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Summary In this paper, we introduce quantile coherency to measure general dependence
structures emerging in the joint distribution in the frequency domain and argue that this type of
dependence is natural for economic time series but remains invisible when only the traditional
analysis is employed. We define estimators that capture the general dependence structure,
provide a detailed analysis of their asymptotic properties, and discuss how to conduct inference
for a general class of possibly nonlinear processes. In an empirical illustration we examine the
dependence of bivariate stock market returns and shed new light on measurement of tail risk in
financial markets. We also provide a modelling exercise to illustrate how applied researchers
can benefit from using quantile coherency when assessing time series models.
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1. DEPENDENCE STRUCTURES BEYOND SECOND-ORDER MOMENTS

One of the fundamental problems faced by a researcher in economics is how to quantify the
dependence between economic variables. Although correlated variables are rather commonly ob-
served phenomena in economics, it is often the case that strongly correlated variables under study
are truly independent, and that what we measure is mere spurious correlation; see Granger and
Newbold (1974). Conversely, but equally deluding, uncorrelated variables may possess depen-
dence in different parts of the joint distribution, and/or at different frequencies. This dependence
stays hidden when classical measures based on linear correlation and traditional cross-spectral
analysis are used; see Croux et al. (2001), Ning and Chollete (2009), and Fan and Patton (2014).
Hence, conventional models derived from averaged quantities, as for example covariance-based
measures, may deliver rather misleading results.

In this paper, we introduce a new class of cross-spectral densities that characterize the de-
pendence in quantiles of the joint distribution across frequencies (i.e., with respect to cycles).
Subsequently, standardization of the before-mentioned quantile spectra yields a related quan-
tity which we will refer to as quantile coherency. We define and motivate the quantile-based
cross-spectral quantities in analogy to their traditional counterparts. But, instead of quantifying
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dependence in terms of joint moments (i.e., by averaging with respect to the joint distribution),
the new measures are defined in terms of the probabilities to exceed quantiles. Hence, they are
designed to detect any general type of dependence structure that may arise between the variables
under study.

Such complex dynamics may arise naturally in many macroeconomic or financial time series,
such as growth rates, inflation, housing markets, or stock market returns. In financial markets,
extremely scarce and negative events in one asset can cause irrational outcomes and panics, leading
investors to ignore economic fundamentals and cause similarly extreme negative outcomes in
other assets. In such situations, markets may be connected more strongly than in calm periods
of small or positive returns; cf. Bae et al. (2003). Hence, the co-occurrences of large negative
values may be more common across stock markets than co-occurrences of large positive values,
reflecting the asymmetric behaviour of economic agents. Moreover, long-term fluctuations in
quantiles of the joint distribution may differ from those in the short term owing to the differing
risk perception of economic agents over distinct investment horizons. This behaviour produces
various degrees of persistence at different parts of the joint distribution, while on average the
stock market returns remain impersistent. In univariate macroeconomic variables, researchers
document asymmetric adjustment paths (cf. Neftci 1984; Enders and Granger 1998) as firms are
more prone to an increase than to a decrease in prices. Asymmetric business cycle dynamics
at different quantiles can be caused by positive shocks to output being more persistent than
negative shocks. While output fluctuations are known to be persistent, Beaudry and Koop (1993)
document less persistence at longer horizons. Such asymmetric dependence at different horizons
can be shared by multiple variables. Because classical, covariance-based approaches take only
averaged information into account, these types of dependence fail to be identified by traditional
means. Revealing such dependence structures, the quantile cross-spectral analysis introduced in
this paper can fundamentally change the way we view the dependence between economic time
series, and it opens new possibilities for the modelling of interactions between economic and
financial variables.

Quantile cross-spectral analysis provides a general, unifying framework for estimating depen-
dence between economic time series. As noted in the early work of Granger (1966), the spectral
distribution of an economic variable has a typical shape that distinguishes long-term fluctuations
from short-term ones. These fluctuations point to economic activity at different frequencies (after
removal of trend in mean, as well as seasonal components). After Granger (1966) had studied the
behaviour of single time series, important literature using cross-spectral analysis to identify the
dependence between variables quickly emerged [from Granger (1969) to the more recent work by
Croux et al. (2001)]. Instead of considering only cross-sectional correlations, researchers started
to use coherency (frequency-dependent correlation) to investigate the short-run and long-run
dynamic properties of multiple time series, and to identify business cycle synchronization; see
Croux et al. (2001). In one of his very last papers, Granger (2010) hypothesized about possible
cointegrating relationships in quantiles, leading to the first notion of the general types of depen-
dence that quantile cross-spectral analysis is addressing. The quantile cointegration developed
by Xiao (2009) partially addresses the problem, but does not allow a full exploration of the
frequency-dependent structure of correlations in different quantiles of the joint distribution.

Three toy examples illustrating the potential offered by quantile cross-spectral analysis are
depicted in Figure 1. In each example, one distinct type of dependence is considered: cross-
sectional dependence (left), serial dependence (centre), and independence (right). We consider
bivariate processes (xt, yt) that possess the desired dependence structure, but are indistinguishable
in terms of traditional coherency. In the examples, (εt) is an independent sequence of standard
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Figure 1. Illustration of dependence between processes xt and yt.

normally distributed random variables. In the left column of Figure 1, the dependence emerging
between εt and ε2

t is depicted. It is important to observe that εt and ε2
s are uncorrelated. Therefore,

traditional coherency for (εt , ε
2
t ) would read zero across all frequencies, even though it is obvious

that εt and ε2
t are dependent. From the newly introduced quantile coherency, this dependence can

easily be observed. More precisely, we can distinguish various degrees of dependence for each
part of the distribution. For example, there is no dependence in the centre of the distribution (i.e.,
0.5|0.5), but when the quantile levels are different from 0.5 the dependence becomes visible.1 In
this example, the quantile coherency is constant across frequencies, which corresponds to the fact
that there is no serial dependence. In the centre column of Figure 1, the process (εt , ε

2
t−1) is studied,

where we have introduced a time lag. Intuitively, the dependence in quantiles of this bivariate
process will be the same as in the previous example (left column) in the long run, referring to
frequencies close to zero. With increasing frequency, dependence will decline or incline gradually
to values with opposite signs, as high-frequency movements are in opposition owing to the lag
shift. This is clearly captured by quantile coherency, while the dependence structure would stay
hidden from traditional coherency, again, as it averages the dependence across quantiles. We can
think about these processes as being ’spuriously independent’. To demonstrate the behaviour of
the quantile coherency when the processes under consideration are truly independent, we observe
in the right column of Figure 1 the quantities for independent bivariate Gaussian white noise,
where quantile coherency displays zero dependence at all quantiles and frequencies, as expected.
These illustrations strongly support our claim that there is a need for more general measures
that can provide a better understanding of the dependence between variables. These very simple,
yet illuminating motivating examples focus on uncovering dependence in uncorrelated variables.
Later in the paper (Section 6), we further discuss a data-generating process based on quantile
vector autoregression (QVAR), which is able to generate even richer dependence structures,
revealing once more the limitations of the traditional approach. In Figure 2, the real part of the
quantile coherencies of the QVAR(1), QVAR(2), and QVAR(3) example processes are shown.
Further, in Section S3, we discuss how to interpret quantile coherency in the special cases of
bivariate Gaussian VAR(1).

This paper is organized as follows. In Section 2 we introduce the notation, and define quantile
coherency and an estimator for it. In Section 3 we discuss the proposed methodology and related

1 All plots show real parts of the complex-valued quantities for illustratory purposes. Further discussion on how to
interpret the real part and the imaginary part of quantile coherency are deferred to Section 3.
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Figure 2. Illustration of dependence between vector quantile autoregressive processes.

literature. In Section 4 we provide a rigorous asymptotic analysis of the estimator’s statistical
properties. In Section 5, to support our theoretical discussions empirically, we employ the new
methodology to inspect bivariate stock market returns, one of the most prominent time series
in economics, and reveal dependencies in cycles of quantile-based features. We continue our
empirical study in Section 6 by using quantile coherency to compare time series models with
respect to their capabilities to capture the revealed dependencies. In the supplementary material to
this paper (available from the publisher’s homepage), we discuss additional quantile-based cross-
spectral quantities (Section S1), discuss quantile vector autoregressive processes as examples
with rich dynamics (Section S2), discuss how the new, quantile-based spectral quantities and their
traditional counterparts are related (Section S3), state additional theoretical results (Section S4),
comment on the construction of the interval estimators (Section S5), and provide rigorous proofs
for all theoretical results (Section S6).

2. QUANTILE CROSS-SPECTRAL QUANTITIES AND THEIR ESTIMATORS

Throughout the paper, (Xt )t∈Z denotes a d-variate, strictly stationary process, with components
Xt, j, j = 1, . . . , d; i.e., Xt = (Xt,1, . . . , Xt,d )′. The marginal distribution function of Xt, j will be
denoted by Fj, and by qj (τ ) := F−1

j (τ ) := inf{q ∈ R : τ ≤ Fj (q)}, where τ ∈ [0, 1], we denote
the corresponding quantile function. We use the convention inf ∅ = +∞, such that, if τ = 0 or
τ = 1, then −∞ and +∞ are possible values for qj(τ ), respectively. We will write z for the
complex conjugate, Rz for the real part, and �z for the imaginary part of z ∈ C. The transpose of
a matrix A will be denoted by A′, and the inverse of a regular matrix B will be denoted by B−1.

As a measure for the serial and cross-dependency structure of (Xt )t∈Z, we define the matrix of
quantile cross-covariance kernels, �k(τ1, τ2) := (γ j1,j2

k (τ1, τ2))j1,j2=1,...,d , where

γ
j1,j2
k (τ1, τ2) := Cov

(
I {Xt+k,j1 ≤ qj1 (τ1)}, I {Xt,j2 ≤ qj2 (τ2)}

)
, (2.1)

j1, j2 ∈ {1, . . . , d}, k ∈ Z, τ1, τ2 ∈ [0, 1], and I{A} denotes the indicator function of the event A.
In the frequency domain, this yields (under appropriate mixing conditions) the matrix of quantile
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cross-spectral density kernels f(ω; τ1, τ2) := (fj1,j2 (ω; τ1, τ2))j1,j2=1,...,d , where

fj1,j2 (ω; τ1, τ2) := (2π )−1
∞∑

k=−∞
γ

j1,j2
k (τ1, τ2)e−ikω, (2.2)

j1, j2 ∈ {1, . . . , d}, ω ∈ R, τ1, τ2 ∈ [0, 1]. A closely related quantity that can be used as a mea-
sure for the dynamic dependence of the two processes (Xt,j1 )t∈Z and (Xt,j2 )t∈Z is the quantile
coherency kernel of (Xt,j1 )t∈Z and (Xt,j2 )t∈Z, which we define as

Rj1,j2 (ω; τ1, τ2) := fj1,j2 (ω; τ1, τ2)(
fj1,j1 (ω; τ1, τ1)fj2,j2 (ω; τ2, τ2)

)1/2 , (2.3)

(τ 1, τ 2) ∈ (0, 1)2. We define the estimator for the quantile cross-spectral density as the collection

I
j1,j2
n,R (ω; τ1, τ2) := 1

2πn
d

j1
n,R(ω; τ1)dj2

n,R(−ω; τ2), (2.4)

j1, j2 = 1, . . . , d, ω ∈ R, (τ 1, τ 2) ∈ [0, 1]2, and call it the rank-based copula cross-periodograms,
or, in brief, the CCR-periodograms, where

d
j

n,R(ω; τ ) :=
n−1∑
t=0

I {F̂n,j (Xt,j ) ≤ τ }e−iωt =
n−1∑
t=0

I {Rn;t,j ≤ nτ }e−iωt ,

j = 1, . . . , d, ω ∈ R, τ ∈ [0, 1], and F̂n,j (x) := n−1 ∑n−1
t=0 I {Xt,j ≤ x} denotes the empirical

distribution function of Xt, j and Rn; t, j denotes the (maximum) rank of Xt, j among X0, j, . . . ,
Xn − 1, j. We will denote the matrix of CCR-periodograms by

In,R(ω; τ1, τ2) := (I j1,j2
n,R (ω; τ1, τ2))j1,j2=1,...,d . (2.5)

From the univariate case, it is already known (cf. Proposition 3.4 in Kley et al. 2016) that the
CCR-periodograms fail to estimate fj1,j2 (ω; τ1, τ2) consistently. Consistency can be achieved by
smoothing I

j1,j2
n,R (ω; τ1, τ2) across frequencies. More precisely, we consider

Ĝ
j1,j2
n,R (ω; τ1, τ2) := 2π

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
I

j1,j2
n,R (2πs/n, τ1, τ2), (2.6)

where Wn denotes a sequence of weight functions, to be defined precisely in Section 4.
We will denote the matrix of smoothed CCR-periodograms by

Ĝn,R(ω; τ1, τ2) := (Ĝj1,j2
n,R (ω; τ1, τ2))j1,j2=1,...,d . (2.7)

The estimator for the quantile coherency is then given by

R̂
j1,j2

n,R (ω; τ1, τ2) := Ĝ
j1,j2
n,R (ω; τ1, τ2)(

Ĝ
j1,j1
n,R (ω; τ1, τ1)Ĝj2,j2

n,R (ω; τ2, τ2)
)1/2 . (2.8)

In Section 4 we will prove that

R̂n,R(ω; τ1, τ2) := (
R̂

j1,j2

n,R (ω; τ1, τ2)
)
j1,j2=1,...,d

C© 2019 Royal Economic Society.



6 J. Barunı́k and T. Kley

is a legitimate estimator for R(ω; τ1, τ2) := (
Rj1,j2 (ω; τ1, τ2)

)
j1,j2=1,...,d

, the matrix of quantile
coherencies.

3. DISCUSSION OF THE INTRODUCED QUANTITIES AND ESTIMATORS

The quantile-based quantities defined in Section 2 are functions of the two variables τ 1 and τ 2.
They are thus richer in information than their traditional counterparts. We have added the term
kernel to the name for the quantities to stress this fact, but will frequently omit it in the rest of the
paper, for the sake of brevity. For continuous Fj1 and Fj2 , the quantile cross-covariances defined
in (2.1) coincide with the difference of the copula of (Xt+k,j1 , Xt,j2 ) and the independence copula.
Thus, they provide important information about both the serial dependence (by letting k vary)
and the cross-section dependence (by choosing j1 	= j2). For the quantile cross-spectral density
we have ∫ π

−π

fj1,j2 (ω; τ1, τ2)eikωdω + τ1τ2 = P

(
Xt+k,j1 ≤ qj1 (τ1), Xt,j2 ≤ qj2 (τ2)

)
, (3.1)

where the quantity on the right-hand side, as a function of (τ 1, τ 2), is again the copula of the
pair (Xt+k,j1 , Xt,j2 ). The equality (3.1) thus shows how any of the pair copulas can be derived
from the quantile cross-spectral density kernel defined in (2.2). Thus, the quantile cross-spectral
density kernel provides a full description of all copulas of pairs in the process. Comparing these
new quantities with their traditional counterparts, it can be observed that covariances and means
are essentially replaced by copulas and quantiles. Similar to the regression setting, where this
approach provides valuable extra information (cf. Koenker 2005), the quantile-based approach to
spectral analysis supplements the traditional L2-spectral analysis.

Observe that R takes values in C
d×d (the set of all complex-valued d × d matrices). Further,

note that, as a function of ω, but for fixed τ 1, τ 2, it coincides with the traditional coherency of
the bivariate, binary process(

I {Xt,j1 ≤ qj1 (τ1)}, I {Xt,j2 ≤ qj2 (τ2)}
)

t∈Z
. (3.2)

The time series in (3.2) has the bivariate time series (Xt,j1 , Xt,j2 )t∈Z as a ’latent driver’ and
indicates whether the values of the components j1 and j2 are below the respective marginal
distribution’s τ 1- and τ 2-quantile.

Note the important fact that Rj1,j2 (ω; τ1, τ2) is undefined when (τ 1, τ 2) is on the boundary of
[0, 1]2. By the Cauchy–Schwarz inequality, we further observe that the range of possible values is
limited to Rj1,j2 (ω; τ1, τ2) ∈ {z ∈ C : |z| ≤ 1}. Note that, as (τ 1, τ 2) approaches the border of the
unit square, the quantile cross-spectral density vanishes. Therefore, quantile coherency is better
suited to measure the dependence of extremes than the quantile cross-spectral density (which
is not standardized). Implicitly, we take advantage of the fact that the quantile cross-spectral
density and quantile spectral densities vanish at the same rate, and therefore the quotient yields a
meaningful quantity when the quantile levels (τ 1, τ 2) approaches the border of the unit square.

The quantile coherency kernel contains very valuable information about the joint dynamics
of the time series (Xt,j1 )t∈Z and (Xt,j2 )t∈Z. In contrast to the traditional case, where coherency
will always equal one if j1 = j2 =: j, the quantile-based versions of these quantities are capable
of delivering valuable information about one single component of (Xt )t∈Z as well. Quantile
coherency then quantifies the joint dynamics of (I {Xt,j ≤ qj (τ1)})t∈Z and (I {Xt,j ≤ qj (τ2)})t∈Z.

C© 2019 Royal Economic Society.
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Note that quantile coherency is a complex-valued, 2π -periodic function of the variable ω, and
Hermitian in the sense that we have

Rj1,j2 (ω; τ1, τ2) = Rj1,j2 (−ω; τ1, τ2) = Rj2,j1 (ω; τ2, τ1) = Rj2,j1 (2π + ω; τ2, τ1).

Following similar arguments to in Section 2.1 of Birr et al. (2018), it can be shown that

Rj1,j2 (ω; τ1, τ2) describes the dynamics of the process switching between the j1st component
being below the τ 1-quantile and the j2nd component being above the τ 2-quantile. Consequently,
for τ 1 close to 0 and for τ 2 close to 1 it describes the dynamics of changing from an extreme in one
component to an extreme in another component. Further, it can be shown that �Rj1,j2 (ω; τ1, τ2)
contains information about asymmetry.

A discussion of related quantities, of how and how not to interpret them, and of how they are
related to their traditional counterparts in the Gaussian case can be found in Sections S1, S2,
and S3 of the supplementary material.

Recently, important contributions that aim at accounting for more general dynamics have
emerged in the literature. Measures such as, for example, distance correlation (Székely et al. 2007)
and martingale difference correlation (Shao and Zhang 2014) go beyond traditional correlation
and instead can indicate whether random quantities are independent or martingale differences,
respectively. For time series, in the time domain, Zhou (2012) introduced auto distance correla-
tions that are zero if and only if the measured time series components are independent. Linton
and Whang (2007), and Davis et al. (2009) introduced the (univariate) concepts of quantilograms
and extremograms, respectively. More recently, quantile correlation (Schmitt et al. 2015), and
quantile autocorrelation functions (Li et al. 2015) together with cross-quantilograms (Han et al.
2016) have been proposed as a fundamental tool for analysing dependence in quantiles of the
distribution.

