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Abstract
We present a multi-stage model for determining the optimal production and emissions cover-
age for an industrial company participating in the European Emissions Trading System. This
model is adapted for a real-life European steel company. A mean-multiperiod CVaR is used
as a decision criterion. There are two stochastic parameters—market demand for products
and emissions allowance price. The aim of this paper is to explore the costs and risk of a
company caused by emissions trading. The presented model is solved for various values of
the risk aversion parameters and initial price of the allowance. As a result, it is found that the
production is little influenced by the price of allowances and it nearly does not depend on
risk-aversion. The probability of the company’s default, on the other hand, is significantly
influenced by the emission prices. Futures on allowances as well as banking (i.e., transferring
allowances between periods) are used to reduce the risks of the emissions trading. We further
exploit the same situation under different settings, namely, given random price margins, and
time-dependent, deterministic and positively contaminated distributions of demand. In all
these cases, the results follow patterns similar to those given the original setting.
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1 Introduction

The European Emissions Trading System (EU ETS) has become a subject of discussion
among both politicians and researchers since immediately after its launch in 2005. This
system exerts pressure on cleaner production and thus on protection of the environment on
one side. But, on the other side, it has also a negative effect on competitiveness of European
companies as it brings along additional costs and financial risks.

Under the EU ETS, each tonne of CO2 released to the atmosphere during a single year
must be covered by one emission allowance (EUA—European Union Allowance) by the
end of March in the following year (see Council of European Union 2003). In this paper,
we explore a quantitative impact of the ETS on a CO2 emitting company, namely on its
profitability and default probability. Moreover, we explore to what extent the risks associated
with emission trading can be reduced.

The EUAs can be purchased either in auctions or on the secondary market. To compensate
the burden imposed by the system, a certain amount of allowances is given to the company
for free from the state, which is called grandfathering.

Themain goal of this paper is to assess the impact of the EUETS on the economic situation
of a participating company and study ways of reducing the risk brought by emissions trading.
In principle, these risks can be reduced either by using derivatives, most often by futures, or
by so called banking, i.e. transferring unused allowances to the future trading periods.

In particular, the following questions are to be explored:

– How does risk aversion, allowance price and existence of derivatives influence produc-
tion?

– Do these factors influence the chance of the company’s survival?
– Which combination of spots (the EUAs themselves) and their futures is optimal in reduc-

ing the financial risk?
– To what extent can banking be used to reduce the risk?

Answers to these questions are sought by means of a case study of an anonymous Czech
steel company, production of which is modelled by a multi-stage stochastic model, calibrated
by means of the data provided by the company. Two parameters of the model are taken as
stochastic—demand for products and price of emission allowances. The decision variables of
the model include the production, the amount of EUAs purchased, and the amount of futures
purchased. As a decision criterion, multi-period mean-CVaR criterion is used. The decision
period is equal to 1 year.

As the true parameter of risk aversion can hardly be known, we solve the problem for
several levels of risk aversion. Further, to study the impact of the allowance price on the
company, the problem is solved at several levels of allowance prices as well as for the
hypothetical case when the futures cannot be used.

In addition, four alternative settings are studied. First, to reflect the fact that our data come
from times of recession, we study the possibility of a positive deman shock, modelled by
means of contamination. Second, the restricting assumption of deterministic price margins
is relaxed and the margins are taken as the third random parameter. Third, the demand is
taken as time dependent rather than i.i.d. Fourth, to isolate the effect of emission trading, the
original analysis is repeated while assuming the demand to be deterministic.

Several studies exist that have analysed optimal decisions of a single company under the
EU ETS. However, the assumptions of these studies are much more restrictive than ours.
Moreover, the other studies were built under different (past) rules and conditions of the
emission trading system, and most of them have been designed for only one trading period,
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see Šmíd et al. (2017), Tang and Song (2013) and Zapletal and Šmíd (2016). Only two multi-
stage stochastic models have been published so far: the one by Rong and Landhelma (see
Rong and Lahdelma 2007) and the one by Gong and Zhou (2013), the latter even involving
futures (excluding spots, on the other hand); however, neither of them involves any risk
measures, using only expectation. An optimization model considering derivatives and the
mean-CVaR risk measure has been published (Šmíd et al. 2017); however, this model only
covers a single period.

Obviously, using dynamicCVaR as a riskmeasure inmulti-stage optimization of industrial
companies’ policy is not a new idea. Pisciella et al. (2016), for instance, developed the three-
stage model for power generation capacity expansion planning and used the nested-CVaR
risk measure there. Moreover, several papers exist using the CVaR criterion in multi-stage
asset allocation (see. e.g., Kopa et al. 2018) and in asset liability management (see. e.g.,
Moriggia et al. 2019), which is, interestingly, similar to the problem solved in this paper
(emission covering can be seen as a liability). Nobody has, however, applied this or a similar
risk measure to the optimal decision of a company trading with emissions.

