the set ν of bounds in (52).

Tab. 3 summarises symbols used in Prop. 16 below.
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Table 3: Symbols Used in Prop. 16

Definition Comment
c̄ =

∑
j∈j αjcj see (52), (53)

A = Di(τ) ∝
∏
b∈b c(b)τ(b)−1, τ(b) > 0 Dirichlet’s pd on the joint pd c

opted τ0(b) = λ0c0(b), λ0 =
∑
b∈b τ0(b) prior pd is Di(τ0)

Ψ(z) =
d ln
( ∫∞

0
yz−1 exp(−y)dy

)
dz , z > 0 digamma function

Proposition 16 (Pooling of Behaviour Descriptions). The solution of the
general minimum CE principle (48), with A0 = Di(τ0 = λ0c0) and knowledge K
(52) for ν = νopt (53), is Dirichlet’s pd Aλ = Di(τλ), Tab. 3. Its parameter is

τλ = (τλ(b))b∈b, τ
λ(b) =

∑
j∈j

λjcj(b) + τ0(b) =
∑

j∈j∪{0}

λjcj(b). (54)

The optimal pd Aopt = Aλ
opt

models the promising pooled pd c ∈ c of (cj)j∈j .
Its parameter is

λopt ∈ Arg max
λ>0

[ ∫
b∈b

c̄(b)Ψ
(
τλ(b)

)
db−Ψ

( ∑
j∈j∪{0}

λj
)]
. (55)

Proof The minimisation of the Kuhn-Tucker functional, given by multipliers
λ = (λj)j∈j , respects K-constraints (52) in the general minimum CE principle
(48). For a conjugated Dirichlet’s prior A0 = Di(τ0), the minimisation reads

Aλ ∈ Arg min
A∈A
D(A||A0) +

∑
j∈j

λjE [D(cj ||c)|A,K]

= Arg min
A∈A

∫
c

A(c)
[

ln
( A(c)

A0(c)

)
−
∑
b

∑
j∈j

λjcj(b) ln(c(b))
]
dc

= Arg min
A∈A
D(A||Aλ) with τλ given by (54).

The choice of ν activating bounds in (52) makes the Kuhn-Tucker multipliers λ
positive and relates them to ν

νj = E [D(cj ||c)|Aλ,K], j ∈ j.

This reduces (53) to minimisation

λopt ∈ Arg min
λ>0

∑
j∈j

αjE [D(cj ||c)|Aλ,K]

= Arg max
λ>0

∑
b

c̄(b)E [ln(c(b))|Aλ,K]. (56)

For the relevant Aλ = Di(τλ), it holds, (54), (56),

E [ln(c(b))|Aλ,K] = Ψ
(
τλ(b)

)
−Ψ

(∑
b∈b

τλ(b)
)

⇒ λopt ∈ Arg max
λ>0

∑
b∈b

c̄(b)
[
Ψ
( ∑
j∈j∪{0}

λjcj(b)
)
−Ψ

( ∑
j∈j∪{0}

λj

)]
.

This proves (55) intentionally written in the integral form, cf. conjecture (7). �
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5.4. Preference Elicitation

The probabilistic description of DM aims and constraints is one of the key
advantages brought by FPD. Having elicited fragmental descriptions of the ideal
pd, Props. 15, 16 guide how to extend and pool them. Thus, it remains to show
how to construct these fragmental ideal pds in typical situations. Their samples
are in Tab. 4.

Table 4: Some Descriptions of DM Aims

Definition given by The ideal pd on f ∈ f
the upper hierarchic level relevant to the upper hierarchic level
the neighbour, Sec. 5.5 relevant to the agent’s neighbour
the desired value of an attribute see (57)
entering behaviour
the set of possible actions see (60)

The elicitation of the ideal pd is illustrated on the regulation problem [3]. It
pushes the state xt to a given ideal state xit. With the ideal decision rule (33),
it should hold

xit ∈ Arg max
x∈x

mi(xt = x|xt−1) (57)

= Arg max
x∈x

∫
a

m(x|at = a, xt−1)ri(at = a|xt−1) da.

Ideally, no possible action should be a priori excluded

supp[ri(•|xt−1)] ⊇ supp[m(xt = xi|at = •, xt−1)]. (58)

For |b| <∞, ||ri(•|xt−1)||p = [
∫
a

ri(a|xt−1)p da]1/p|| <∞ ∀p > 1 and
||m(xit|•, xt−1)||q <∞, q−1 + p−1 = 1. Hölder’s inequality [24] and (57) imply

mi(xit|xt−1) ≤ ||m(xit|•, xt−1)||q||ri(•|xt−1)||p, (59)

with equality reached for

ri(at|xt−1) ∝ [m(xit|at, xt−1)]q−1, (60)

which meets (58). This gives fragmental ideal pds reflecting the regulation
problem. The limited space allows us just to add some comments on this open-
ended problem: a) the conjecture (7) is valid here; b) the case p = 1 leads to
CE-type treatment; c) LFO (31) applies when only a part of xt matters; d)
end-points of possible ranges form xit when its individual entries (attributes)
should be maximised; e) the construction of the ideal environment model mi

(57) from the environment model m cares about the best potentially reachable
DM quality; f) (58) is vital for guaranteeing the explorative nature of the DM
strategy.

5.5. Cooperation in a Flat Manner

FPD has allowed to develop a powerful concept of interactions of selfish
imperfect but wise agents, [18]. The adjective “selfish” means that the agent
follows its “personal” aims. The adjective “imperfect” labels the agent’s limited
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knowledge, observation, evaluation, and acting abilities. Such an agent acts in
the environment containing other imperfect selfish agents. The “wise” agent
knows that others influence its success in reaching of its aims. It enhances
its personal chances by (partially) publishing the information it deals. The
published information is expressed in probabilistic manner understandable by
any FPD-using agent. This allows other agents to modify their strategy. The
individual modifications diminish clashes’probability and increase the chances
of agent’s to reach its unchanged individual aims.