In the frequency domain, Hong (1999) introduced a generalized spectral density. In the gener-
alized spectral density, covariances are replaced by quantities that are closely related to empirical
characteristic functions. In Hong (2000), the Fourier transform of empirical copulas at differ-
ent lags is considered for testing the hypothesis of pairwise independence. Recently, under the
names of Laplace, quantile and copula spectral density and spectral density kernels, various
quantile-related spectral concepts have been proposed for the frequency domain. The approaches
by Hagemann (2013) and Li (2008, 2012) are designed to consider cyclical dependence in the
distribution at user-specified quantiles. Mikosch and Zhao (2014, 2015) define and analyse a
periodogram (and its integrated version) of extreme events. As noted by Hagemann (2013), other
approaches aim at discovering ’the presence of any type of dependence structure in time series
data’, referring to work of Dette et al. (2015) and Lee and Rao (2012). This comment also applies
to Kley et al. (2016). In the present paper, our aim is to generalize the existing approaches to
multivariate time series. The extensions to the terminology that we provide, in particular the
introduction of the standardized quantile coherency, is very important for economic applica-
tions, because it enables the analyst to perform a more detailed joint analysis of the serial and
cross-sectional dependence in multiple time series.

For the univariate case, different approaches to consistent estimation were considered. Li
(2008) proposed an estimator for a weighted version of the quantile spectra, based on least
absolute deviation regression, for the special case where τ 1 = τ 2 = 0.5. Li (2012) generalized the
estimator, using quantile regression, to the case where τ 1 = τ 2 ∈ (0, 1). The general case, in which
the quantities can be related to the copulas of pairs, was first considered by Dette et al. (2015).
These authors were also the first to consider a rank-based version of the quantile regression-type
estimator, which eliminates the need to estimate the weights in Li (2008, 2012). For the case

C© 2019 Royal Economic Society.



8 J. Barunı́k and T. Kley

where τ 1 = τ 2 ∈ (0, 1), Hagemann (2013) proposed a version of the traditional L2-periodogram
where the observations are replaced with I {F̂n,j (Xt,j ) ≤ τ } = I {Rn;t,j ≤ nτ }. Kley et al. (2016)
generalized this estimator, in the spirit of Dette et al. (2015), by considering cross-periodograms
for arbitrary couples (τ 1, τ 2) ∈ [0, 1]2, and proved that it converges, as a stochastic process, to
a complex-valued Gaussian limit. An estimator defined in analogy to the traditional lag-window
estimator was analysed by Birr et al. (2017) in the context of nonstationary time series.

4. ASYMPTOTIC PROPERTIES OF THE PROPOSED ESTIMATORS

To derive the asymptotic properties of the estimators defined in Section 3, some assumptions need
to be made. Recall [cf. Brillinger (1975), p. 19] that the rth-order joint cumulant cum(Z1, . . . , Zr )
of the random vector (Z1, . . . , Zr) is defined as

cum(Z1, . . . , Zr ) :=
∑

{ν1,...,νp}
(−1)p−1(p − 1)!E

[ ∏
j∈ν1

Zj

]
· · · E

[ ∏
j∈νp

Zj

]
,

with summation extending over all partitions {ν1, . . . , νp}, p = 1, . . . , r, of {1, . . . , r}.
Regarding the range of dependence of (Xt )t∈Z we make the following assumption.

ASSUMPTION 4.1 The process (Xt )t∈Z is strictly stationary and exponentially α-mixing; that
is, there exist constants K < ∞ and ρ ∈ (0, 1), such that

α(n) := sup
A∈σ (X0 ,X−1 ,...)
B∈σ (Xn,Xn+1,...)

∣∣P(A ∩ B) − P(A)P(B)
∣∣ ≤ Kρn, n ∈ N. (4.1)

Further, to establish consistency of the estimates we consider sequences of weights that asymp-
totically concentrate around multiples of 2π .

ASSUMPTION 4.2 The weights are defined as Wn(u) := ∑∞
j=−∞ b−1

n W (b−1
n [u + 2πj ]), where

bn > 0, n = 1, 2, . . . , is a sequence of scaling parameters satisfying bn → 0 and nbn → ∞, as
n → ∞. The weight function W is real-valued, even, has support [ − π , π ], bounded variation,
and satisfies

∫ π

−π
W (u)du = 1.

Comments on the assumptions will follow at the end of this section. The main result of this
section (Theorem 4.1) will legitimize R̂n,R(ω; τ1, τ2) as an estimator of the quantile coherency
R(ω; τ1, τ2). Results that legitimize In,R(ω; τ1, τ2) and Ĝn,R(ω; τ1, τ2) as estimators of the quantile
cross-spectral density f(ω; τ1, τ2) are deferred to the supplementary material so as not to impair
the flow of the paper. The legitimacy of the estimates follows from the fact that the estimators
converge weakly in the sense of Hoffman–Jørgensen (cf. Chapter 1 of van der Vaart and Wellner
1996). We denote this mode of convergence by ⇒. The estimators under consideration take
values in the space of (element-wise) bounded functions [0, 1]2 → C

d×d , which we denote by
�∞
Cd×d ([0, 1]2). While results in empirical process theory are typically stated for spaces of real-

valued, bounded functions, these results transfer immediately by identifying �∞
Cd×d ([0, 1]2) with

the product space �∞([0, 1]2)2d2
. Note that the space �∞

Cd×d ([0, 1]2) is constructed along the same
lines as the space �∞

C
([0, 1]2) in Kley et al. (2016).

We are now ready to state the main result of this section.

THEOREM 4.1 Let Assumptions 4.1 and 4.2 hold. Assume that the marginal distribution
functions Fj, j = 1, . . . , d are continuous and that constants κ > 0 and k ∈ N exist, such

C© 2019 Royal Economic Society.
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that bn = o(n−1/(2k + 1)) and bnn1 − κ → ∞. Assume that for some ε ∈ (0, 1/2) we have
infτ∈[ε,1−ε] f

j,j (ω; τ, τ ) > 0, for all j = 1, . . . , d. Then, for any fixed ω ∈ R,√
nbn

(
R̂n,R(ω; τ1, τ2) − R(ω; τ1, τ2) − B(k)

n (ω; τ1, τ2)
)

(τ1,τ2)∈[ε,1−ε]2
⇒ L(ω; ·, ·), (4.2)

in �∞
Cd×d ([ε, 1 − ε]2), where

{
L(ω; τ1, τ2)

}
j1,j2

:= 1√
f1,1f2,2

(
H1,2 − 1

2

f1,2

f1,1
H1,1 − 1

2

f1,2

f2,2
H2,2

)
, (4.3)

{
B(k)

n (ω; τ1, τ2)
}

j1,j2

:= 1√
f1,1f2,2

(
B1,2 − 1

2

f1,2

f1,1
B1,1 − 1

2

f1,2

f2,2
B2,2

)
(4.4)

and we have written fa,b for the quantile cross-spectral density fja,jb (ω; τa, τb) as defined in (2.2),

Ba,b := ∑k
�=2

b�
n

�!

∫ π

−π
v�W (v)dv d�

dω� f
ja,jb (ω; τa, τb), and Ha,b for H

ja,jb (ω; τa, τb

)
; a component

of H(ω; ·, ·) := (Hj1,j2 (ω; ·, ·))j1,j2=1,...,d defined as a centred, Cd×d -valued Gaussian process
characterized by

Cov
(
H

j1,j2 (ω; u1, v1
)
,Hk1,k2 (λ; u2, v2)

)
= 2π

( ∫ π

−π

W 2(α)dα
)(

fj1,k1 (ω; u1, u2)fj2,k2 (−ω; v1, v2)η(ω − λ)

+ fj1,k2 (ω; u1, v2)fj2,k1 (−ω; v1, u2)η(ω + λ)
)
,

where η(x) := I {x = 0( mod 2π )} [cf. Brillinger (1975), p. 148] is the 2π -periodic extension
of Kronecker’s delta function. The family {H(ω; ·, ·), ω ∈ [0, π]} is a collection of independent
processes, and H(ω; τ1, τ2) = H(−ω; τ1, τ2) = H(ω + 2π ; τ1, τ2).

The proof of Theorem 4.1 is lengthy and technical and is therefore deferred to the online sup-
plement (Section S6). Comparing Theorem 4.1 with results for the traditional coherency [see, for
example, Theorem 7.6.2 in Brillinger (1975)], we observe that the distribution of R̂n,R(ω; τ1, τ2)
is asymptotically equivalent to that of the traditional estimator [cf. (7.6.14) in Brillinger (1975)]
computed from the unobserved time series(

I {Fj1 (Xt,j1 ) ≤ τ1}, I {Fj1 (Xt,j2 ) ≤ τ2}
)
, t = 0, . . . , n − 1. (4.6)

The convergence to a Gaussian process in (4.2) can be employed to obtain asymptotically valid
pointwise confidence bands. To this end, the covariance kernel of L can easily be determined
from (4.3) and (4.5), yielding an expression similar to (7.6.16) in Brillinger (1975). A more
detailed account of how to conduct inference is given in Section S5 of the supplementary material.
Note that the bound to the order of the bias given in (7.6.15) in Brillinger (1975) applies to the
expansion given in (4.4).

If W is a kernel of order p ≥ 1, we have that the bias is of order b
p
n . Thus, if we choose the

mean square error minimizing bandwidth bn≈n−1/(2p + 1), the bias will be of order n−p/(2p + 1).
Regarding the restriction ε > 0, note that the convergence (4.2) cannot hold if (τ 1, τ 2) is on the
border of the unit square, as the quantile coherency R(ω; τ1, τ2) is not defined if τ j ∈ {0, 1}, as
this implies that Var(I {Fj (Xt,j ) ≤ τj }) = 0.

C© 2019 Royal Economic Society.



10 J. Barunı́k and T. Kley

We now comment on the assumptions. Assumption 4.1 holds for a wide range of popular,
linear and nonlinear processes. Examples (possibly, under mild additional assumptions) include
the traditional VARMA or vector-ARCH models as well as many others. It is important to observe
that Assumption 4.1 does not require the existence of any moments, which is in sharp contrast
to the classical assumptions, where moments up to the order of the respective cumulants have
to exist. Assumption 4.2 is quite standard in classical time series analysis [cf., for example,
Brillinger (1975), p. 147].

5. QUANTILE CROSS-SPECTRAL ANALYSIS OF STOCK MARKET RETURNS:
A ROUTE TO MORE ACCURATE RISK MEASURES?

Stock market returns belong to one of the prominent datasets in economics and finance. Although
many important stylized facts about their behaviour have been established in the past decades, it
remains a very active area of research. Despite these efforts, an important direction that has not
been fully addressed is stylized facts about the joint distribution of returns. Especially during the
last turbulent decade, an understanding of the behaviour of joint quantiles in return distributions
has become particularly important, as this behaviour is essential for understanding systemic
risk, namely ’the risk that the intermediation capacity of the entire system can be impaired’ (cf.
Adrian and Brunnermeier, 2016). Several authors focus on explaining tails of the bivariate market
distributions in different ways. Adrian and Brunnermeier (2016) proposed to classify institutions
according to the sensitivity of their quantiles to shocks to the market. Most closely related to the
notion of how we view the dependence structures is the multivariate regression quantile model
of White et al. (2015), which studies the degree of tail interdependence among different random
variables directly.

Quantile cross-spectral analysis, as designed in this paper, allows us to analyse the fundamental
dependence quantities in the tails (but also in any other part) of the joint distribution and across
frequencies. An application to stock market returns may therefore provide deeper insight about
dependence in stock markets, and lead to a more powerful analysis, securing us against financial
collapses.

One of the important features of stock market returns is time variation in its volatility. Time-
varying volatility processes can cross almost every quantile of their distribution (cf. Hagemann,
2013), and create peaks in quantile spectral densities as shown by Li (2014). These notions have
recently been documented by Engle and Manganelli (2004) and Žikeš and Barunı́k (2016), who
propose models for the conditional quantiles of the return distribution based on the past volatility.
In the multivariate setting, strong common factors in volatility are found by Barigozzi et al. (2014),
who conclude that common volatility is an important risk factor. Hence, common volatility should
be viewed as a possible source of dependence. Because we aim to find the common structures in
the joint distribution of returns, we study returns standardized by its volatility that we estimate by
a GARCH(1,1) model; cf. Bollerslev (1986). This first step is commonly taken in the literature of
modelling the joint market distribution using copulas; cf. Granger et al. (2006) and Patton (2012).
In these approaches, the volatility in the marginal distributions is modelled first, and the common
factors are then considered in the second step. Consequently, this will allow us to discover other
possible common factors in the joint distribution of market returns across frequencies that result
in spurious dependence but that will not be overshadowed by the strong volatility process.

We choose to study the joint distribution of portfolio returns and excess returns on the broad
market, hence looking at one of the most commonly studied factor structures in the literature as

C© 2019 Royal Economic Society.
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Figure 3. Quantile coherency estimates for the portfolio.

dictated by asset pricing theories; cf. Sharpe (1964) and Lintner (1965). As an excess return on the
market, we use value-weighted returns of all firms listed on the NYSE, AMEX, or NASDAQ from
the Center for Research in Security Price (CRSP) database. For the benchmark portfolio, we use an
industry portfolio formed from consumer non-durables.2 We used n = 23,385 daily observations
(from July 1, 1926 through to June 30, 2015). The data include several crisis periods and therefore
might not be suitable to be viewed as a strictly stationary time series. Nevertheless, we choose
to study this long period of data as we believe that longer than yearly cycles might constitute an
important possible source of dependence, and that the empirical results are practically interesting.
Moreover, by standardizing the returns by their volatility we removed what we believe is the most
important source of time-variation in data.3

In the left panel of Figure 3, quantile coherency estimates for the 0.05|0.05, 0.5|0.5, and
0.95|0.95 combinations of quantile levels of the joint distribution are shown for the industry
portfolio and excess market returns over frequencies. The centre panel in Figure 3, on which
we comment later, shows the 0.05|0.95 combination. We have used the Epanechnikov kernel
and a bandwidth of bn = 0.5n1/4 for the computation of the estimates (cf. (2.8)). The confidence
intervals, shown as dotted regions, are at the 95% level and were constructed according to the
procedure described in Section S5 of the supplementary material. For clarity, we plot the x-axis
in daily cycles and also indicate the frequencies that correspond to yearly, monthly, and weekly
periods. While we use daily data, the highest possible frequency of 0.5 indicates 0.5 cycles per day
(i.e., a 2-day period). While precise frequencies do not have an economic meaning, one needs to
understand the interpretation with respect to the time domain. For example, a sampling frequency
of 0.2 corresponds to 0.2 cycles per day, translating to a 5-day period (equivalent to one week),
but a frequency of 0.3 translates to a hardly interpretable 3.3 period. Hence, the upper label of
the x-axis is of particular interest to an economist, as one can study how weekly, monthly, or

2 Note on choice of the data: we use the publicly available data available and maintained by Fama and French at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. This data set is popular among researchers,
and while many types of portfolios can be chosen, we chose consumer non-durables randomly for this application.
Although very interesting and attractive, it is far beyond the scope of this work to present and discuss results for wider
portfolios formed on distinct criteria.

3 As a robustness check, we sliced the time series into decades and found that our results on nonoverlapping windows
do not materially change.
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yearly cycles are connected across quantiles of the joint distribution. For clarity of presentation,
we focus on the real part of the quantities, which relates to the dynamics of the process switching
between the j1st component being below the τ 1-quantile and the j2nd component being above the
τ 2-quantile (cf. Section 2).

The real parts of the quantile coherency estimates reveal frequency dynamics in quantiles of the
joint distribution of the returns under study. Generally, cycles at the lower quantiles appear to be
more strongly dependent than those at the upper quantiles, which is a well-documented stylized
fact about stock market returns. It points us to the fact that returns are more dependent during
business cycle downturns than during upturns; cf. Erb et al. (1994), Longin and Solnik (2001),
Ang and Chen (2002), and Patton (2012). More importantly, lower quantiles are more strongly
related in periods longer than one week on average in comparison to shorter than weekly periods,
and are even more connected at longer than monthly cycles. This suggests that infrequent clusters
of large negative portfolio returns are better explained by excess market returns than small daily
fluctuations. Returns in upper quantiles of the joint distribution seem to be connected similarly
across all frequencies. The same result holds also for the median. For a better exposure, we
also present quantile coherency estimates for three fixed weekly, monthly, and yearly periods
(corresponding to ω ∈ 2π{1/5, 1/22, 1/250}, respectively) at all quantile levels τ 1 = τ 2 ∈
{0.05, 0.1, . . . , 0.95} in the right panel of Figure 3. This alternative plot highlights the previous
discussion.

We now compare our findings with a corresponding analysis with the cross-quantilogram, a
related quantile-based measure for serial dependence in the time domain. Considering a strictly
stationary, R × R × R

d1 × R
d2 -valued time series (y1t, y2t, x1t, x2t), with t ∈ Z and d1, d2 ∈ N,

denoting the conditional distribution of the series yit given xit by Fyi |xi
(·|xit ), and the quantile

function as qi,t (τi) = inf{v : Fyi |xi
(·|xit ) ≥ τi}, τ i ∈ (0, 1), i = 1, 2, Han et al. (2016) define the

cross-quantilogram as

ρ(τ1,τ2)(k) := E
[
(I {y1t < q1,t (τ1)} − τ1)(I {y2,t−k < q2,t−k(τ2)} − τ2)

]
(
E

[
(I {y1t < q1,t (τ1)} − τ1)2

]
E

[
(I {y2,t−k < q2,t−k(τ2)} − τ2)2

])1/2 .

With no covariate information in our data example, this reduces to x1t = x2t = 1 and qi, t being
the quantile of the marginal distribution of yit. It is important to note that the cross-quantilogram
is defined as a standardized measure of serial dependencies between the events {y1t ≤ q1, t(τ 1)}
and {y2t ≤ q2, t(τ 2)} in the time domain, while quantile coherency is defined similarly, but in the
frequency domain.

In Figure 4 we present the cross-quantilograms that we estimated from our data example.
For the computation we used the estimator and stationary bootstrap procedure defined in Han
et al. (2016). More precisely, we used the implementation that is available in the R package
quantilogram; cf. Han et al. (2014). Inspecting the plots, it can be seen that there are lags k,
typically short, where significant dependence is present. Further, it is possible to guess that there
is periodic variation of positive and negative dependence at the 0.05 quantile level, while at
the 0.95 quantile level the dependence seems to be largely positive. Yet, taking into account
the confidence intervals, it is uncertain if this is a significant pattern. Further, comparing the
discussion of these periodic patterns shown by the cross-quantilogram with what we were able to
read from quantile coherency in Figure 3, it is difficult to read specific weekly, monthly, and yearly
periodic components and whether or not they are significant. Thus, at least in the specific case
where a researcher is interested in the dependence of cycles, we believe that quantile coherency
can provide a perspective that is unavailable in the time domain analysis.
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Figure 4. Cross-quantilogram estimates for the portfolio.