Below we list the basic assumptions of our model together with their justifications.

– The company decides on its production and allowance portfolios.
– Four periods are considered (T = 4) and, therefore, four decisions are made at the

beginning of each period. The time period has been chosen as 2017–2020, reflecting the
fact that the current trading phase of the EU ETS ends just in 2020. After this time, some
modifications of the trading rules can be expected.

– Banking of allowances is enabled. In this way, the company can hedge against the risks
caused by price fluctuation. Because all the models published so far except of Rong and
Lahdelma (2007) have only been single-period, it is very desirable to explore this option.

– Certain amounts of EUAs are given to the company for free (grandfathered). The actual
numbers of the allowances grandfathered are fixed, given by the rules of the system.

– Additional/excess EUA spots may be bought/sold at a secondary market for exogeneous
price.

– At each time t = 0, 1, 2, 3, futures with maturities τ = t + 1, t + 2, . . . , T may be
purchased. Recall that a future is a standardised financial instrument entitling its holder,
at its maturity time, to buy the corresponding spot for the current (future) price, payable
at the maturity date.

– Mean-risk with multi-period CVaR serves as the decision criterion. Use of CVaR for
single-stage models is very frequent and reasonable because this risk measure is coherent
by Artzner et al. (1999) and can also be easily linearised (cf. Rockafellar and Uryasev
2002). The (single period) CVaR has already been used even for modelling of companies’
behaviour under the EU ETS, see Šmíd et al. (2017) or Luo and Desheng (2016). The
multi-period CVaR is used in this paper because it is coherent (see Shapiro and Ugurlu
2016) and time consistent (see Kovacevic and Pflug 2009).

– The company may fund its emission trading by loans with the interest rate of � = 4%.
A prohibitive interest rate of ι = 15% is paid in case of lack of money at the end of the
last period. These values have been determined by an anonymous expert on economics.

– Demands and allowance prices are stochastic. All the remaining factors are supposed to
be deterministic.

This paper is organized as follows. After this Introduction, the structure of the model is
presented inSect. 2. Section 3 is devoted to the description and analysis of input data. Section 4
describes our analysis and studies its results. The next Sect. 5 describes various perturbations
of our model: its stress-testing by means of contaminating the demand distribution, a model
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with stochastic profit margins, and a model with time-dependent demand. Finally, the paper
is concluded (Sect. 6).

2 Themodel

At each time t = 0, . . . , T −1, the company decides on its final production xt ∈ R
n+, n ∈ N,

which has to be no greater than the current demand dt ∈ R
n+:

xt ≤ dt . (Dt )

The raw production, needed for the final production x , is given by

yt = Rxt

where R ∈ R
n×n , R = (I − A)−1 is a matrix derived using the Leontief’s input/output model

of the company’s production process (where A ∈ R
n×n is a matrix of production coefficients,

and I is an identitymatrix of size n), cf.Miller andBlair (2009). The raw production is subject
to production limits:

yt ≤ w (Pt ),

where w ∈ R
n+ is a constant.

The profit resulting from production xt is mxt where m ∈ R
n+ is a deterministic vector of

margins corresponding to individual final products.
The CO2 emissions released by production yt−1 are given by

h′yt−1

where h is a deterministic vector, constant over time, which determines the amounts of CO2

stemming from the individual raw products.
At each t = 1, . . . , T , the company is given rt (grandfathered) allowances. It is assumed

that rt is deterministic for each t . In addition, at each t = 0, . . . T , they buy st ∈ R of spots
and f t+1

t , . . . , f Tt ∈ R+ of futures with maturities t +1, . . . , T , respectively. Consequently,
the total number of spots et held at time (immediately after) t is given by

e0 = s0, (E0)

et = et−1 + st +
∑

0≤τ<t

f tτ + rt − h′yt−1, (Et )

1 ≤ t ≤ T . (In words, the increment in the spots quantity held is given by the sum of the
spots bought at t , the number of the spots obtained for free, and the total number of futures
maturing at t minus the number needed to cover the emissions from the previous period.)

The company does note speculate, which we express by the following restrictions:

s0 ≥ 0, (S0)

st ≥ −rt , f t+1
t , . . . , f Tt ≥ 0, et ≥ 0, (St )

t = 1, . . . T , i.e., no short selling is allowed, the futures cannot be sold, and no more than
the grandfathered number of spots may be sold.