An imperfect agent can reach information provided by a small number of
other agents, its recognisable neighbours. Thus, it can extend and pool handled
pds, Props. 15, 16, even with its limited resources. Consequently, no mediat-
ing or facilitating agent, the bottleneck of standard schemes, is needed. This
makes the outlined cooperation fully scalable. Moreover, a) the common aim of
respective agents make them cooperate; b) this flat cooperation imitates acting
of complex well-surviving societies; c) misleading information from neighbours
may spoil the reaching of personal aims. It can, however, be numerically judged
and used for decreasing trust (αj in (53)) to such adversaries.

5.6. Choice of Optional Parameters in Extension and Pooling

The extension and pooling serving to knowledge and preference elicitation
depend on: 1) the optional prior guess c0(b), b ∈ b, (51) of the joint pd; 2)
the parameter τ0 determining the prior pd, see Tab. 3, and 3) the probabilistic
weights α (53) selecting the point on Pareto’s frontier.

Their universally applicable choices are presented here.

ad 1) The optimal pooling decision rule Aλ
opt

= Di(τλ
opt

), Prop. 16, has the
expectation

cλ
opt

(b) =
τλ

opt(b)∑
j∈j∪{0} λ

opt
j

. (61)

It is an optimal point estimate of unknown c(b) and as such it offers the
inherently implicit choice, cf. [17],

c0(b) = cλ
opt

. (62)

Existence of its solution is conjectured and verified in particular cases.
Successive iterations offer finding it.

ad 2) In a particular case cj = c, ∀j ∈ j, it is “natural” to require the expecta-

tion (61) cλ
opt

= c. This can be reached iff τ0 → 0+ ⇔ λ0 → 0+.

ad 3) The weights α reflect either trust into or importance of respective sources.
As such, they can be learnt by observing the past performance of the
knowledge source. It is straightforward but waits for an elaboration.

6. Concluding Remarks

The presented theory is relatively matured but still there is a range of open
problems. Their list, mixing simple and difficult questions, should ideally stim-

19



ulate readers to inspect them.

XWhen the general minimum CE principle reduces to minimum CE principle?

X How to formulate and solve FDP with discounting and how to choose data-
dependent discounting factor?

X Does exist a systematic approach to prove (7)?

X Is it possible to relax the assumption that the behaviour set is specified
beforehand? The knowledge transfer via predictors [23] seems to suit to this.

X How to merge systematically complexity aspects into the problem formulation
and solution? This would lead to truly universal artificial intelligence.

X How to approach prediction of emerging behaviours in a systematic way
overcoming current analysis of particular cases or relying on simulations [1]?

X How to systematically elicit aims-related fragmental pds?

The FPD theory is ready for extensive applications but it needs a lot for
technical work. For instance:

X The used optimisations call for algorithmic solutions.

X The trust estimation is to be elaborated in detail.

X The conceptual solution is to be converted into reliable algorithms for uni-
versally approximating black-box type models as mixture ratios.

X A practical experience is to be accumulated with simulations and applications
in connection with industry 4.0 [21] or various cyber-physical and social systems.

The next list gives the reasons why a DM expert could care about FPD. It

• provides a unified theory extending SEU, Props. 6, 7;

• finds minimising strategy explicitly even in general setting, which makes
approximate dynamic programming simpler;

• allows to address hard DM problems [5];

• has approximation [2] and generalisation of minimum KL principles [27]
as simple consequences [16, 23];

• puts KL control [9, 10] into a wider perspective;

• feeds a proper exploration into adaptive DM;

• unifies otherwise disparate languages describing environment and DM
aims and strengthen the deductive machinery of DM with multiple aims;

• quantifies DM aims by the ideal probability: this allows to employ esti-
mation and approximation for its construction;

• reveals that any realistic aim quantification is to respect the environment
model (57), [11], and it allows to adapt the performance index;

• converts cooperation of agents into the pooling problem of understandable
shared fragmental pds [18].
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7. Appendix: A Way to Quantum DM

The mapping bs (10), reflecting uncertainties, makes the quantification qb

the function qsn = qb ◦ bs : n→ R.

Assumption 9 (No Hidden Feedback of s to u). Within the addressed DM,
all known dependencies of the behaviour on the considered strategies are ex-
ploited. It means that the influences of strategy and uncertainty on the closed-
loop behaviour are taken as independent. �

The conjecture (7) allows to consider a finite amount of strategies |b| < ∞
and a finite amount of behaviours |s| < ∞. In conjunction with (7), it suffices
the select a finite number |n| of distinguishable uncertainties. This makes qsn

real-valued (|s|, |n|) matrix. It can always be decomposed

qsn = qsψqψn. (63)

There ψ = {1, . . . , |ψ| = |n|}, qsψ is (|s|, |ψ|) matrix and qψn is unitary matrix.
Both factors may have complex entries. The resulting qsn is real-valued. The
factor qsψ comprises influence of strategies and the factor qψn the independent
influence of uncertainties. Rows of the matrix qψn span the Hilbert’s space of
wave functions. Invariance of (63) with respect the right unitary transformation
of qψn, the isometry interpretation of the uncertainty influence, together with
the fundamental Gleason’s expression of all measures on Hilbert’s spaces of
dimension greater than 2, [7], make quantum probability calculus relevant to
DM. There is a strong evidence that it improves models of human DM [4].
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