To summarize the result of our empirical analysis: while asymmetry is commonly found by
researchers, we document the frequency-dependent asymmetry of stock market returns (i.e.,
asymmetry with respect to cycles in the joint distribution). Were this behaviour to be common
across larger classes of assets, our results may have significant implications for one of the
cornerstones of asset pricing theory, assuming a normal distribution of returns. It leads us to call
for more general models, and more importantly to point to the need to restate asset pricing theory
in a way that allows one to distinguish between the short-run and long-run behaviour of investors.

Our results are also crucial for systemic risk measurement, as an investor wishing to optimize
a portfolio should focus on stocks that will not be connected at lower quantiles, in a situation
of distress, but will be connected at upper quantiles, in a situation of market upturns in a given
investment period. We document behaviour that is not favourable to such an investor using
traditional pricing theories, as we show that broad stock market returns contain a common factor
more frequently during downturns than during upturns. This suggests that the portfolio at hand
might be much riskier than would be implied by common measures. Further, our results suggest
that this effect becomes even worse for long-run investors.

An important feature of our quantile cross-spectral measures is that they enable us to measure
dependence also between τ 1 	= τ 2 quantiles of the joint distribution. In the central panel of Figure 3,
we document that the dependence between the 0.05|0.95 quantiles of the return distribution is
not very strong. Generally speaking, no intense dependence can be seen between large negative
returns of the stock market, and large positive returns of the portfolio under study. This kind of
analysis may be even more interesting in the case where dependence between individual assets
is studied. There, negative news may have a strong opposite impact on the assets under study.

Finally, some words of caution to the reader, about the interpretation of the quantities that
we have estimated, are in order. In Section S3 of the supplementary material, we provide a link
between quantile coherency and traditional measures of dependence under the assumption of
normally distributed data. The quantile-based measures are designed to capture general depen-
dence types without restrictive assumptions on the underlying distribution of the process. Hence,
here we have intentionally not related it to traditional correlation, which, ideally, should only
be interpreted when the process is known to be Gaussian. The financial returns under study in
this section are known to depart from normality. Therefore, quantile coherency is not directly
comparable to traditional correlation measures. What we can see is a generally strong dependence
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between the portfolio returns and excess market returns at all quantiles, confirming the fact that
excess returns are a strong common factor for the studied portfolio returns. The details that the
quantile-based analysis in this section revealed would have remained hidden in an analysis based
on the traditional coherency.

6. QUANTILE COHERENCY IN A MODEL-ASSESSING EXERCISE

In the previous section we demonstrated how quantile coherency can be used by applied re-
searchers to reveal cyclical features of the data that might remain invisible if the data were
analysed solely with covariance-based dependency measures. In this section we illustrate how
quantile coherency can be used to assess the capability of time series models to capture such
cycles documented in the data.

More precisely, we fit several bivariate time series models and then compare the quantile
coherencies implied by estimated parameters with those obtained from a nonparametric estimation
(cf. Figure 3). The graphical approach of assessing the models is similar to the one proposed in Birr
et al. (2018). For the sake of clarity, we focus on two classes of models: (a) vector autoregressive
(VAR) models, and (b) vector versions of the quantile autoregressive (QVAR) model introduced
by Koenker and Xiao (2006). Classical VAR as used by many applied researchers assumes the
same autoregressive structure at all quantiles. To model asymmetry, one can employ more flexible
copulas allowing for asymmetric dependence. In addition, QVAR allows a different autoregressive
structure at different quantiles. Hence different quantiles can be driven by processes with different
cyclical properties.

We discuss the models in order, from simple to more complex, and evaluate if the more complex
models are better suited to capture the weekly, monthly, and yearly cycles of the quantile-related
features that were discovered in the stock market returns analysis of Section 5.

We begin by fitting a VAR(1) to the stock market returns. The fitted model is

Yt,1 = 0.0987 + 0.056Yt−1,1 + 0.186Yt−1,2 + εt,1,

Yt,2 = 0.0369 − 0.056Yt−1,1 + 0.175Yt−1,2 + εt,2,
(6.1)

where (εt,1, εt,2) is white noise with an estimated Corr(εt,1, εt,2) ≈ 0.822. Adding the common
assumption that the (εt,1, εt,2) are independent and jointly Gaussian, the corresponding quantile
coherencies can be determined. The quantile coherencies implied by the model (6.1) are depicted
in the top row of Figure 5. For easier comparison, we consider the same combinations of
frequencies and quantile levels as in Figure 3. In the picture it is clearly visible that dependencies
of cycles implied by this Gaussian model are symmetric. For example, the dependences at
the 0.05|0.05 and at the 0.95|0.95 level are equally strong for all frequencies. In contrast, the
nonparametric estimate obtained from the data (cf. Figure 3) shows strong asymmetry. Further,
we can see that for the weekly, monthly, and yearly frequencies, which might be of particular
interest for applied researchers, the dependencies at the τ |τ and at the 1 − τ |1 − τ level coincide
as well. If an applied researcher seeks to model dependencies as the ones revealed in Section 5,
the Gaussian VAR model might therefore be too restrictive.

Next, we consider non-Gaussian versions of the fitted VAR. To obtain these models, note that
the innovations in (6.1) are assumed to be white noise, but are not required to be i.i.d. Gaussian.
Another plausible model is therefore obtained by specifying any joint distribution for (εt,1, εt,2)
that has first and second moments as implied by the fitted VAR model. For illustration, we
now consider the following two cases. In both cases, we assume the marginal distributions to
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Figure 5. Quantile coherency simulated from the VAR models.

be standard normal. In the first case, we assume that the dependence is according to a Clayton
copula with parameter θ = 4. In the second case, we assume that it is according to a Gumbel
copula with parameter θ = 2.7. As one might expect, the dependence in the tails of the VAR(1)
process is now remarkably different. As can be seen from the middle-left plot in Figure 5, for the
case of the Clayton copula there is stronger dependence in the lower tail (0.05|0.05) and weaker
dependence in the upper tail (0.95|0.95). The dependence is slightly stronger for low frequencies,
which is expected from the temporal dependence in the VAR model. In the bottom-left plot of
Figure 5, on the other hand, we see stronger dependence in the upper and weaker dependence
in the lower tail. Interestingly, as can be seen from the centre plots, the dependence of cycles
in changing from being below the 0.05-quantile in the first component to being below the 0.95-
quantile in the second component does not depend much on the choice of the copula. Finally,
in the right plots of Figure 5, we see how the dependence changes according to the quantile
level when cycles at the weekly, monthly, and yearly frequencies, which we think might be most
relevant to some practitioners, are considered. As expected, we see that for the case of the Clayton
copula the dependence decreases as the quantile level τ increases, whereas for the case of the
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Gumbel copula the dependence increases if τ increases. Although the models with the Gumbel
and Clayton copula capture asymmetric dependence better than the one with the Gaussian copula,
we can still see that they depart from the data in terms of quantile coherency.

In the discussion above we have seen three versions of a VAR(1) model, none of which was
particularly well suited to capture the type of dependence of cycles at quantile level that we
observed in Section 5. In the second part of our modelling exercise, we turn our attention to a
more flexible class of time series models. Motivated by the quantile autoregression model that
was introduced by Koenker and Xiao (2006), we consider quantile vector autoregression, QVAR,
a VAR model with random coefficients:

Yt,j = θj0(Ut,j ) + θj1(Ut,j )Yt−1,1 + θj2(Ut,j )Yt−1,2, j = 1, 2, (6.2)

where the θ ji are coefficient functions and the Ut,j are assumed to be independent and uniformly
distributed on [0, 1]. Zhu et al. (2018) discuss a model similar to (6.2). Our aim here is to assess
whether the time series model (6.2) is flexible enough to capture the cyclical features in quantiles
that were identified in Section 5. To this end, we choose the parameter functions in a data-driven
way and then simulate the corresponding quantile coherency to compare with the nonparameteric
estimate. Motivated by the estimation method in Zhu et al. (2018), we compute

θ̂ (τ ) = arg min
θ(τ )

2∑
j=1

n∑
t=2

ρτ

(
Yt,j − θj0(τ ) − θj1(τ )Yt−1,1 − θj2(τ )Yt−1,2

)
, (6.3)

τ ∈ T := {1/50, 2/50, . . . , 48/50, 49/50}, where ρτ (u) := u(τ − I{u <τ}) is the check function;
cf. Koenker (2005). For τ /∈ T we define θ̂ (τ ) := θ̂(η), η := arg minη∈T |τ − η| (choose the
smaller η if there are two). The functions θ̂ (τ ) = (θ̂j i(τ )), obtained from the stock market returns,
are shown in Figure 7. It is interesting to observe that the functions θ̂j1 and θ̂j2 are not constant
across quantile levels. This possibly indicates that a VAR model is too simple to capture the
complicated dynamics present in the stock market returns. The ’shock’ at time t to the jth
equation is delivered by θ̂j0(Utj ).

Koenker and Xiao (2006) and Zhu et al. (2018) established conditions that ensure that quantile
regressions, similar to (6.3), can be used to consistently estimate the parameter functions of the
models in their papers. In particular, their model-defining equations [corresponding to (6.2) in our
model] are assumed to be monotonically increasing in Ut,j. The monotonicity condition further
implies a particularly convenient form for the conditional quantile function of Yt, j given Yt − 1,1,
Yt − 1,2. Fan and Fan (2006) argue that the quantile regression estimate considered by Koenker and
Xiao (2006) will be a consistent estimate for the argument of the minimum of a population version
of the loss function, under some mild conditions. For θ̂(τ ), defined in (6.3), this corresponds to
being a consistent estimator for

θ∗(τ ) = arg min
θ(τ )

2∑
j=1

Eρτ

(
Yt,j − θj0(τ ) − θj1(τ )Yt−1,1 − θj2(τ )Yt−1,2

)
.

Fan and Fan (2006) point out that additional conditions, such as the monotonicity condition,
are necessary for θ∗(τ ) and θ (τ ) to coincide. These important arguments have to be taken into
account when interpreting θ̂ (τ ) as an estimator for θ (τ ). Of course, data can always be generated
according to equation (6.2), where we substitute θ̂(τ ) for θ (τ ). To assess whether the class of
QVAR models is rich enough to reflect cyclical features in the quantiles as we have seen in the
data in Section 5, it is sufficient to consider individual models from the class. For the purpose of
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Figure 6. Quantile coherency simulated from several QVAR models.

this section, we select a QVAR model of the kind defined in (6.2), in a data-driven way, to then
compare the implied quantile coherency with the one estimated nonparametrically in Section 5.

In the top row of Figure 6, the quantile coherencies associated with model (6.2), where θ̂ (τ )
was substituted for θ (τ ), are shown. The plots are of the same format as those we considered
before. Strikingly, we observe that the quantile coherency of the fitted model is substantially
lower than what we see via the nonparametric estimate in Figure 3. Besides this, in the top row of
Figure 6, we see that the general shape, decreasing lines with frequency, and ordering (0.95|0.95
shows less dependence than 0.05|0.05) resembles the nonparametric estimate more closely.

Finally, we propose to extend the QVAR(1) stated in (6.2), by adding spatial dependence. More
precisely, the model we now consider is

Yt,1 = θ10(Ut,1) + θ111(Ut,1)Yt−1,1 + θ121(Ut,1)Yt−1,2,

Yt,2 = θ20(Ut,2) + θ211(Ut,2)Yt−1,1 + θ221(Ut,2)Yt−1,2 + θ210(Ut,2)Yt,1.
(6.4)

For this model, we compute quantile regression estimates

θ̂ (τ ) = arg min
θ(τ )

( n∑
t=2

ρτ

(
Yt,1 − θ10(τ ) − θ111(τ )Yt−1,1 − θ121(τ )Yt−1,2

)

+
n∑

t=2

ρτ

(
Yt,2 − θ20(τ ) − θ210(τ )Yt,1 − θ211(τ )Yt−1,1 − θ221(τ )Yt−1,2

))
.

The estimates obtained from the stock returns data, which also should be cautiously interpreted, are
depicted in Figure 8. Note that, if we substitute Y1,t in the second equation of (6.4) by the expression
given in the first equation, then we see that the ’shocks’ in this model are now dependent, as they
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Figure 7. Estimated parameter functions for model (6.2).
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Figure 8. Parameter functions for model (6.4).

are of the form (θ̂10(Ut,1), θ̂20(Ut,2) + θ̂210(Ut,2)θ̂10(Ut,1)). The parameter function θ̂210 moderates
the strength of dependence. We now look again at the quantile coherency, depicted in the bottom
row of Figure 6, and see that the quantile coherencies resemble the nonparameter estimates more
closely (in shape, order and magnitude). This is true in particular for the right plot, where the
frequencies corresponding to the weekly, monthly, and yearly cycles are shown, which could be
especially interesting for applied researchers.

In this section we have illustrated how quantile coherency can be used by applied researchers
to assess time series models regarding their capabilities to capture dependence between general
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cycles of stock market returns. We have seen that Gaussian VAR models are completely incapable
of capturing asymmetries in the dependence of cycles. Our modelling exercise showed how non-
Gaussian VAR models can possibly remedy this by allowing more general copulas for the errors
in the model. Going further, we have also inspected bivariate quantile autoregression models and
seen that their flexibility does better in capturing the general dependence between cycles that we
have discovered using quantile coherency in Section 5.

7. CONCLUSION

In this paper we introduced quantile cross-spectral analysis of economic time series, providing
an entirely model-free, nonparametric theory for the estimation of general cross-dependence
structures emerging from quantiles of the joint distribution in the frequency domain. We argue
that complex dynamics in time series often arise naturally in many macroeconomic and financial
time series, as infrequent periods of large negative values (lower quantiles of the joint distribution)
may be more dependent than infrequent periods of large positive values (upper quantiles of
the joint distribution). Moreover, the dependence may differ in the long-, medium-, or short-
run. Quantile cross-spectral analysis hence may fundamentally change the way we view the
dependence between economic time series, and may be viewed as a precursor to the subsequent
developments in economic research underlying many new modelling strategies.

While connecting two branches of the literature that focus on the dependence between variables
in quantiles of their joint distribution and across frequencies separately, the proposed methods
may be viewed as an important step in robustifying the traditional cross-spectral analysis as
well. Quantile-based spectral quantities are very attractive as they do not require the existence of
moments, an important relaxation of the classical assumptions, where moments up to the order of
the cumulants involved are typically assumed to exist. The proposed quantities are robust to many
common violations of traditional assumptions found in data, including outliers, heavy tails, and
changes in higher moments of the distribution. By considering quantiles instead of moments, the
proposed methods are able to reveal the dependence that remained invisible to the traditional tool-
sets. As an essential ingredient for successful applications, we have provided a rigorous analysis
of the asymptotic properties of the introduced estimators and shown that for a general class of
nonlinear processes, properly centred and smoothed versions of the quantile-based estimators
converge to centred Gaussian processes.

In an empirical application, we have shown that classical asset pricing theories may not suit
the data well, as commonly documented by researchers, because rich dependence structures exist
varying across quantiles and frequencies in the joint distribution of returns. We document strong
dependence of the bivariate returns series in periods of large negative returns, while positive
returns display less dependence over all frequencies. This result is not favourable for an investor,
as exactly the opposite would be desired: choosing to invest in stocks with independent negative
returns, but dependent positive returns. Our tool reveals that systematic risk originates more
strongly from lower quantiles of the joint distribution in the long-, and medium-run investment
horizons in comparison to the upper quantiles. In a modelling exercise, we have illustrated how
quantile coherency can be employed in the inspection of time series models and might help to
find a model that is capable of capturing the dependencies of cycles of quantile-related features
that we had previously revealed in our empirical application.

We believe that our work might open up many exciting new routes for future theoretical as
well as empirical research. From the perspective of applications, exploratory analysis based on
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the quantile cross-spectral estimators can reveal new implications for the improvement or even
restating of many economic problems. Dependence in many economic time series is of a non-
Gaussian nature, calling for an escape from covariance-based methods and allowing for a detailed
analysis of the dependence in the quantiles of the joint distribution.
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ONLINE SUPPLEMENT: ’QUANTILE COHERENCY: A GENERAL MEASURE
FOR DEPENDENCE BETWEEN CYCLICAL ECONOMIC VARIABLES’

S1. FURTHER QUANTITIES RELATED TO THE QUANTILE CROSS-SPECTRAL
DENSITY KERNEL

In the situation described in this paper, there exists a right continuous orthogonal increment process {Zτ
j (ω) :

−π ≤ ω ≤ π}, for every j ∈ {1, . . . , d} and τ ∈ [0, 1], such that the Cramér representation

I {Xt,j ≤ qj (τ )} =
∫ π

−π

eitωdZτ
j (ω)

holds [cf., e. g., Theorem 1.2.15 in Taniguchi and Kakizawa (2000)]. Note the fact that (Xt,j )t∈Z is strictly
stationary and therefore (I {Xt,j ≤ qj (τ )})t∈Z is second-order stationary, as the boundedness of the indicator
functions implies existence of their second moments.

The quantile cross-spectral density kernels are closely related to these orthogonal increment processes
[cf. Brillinger (1975), p. 101 and Brockwell and Davis (1987), p. 436)]. More specifically, for −π ≤ ω1 ≤
ω2 ≤ π , the following relation holds:

∫ ω2

ω1

fj1,j2 (ω; τ1, τ2)dω = Cov
(
Z

τ1
j1

(ω2) − Z
τ1
j1

(ω1), Zτ2
j2

(ω2) − Z
τ2
j2

(ω1)
)
,

or shortly: fj1,j2 (ω; τ1, τ2) = Cov(dZ
τ1
j1

(ω), dZ
τ2
j2

(ω)). It is important to observe that fj1,j2 (ω; τ1, τ2) is
complex-valued. One way to represent fj1,j2 (ω; τ1, τ2) is to decompose it into its real and imaginary parts. The
real part is known as the cospectrum [of the processes (I {Xt,j1 ≤ qj1 (τ1)})t∈Z and (I {Xt,j2 ≤ qj2 (τ2)})t∈Z].
The negative of the imaginary part is commonly referred to as the quadrature spectrum. We will refer to
these quantities as the quantile cospectrum and quantile quadrature spectrum of (Xt,j1 )t∈Z and (Xt,j2 )t∈Z.
Occasionally, to emphasize that these spectra are functions of (τ 1, τ 2), we will refer to them as the quantile
cospectrum kernel and quantile quadrature spectrum kernel, respectively. The quantile quadrature spectrum
vanishes if j1 = j2 and τ 1 = τ 2. More generally, as described in Kley et al. (2016), for any fixed j1, j2, the
quadrature spectrum will vanish, for all τ 1, τ 2, if and only if (Xt−k,j1 , Xt,j2 ) and (Xt+k,j1 , Xt,j2 ) possess the
same copula, for all k.