The spots are paid immediately, the futures are paid at their maturity. Purchasing of the
allowances may be funded by loans with the interest rate of �. The cash missing at the last
period is penalized by a prohibitive interest rate of ι. Thus, the cash-flows values at individual
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times are given by the profit from production minus the sum of costs on allowances and the
debt maintenance:

z0 = −p0s0, (Z0)

zt = m′xt−1 − pt st −
t−1∑

τ=0

qtτ f tτ − �ct−1, (Zt )

for 1 ≤ t ≤ T − 1, and

zT = m′xT−1 − pT sT −
T−1∑

τ=0

qTτ f Tτ − �cT−1 − ιcT . (ZT )

Here, cτ = [∑τ
s=0 zs

]
− is the amount owed at time τ , pτ , qtτ are the prices of spots, futures

with maturity t , respectively, at τ .
Naturally, we require the decision processes to be non-anticipative

xt , st , f t+1
t , . . . , f Tt ∈ Ft , (Mt )

Ft = σ((πτ )τ≤t ), πt = (pt , qt , dt ), t = 0, . . . , T .

The optimisation model itself is expressed as follows:

minρλ(−z0, . . . ,−zT )

s.t. xt ≤ dt , 0 ≤ t ≤ T − 1,(Dt )

yt ≤ w, 0 ≤ t ≤ T − 1, (Pt )

xt , st , f t+1
t , . . . , f Tt ∈ Ft , 0 ≤ t ≤ T − 1,(Mt )

e0 = s0, (E0)

et = et−1 + st + ∑
0≤τ<t f

t
τ + rt − h′yt−1, 1 ≤ t ≤ T , (Et )

s0 ≥ 0, (S0)

st ≥ −rt , f t+1
t , . . . , f Tt ≥ 0, et ≥ 0, 1 ≤ t ≤ T , (St )

z0 = −p0s0, (Z0)

zt = m′xt−1 − pt st − ∑t−1
τ=0 q

t
τ f tτ − �ct−1, 1 ≤ t ≤ T − 1, (Zt )

zT = m′xT−1 − pT sT − ∑T−1
τ=0 qTτ f Tτ − �cT−1 − ιcT , (ZT )

where the decision criterion is mean-multiperiod CVaR:

ρλ(u0, . . . , uT ) = (1 − λ)E

( T∑

τ=0

uτ

)
− λR(u0, . . . , uT ),

R(u0, . . . , uT ) =
T∑

t=0

E
[
CVaRαt [ut |Ft−1]

]
.

3 Random parameters

As already mentioned, the random parameters considered in the model include the prices of
EUA spots, and consequently their futures, and the demands for the products.

Historical prices of the EUA spots, which we obtained from the ICE trading platform
www.theice.com, and their returns are depicted in Fig. 1. Even though the graphs suggest
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Fig. 1 EUA spot prices and returns (2015–2016)

some heterogeneity, we decided to assume the price returns to be mutually independent; as
only yearly returns enter our model, the assumption of independence would not much harm
reality. In particular we assume that

pt = p0 exp
{∑t

τ=1
uτ

}

where u1, . . . , ut are i.i.d. normal with standard deviation σ = 0.439, where the latter value
was estimated from the price time series. In order to preclude speculation, we assumed pt to
be a martingale (i.e. Euτ = − varuτ

2 ). The initial price p0 was set to the value from the first
trading day in 2017 on the ICE trading platform (p0 = 6.54 EUR).

The historical future prices and their differences from the spot prices are depicted in Figs. 2
and 3, respectively. It is clearly seen that the differences are positive at the majority of times,
decreasing with the time approaching maturity. It follows from the arbitrage arguments that
the differences have to converge to zero at the maturity. Thus, to fit the dynamics of the price
qst of a future with the maturity s, we consider a noised cost-of-carry model

qst = exp{a(s − t) + εt }pt , var(εt ) = (s − t)2σ 2, t ≤ s,

wherea is a real parameter and ε1, ε2, . . . are centredmutually independent randomvariables.
Note that, in this model, the future prices are on average higher than the spot ones and their
difference are decreasing in time, converging to zero at maturity.

As for the estimation of the parameters, it follows that, for any s, the log-future-spot
spreads yt,s = log qst − log pt , t ≤ s, satisfy a simple linear regression model

yt,s
s − t

= a + ηt

where ηt is a white noise. By its estimation, we obtain a
.= 0.00974, stdev(ηt ) = 0.010.