An alternative way to look at fj1,j2 (ω; τ1, τ2) is by representing it in polar coordinates. The radius
|fj1,j2 (ω; τ1, τ2)| is then referred to as the amplitude spectrum [of the two processes (I {Xt,j1 ≤ qj1 (τ1)})t∈Z
and (I {Xt,j2 ≤ qj2 (τ2)})t∈Z], while the angle arg(fj1,j2 (ω; τ1, τ2)) is the so-called phase spectrum. We refer
to these quantities as the quantile amplitude spectrum and the quantile phase spectrum of (Xt,j1 )t∈Z and
(Xt,j2 )t∈Z. We note that the quantile spectral distribution function

∫ ω

0 fj1,j2 (λ; τ1, τ2))dλ is clearly another
way to represent the quantile-based dependence in the frequency domain. Its properties and estimation
procedures are currently investigated in a separate research project and therefore are not further discussed
here.

Note that quantile coherency Rj1,j2 (ω; τ1, τ2), which we defined in Section 2 as a measure for the dynamic
dependence of the two processes (Xt,j1 )t∈Z and (Xt,j2 )t∈Z, is the correlation between dZ

τ1
j1

(ω) and dZ
τ2
j2

(ω).
Its modulus squared |Rj1,j2 (ω; τ1, τ2)|2 is referred to as the quantile coherence kernel of (Xt,j1 )t∈Z and
(Xt,j2 )t∈Z. A value of |Rj1,j2 (ω; τ1, τ2)| close to 1 indicates a strong (linear) relationship between dZ

τ1
j1

(ω)
and dZ

τ2
j2

(ω).
For the readers’ convenience, a list of the quantities and symbols introduced in this section is provided in

Table S.1.
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Table S.1. Spectral quantities related to fj1,j2 (ω; τ1, τ2).

Name Symbol

Quantile cospectrum of (Xt,j1 )t∈Z and (Xt,j2 )t∈Z 
fj1,j2 (ω; τ1, τ2)
Quantile quadrature spectrum of (Xt,j1 )t∈Z and
(Xt,j2 )t∈Z

-�fj1,j2 (ω; τ1, τ2)

Quantile amplitude spectrum of (Xt,j1 )t∈Z and (Xt,j2 )t∈Z |fj1,j2 (ω; τ1, τ2)|
Quantile phase spectrum of (Xt,j1 )t∈Z and (Xt,j2 )t∈Z arg(fj1,j2 (ω; τ1, τ2))
Quantile coherency of (Xt,j1 )t∈Z and (Xt,j2 )t∈Z Rj1,j2 (ω; τ1, τ2)
Quantile coherence of (Xt,j1 )t∈Z and (Xt,j2 )t∈Z |Rj1,j2 (ω; τ1, τ2)|2

Note: The quantile cross-spectral density kernel fj1,j2 (ω; τ1, τ2) of (Xt,j1 )t∈Z and (Xt,j2 )t∈Z is defined in (2.2).

Estimators for the quantile cospectrum, quantile quadrature spectrum, quantile amplitude spec-
trum, quantile phase spectrum, and quantile coherence are then naturally given by 
Ĝ

j1,j2
n,R (ω; τ1, τ2),

−�Ĝ
j1,j2
n,R (ω; τ1, τ2), |Ĝj1,j2

n,R (ω; τ1, τ2)|, arg(Ĝj1,j2
n,R (ω; τ1, τ2)), and |R̂j1,j2

n,R (ω; τ1, τ2)|2, respectively.

S2. AN EXAMPLE OF A PROCESS GENERATING QUANTILE DEPENDENCE
ACROSS FREQUENCIES: QVAR(P)

For a better understanding of the dependence structures that we study in this paper, it is illustrative to
introduce a process capable of generating them. We focus on generating dependence at different points of
the joint distribution, which will vary across frequencies but stays hidden from classical measures. In other
words, we illustrate the intuition of spuriously independent variables, a situation when two variables seem
to be independent when traditional cross-spectral analysis is used, while they are indeed clearly dependent
at different parts of their joint distribution.

We base our example on a multivariate generalization of the popular quantile autoregression process
(QAR) introduced by Koenker and Xiao (2006). Inspired by vector autoregression processes (VAR), we link
multiple QAR processes through their lag structure and refer to the resulting process as a quantile vector
autoregression process (QVAR). This provides a natural way of generating a rich dependence structure
between two random variables at points of their joint distribution and over different frequencies. The
autocovariance function of a stationary QVAR(p) process is that of a fixed parameter VAR(p) process. This
follows from the argument by Knight (2006), who concludes that the exclusive use of autocorrelations may
thus ’fail to identify structure in the data that is potentially very informative’. We will show how quantile
spectral analysis reveals what otherwise may remain invisible.

Let Xt = (Xt,1, . . . , Xt,d )′, t ∈ Z, be a sequence of random vectors that fulfils

Xt =
p∑

j=1

�(j )(Ut )Xt−j + θ (0)(Ut ), (S.1)

where �(1), . . . , �(p) are d × d matrices of functions, θ (0) is a d × 1 column vector of func-
tions, and Ut = (Ut,1, . . . , Ut,d )′, t ∈ Z, is a sequence of independent vectors, with components
Ut,k that are U[0, 1]-distributed. We will assume that the elements of the �th row θ

(j )
� (u�) =(

θ
(j )
�,1(u�), . . . , θ

(j )
�,d (u�)

)
of �(j )(u1, . . . , ud ) = (

θ
(j )
1 (u1)′, . . . , θ (j )

d (ud )′
)′

and that the �th element θ
(0)
� (u�)

of θ (0) = (
θ

(0)
1 (u1), . . . , θ (0)

d (ud )
)′

depend only on the �th variable, respectively. Under this assumption we
can rewrite (S.1) as

Xt,i =
p∑

j=1

θ
(j )
i (Ut,i)Xt−j + θ

(0)
i (Ut,i), i = 1, . . . , d. (S.2)
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If the right-hand side of (S.2) is monotonically increasing, then the conditional quantile function of Xt,i given
(Xt−1, . . . , Xt−p) can be represented as

QXt,i
(τ |Xt−1, . . . , Xt−p) =

p∑
j=1

θ
(j )
i (τ )Xt−j + θ

(0)
i (τ ).

Note that in this design the �th component of Ut determines the coefficients for the autoregression
equation of the �th component of Xt . We refer to the process as a quantile vector autoregression process of
order p, hence QVAR(p). The class of processes (S.1) without assumptions regarding the parameters �(j )

is naturally richer. Yet, the interpretation of the parameters in terms of the conditional quantile functions is
possibly lost.

In the bivariate case (d = 2) of order p = 1, i.e., QVAR(1), (S.1) takes the following form:(
Xt,1

Xt,2

)
=

(
θ

(1)
11 (Ut,1) θ

(1)
12 (Ut,1)

θ
(1)
21 (Ut,2) θ

(1)
22 (Ut,2)

)(
Xt−1,1

Xt−1,2

)
+

(
θ

(0)
1 (Ut,1)

θ
(0)
2 (Ut,2)

)
.

For the examples we assume that the components Ut,1 and Ut,2 are independent and set the components of
θ (0) to θ

(0)
1 (u) = θ

(0)
2 (u) = �−1(u), u ∈ [0, 1], where �−1(u) denotes the u-quantile of the standard normal

distribution. Further, we set the diagonal elements of of �(1) to zero (i. e., θ
(1)
11 (u) = θ

(1)
22 (u) = 0, u ∈ [0,

1]) and the off-diagonal elements to θ
(1)
12 (u) = θ

(1)
21 (u) = 1.2(u − 0.5), u ∈ [0, 1]. We thus create cross-

dependence by linking the two processes with each other through the other one’s lagged contributions.
Note that this particular choice of parameter functions leads to the existence of a unique, strictly stationary
solution; cf. Bougerol and Picard (1992). (Xt,1)t∈Z and (Xt,2)t∈Z are uncorrelated. Note that Hafner and
Linton (2006) discuss that univariate quantile autoregression nests the popular autoregressive conditional
heteroskedasticity (ARCH) models in terms of second-order properties. Analogously, our QVAR(1) can be
seen to nest a multivariate versions of ARCH.

In Figure S.1, the dynamics of the described QVAR(1) process are depicted. In terms of traditional
coherency there appears to be no dependence across all frequencies. In terms of quantile coherency, on the
other hand, rich dynamics are revealed in the different parts of the joint distribution. While, in the centre of
the distribution (at the 0.5|0.5 level) the dependence is zero across frequencies, we see that the dependence
increases if at least one of the quantile levels (τ 1, τ 2) is chosen closer to 0 or 1. More precisely, we see
that the quantile coherency of this QVAR process resembles the shape of a VAR(1) process with coefficient
matrix �(1)(τ1, τ2). The two processes are, for example when τ 1 = 0.05 and τ 2 = 0.95, clearly positively
connected at lower frequencies with exactly the opposite value of quantile coherency at high frequencies,
where the processes are in opposition. This also resembles the dynamics of the simple motivating examples
from the introductory section of this paper, and highlights the importance of the quantile cross-spectral
analysis as the dependence structure stays hidden if only the traditional measures are used.

In a second and third example, we consider a similar structure of parameters at the second and third
lag. For the QVAR(2) process we let θ

(j )
11 (u) = θ

(j )
22 (u) = 0, for j = 1, 2, θ

(1)
12 (u) = θ

(1)
21 (u) = 0 and θ

(2)
12 (u) =

θ
(2)
21 (u) = 1.2(u − 0.5). In other words, here, the processes are connected through the second lag of the other

one and, again, not directly through their own lagged contributions. In the QVAR(3) process, all coefficients
are again set to zero, except for θ

(3)
12 (u) = θ

(3)
21 (u) = 1.2(u − 0.5), such that the processes are connected only

through the third lag of the other component and not through their own contributions.
In Figures S.2 and S.3, the dynamics of the described QVAR(2) and QVAR(3) processes are shown.

Connecting the quantiles of the two processes through the second and third lag gives us richer dependence
structures across frequencies. They, again, resemble the shape of the traditional coherencies of VAR(2)
and VAR(3) processes. When traditional coherency is used for the QVAR(2) and QVAR(3) processes, the
dependence structure stays completely hidden.

These examples of the general QVAR(p) specified in (S.1) served to show how rich dependence structures
can be created across points of the joint distribution and different frequencies. It is obvious how more
complicated structures for the coefficient functions would lead to even richer dynamics than in the examples
shown.
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Figure S.1. Example of dependence structures generated by QVAR(1).

S3. RELATION BETWEEN QUANTILE AND TRADITIONAL SPECTRAL
QUANTITIES IN THE CASE OF GAUSSIAN PROCESSES

When applying the proposed quantities, it is important to proceed with care when relating them to the
traditional correlation and coherency measures. In this section we examine the case of a weakly stationary,
multivariate process, where the proposed, quantile-based quantities and their traditional counterparts are
directly related. The aim of the discussion is twofold. On the one hand it provides assistance in how to
interpret the quantile spectral quantities when the model is known to be Gaussian. On the other hand, and
more importantly, it provides additional insight into how the traditional quantities break down when the
serial dependency structure is not completely specified by the second moments.

We start with a discussion of the general case, where the process under consideration is assumed to be
stationary, but need not be Gaussian. We will state conditions under which the traditional spectra (i. e., the
matrix of spectral densities and cross-spectral densities) uniquely determines the quantile spectra (i. e., the
matrix of quantile spectral densities and cross-spectral densities). At the end of this section we will discuss
three examples of bivariate, stationary Gaussian processes and explain how the traditional coherency and
the quantile coherency are related.

Denote by c := {cj1,j2
k : j1, j2 ∈ {1, . . . , d}, k ∈ Z}. c

j1,j2
k := Cov(Xt+k,j1 , Xt,j2 ), the family of auto- and

cross-covariances. We will also refer to them as the second moment features of the process. We assume that
(|cj1,j2

k |)k∈Z is summable, such that the traditional spectra f j1,j2 (ω) := (2π )−1
∑

k∈Z c
j1,j2
k e−ikω exist. Because

of the relation c
j1,j2
k = ∫ π

−π
f j1,j2 (ω)eikωdω we will equivalently refer to f (ω) := (f j1,j2 (ω))j1,j2=1,...,d as the

second moment features of the process.
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Figure S.2. Example of dependence structures generated by QVAR(2).

We now state conditions under which the traditional spectra uniquely determine the quantile spectra.
Assume that the marginal distribution of Xt, j (j ∈ {1, . . . , d}), which we denote by Fj, does not depend on
t and is continuous. Further, the joint distribution of

(
Fj1 (Xt+k,j1 ), Fj2 (Xt,j2 )

)
, j1, j2 ∈ {1, . . . , d}, i. e., the

copula of the pair (Xt+k,j1 , Xt,j2 ), shall depend only on k, but not on t, and be uniquely specified by the
second moment features of the process. More precisely, we assume the existence of functions C

j1,j2
k , such

that

C
j1,j2
k

(
τ1, τ2; c

) = P
(
Fj1 (Xt+k,j1 ) ≤ τ1, Fj2 (Xt,j2 ) ≤ τ2

)
.

Obviously, fj1,j2 (ω; τ1, τ2) is then, if it exists, uniquely determined by c [note (2.2) and the fact that
γ

j1,j2
k (τ1, τ2) = C

j1,j2
k

(
τ1, τ2; c

) − τ1τ2].
In the case of stationary Gaussian processes, the assumptions sufficient for the quantile spectra to be

uniquely identified by the traditional spectra hold with

C
j1,j2
k

(
τ1, τ2; c

)
:= CGauss(τ1, τ2; cj1,j2

k (cj1,j1
0 c

j2,j2
0 )−1/2),

where we have denoted the Gaussian copula by CGauss(τ 1, τ 2; ρ).
The converse can be stated under less restrictive conditions. If the marginal distributions are both known

and both possess second moments, then the quantile spectra uniquely determine the traditional spectra.
Assume now the previously described situation in which the second moment features f uniquely deter-

mine the quantile spectra, which we denote by f
j1,j2
f (ω; τ1, τ2) to stress the fact that it is determined by f .

Thus, the relation between the traditional spectra and the quantile spectra is 1-to-1. Denote the traditional
coherency by Rj1,j2 (ω) := f j1,j2 (ω)/(f j1,j1 (ω)f j2,j2 (ω))1/2 and observe that it is also uniquely determined
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Figure S.3. Example of dependence structures generated by QVAR(3).

by the second moment features f . Because the quantile coherency is determined by the quantile spectra,
which is related to the second moment features f , as previously explained, we have established the relation
of the traditional coherency and the quantile coherency. Obviously, this relation is not necessarily 1-to-1
any more.

If the stationary process is from a parametric family of time series models, the second moment features can
be determined for each parameter. We now discuss three examples of Gaussian processes. Each example will
have a more complex serial dependence than the previous one. Without loss of generality we consider only
bivariate examples. The first example is the one of non-degenerate Gaussian white noise. More precisely,
we consider a Gaussian process (Xt,1, Xt,2)t∈Z, where Cov(Xt,i , Xs,j ) = 0 and Var(Xt,i) > 0, for all t 	= s
and i, j ∈ {1, 2}.

Observe that, owing to the independence of (Xt,1, Xt,2) and (Xs,1, Xs,2), t 	= s, we have γ
1,2
k (τ1, τ2) = 0 for

all k 	= 0 and τ 1, τ 2 ∈ [0, 1]. It is easy to see that

R1,2(ω; τ1, τ2) = CGauss(τ1, τ2; R1,2(ω)) − τ1τ2√
τ1(1 − τ1)

√
τ2(1 − τ2))

(S.3)

where R1, 2(ω) denotes the traditional coherency, which in this case (a bivariate i. i. d. sequence) equals
c

1,2
0 (c1,1

0 c
2,2
0 )−1/2 (for all ω).

By employing (S.3), we can thus determine the quantile coherency for any given traditional coherency
and fixed combination of τ 1, τ 2 ∈ (0, 1). In the top-centre part of Figure S.4 this conversion is visualized
for four pairs of quantile levels and any possible traditional coherency. It is important to observe the limited
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Figure S.4. Quantile and traditional coherency for selected Gaussian processes.

range of the quantile coherency. For example, there never is strong positive dependence between the τ 1-
quantile in the first component and the τ 2-quantile in the second component when both τ 1 and τ 2 are close
to 0. Similarly, there never is strong negative dependence when one of the quantile levels is chosen close
to 0 while the other one is chosen close to 1. This observation is not special for the Gaussian case, but
holds for any sequence of pairwise-independent bivariate random variables. Bounds that correspond to the
case of perfect positive or perfect negative dependence (at the level of quantiles) can be derived from the
Fréchet/Hoeffding bounds for copulas: in the case of serial independence, quantile coherency is bounded
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by

max{τ1 + τ2 − 1, 0} − τ1τ2√
τ1(1 − τ1)

√
τ2(1 − τ2))

≤ R1,2(ω; τ1, τ2) ≤ min{τ1, τ2} − τ1τ2√
τ1(1 − τ1)

√
τ2(1 − τ2))

.

Note that these bounds hold for any joint distribution of (Xt,i, Xt,j). In particular, the bound holds independent
of the correlation.

In the top-left part of Figure S.4 traditional coherencies are shown for this example. Because no serial
dependence is present, all coherencies are flat lines. Their level is equal to the correlation between the two
components. In the top-right part of Figure S.4 the quantile coherency for the example is shown when the
correlation is 0.6 (the corresponding coherency is marked with a bold line in the top-left figure). Note that
for fixed τ 1 and τ 2, the value of the quantile coherency corresponds to the value in the top-centre figure
where the vertical grey line and the corresponding graph intersect. The quantile coherency in the right part
does not depend on the frequency, because in this example there is no serial dependence.

In the top-centre part of Figure S.4 it is important to observe that for traditional coherency 0 [i. e., when the
components are independent, owing to (Xt,1, Xt,2) being uncorrelated jointly Gaussian] quantile coherency
is zero at all quantile levels.

In the next two examples we stay in the Gaussian framework, but introduce serial dependence. Consider
a bivariate, stable VAR(1) process Xt = (Xt,1, Xt,2)′, t ∈ Z, fulfilling the difference equation

Xt = AXt−1 + εt , (S.4)

with parameter A ∈ R
2×2 and i. i. d., centred, bivariate, jointly normally distributed innovations εt with unit

variance E(εtε
′
t ) = I2.