For computational simplicity, we further assumed ηt ≡ 0. Consequently, our model for
the future prices becomes

qst = exp{0.00974(s − t)}pt
Unfortunately, we do not have historical records of the demand dt at our disposal. The

only information we have is an estimate of the demands’ means; therefore, we based our
estimate of the demand distribution on the data of the Czech nationwide demands for the
long, flat and semi-finished steel products, coming from theSteelUnionof theCzechRepublic
(Fig. 4). After a basic analysis of these series, we have decided to take these series as three-
dimensional i.i.d. Gaussian. Consequently, we take the distribution of dt as the one of the
nationwide demands, rescaled so as to have expectations Edt . The correlation coefficient
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Fig. 2 Prices of EUA futures (2015–2016)

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 2016

y17

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 2016

y18

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 2016

y19

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 2016

y20

Fig. 3 Future-spot spreads for futures with maturity 2017–2020

between the demands for plates and cuts, which both belong to the same category (flat), is
assumed to equal one. As a result, dt came out as a series of i.i.d. normal variables with

Edt =

⎡

⎢⎢⎣

510
28
90
20

⎤

⎥⎥⎦ , var(dt ) =

⎡

⎢⎢⎣

36219.4 603.2 145.2 0.0
10.0 2.9 0.0

14.2 0.0
5.8

⎤

⎥⎥⎦ .

Finally, as the correlations between the spot prices and the demmand proxies has come out
insignificant, we assumed ut and dt to be independent.

For the optimization problem to be tractable, the (Gaussian) distribution of (ut , dt ) is
approximated by a product of distributions ũt and d̃t , where ũt is a discrete variable having
three-atom symmetric distributionmatching themean and variance of ut and d̃t = Edt +Wυt
where W ∈ R

4×3 is a matrix fulfilling WW ′ = var(dt ) and υt ∈ R
3 is a random vector with
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the uniform distribution with atoms {− 1, 1}×{− 1, 1}×{− 1, 1}. Note that (ũt , d̃t )matches
the first two moments of (ut , dt ).

Consequently, the process of the random parameters was approximated by a scenario
tree, each of its nodes at stage 0, 1, . . . , T − 2 has 3 × 8 = 24 branches, and each node at
stage T − 1 has three branches, i.e. the tree has a total of 243 × 3 = 41,472 scenarios. For
the discussion on the approximation error risen by replacing a continuous distribution by a
discrete one, see e.g., Šmíd (2009).

4 Results

The problem has been solved for values 0, 0.1, . . . , 1 of the risk-aversion coefficient λ and
different levels of the initial price of allowance p0—the multiples of 0, 1, 2, 4 and 8 of
the actual price p0 = 6.54 EUR, the zero value corresponding to the case without the
covering obligation. For each combination of the parameters, two cases are tested—the
first one allowing for trading futures and the second one without the futures. A total of
11 × 5 × 2 = 110 instances of the problem has thus been solved.

Each instance is solved via its deterministic equivalent. The whole procedure is imple-
mented in C++ program using CPlex to solve those deterministic equivalents. The total
running time of all the instances was about 24 h using PC with Intel Core I7, 3.40 GHz and
16 GB RAM.

Next, we discuss how our results answered our research questions.
The first question concerns the influence of an allowance price, existence of derivatives

and risk aversion on production.
Table 1 shows a comparison between the amount of the expected total production for the

state without emissions trading (p0 = 0) and situations under various multiples of the current
value of p0, in particular, with p0 = 6.54, 13.08, 26.16 and 52.32. The values in this table
are percentages of the maximal possible production (i.e. maximum of the demand and the
production capacity), averaged over all the scenarios. In case the percentage is the same for
all λ’s, the result is a singleton. Otherwise, it is given by an interval.

For the values of p0 lower than or equal to 13.08, the production is the maximum one.
But, the fourfold increase (p0 = 26.16) begins to influence the production for the last 2 years
(but the drop is less than 1 pp of the total produced volume). In case of the eightfold increase
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Table 1 Total amount of production for various p0 (100% = amount without the emissions trading)

(p0) 2017 (%) 2018 (%) 2019 (%) 2020 (%)

0 100 100 100 100

6.54 100 100 100 100

13.08 100 100 100 100

26.16 100 100 99.65 99.53–99.65

52.32 100 99.04 99.04 95.91–97.78

in the initial spot price, a restricting effect occurs already in 2018. However, the decrease is
still not significant.

The two remaining factors, i.e., existence of futures and risk aversion, do not influence
the production at all under the current emission price.

Hence, the answer to the first question is that neither allowance price, nor existence of
derivatives can influence the production of our company significantly. The reason is that the
production is profitable even under relatively high allowance prices; the restriction occurs
only when the price is very high, which, in our setting, corresponds to only a small percentage
of the scenarios.