In our second example, serial dependence is introduced by relating each component to the lagged other
component in the regression equation. In other words, we consider model (S.4) where the matrix A has
diagonal elements equal to 0 and some value a on the off-diagonal. Assuming |a| < 1 yields a stable process.
As described earlier, the traditional spectral density matrix, which in this example is of the form

f (ω) := (2π )−1
(

I2 −
(

0 a

a 0

)
e−iω

)−1(
I2 −

(
0 a

a 0

)
eiω

)−1
, |a| < 1,

uniquely determines the traditional coherency and, because of the Gaussian innovations, also the quantile
coherency.

In the middle-left plot of Figure S.4 the traditional coherencies for this model are shown when a takes
different values. If we now fix a frequency [ 	= π /4], then the value of the traditional coherency for this
frequency uniquely determines the value of a. In Figure S.4 we have marked the frequency of ω = 2π52/512
and coherency value of 0.6 by grey lines and printed the corresponding coherency (as a function of ω) in
bold. Note that of the many pictured coherencies [one for each a ∈ (− 1, 1)] only one has the value of 0.6 at
this frequency. In the centre plot of the middle row we show the relation between the traditional coherency
and quantile coherency for the considered model. For four combinations of quantile levels and all values of
a ∈ (− 1, 1) the corresponding traditional coherencies and quantile coherencies are shown. It is important
to observe that the relation is shown only for one frequency [ω = 2π52/512]. We observe that the range
of values for the quantile coherency is limited and that the range depends on the combination of quantile
levels and on the frequency. While this is quite similar to the first example, where quantile coherency had
to be bounded owing to the Fréchet/Hoeffding bounds, we here also observe (for this particular model and
frequency) that the range of values for the traditional coherency is limited. This fact is also apparent in the
middle-left plot. To relate the traditional and quantile coherency at this particular frequency, one can, using
the centre-middle plot, proceed as in the first example. For a given frequency, choose a valid traditional
coherency (x-axis of the middle-centre plot) and combination of quantile levels (one of the lines in the
plot) and then determine the value for the quantile coherency (depicted in the right plot). Note that (in this
example), for a given frequency and combination of quantile levels the relation is still a function of the
traditional coherency, but fails to be injective.
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In our final example we consider the Gaussian VAR(1) model (S.4), where we now allow for an additional
degree of freedom by letting the matrix A be of the form where the diagonal elements both are equal to b
and keeping the value a on the off-diagonal as before. Thus, compared with the previous example, where b
= 0 was required, each component now may also depend on its own lagged value. It is easy to see that |a +
b| < 1 yields a stable process. In this case the traditional spectral density matrix is of the form

f (ω) := (2π )−1
(

I2 −
(

b a

a b

)
e−iω

)−1(
I2 −

(
b a

a b

)
eiω

)−1
, |a + b| < 1.

In the bottom-left part of Figure S.4 a collection of traditional coherencies (as functions of ω) is shown.
Owing to the extra degree of freedom in the model, the variety of shapes has increased dramatically. In
particular, for a given frequency, the value of the traditional coherency does not uniquely specify the model
parameter any more. We have marked three coherencies (as functions of ω) that have value 0.6 at ω =
2π52/512 in bold to stress this fact. The corresponding processes have (for a fixed combination of quantile
levels) different values of quantile coherency at this frequency. This fact can be seen from the bottom-centre
part of Figure S.4, where the relation between traditional and quantile coherency is depicted for the frequency
fixed, and two combinations of quantile levels are shown in black and grey. Note the important fact that the
relation (for fixed frequency) is not a function of the traditional coherency any more. The bottom-right part
of the figure shows the quantile coherency curves (as a function of ω) for the three model parameters (shown
in bold in the bottom-left part of the figure) and the two combination of quantile levels. It is clearly visible
that even though, for the particular fixed frequency, the traditional coherency coincide, the value and shape
of the quantile coherency can be very different depending on the underlying process. This third example
illustrates how a frequency-by-frequency comparison of the traditional coherency with its quantile-based
counterpart may fail, even when the process is quite simple.

We have seen, from the theoretical discussion at the beginning of this section, that for Gaussian processes,
when the marginal distributions are fixed, a relation between the traditional spectra and the quantile spectra
exists. This relation is a 1-to-1 relation between the quantities as functions of frequency (and quantile levels).
The three examples have illustrated that a comparison on a frequency-by-frequency basis may be possible
in special cases but does not hold in general.

In conclusion we therefore advise seeing the quantile cross-spectral density as a measure for dependence
on its own, as the quantile-based quantities focus on more general types of dependence. We further point
out that quantile coherency may be used in examples where the conditions that make a relation possible
are fulfilled, but also, for example, to analyse the dependence in quantile vector autoregressive (QVAR)
processes, described in Section S2. The QVAR processes possess more complicated dynamics, which cannot
be described only by the second-order moment features.

S4. ASYMPTOTIC PROPERTIES OF THE PROPOSED ESTIMATORS FOR
QUANTILE CROSS-SPECTRAL DENSITIES

We are now going to state a result on the asymptotic properties of the CCR-periodogram In,R(ω; τ1, τ2)
defined in (2.4) and (2.5).

PROPOSITION S4.1 Assume that (Xt )t∈Z is strictly stationary and satisfies Assumption 4.1. Further
assume that the marginal distribution functions Fj, j = 1, . . . , d are continuous. Then, for every fixed ω 	= 0
mod 2π , (

In,R(ω; τ1, τ2)
)

(τ1,τ2)∈[0,1]2
⇒

(
I(ω; τ1, τ2)

)
(τ1,τ2)∈[0,1]2

in �∞
Cd×d ([0, 1]2). (S.5)

The C
d×d -valued limiting processes I, indexed by (τ 1, τ 2) ∈ [0, 1]2, is of the form

I(ω; τ1, τ2) = 1

2π
D(ω; τ1)D(ω; τ2)′,
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where D(ω; τ ) = (Dj (ω; τ ))j=1,...,d , τ ∈ [0, 1], ω ∈ R is a centred, C
d -valued Gaussian process with

covariance structure of the following form:

Cov(Dj1 (ω; τ1),Dj2 (ω; τ2)) = 2π fj1,j2 (ω; τ1, τ2).

Moreover, D(ω; τ ) = D(−ω; τ ) = D(ω + 2π ; τ ), and the family {D(ω; ·) : ω ∈ [0, π ]} is a collection of
independent processes. In particular, the weak convergence (S.5) holds jointly for any finite fixed collection
of frequencies ω.

For ω = 0 mod 2π the asymptotic behaviour of the CCR-periodogram is as follows: we have d
j

n,R(0; τ ) =
nτ + op(n1/2), where the exact form of the remainder term depends on the number of ties in Xj,0, . . . , Xj,n − 1.
Therefore, under the assumptions of Proposition S4.1, we have In,R(0; τ1, τ2) = n(2π )−1τ1τ21d1′

d + op(1),
where 1d := (1, . . . , 1)′ ∈ R

d .
We now state a result that quantifies the uncertainty in estimating f(ω; τ1, τ2) by Gn,R(ω; τ1, τ2) asymp-

totically.

THEOREM S4.1 Let Assumptions 4.1 and 4.2 hold. Assume that the marginal distribution functions Fj, j =
1, . . . , d are continuous and that constants κ > 0 and k ∈ N exist, such that bn = o(n−1/(2k + 1)) and bnn1 − κ

→ ∞. Then, for any fixed ω ∈ R, the process

Gn(ω; ·, ·) :=
√

nbn

(
Ĝn,R(ω; τ1, τ2) − f(ω; τ1, τ2) − B(k)

n (ω; τ1, τ2)
)

τ1,τ2∈[0,1]

satisfies

Gn(ω; ·, ·) ⇒ H(ω; ·, ·) in �∞
Cd×d ([0, 1]2), (S.6)

where the elements of the bias matrix B(k)
n are given by

{
B(k)

n (ω; τ1, τ2)
}

j1,j2

:=
k∑

�=2

b�
n

�!

∫ π

−π

v�W (v)dv
d�

dω�
fj1,j2 (ω; τ1, τ2) (S.7)

and fj1,j2 (ω; τ1, τ2) is defined in (2.2). The process H(ω; ·, ·) := (Hj1,j2 (ω; ·, ·))j1,j2=1,...,d in (S.6) is a centred,
C

d×d -valued Gaussian process characterized by

Cov
(
H

j1,j2 (ω; u1, v1

)
,Hk1,k2 (λ; u2, v2)

)
= 2π

( ∫ π

−π

W 2(α)dα
)(

fj1,k1 (ω; u1, u2)fj2,k2 (−ω; v1, v2)η(ω − λ)

+ fj1,k2 (ω; u1, v2)fj2,k1 (−ω; v1, u2)η(ω + λ)
)
, (S.8)

where η(x) := I {x = 0( mod 2π )} [cf. Brillinger (1975), p. 148] is the 2π -periodic extension of Kro-
necker’s delta function. The family {H(ω; ·, ·), ω ∈ [0, π]} is a collection of independent processes and
H(ω; τ1, τ2) = H(−ω; τ1, τ2) = H(ω + 2π ; τ1, τ2).

A few remarks on the result are in order. In sharp contrast to classical spectral analysis, where higher-
order moments are required to obtain smoothness of the spectral density [cf. Brillinger (1975), p. 27],
Assumption 4.1 guarantees that the quantile cross-spectral density is an analytical function of ω. Hence, the
kth derivative of ω �→ fj1,j2 (ω; τ1, τ2) in (S.7) exists without further assumptions.

The case ω = 0 mod 2π does not require separate treatment as in Proposition S4.1, because
I

j1,j2
n,R (0, τ1, τ2) is excluded in (2.6): the definition of Ĝ

j1,j2
n,R (ω; τ1, τ2).

Assume that W is a kernel of order p; i. e., for some p, it satisfies
∫ π

−π
vjW (v)dv = 0, for all j < p, and

0 <
∫ π

−π
vpW (v)dv < ∞. For example, the Epanechnikov kernel is a kernel of order p = 2. Then, the bias

is of order bp
n . As the variance is of order (nbn)−1, the mean squared error is minimal, if bn≈n−1/(2p + 1). This

optimal bandwidth fulfils the assumptions of Theorem S4.1. A detailed discussion of how Theorem S4.1
can be used to construct asymptotically valid confidence intervals is deferred to Section D.

C© 2019 Royal Economic Society.



Quantile coherency 33

The independence of the limit {H(ω; ·, ·), ω ∈ [0, π ]} has two important implications. On the one hand,
the weak convergence (S.6) holds jointly for any finite fixed collection of frequencies ω. On the other hand,
if one were to consider the smoothed CCR-periodogram as a function of the three arguments (ω, τ 1, τ 2),
weak convergence cannot hold any more. This limitation of convergence is due to the fact that there exists
no tight element in �∞

Cd×d ([0, π ] × [0, 1]2) that has the right finite-dimensional distributions, which would
be required for process convergence in �∞

Cd×d ([0, π ] × [0, 1]2).

Fixing j1, j2 and τ 1, τ 2, the CCR-periodogram Ĝ
j1,j2
n,R (ω; τ1, τ2) and traditional smoothed cross-

periodogram determined from the unobservable, bivariate time series(
I {Fj1 (Xt,j1 ) ≤ τ1}, I {Fj1 (Xt,j2 ) ≤ τ2}

)
, t = 0, . . . , n − 1, (S.9)

are asymptotically equivalent. Theorem S4.1 thus reveals that, in the context of the estimation of the quantile
cross-spectral density, the estimation of the marginal distribution has no impact on the limit distribution [cf.
comment after Remark 3.5 in Kley et al. (2016)].

S5. ON THE CONSTRUCTION OF INTERVAL ESTIMATORS

In this section we collect details on how to construct pointwise confidence bands.
Sections 4 and S4 contained asymptotic results on the uncertainty of point estimation of the newly

introduced quantile cross-spectral quantities. In this section we describe strategies to estimate the variances
(of the real and imaginary parts) that appear in those limit results and describe how asymptotically valid
pointwise confidence bands can be constructed.

In all three subsections, the following comment is relevant. Assuming that we have determined the weights
Wn form a kernel W that is of order d. We will choose a bandwidth bn = o(n−1/(2d + 1)). This choice implies
that compared to the variance, the bias (that in some form appears in both limit results) is asymptotically
negligible:

√
nbn B(k)

n (ω; τ1, τ2) = o(1).

S5.1. Pointwise confidence bands for f

Utilizing Theorem S4.1, we now construct pointwise asymptotic (1 − α)-level confidence bands for the real
and imaginary parts of fj1,j2 (ωkn; τ1, τ2), ωkn := 2πk/n, as follows:

C(1)
r,n(ωkn; τ1, τ2) := 
G̃

j1,j2
n,R (ωkn; τ1, τ2) ± 
σ

j1,j2
(1) (ωkn; τ1, τ2)�−1(1 − α/2),

for the real part, and

C(1)
i,n (ωkn; τ1, τ2) := �G̃

j1,j2
n,R (ωkn; τ1, τ2) ± �σ

j1,j2
(1) (ωkn; τ1, τ2)�−1(1 − α/2),

for the imaginary part of the quantile cross-spectrum. Here,

G̃
j1,j2
n,R (ωkn; τ1, τ2) := Ĝ

j1,j2
n,R (ωkn; τ1, τ2)/Wk

n , Wk
n := 2π

n

n−1∑
s=1

Wn(ωkn − ωsn),

and � denotes the cumulative distribution function of the standard normal distribution,4

(
σ j1,j2 (ωkn; τ1, τ2)
)2

:= 0 ∨
{

Cov(H1,2,H1,2) if j1 = j2 and τ1 = τ2,
1
2

(
Cov(H1,2,H1,2) + 
 Cov(H1,2,H2,1)

)
otherwise,

and(�σ j1,j2 (ωkn; τ1, τ2)
)2

:= 0 ∨
{

0 if j1 = j2 and τ1 = τ2,
1
2

(
Cov(H1,2,H1,2) − 
 Cov(H1,2,H2,1)

)
otherwise,

4 Note that for k = 0, . . . , n − 1 we have Wk
n := 2π/n

∑n−1
0=s 	=k Wn(2πs/n). For k ∈ Z with k < 0 or k ≥ n we can

define it as the n periodic extension.
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where Cov(Ha,b,Hc,d ) denotes an estimator of Cov
(
H

ja ,jb (ωkn; τa, τb

)
,Hjc,jd (ωkn; τc, τd )

)
. Here, motivated

by Theorem 7.4.3 in Brillinger (1975), we use

( 2π

n · Wk
n

)
×

[ n−1∑
s=1

Wn

(
2π (k − s)/n

)
Wn

(
2π (k − s)/n

)
G̃

ja,jc

n,R (τa, τc; 2πs/n)G̃jb,jd

n,R (τb, τd ; −2πs/n)

+
n−1∑
s=1

Wn

(
2π (k − s)/n

)
Wn

(
2π (k + s)/n

)
G̃

ja,jd

n,R (τa, τd ; 2πs/n)G̃jb,jc

n,R (τb, τc; −2πs/n)

]
.

(S.10)

The definition of σ
j1,j2
(1) (ωkn; τ1, τ2) is motivated by the fact that �Ĝ

j1,j2
n,R (ωkn; τ1, τ2) = 0, if j1 = j2 and τ 1

= τ 2. Furthermore, note that, for any complex-valued random variable Z, with complex conjugate Z̄,

Var(
Z) = 1

2

(
Var(Z) + 
 Cov(Z, Z̄)

)
; Var(�Z) = 1

2

(
Var(Z) − 
 Cov(Z, Z̄)

)
, (S.11)

and we have H1,2 = H2,1.

S5.2. Pointwise confidence bands for R

We utilize Theorem 4.1 to construct pointwise asymptotic (1 − α)-level confidence bands for the real and
imaginary parts of Rj1,j2 (ω; τ1, τ2) as follows:

C(2)
r,n(ωkn; τ1, τ2) := 
R̂

j1,j2

n,R (ωkn; τ1, τ2) ± 
σ
j1,j2
(2) (ωkn; τ1, τ2)�−1(1 − α/2),

for the real part, and

C(2)
i,n (ωkn; τ1, τ2) := �R̂j1,j2

n,R (ωkn; τ1, τ2) ± �σ
j1,j2
(2) (ωkn; τ1, τ2)�−1(1 − α/2),

for the imaginary part of the quantile coherency. Here, � stands for the cdf of the standard normal distribu-
tion,

(
σ
j1,j2
(2) (ωkn; τ1, τ2)

)2
:= 0 ∨

⎧⎨
⎩

0 if j1 = j2

and τ1 = τ2,
1
2

(
Cov(L1,2,L1,2) + 
 Cov(L1,2,L2,1)

)
otherwise,

and

(�σ
j1,j2
(2) (ωkn; τ1, τ2)

)2
:= 0 ∨

⎧⎨
⎩

0 if j1 = j2

and τ1 = τ2,
1
2

(
Cov(L1,2,L1,2) − 
 Cov(L1,2,L2,1)

)
otherwise.

The definition of σ
j1,j2
(2) (ωkn; τ1, τ2) is motivated by (S.11) and the fact that we have L1,2 = L2,1. Further-

more, note that R̂
j1,j2

n,R (ωkn; τ1, τ2) = 1, if j1 = j2 and τ 1 = τ 2..

In the definition of σ
j1,j2
(2) (ωkn; τ1, τ2) we have used Cov(La,b,Lc,d ) to denote an estimator for

Cov
(
L

j1,j2 (ωkn; τ1, τ2

)
,Lj3,j4 (ωkn; τ3, τ4)

)
.
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Recalling the definition of the limit process in Theorem 4.1 we derive the following expression:

1√
f1,1f2,2f3,3f4,4

Cov
(
H1,2 − 1

2

f1,2

f1,1
H1,1 − 1

2

f1,2

f2,2
H2,2,H3,4 − 1

2

f3,4

f3,3
H3,3 − 1

2

f3,4

f4,4
H4,4

)

= Cov(H1,2,H3,4)√
f1,1f2,2f3,3f4,4

− 1

2

f3,4 Cov(H1,2,H3,3)√
f1,1f2,2f

3
3,3f4,4

− 1

2

f3,4 Cov(H1,2,H4,4)√
f1,1f2,2f3,3f

3
4,4

− 1

2

f1,2 Cov(H1,1,H3,4)√
f31,1f2,2f3,3f4,4

+ 1

4

f1,2f3,4 Cov(H1,1,H3,3)√
f31,1f2,2f

3
3,3f4,4

+ 1

4

f1,2f3,4 Cov(H1,1,H4,4)√
f31,1f2,2f3,3f

3
4,4

− 1

2

f1,2 Cov(H2,2,H3,4)√
f1,1f

3
2,2f3,3f4,4

+ 1

4

f1,2f3,4 Cov(H2,2,H3,3)√
f1,1f

3
2,2f

3
3,3f4,4

+ 1

4

f1,2f3,4 Cov(H2,2,H4,4)√
f1,1f

3
2,2f3,3f

3
4,4

,

where we have written fa,b for the quantile spectral density fja ,jb (ωkn; τa, τb), andHa,b for the limit distribution
H

ja ,jb (ωkn; τa, τb

)
for any a, b = 1, 2, 3, 4.

Thus, considering the special case where τ 3 = τ 1 and τ 4 = τ 2, we have

Cov(L1,2,L1,2)

= 1

f1,1f2,2

(
Cov(H1,2,H1,2) − 
 f1,2 Cov(H1,1,H1,2)

f1,1
− 
 f1,2 Cov(H2,2,H1,2)

f2,2

+ 1

4
|f1,2|2

(Cov(H1,1,H1,1)

f21,1

+ 2
Cov(H1,1,H2,2)

f1,1f2,2
+ Cov(H2,2,H2,2)

f22,2

)) (S.12)

and for the special case where τ 3 = τ 1 and τ 4 = τ 2 we have

Cov(L1,2,L2,1)

= 1

f1,1f2,2

(
Cov(H1,2,H2,1) − f1,2 Cov(H1,2,H2,2)

f2,2
− f1,2 Cov(H1,2,H1,1)

f1,1

+ 1

4
f21,2

(Cov(H1,1,H1,1)

f21,1

+ 2
Cov(H1,1,H2,2)

f1,1f2,2
+ Cov(H2,2,H2,2)

f22,2

))
.

We substitute consistent estimators for the unknown quantities. To do so, we abuse notation using fa,b to
denote G̃

ja ,jb

n,R (ωkn; τa, τb) and write Cov(Ha,b,Hc,d ) for the quantity defined in (S.10).

S6. PROOFS OF THE RESULTS IN SECTIONS 4 AND S4

In this section the proofs to the results in Sections 4 and S4 are given. Before we begin, note that by a trivial
generalization of Proposition 3.1 in Kley et al. (2016) we have that Assumption 4.1 implies that there exist
constants ρ̄ ∈ (0, 1) and K < ∞ such that, for arbitrary intervals A1, ..., Ap ⊂ R, arbitrary indices j1, . . . ,
jp ∈ {1, . . . , d} and times t1, ..., tp ∈ Z,

| cum(I {Xt1,j1 ∈ A1}, . . . , I {Xtp,jp
∈ Ap})| ≤ Kρ̄maxi,j |ti−tj |. (S.13)

We will use this fact several times throughout the proofs in this section.
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S6.1. Proof of Theorem 4.1

By a Taylor expansion we have, for every x, x0 > 0,

1√
x

= 1√
x0

− 1

2

1√
x3

0

(x − x0) + 3

8
ξ−5/2
x,x0

(x − x0)2,

where ξx,x0 is between x and x0. Let Rn(x, x0) := 3
8 ξ−5/2

x,x0
(x − x0)2, then

x√
yz

− x0√
y0z0

= 1√
y0z0

(
(x − x0) − 1

2

x0

y0
(y − y0) − 1

2

x0

z0
(z − z0) + rn

)
, (S.14)

where

rn = (x − x0)
(

− 1

2

1

y0
(y − y0) − 1

2

1

z0
(z − z0)

)

+ x
(
Rn(y, y0)

√
y0

(
1 − 1

2

1

z0
(z − z0)

) + Rn(z, z0)
√

z0

(
1 − 1

2

1

y0
(y − y0)

)

+ 1

4

1

y0
(y − y0)

1

z0
(z − z0) + √

y0z0Rn(y, y0)Rn(z, z0)
)
.

Write fa,b for fja ,jb (ω; τa, τb), Ga,b for Ĝ
ja ,jb

n,R (ω; τa, τb), and Ba,b for {B(k)
n (ω; τa, τb)}ja ,jb

(a, b = 1, 2, 3,
4). We want to employ (S.14) and to this end let

x := Ga,b y := Ga,a z := Gb,b

x0 := fa,b + Ba,b y0 := fa,a + Ba,a z0 := fb,b + Bb,b.

By Theorem S4.1, the differences x − x0, y − y0, and z − z0 are of Op((nbn)−1/2), uniformly with respect
to τ 1, τ 2. Under the assumption that nbn → ∞, as n → ∞, this entails Ga,a − Ba,a → fa,a , in probability.
For ε ≤ τ 1, τ 2 ≤ 1 − ε, we have fa,a > 0, such that, by the continuous mapping theorem, we have
(Ga,a − Ba,a)−5/2 → f−5/2

a,a , in probability. As Ba,a = o(1), we have y−5/2 − y
−5/2
0 = op(1). Finally, due to

ξ−5/2
y,y0

≤ y−5/2
n ∨ y

−5/2
0 ≤ (y−5/2

n − y
−5/2
0 ) ∨ 0 + y

−5/2
0 = op(1) + O(1) = Op(1),

we have that Rn(y, y0) = Op((nbn)−1).
Analogous arguments yield Rn(z, z0) = Op((nbn)−1). Thus we have shown that

R̂
j1,j2

n,R (ω; τ1, τ2) − fa,b + Ba,b√
fa,a + Ba,a

√
fb,b + Bb,b

= 1√
f1,1f2,2

(
[G1,2 − f1,2 − B1,2] − 1

2

f1,2

f1,1
[G1,1 − f1,1 − B1,1] − 1

2

f1,2

f2,2
[G2,2 − f2,2 − B2,2]

)

+ Op

(
1/(nbn)

)
,

with the Op holding uniformly with respect to τ 1, τ 2. Furthermore, note that

fa,b + Ba,b√
fa,a + Ba,a

√
fb,b + Bb,b

= fa,b√
fa,afb,b

+ 1√
fa,afb,b

(
Ba,b − 1

2

fa,b

fa,a

Ba,a − 1

2

fa,b

fb,b

Bb,b

)

+ O(|Ba,b|(Ba,a + Bb,b) + B2
a,a + B2

b,b + Ba,a Bb,b),

where we have used (S.14) again. By Lemma 6.5 we have that

sup
τ1,τ2∈[ε,1−ε]

∣∣∣ d�

dω�
fj1,j2 (ω; τ1, τ2)

∣∣∣ ≤ Cε,�.

C© 2019 Royal Economic Society.



Quantile coherency 37

Therefore, bn satisfies

sup
τ1,τ2∈[ε,1−ε]

∣∣∣ k∑
�=2

b�
n

�!

∫ π

−π

v�W (v)dv
d�

dω�
fj1,j2 (ω; τ1, τ2)

∣∣∣ = o
(
(nbn)−1/4

)
,

for all j1, j2 = 1, . . . , d, which implies that

|Ba,b|(Ba,a + Bb,b) + B2
a,a + B2

b,b + Ba,a Bb,b = o
(
(nbn)−1/2

)
.

Therefore,

√
nbn

(
R̂

j1,j2

n,R (ω; τ1, τ2) − Rj1,j2 (ω; τ1, τ2)

− 1√
fa,afb,b

(
Ba,b − 1

2

fa,b

fa,a

Ba,a − 1

2

fa,b

fb,b

Bb,b

))
τ1,τ2∈[0,1]

and
√

nbn√
f1,1f2,2

(
[G1,2 − f1,2 − B1,2] − 1

2

f1,2

f1,1
[G1,1 − f1,1 − B1,1] − 1

2

f1,2

f2,2
[G2,2 − f2,2 − B2,2]

)
(S.15)

are asymptotically equivalent in the sense that if one of the two converges weakly in �∞
Cd×d ([0, 1]2), then so

does the other. The assertion then follows by Theorem S4.1, Slutzky’s lemma and the continuous mapping
theorem.�

S6.2. Proof of Proposition S4.1

The proof resembles the proof of Proposition 3.4 in Kley et al. (2016), where the univariate case was handled.
For j = 1, . . . , d we have, from the continuity of Fj, that the ranks of the random variables X0, j, ..., Xn − 1, j

and Fj(X0, j), ..., Fj(Xn − 1, j) coincide almost surely. Thus, without loss of generality, we can assume that the
CCR-periodogram is computed from the unobservable data (Fj(X0, j))j = 1, . . . , d, ..., (Fj(Xn − 1, j))j = 1, . . . , d. In
particular, we can assume the marginals to be uniform.

Applying the continuous mapping theorem afterward, it suffices to prove(
n−1/2d

j

n,R(ω; τ )
)

τ∈[0,1],j=1,...,d
⇒

(
D

j (ω; τ )
)

τ∈[0,1],j=1,...,d
in �∞

Cd ([0, 1]), (S.16)

where �∞
Cd ([0, 1]) is the space of bounded functions [0, 1] → C

d that we identify with the product space
�∞([0, 1])2d. Let

d
j

n,U (ω; τ ) :=
n−1∑
t=0

I {Fj (Xt,j ) ≤ τ }e−iωt ,

j = 1, . . . , d, ω ∈ R, τ ∈ [0, 1], and note that for (S.16) to hold, it is sufficient that(
n−1/2d

j

n,U (ω; τ )
)
τ∈[0,1],j=1,...,d

satisfies the following two conditions:

(i1) convergence of the finite-dimensional distributions, i. e.,

(
n−1/2d

j�

n,U (ω�; τ�)
)
�=1,...,k

d−→ (
D

j� (ω�; τ�)
)
�=1,...,k

, (S.17)

for any (j�, τ �) ∈ {1, . . . , d} × [0, 1], ω� 	= 0 mod 2π , � = 1, . . . , k and k ∈ N;
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(i2) stochastic equicontinuity: for any x > 0 and any ω 	= 0 mod 2π ,

lim
δ↓0

lim sup
n→∞

P

(
sup

τ1,τ2∈[0,1]
|τ1−τ2 |≤δ

|n−1/2(dj

n,U (ω; τ1) − d
j

n,U (ω; τ2))| > x
)

= 0, ∀j = 1, . . . , d.(S.18)

Under (i1) and (i2), an application of Theorems 1.5.4 and 1.5.7 from van der Vaart and Wellner (1996)
then yields (

n−1/2d
j

n,U (ω; τ )
)

τ∈[0,1],j=1,...,d
⇒

(
D

j (ω; τ )
)

τ∈[0,1],j=1,...,d
in �∞

Cd ([0, 1]). (S.19)

In combination with

sup
τ∈[0,1]

|n−1/2(dj

n,R(ω; τ ) − d
j

n,U (ω; τ ))| = op(1), for ω 	= 0 mod 2π , j = 1, . . . , d, (S.20)

which we will prove below, (S.19) yields the desired result: (S.16). For the proof of (S.20), we denote by
F̂ −1

n,j (τ ) := inf{x : F̂n,j (x) ≥ τ } the generalized inverse of F̂n,j and let inf ∅ := 0. Then, we have, as in (7.25)
of Kley et al. (2016), that

sup
ω∈R

sup
τ∈[0,1]

∣∣∣dj

n,R(ω; τ ) − d
j

n,U (ω; F̂ −1
n,j (τ ))

∣∣∣ ≤ n sup
τ∈[0,1]

|F̂n,j (τ ) − F̂n,j (τ−)| = Op(n1/2k) (S.21)

where F̂n,j (τ−) := limξ↑0 F̂n,j (τ − ξ ). The Op-bound in (S.21) follows from Lemma S6.7. Therefore, it
suffices to bound the terms

sup
τ∈[0,1]

n−1/2|dj

n,U (ω; F̂ −1
n,j (τ )) − d

j

n,U (ω, τ ))|, for all j = 1, . . . , d .

To do so, note that, for any x > 0 and δn = o(1) satisfying n1/2δn → ∞, we have

P

(
sup

τ∈[0,1]
n−1/2|dj

n,U (ω; F̂ −1
n,j (τ )) − d

j

n,U (ω; τ ))| > x
)

≤ P

(
sup

τ∈[0,1]
sup

|u−τ |≤δn

|dj

n,U (ω; u) − d
j

n,U (ω; τ )| > xn1/2, sup
τ∈[0,1]

|F̂ −1
n,j (τ ) − τ | ≤ δn

)

+ P

(
sup

τ∈[0,1]
|F̂ −1

n,j (τ ) − τ | > δn

)
= o(1) + o(1).

The first o(1) follows from (S.18). The second one is a consequence of Lemma S6.8.
It thus remains to prove (S.17) and (S.18). For any fixed j = 1, . . . , d the process

(
d

j

n,U (ω, τ )
)
τ∈[0,1]

is
determined by the univariate time series X0, j, . . . , Xn − 1, j. Under the assumptions made here, (S.18) therefore
follows from (8.7) in Kley et al. (2016).

Finally, we establish (S.17), by employing Lemma S6.6 in combination with Lemma P4.5 and Theo-
rem 4.3.2 from Brillinger (1975). More precisely, to apply Lemma P4.5 from Brillinger (1975), we have to
verify that, for any j1, . . . , j� ∈ {1, . . . , d}, τ 1, . . . , τ � ∈ [0, 1], � ∈ N, and ω1, . . . , ω� 	= 0 mod 2π , all
cumulants of the vector

n−1/2
(
d

j1
n,U (ω1; τ1), dj1

n,U (−ω1; τ1), . . . , dj�

n,U (ω�; τ�), dj�

n,U (−ω�; τ�)
)

converge to the corresponding cumulants of the vector(
D

j1 (ω1; τ1),Dj1 (−ω1; τ1), . . . ,Dj� (ω�; τ�),Dj� (−ω�; τ�)
)
.

For the cumulants of order one, the arguments from the univariate case [cf. the proof of Proposition 3.4 in
Kley et al. (2016)] apply: we have |E(n−1/2d

j

n,U (ω; τ ))| = o(1), for any j = 1, . . . , d, τ ∈ [0, 1] and fixed
ω 	= 0 mod 2π . Furthermore, for the cumulants of order two, applying Theorem 4.3.1 in Brillinger (1975)
to the bivariate process

(I {Xt,j1 ≤ qj1 (μ1)}, I {Xt,j2 ≤ qj2 (μ2)}),
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we obtain

cum(n−1/2d
i1
n,U (λ1; μ1), n−1/2d

i2
n,U (λ2; μ2)) = 2πn−1�n(λ1 + λ2)fi1,i2 (λ1; μ1, μ2) + o(1)

for any (i1, λ1, μ1), (i2, λ2, μ2) ∈ ⋃k

�=1{(i�, ω�, τ�), (j�, −ω�, τ�)}, which yields the correct second moment
structure. The function �n is defined in Lemma S6.6. Finally, the cumulants of order J, with J ∈ N and J
≥ 3, all tend to zero, as in view of Lemma S6.6

cum(n−1/2d
i1
n,U (λ1; μ1), . . . , n−1/2d

iJ
n,U (λJ ; μJ ))

≤ Cn−J/2(|�n(
J∑

j=1

λj )| + 1)ε(| log ε| + 1)d = O(n−(J−2)/2) = o(1),

for (i1, λ1, μ1), . . . , (iJ , λJ , μJ ) ∈ ⋃k

�=1{(i�, ω�, τ�), (i�, −ω�, τ�)}, where ε := minJ
j=1 μj . This implies that

the limit Dj (τ ; ω) is Gaussian, and completes the proof of (S.17). Proposition S4.1 follows. �

S6.3. Proof of Theorem S4.1

We proceed in a similar fashion as in the proof of the univariate estimator, which was analysed in Kley et al.
(2016). First, we state an asymptotic representation result by which the estimator Ĝn,R can be approximated,
in a suitable uniform sense, by another process Ĝn,U which is not defined as a function of the standardized
ranks F̂n,j (Xt,j ), but as a function of the unobservable quantities Fj(Xt, j), t = 0, . . . , n − 1, j = 1, . . . , d.
More precisely, this process is defined as

Ĝn,U (ω; τ1, τ2) := (Ĝj1,j2
n,U (ω; τ1, τ2))j1,j2=1,...,d ,

where

Ĝ
j1,j2
n,U (ω; τ1, τ2) := 2π

n

∑n−1
s=1 Wn

(
ω − 2πs/n

)
I

j1,j2
n,U (2πs/n, τ1, τ2)

I
j1,j2
n,U (ω; τ1, τ2) := 1

2πn
d

j1
n,U (ω; τ1)dj2

n,U (−ω; τ2)

d
j

n,U (ω; τ ) := ∑n−1
t=0 I {Fj (Xt,j ) ≤ τ }e−iωt . (S.22)

Theorem S4.1 then follows from the asymptotic representation of Ĝn,R by Ĝn,U [i. e., Theorem S6.1(iii)]
and the asymptotic properties of Ĝn,U [i. e., Theorem S6.1(i)–(ii)], which we now state:

THEOREM S6.1. Let Condition (S.13) and Assumption 4.2 hold, and assume that the distribution functions
Fj of X0, j are continuous for all j = 1, . . . , d. Let bn satisfy the assumptions of Theorem S4.1. Then,

(i) for any fixed ω ∈ R, as n → ∞,√
nbn

(
Ĝn,U (ω; τ1, τ2) − EĜn,U (ω; τ1, τ2)

)
τ1,τ2∈[0,1]

⇒ H(ω; ·, ·)

in �∞
Cd×d ([0, 1]2), where the process H(ω; ·, ·) is defined in Theorem S4.1;

(ii) still as n → ∞,

sup
j1 ,j2∈{1,...,d}
τ1 ,τ2∈[0,1]

ω∈R

∣∣∣EĜ
j1,j2
n,U (τ1, τ2; ω) − fj1,j2 (ω; τ1, τ2) − {

B(k)
n (ω; τ1, τ2)

}
j1,j2

∣∣∣ = O((nbn)−1) + o(bk
n),

where
{

B(k)
n (ω; τ1, τ2)

}
j1,j2

is defined in (S.7);

C© 2019 Royal Economic Society.



40 J. Barunı́k and T. Kley

(iii) for any fixed ω ∈ R,

sup
j1 ,j2∈{1,...,d}
τ1,τ2∈[0,1]

|Ĝj1,j2
n,R (τ1, τ2; ω) − Ĝ

j1,j2
n,U (τ1, τ2; ω)| = op

(
(nbn)−1/2 + bk

n

)
;

if moreover the kernel W is uniformly Lipschitz-continuous, this bound is uniform with respect
to ω ∈ R.

The proof of Theorem S6.1 is lengthy, technical and in many places similar to the proof of Theorem 3.6
in Kley et al. (2016). We provide the proof in Sections S6.3.1–S6.3.3, with technical details deferred to
Section S6.4. For the reader’s convenience we first give a brief description of the necessary steps.

Part (ii) of Theorem S6.1 can be proved along the lines of classical results from Brillinger (1975), but
uniformly with respect to the arguments τ 1 and τ 2. Parts (i) and (iii) require additional arguments that are
different from the classical theory. These additional arguments are due to the fact that the estimator is a
stochastic process and stochastic equicontinuity of(

Ĥ j1,j2
n (a; ω)

)
a∈[0,1]2 :=

√
nbn

(
Ĝ

j1,j2
n,U (ω; τ1, τ2) − EĜ

j1,j2
n,U (ω; τ1, τ2)

)
τ1,τ2∈[0,1]

(S.23)

for all j1, j2 = 1, . . . , d has to be proven to ensure that the convergence holds not only pointwise, but
also uniformly. The key to the proof of (i) and (iii) is a uniform bound on the increments Ĥ j1,j2

n (a; ω) −
Ĥ j1,j2

n (b; ω) of the process Ĥ j1,j2
n . This bound is needed to show the stochastic equicontinuity of the process.

To employ a restricted chaining technique (cf. Lemma S6.3), we require two different bounds. First, we
prove a general bound, uniform in a and b, on the moments of the increments Ĥ j1,j2

n (a; ω) − Ĥ j1,j2
n (b; ω)

(cf. Lemma S6.4). Second, we prove a sharper bound on the increments Ĥ j1,j2
n (a; ω) − Ĥ j1,j2

n (b; ω) when a
and b are ’sufficiently close’ (cf. Lemma S6.10).

Condition (S.28), which we will require for Lemma S6.4 to hold, is rather general. In Lemma S6.6 we
prove that condition (S.13), which is implied by Assumption 4.1, implies (S.28).

S6.3.1. Proof of Theorem S6.1(i). It is sufficient to prove the following two claims:

(i1) convergence of the finite-dimensional distributions of the process (S.23), that is,

(
Ĥ j1�,j2�

n

(
(a1�, a2�); ωj

))
j=1,...,k

d−→ (
H

j1�,j2�
(
(a1�, a2�); ωj

))
j=1,...,k

(S.24)

for any (j1�, j2�, a1�, a2�, ω�) ∈ {1, . . . , d} × [0, 1]2 × R, � = 1, . . . , k and k ∈ N;
(i2) stochastic equicontinuity: for any x > 0, any ω ∈ R, and any j1, j2 = 1, . . . , d,

lim
δ↓0

lim sup
n→∞

P

(
sup

a,b∈[0,1]2
‖a−b‖1≤δ

|Ĥ j1,j2
n (a; ω) − Ĥ j1,j2

n (b; ω)| > x
)

= 0. (S.25)

By (S.25) we have stochastic equicontinuity of all real parts 
Ĥ j1,j2
n (·; ω) and imaginary parts

�Ĥ j1,j2
n (·; ω). Therefore, in view of Theorems 1.5.4 and 1.5.7 in van der Vaart and Wellner (1996), we

will have proved part (i).
First we prove (i1). For fixed τ 1, τ 2, Ĝj1,j2

n,U (ω; τ1, τ2) is the traditional smoothed periodogram estimator of
the cross-spectrum of the clipped processes (I {Fj1 (Xt,j1 ) ≤ τ1})t∈Z and (I {Fj2 (Xt,j2 ) ≤ τ2})t∈Z [see Chapter
7.1 in Brillinger (1975)]. Thus, (S.24) follows from Theorem 7.4.4 in Brillinger (1975), by which these
estimators are asymptotically jointly Gaussian. The first and second moment structures of the limit are
given by Theorem 7.4.1 and Corollary 7.4.3 in Brillinger (1975). The joint convergence (S.24) follows.
Note that condition (S.13), which is implied by Assumption 4.1, implies the summability condition [i. e.,
Assumption 2.6.2(�) in Brillinger (1975), for every �] required for the three theorems in Brillinger (1975)
to be applied.

Now to the proof of (i2). The Orlicz norm ‖X‖� = inf{C > 0 : E�(|X|/C) ≤ 1} with �(x) := x6

coincides with the L6 norm ‖X‖6 = (E|X|6)1/6. Therefore, for any κ > 0 and sufficiently small ‖a − b‖1,
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we have by Lemma S6.4 and Lemma S6.6 that

‖Ĥ j1,j2
n (a; ω) − Ĥ j1,j2

n (b; ω)‖� ≤ K
(‖a − b‖κ

1

(nbn)2
+ ‖a − b‖2κ

1

nbn

+ ‖a − b‖3κ
1

)1/6
.

Consequently, for all a, b with ‖a − b‖1 sufficiently small and ‖a − b‖1 ≥ (nbn)−1/γ and all γ ∈ (0, 1) such
that γ < κ ,

‖Ĥ j1,j2
n (a; ω) − Ĥ j1,j2

n (b; ω)‖� ≤ K̄‖a − b‖γ /2
1 .

Note that ‖a − b‖1 ≥ (nbn)−1/γ if and only if d(a, b) := ‖a − b‖γ /2
1 ≥ (nbn)−1/2 =: η̄n/2. The packing

number [van der Vaart and Wellner (1996), p. 98] D(ε, d) of ([0, 1]2, d) satisfies D(ε, d)≈ε−4/γ . By
Lemma S6.3, we therefore have, for all x, δ > 0 and η ≥ η̄n,

P

(
sup

‖a−b‖1≤δ2/γ

|Ĥ j1,j2
n (a; ω) − Ĥ j1,j2

n (b; ω)| > x
)

= P

(
sup

d(a,b)≤δ

|Ĥ j1,j2
n (a; ω) − Ĥ j1,j2

n (b; ω)| > x
)

≤
[

8K̃

x

( ∫ η

η̄n/2
ε−2/(3γ )dε + (δ + 2η̄n)η−4/(3γ )

)]6

+ P

(
sup

d(a,b)≤η̄n

|Ĥ j1,j2
n (a; ω) − Ĥ j1,j2

n (b; ω)| > x/4
)
.

Now, choosing 2/3 < γ < 1 and letting n tend to infinity, the second term tends to zero by Lemma S6.10,
because, by construction, 1/γ > 1 and d(a, b) ≤ η̄n if and only if ‖a − b‖1 ≤ 22/γ (nbn)−1/γ . All together,
this yields

lim
δ↓0

lim sup
n→∞

P

(
sup

d(a,b)≤δ

|Ĥn(a; ω) − Ĥn(b; ω)| > x
)

≤
[

8K̃

x

∫ η

0
ε−2/(3γ )dε

]6

,

for every x, η > 0. The claim then follows, as the integral on the right-hand side may be arbitrarily small by
choosing η accordingly.�

S6.3.2. Proof of Theorem S6.1(ii). Following the arguments that were applied in Section 8.1 of Kley
et al. (2016), we can derive asymptotic expansions for E[I j1,j2

n,U (ω; τ1, τ2)] and E[Ĝj1,j2
n,U (ω; τ1, τ2)]. In fact, it

is easy to see that the proofs can still be applied when the Laplace cumulants

cum
(
I {Xk1 ≤ x1}, I {Xk2 ≤ x2}, . . . , I {X0 ≤ xp})

that were considered in Kley et al. (2016) are replaced by their multivariate counterparts

cum
(
I {Xk1,j1 ≤ x1}, I {Xk2,j2 ≤ x2}, . . . , I {X0,jp

≤ xp}).
More precisely, we now state Lemmas S6.1 and S6.2 (without proof) that are multivariate counterparts

to Lemmas 8.4 and 8.5 in Kley et al. (2016), for which we assume

ASSUMPTION S6.1 Let p ≥ 2, δ > 0. There exists a non-increasing function ap : N → R
+ such that∑

k∈N kδap(k) < ∞ and

sup
x1,...,xp

| cum
(
I {Xk1,j1 ≤ x1}, I {Xk2,j2 ≤ x2}, . . . , I {X0,jp

≤ xp})| ≤ ap

(
max

j
|kj |

)
,

for all j1, . . . , jp = 1, . . . , d.
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Note that Assumption S6.1 follows from condition (S.13), which is in turn implied by Assumption 4.1,
but that it is in fact somewhat weaker. We now state the first of the two lemmas. It is a generalization of
Theorem 5.2.2 in Brillinger (1975).

LEMMA S6.1 Under Assumption S6.1 with K = 2, δ > 3,

EI
j1,j2
n,U (ω; τ1, τ2) =

{
fj1,j2 (ω; τ1, τ2) + 1

2πn

[
sin(nω/2)
sin(ω/2)

]2
τ1τ2 + ετ1,τ2

n (ω) ω 	= 0 mod 2π

fj1,j2 (ω; τ1, τ2) + n

2π
τ1τ2 + ετ1,τ2

n (ω) ω = 0 mod 2π
(S.26)

with supτ1,τ2∈[0,1],ω∈R |ετ1,τ2
n (ω)| = O(1/n).

The second of the two lemmas is a generalization of Theorem 5.6.1 in Brillinger (1975).

LEMMA S6.2 Assume that Assumption S6.1, with p = 2 and δ > k + 1, and Assumption 4.2 hold. Then,
with the notation of Theorem S4.1,

sup
τ1,τ2∈[0,1],ω∈R

∣∣∣EĜj1,j2
n (ω; τ1, τ2) − fj1,j2 (ω; τ1, τ2) − {

B(k)
n (ω; τ1, τ2)

}
j1,j2

∣∣∣
= O((nbn)−1) + o(bk

n).

Because condition (S.13), which is implied by Assumption 4.1, implies Assumption S6.1, Lemma S6.2
implies Theorem S6.1(ii).�

S6.3.3. Proof of Theorem S6.1(iii). Using (S.20) and argument similar to those in the proof of
Lemma S6.10, it follows that

sup
ω∈R

sup
τ1,τ2∈[0,1]

|Ĝj1,j2
n,R (ω; τ1, τ2) − Ĝ

j1,j2
n,U (ω; F̂ −1

n,j1
(τ1), F̂ −1

n,j2
(τ2))| = op(1).

It therefore suffices to bound the differences

sup
τ1,τ2∈[0,1]

|Ĝj1,j2
n,U (ω; τ1, τ2) − Ĝ

j1,j2
n,U (ω; F̂ −1

n,j1
(τ1), F̂ −1

n,j2
(τ2))|

for j1, j2 = 1, . . . , d, pointwise and uniformly in ω.
We first prove the statement for fixed ω ∈ R in full detail and will later sketch the additional arguments

needed for the proof of the uniform result. For any x > 0 and sequence δn we have,

P n(ω) :=

P

(
sup

τ1,τ2∈[0,1]
|Ĝj1,j2

n,U (ω; F̂ −1
n,j1

(τ1), F̂ −1
n,j2

(τ2)) − Ĝ
j1,j2
n,U (ω; τ1, τ2)| > x((nbn)−1/2 + bk

n)
)

≤ P

(
sup

τ1,τ2∈[0,1]
sup

‖(u,v)−(τ1 ,τ2)‖∞
≤supi=1,2;τ∈[0,1] |F̂−1

n,ji
(τ )−τ |

|Ĝj1,j2
n,U (ω; u, v) − Ĝ

j1,j2
n,U (ω; τ1, τ2)| > x((nbn)−1/2 + bk

n)
)

≤ P

(
sup

τ1,τ2∈[0,1]
sup

|u−τ1 |≤δn
|v−τ2 |≤δn

|Ĝj1,j2
n,U (ω; u, v) − Ĝ

j1,j2
n,U (ω; τ1, τ2)| > x((nbn)−1/2 + bk

n),

sup
i=1,2;τ∈[0,1]

|F̂ −1
n,ji

(τ ) − τ | ≤ δn

)
+

2∑
i=1

P

(
sup

τ∈[0,1]
|F̂ −1

n,ji
(τ ) − τ | > δn

)

= P n
1 + P n

2 , say.

We choose δn such that n−1/2 � δn = o(n−1/2b−1/2
n (log n)−D), where D denotes the constant from

Lemma S6.5. It then follows from Lemma S6.8 that P n
2 is o(1). For P n

1 , on the other hand, we have
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the following bound:

P

(
sup

τ1,τ2∈[0,1]
sup

|u−τ1 |≤δn
|v−τ2 |≤δn

|Ĥ j1,j2
n,U (ω; u, v) − Ĥ

j1,j2
n,U (ω; τ1, τ2)| > (1 + (nbn)1/2bk

n)x/2
)

+ I
{

sup
τ1,τ2∈[0,1]

sup
|u−τ1 |≤δn
|v−τ2 |≤δn

|EĜ
j1,j2
n,U (ω; u, v) − EĜ

j1,j2
n,U (ω; τ1, τ2)| > ((nbn)−1/2 + bk

n)x/2
}
.

The first term tends to zero because of (S.25). The indicator vanishes for n large enough, because we have

sup
τ1,τ2∈[0,1]

sup
|u−τ1 |≤δn
|v−τ2 |≤δn

|EĜ
j1,j2
n,U (ω; u, v) − EĜ

j1,j2
n,U (ω; τ1, τ2)|

≤ sup
τ1,τ2∈[0,1]

sup
|u−τ1 |≤δn
|v−τ2 |≤δn

|EĜ
j1,j2
n,U (ω; u, v) − fj1,j2 (ω; u, v) − {

B (k)
n (ω; u, v)

}
j1,j2

|

+ sup
τ1,τ2∈[0,1]

sup
|u−τ1 |≤δn
|v−τ2 |≤δn

|{B (k)
n (ω; τ1, τ2)

}
j1,j2

+ fj1,j2 (ω; τ1, τ2) − EĜ
j1,j2
n,U (ω; τ1, τ2)|

+ sup
τ1,τ2∈[0,1]

sup
|u−τ1 |≤δn
|v−τ2 |≤δn

|fj1,j2 (ω; u, v) + {
B (k)

n (ω; u, v)
}

j1,j2

− fj1,j2 (ω; τ1, τ2) − {
B (k)

n (ω; τ1, τ2)
}

j1,j2
|

=o(n−1/2b−1/2
n + bk

n) + O(δn(1 + | log δn|)D),

where D is still the constant from Lemma S6.5. We have applied part (ii) of Theorem S6.1 to bound the first
two terms, and Lemma S6.5 for the third one. Thus, for any fixed ω, we have shown Pn(ω) = o(1), which is
the pointwise version of the claim.

Next, we outline the proof of the uniform (with respect to ω) convergence. For any yn > 0, by similar
arguments to above, using the same δn, we have

P

(
sup
ω∈R

sup
τ1,τ2∈[0,1]

|Ĝj1,j2
n,R (ω; τ1, τ2) − Ĝ

j1,j2
n,U (ω; τ1, τ2)| > yn

)

≤ P

(
sup
ω∈R

sup
τ1,τ2∈[0,1]

sup
|u−τ1 |≤δn
|v−τ2 |≤δn

|Ĥ j1,j2
n,U (ω; u, v) − Ĥ

j1,j2
n,U (ω; τ1, τ2)| > (nbn)1/2yn/2

)

+ I
{

sup
ω∈R

sup
τ1,τ2∈[0,1]

sup
|u−τ1 |≤δn
|v−τ2 |≤δn

|EĜ
j1,j2
n,U (ω; u, v) − EĜ

j1,j2
n,U (ω; τ1, τ2)| > yn/2

}
+ o(1).

The indicator in the latter expression is o(1) by the same arguments as above [note that Lemma S6.5 and
the statement of part (ii) both hold uniformly with respect to ω ∈ R]. For the bound of the probability, note
that by Lemma S6.9,

sup
τ1,τ2

sup
k=1,...,n

|I j1,j2
n,U (2πk/n; τ1, τ2)| = Op(n2/K ), for any K > 0.

Moreover, by the uniform Lipschitz continuity of W, the function Wn is also uniformly Lipschitz-continuous
with constant of order O(b−2

n ). Combining those facts with Lemma S6.5 and the assumptions on bn, we
obtain

sup
ω1,ω2∈R
|ω1−ω2 |≤n−3

sup
τ1,τ2∈[0,1]

|Ĥ j1,j2
n,U (ω1; τ1, τ2) − Ĥ

j1,j2
n,U (ω2; τ1, τ2)| = op(1).
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By the periodicity of Ĥ
j1,j2
n,U (with respect to ω), it suffices to show that

max
ω=0,2πn−3,...,2π

sup
τ1,τ2∈[0,1]

sup
|u−τ1 |≤δn
|v−τ2 |≤δn

|Ĥ j1,j2
n,U (ω; u, v) − Ĥ

j1,j2
n,U (ω; τ1, τ2)| = op(1).

By Lemmas S6.3 and S6.10 there exists a random variable S(ω) such that

sup
τ1,τ2∈[0,1]

sup
|u−τ1 |≤δn
|v−τ2 |≤δn

|Ĥ j1,j2
n,U (ω; u, v) − Ĥ

j1,j2
n,U (ω; τ1, τ2)| ≤ |S(ω)| + Rn(ω),

for any fixed ω ∈ R, with supω∈R |Rn(ω)| = op(1) and

max
ω=0,2πn−3 ...,2π

E[|S2L(ω)|] ≤ K2L
L

(∫ η

0
ε−4/(2Lγ )dε + (δγ/2

n + 2(nbn)−1/2)η−8/(2Lγ )

)2L

for any 0 < γ < 1, L ∈ N, 0 < η < δn, and a constant KL depending on L only. For appropriately chosen L
and γ , this latter bound is o(n−3). Note that the maximum is with respect to a set of cardinality O(n3), which
completes the proof of part (iii). �

S6.4. Auxiliary lemmas

In this section we state multivariate versions of the auxiliary lemmas from Section 7.4 in Kley et al. (2016).
Note that Lemma S6.3 is unaltered and therefore stated without proof. The remaining lemmas are adapted
to the multivariate quantities and proofs or directions on how to adapt the proofs in Kley et al. (2016) are
collected at the end of this section.

For the statement of Lemma S6.3, we define the Orlicz norm [see e.g. van der Vaart and Wellner (1996),
Chapter 2.2] of a real-valued random variable Z as

‖Z‖� = inf
{
C > 0 : E�

(
|Z|/C

)
≤ 1

}
,

where � : R+ → R
+ may be any non-decreasing, convex function with �(0) = 0.

For the statement of Lemmas S6.4, S6.6, and S6.9 we define, for any Borel set A,

dj
n (ω; A) :=

n−1∑
t=0

I {Xt,j ∈ A}e−itω. (S.27)

LEMMA S6.3. Let {Gt : t ∈ T } be a separable stochastic process with ‖Gs − Gt‖� ≤ Cd(s, t) for all s, t
with d(s, t) ≥ η̄/2 ≥ 0. Denote by D(ε, d) the packing number of the metric space (T, d). Then, for any δ >

0, η ≥ η̄, there exists a random variable S1 and a constant K < ∞ such that

sup
d(s,t)≤δ

|Gs − Gt | ≤ S1 + 2 sup
d(s,t)≤η̄,t∈T̃

|Gs − Gt | and

‖S1‖� ≤ K
[ ∫ η

η̄/2
�−1

(
D(ε, d)

)
dε + (δ + 2η̄)�−1

(
D2(η, d)

)]
,

where the set T̃ contains at most D(η̄, d) points. In particular, by Markov’s inequality [cf. van der Vaart
and Wellner (1996), p. 96],

P

(
|S1| > x

)
≤

(
�

(
x
[
8K

( ∫ η

η̄/2
�−1

(
D(ε, d)

)
dε + (δ + 2η̄)�−1

(
D2(η, d)

))]−1
))−1

.

for any x > 0.

LEMMA S6.4. Let X0, ..., Xn−1, where Xt = (Xt,1, . . . , Xt,d ), be the finite realization of a strictly
stationary process with X0, j ∼ U[0, 1], j = 1, . . . , d. Let Assumption 4.2 hold. For x = (x1, x2)
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let Ĥ j1,j2
n (x; ω) := √

nbn(Ĝj1,j2
n (x1, x2; ω) − E[Ĝj1,j2

n (x1, x2; ω)]). Let dj
n (ω; A) be defined as in (S.27). As-

sume that, for p = 1, . . . , P, there exist a constant C and a function g : R+ → R
+, both independent of

ω1, ..., ωp ∈ R, n and A1, ..., Ap, such that

∣∣∣ cum(dj1
n (ω1; A1), . . . , d

jp
n (ωp; Ap))

∣∣∣ ≤ C
(∣∣∣�n

( p∑
i=1

ωi

)∣∣∣ + 1
)
g(ε) (S.28)

for any indices j1, . . . , jp ∈ {1, . . . , d} and intervals A1, . . . , Ap with mink P(X0,jk
∈ Ak) ≤ ε. Then, there

exists a constant K (depending on C, L, g only) such that

sup
ω∈R

sup
‖a−b‖1≤ε

E|Ĥ j1,j2
n (a; ω) − Ĥ j1,j2

n (b; ω)|2L ≤ K

L−1∑
�=0

gL−�(ε)

(nbn)�

for all ε with g(ε) < 1 and all L = 1, . . . , P.

LEMMA S6.5. Under the assumptions of Theorem S4.1, the derivative

(τ1, τ2) �→ dk

dωk
fj1,j2 (ω; τ1, τ2)

exists and satisfies, for any k ∈ N0 and some constants C, d that are independent of a = (a1, a2), b = (b1,
b2), but may depend on k,

sup
ω∈R

∣∣∣ dk

dωk
fj1,j2 (ω; a1, a2) − dk

dωk
fj1,j2 (ω; b1, b2)

∣∣∣ ≤ C‖a − b‖1(1 + | log ‖a − b‖1|)D.

LEMMA S6.6. Let the strictly stationary process (Xt )t∈Z satisfy condition (S.13). Let dj
n (ω; A) be defined

as in (S.27). Let A1, . . . , Ap⊂[0, 1] be intervals, and let

ε := min
k=1,...,p

P(X0,jk
∈ Ak).

Then, for any p-tuple ω1, ..., ωp ∈ R and j1, . . . , jp ∈ {1, . . . , d},

∣∣∣ cum(dj1
n (ω1; A1), . . . , d

jp
n (ωp; Ap))

∣∣∣ ≤ C
(∣∣∣�n

( p∑
i=1

ωi

)∣∣∣ + 1
)
ε(| log ε| + 1)D,

where �n(λ) := ∑n−1
t=0 eitλ and the constants C, D depend only on K, p, and ρ [with ρ from condition (S.13)].

LEMMA S6.7. Let the strictly stationary process (Xt )t∈Z satisfy condition (S.13) and X0, j ∼ U[0, 1].
Denote the empirical distribution function of X0, j, ..., Xn − 1, j by F̂n,j . Then, for any k ∈ N, there exists a
constant dk depending only on k, such that

sup
x,y∈[0,1],|x−y|≤δn

√
n|F̂n,j (x) − F̂n,j (y) − (x − y)| = Op

(
(n2δn + n)1/2k(δn| log δn|dk + n−1)1/2

)
,

as δn → 0.

LEMMA S6.8. Let X0, ..., Xn−1, where Xt = (Xt,1, . . . , Xt,d ), be the finite realization of a strictly station-
ary process satisfying condition (S.13) and X0, j ∼ U[0, 1], j = 1, . . . , d. Then,

sup
j=1,...,d

sup
τ∈[0,1]

|F̂ −1
n,j (τ ) − τ | = Op(n−1/2).

LEMMA S6.9. Let the strictly stationary process (Xt )t∈Z satisfy condition (S.13) and X0, j ∼ U[0, 1]. Let
dj

n (ω; A) be defined as in (S.27). Then, for any k ∈ N,

sup
j=1,...,d

sup
ω∈Fn

sup
y∈[0,1]

|dj
n (ω; [0, y])| = Op(n1/2+1/k).
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LEMMA S6.10. Under the assumptions of Theorem S6.1, let δn be a sequence of non-negative real numbers.
Assume that there exists γ ∈ (0, 1), such that δn = O((nbn)−1/γ ). Then,

sup
j1,j2,∈{1,...,d}

sup
ω∈R

sup
u,v∈[0,1]2
‖u−v‖1≤δn

|Ĥ j1,j2
n (u; ω) − Ĥ j1,j2

n (v; ω)| = op(1).

Proof of Lemma S6.3. The lemma is stated unaltered as in Kley et al. (2016). The proof can be found in
Section 8.3.1 of the Online Appendix of Kley et al. (2016).

Proof of Lemma S6.4. Along the same lines as the proof of the univariate version [Section 8.3.2 in Kley
et al. (2016)] we can prove

E|Ĥ j1,j2
n (a; ω) − Ĥ j1,j2

n (b; ω)|2L =
∑

{ν1 ,...,νR }
|νj |≥2, j=1,...,R

R∏
r=1

Da,b(νr ) (S.29)

with the summation running over all partitions {ν1, . . . , νR} of {1, . . . , 2L} such that each set ν j contains
at least two elements, and

Da,b(ξ ) :=
∑

�ξ1 ,...,�ξq ∈{1,2}
n−3q/2bq/2

n

( ∏
m∈ξ

σ�m

)

×
n−1∑

sξ1 ,...,sξq =1

( ∏
m∈ξ

Wn(ω − 2πsm/n)
)

cum(D�m,(−1)m−1sm
: m ∈ ξ ),

for any set ξ := {ξ 1, . . . , ξ q}⊂{1, . . . , 2L}, q := |ξ |, and

D�,s := dj1
n (2πs/n; M1(�))dj2

n (−2πs/n; M2(�)), � = 1, 2, s = 1, . . . , n − 1,

with the sets M1(1), M2(2), M2(1), M1(2) and the signs σ � ∈ { − 1, 1} defined as

σ1 := 2I {a1 > b1} − 1, σ2 := 2I {a2 > b2} − 1,

M1(1) := (a1 ∧ b1, a1 ∨ b1], M2(2) := (a2 ∧ b2, a2 ∨ b2],

M2(1) :=
{

[0, a2] b2 ≥ a2b2 > b2

a2 > b2,
M1(2) :=

{
[0, b1] b2 ≥ a2a1 > a1

a2 > b2.

(S.30)

Employing assumption (S.28), we can further prove, by following the arguments of the univariate version,
that

sup
ξ⊂{1,...,2L}
|ξ |=q

sup
‖a−b‖1≤ε

|Da,b(ξ )| ≤ C(nbn)1−q/2g(ε), 2 ≤ q ≤ 2L.

The lemma then follows, by observing that

∣∣∣ R∏
r=1

Da,b(νr )
∣∣∣ ≤ CgR(ε)(nbn)R−L

for any partition in (S.29) [note that
∑R

r=1 |νr | = 2L].�
Proof of Lemma S6.5. Note that

cum(I {X0,j1 ≤ qj1 (a1)}, I {Xk,j2 ≤ qj2 (a2)})
− cum(I {X0,j1 ≤ qj1 (b1)}, I {Xk,j2 ≤ qj2 (b2)})

= σ1 cum(I {Fj1 (X0,j1 ) ∈ M1(1)}, I {Fj2 (Xk,j2 ) ∈ M2(1)})
+ σ2 cum(I {Fj1 (X0,j1 ) ∈ M1(2)}, I {Fj2 (Xk,j2 ) ∈ M2(2)}),

with the sets M1(1), M2(2), M2(1), M1(2) and the signs σ � ∈ { − 1, 1} defined in (S.30).
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From the fact that λ(Mj(j)) ≤ ‖a − b‖1 for j = 1, 2, we conclude that

∣∣∣ d�

dω�
fj1,j2 (ω; a1, a2) − d�

dω�
fj1,j2 (ω; b1, b2)

∣∣∣
≤

∑
k∈Z

|k|�| cum(I {Fj1 (X0,j1 ) ∈ M1(1)}, I {Fj2 (Xk,j2 ) ∈ M2(1)})|

+
∑
k∈Z

|k|�| cum(I {Fj1 (X0,j1 ) ∈ M1(2)}, I {Fj2 (Xk,j2 ) ∈ M2(2)})|

≤ 4
∞∑

k=0

k�
(

(Kρ�) ∧ ‖a − b‖1

)
.

The assertion then follows after some algebraic manipulations.�
Proof of Lemma S6.6. Similar to (8.27) in Kley et al. (2016) we have, by the definition of cumulants

and strict stationarity,

cum (dj1
n (ω1; A1), . . . , d

jp
n (ωp; Ap))

=
n∑

u2,...,up=−n

cum(I {X0,j1 ∈ A1}, I {Xu2,j2 ∈ A2} . . . , I {Xup,jp
∈ Ap}) exp

(
− i

p∑
j=2

ωjuj

)

×
n−1∑
t1=0

exp
(

− it1

p∑
j=1

ωj

)
I{0≤t1+u2<n} · · · I{0≤t1+up<n}. (S.31)

By Lemma 8.1 in Kley et al. (2016),

∣∣∣�n(
p∑

j=1

ωj ) −
n−1∑
t1=0

exp
(

− it1

p∑
j=1

ωj

)
I {0 ≤ t1 + u2 < n} · · · I {0 ≤ t1 + up < n}

∣∣∣

≤ 2
p∑

j=2

|uj |. (S.32)

Following the arguments for the proof of (8.29) in Kley et al. (2016), we further have, for any p + 1 intervals
A0, . . . , Ap ⊂ R, any indices j0, . . . , jp ∈ {1, . . . , d}, and any p-tuple κ := (κ1, ..., κp) ∈ R

p
+, p ≥ 2, that

∞∑
k1,...,kp=−∞

(
1 +

p∑
�=1

|k�|κ�

)∣∣ cum
(
I {Xk1,j1 ∈ A1}, . . . , I {Xkp,jp

∈ Ap}, I {X0,j0 ∈ A0}
)∣∣

≤ Cε(| log ε| + 1)d . (S.33)

To this end, define k0 = 0, consider the set

Tm := {
(k1, ..., kp) ∈ Z

p| max
i,j=0,...,p

|ki − kj | = m
}
,

and note that |Tm| ≤ cpmp − 1 for some constant cp. From the definition of cumulants and some simple algebra
we get the bound

| cum(I {Xt1,j1 ∈ A1}, ..., I {Xtp,jp
∈ Ap})| ≤ C min

i=1,...,p
P (X0,ji

∈ Ai).
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With this bound and condition (S.13), which is implied by Assumption 4.1, we obtain, employing the above
notation, that

∞∑
k1,...,kp=−∞

(
1 +

p∑
j=1

|k�|κ�

)∣∣ cum
(
I {Xk1,j1 ∈ A1}, . . . , I {Xkp,jp

∈ Ap}, I{X0,j0 ∈A0}
)∣∣

=
∞∑

m=0

∑
(k1,...,kp )∈Tm

(
1 +

p∑
�=1

|k�|κ�

)∣∣ cum
(
I {Xk1,j1 ∈ A1}, . . . , I {Xkp,jp

∈ Ap}, I {X0,j0 ∈ A0}
)∣∣

≤
∞∑

m=0

∑
(k1,...,kp )∈Tm

(
1 + pmmaxj κj

)(
ρm ∧ ε

)
Kp ≤ Cp

∞∑
m=0

(
ρm ∧ ε

)
|Tm|mmaxj κj .

For ε ≥ ρ, (S.33) then follows trivially. For ε < ρ, set mε := log ε/log ρ and note that ρm ≤ ε if and only if
m ≥ mε . Thus,

∞∑
m=0

(
ρm ∧ ε

)
mu ≤

∑
m≤mε

muε +
∑

m>mε

muρm ≤ C
(
εmu+1

ε + ρmε

∞∑
m=0

(m + mε)uρm
)
.

The fact that ρmε = ε completes the proof of the desired inequality (S.33). The assertion follows from
(S.31), (S.32), (S.33), and the triangle inequality. �

Proofs of Lemmas S6.7, S6.8, and S6.9. Note that the component processes (Xt, j) are stationary and
fulfil Assumption (C) in Kley et al. (2016), for every j = 1, . . . , d. The assertion then follows from the
univariate versions [i. e., Lemma 8.6, 7.5, and 7.6 in Kley et al. (2016), respectively], as the dimension d
does not depend on n.�

Proof of Lemma S6.10. Assume, without loss of generality, that n−1 = o(δn) [otherwise, enlarge the
supremum by considering δ̃n := max(n−1, δn)]. With the notation a = (a1, a2) and b = (b1, b2), we have

Ĥ j1,j2
n (a; ω) − Ĥ j1,j2

n (b; ω) = b1/2
n n−1/2

n−1∑
s=1

Wn(ω − 2πs/n)(Ks,n(u, v) − EKs,n(u, v))

where, with d
j

n,U defined in (S.22),

Ks,n(a, b) := n−1
(
d

j1
n,U (2πs/n; u1)dj2

n,U (−2πs/n; u2) − d
j1
n,U (2πs/n; v1)dj2

n,U (−2πs/n; v2)
)

= d
j1
n,U (2πs/n; u1)n−1

[
d

j2
n,U (−2πs/n; u2) − d

j2
n,U (−2πs/n; v2)

]
+ d

j2
n,U (−2πs/n; v2)n−1

[
d

j1
n,U (2πs/n; u1) − d

j1
n,U (2πs/n; v1)

]
.

By Lemma S6.9, we have, for any k ∈ N,

sup
y∈[0,1]

sup
ω∈Fn

|dj

n,U (ω; y)| = Op

(
n1/2+1/k

)
. (S.34)
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Employing Lemma S6.7, we have, for any � ∈ N and j = 1, . . . , d,

sup
ω∈R

sup
y∈[0,1]

sup
x:|x−y|≤δn

n−1|dj

n,U (ω; x) − d
j

n,U (ω; y)|

≤ sup
y∈[0,1]

sup
x:|x−y|≤δn

n−1
n−1∑
t=0

|I {Fj (Xt,j ) ≤ x} − I {Fj (Xt,j ) ≤ y}|

≤ sup
y∈[0,1]

sup
x:|x−y|≤δn

|F̂n,j (x ∨ y) − F̂n,j (x ∧ y) − x ∨ y + x ∧ y| + Cδn

= Op

(
ρn(δn, �) + δn

)
,

with ρn(δn, �) := n−1/2(n2δn + n)1/2�(δn| log δn|D� + n−1)1/2, F̂n,j denoting the empirical distribution func-
tion of Fj(X0, j), . . . , Fj(Xn − 1, j), and d� being a constant depending only on �. Combining these arguments
and observing that

sup
ω∈R

n−1∑
s=1

∣∣∣Wn(ω − 2πs/n)
∣∣∣ = O(n) (S.35)

yields

sup
ω∈R

sup
u,v∈[0,1]2
‖u−v‖1≤δn

∣∣∣ n−1∑
s=1

Wn(ω − 2πs/n)Ks,n(u, v)
∣∣∣ = Op

(
n3/2+1/k(ρ(δn, �) + δn)

)
. (S.36)

With Mi(j), i, j = 1, 2, as defined in (S.30), we have
sup

‖a−b‖1≤δn

sup
s=1,...,n−1

|EKs,n(a, b)|

≤ n−1 sup
‖a−b‖1≤δn

sup
s=1,...,n−1

∣∣ cum(dj1
n,U (2πs/n; M1(1)), dj2

n,U (−2πs/n; M2(1)))
∣∣

+ n−1 sup
‖a−b‖1≤δn

sup
s=1,...,n−1

∣∣ cum(dj1
n,U (2πs/n; M1(2)), dj2

n,U (−2πs/n; M2(2)))
∣∣

(S.37)

where we have used Ed
j

n,U (2πs/n; M) = 0. Lemma S6.6 and λ(Mj(j)) ≤ δn, for j = 1, 2 (with λ denoting
the Lebesgue measure over R) yield

sup
‖a−b‖1≤δn

sup
s=1,...,n−1

| cum(dj1
n (2πs/n; M1(j )), dj2

n (−2πs/n; M2(j )))| ≤ C(n + 1)δn(1 + | log δn|)D.

It follows that the right-hand side in (S.37) is O(δn|log δn|D). Therefore, by (S.35), we obtain

sup
ω∈R

sup
‖a−b‖1≤δn

∣∣∣b1/2
n n−1/2

n−1∑
s=1

Wn(ω − 2πs/n)EKs,n(a, b)
∣∣∣ = O

(
(nbn)1/2δn| log n|D)

.

In view of the assumption that n−1 = o(δn), we have δn = O(n1/2ρn(δn, �)), which, in combination with
(S.36), yields

sup
ω∈R

sup
‖a−b‖1≤δn

|Ĥ j1,j2
n (a; ω) − Ĥ j1,j2

n (b; ω)|

= Op

(
(nbn)1/2[n1/2+1/k(ρn(δn, �) + δn) + δn| log δn|D]

)
= Op

(
(nbn)1/2n1/2+1/kρn(δn, �)

)
= Op

(
(nbn)1/2n1/k+1/�(n−1 ∨ δn(log n)D� )1/2

)
= op(1).

The op(1) holds, as we have, for arbitrary k and �,

O((nbn)1/2n1/k+1/�δ1/2
n (log n)D�/2) = O((nbn)1/2−1/2γ n1/k+1/�(log n)D�/2).
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The assumptions on bn imply (nbn)1/2 − 1/2γ = o(n−κ ) for some κ > 0, such that this latter quantity is o(1)
for k, � sufficiently large. The term (nbn)1/2n1/k + 1/�n−1/2 is handled in a similar fashion. This concludes the
proof. �
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