The second question to explore was the probability of the company’s default. As the
default, we consider the state when the total loss accumulated at up to T is greater than a
certain threshold, set by an expert at economics. In particular, the default happens if

z0 +
T∑

t=1

(zi − φi ) < −u

where u is the threshold and φt are fixed costs at t . The actual values of u and φt are kept
confidential according to our agreement with the company.

The results of the analysis for λ = 0.2 are displayed in Table 2 together with the corre-
sponding values of the expected loss. Different values of the initial allowance price p0 are
taken. If the EU ETS had not existed (i.e. if p0 = 0), the probability of a default would be
equal to 73.4%. The current EUA price increases this probability by 0.066. Naturally, the
probability further grows with increasing p0 (emissions trading brings an additional risk).
The high values of this probability even for the situation without the impact of the system
stems from poor economic situation of the modelled company (and also of the steel sector
itself). An effect of risk aversion and existence of futures is negligible; the differences in
percentages values are below 0.2%.

Thus, the answer to the second question is that the emissions trading, namely the allowance
price, affects the probability of a default, whereas the influence of risk aversion and existence
of futures is negligible.

The results answering the third question (the optimal portfolio of allowances) are shown in
Figs. 5 and 6. Two facts are apparently common for all these stages—futures are always used
for hedging when considering a risk-averse decision maker (λ > 0) and the traded amount of
spots decreases with a rising value of λ. Figure 5 presents the structure of the purchased/sold
allowances for all years averaged by scenarios.

In 2017 (Fig. 5a), the same amount of futures are purchased for all positive λ’s, whereas
the spots are also traded in all the following stages. In particular, spots are purchased (the
volume decreases with rising risk-aversion) in 2018 (Fig. 5b). In the last two stages (2019
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Table 2 Results for various initial prices of permits (λ = 0.2)

(p0) (EUR) Probability of default (%) Expected loss (M EUR)

0 73.4 23.35

6.54 80.0 24.94

13.08 83.5 26.54

26.16 87.9 29.74

52.32 95.6 35.88

Fig. 5 Optimal structure of purchased/sold allowances for various λ’s (average values for all scenarios)

and 2020), which are displayed in Fig. 5c, d, respectively, spots are only sold in relatively
small amounts (except for 2019 when λ = 0.1) .

The differences between the volume of allowances needed and purchased within all the
periods fall with increasing λ, see Fig. 6. A more detailed structure of the allowances needed
and bought is provided by Fig. 7.

To summarize these results, it appears that the EUA futures represent a desirable way
to hedge against the risks caused by the emissions trading. It is worth noting that, in this
instance, only the futures maturing at t +1 are purchased at any t . This is given by the nature
of the multi-period CVaR criterion, which assigns zero risk to all the futures, regardless of
their maturity; so it is always optimal to buy those with the nearest maturity, which are always
the cheapest in our setting.

The last question asked in the introduction concerns banking of allowances between time
periods. As the prices of the allowances are martingales in our setting, there is no sense in
banking the futures given risk neutrality; however, given risk aversion, banking can be used
for hedging against the risks. Two cases are studied: the situation when futures are allowed
(see Fig. 8) and the case with the futures excluded (see Fig. 9).
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Fig. 6 Differences between needed and purchased volume of allowances for various λ’s (average values for
all scenarios)

Fig. 7 Amounts of allowances needed/purchased for various λ’s (average values for all scenarios)

With the futures allowed (Fig. 8), banking is only used for 2018 → 2019 and for 2019 →
2020, with the volumes of the banked allowances falling with the increasing λ. This means,
that the futures appear to be more suitable for risk hedging than banking.

The situation is almost opposite when the use of futures is forbidden, see Fig. 9. Here,
banking is the only way to decrease risk and it is thus used for all the time periods and for all
positive values of λ. In general, the banked volumes increase together with a degree of risk
aversion.

Based on the information written above, banking can help in emission trading both with
and without the futures. However, quite naturally, banking is used more and the banked
amounts are greater when the futures are excluded.
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Fig. 8 Banking of allowances when futures are allowed (average values for all scenarios)

Fig. 9 Banking of allowances when futures are excluded (average values for all scenarios)

5 Alternativemodels

Due to the fact that our model is based on many simplifying assumptions, we provide a
further what-if analysis. In this section, we test how different settings of the model influence
the results. Namely, we run the model with contaminated probability distribution of the
market demand, non-stationary demand and stochastic profit margins.

5.1 Positive demand shocks

As the data used are highly influenced by the recession in the steel industry and a bad financial
situation of the modelled company, a question arises, whether the results would be different
if the situation got better. To answer it, a stress testing analysis is performed. In particular,
it is explored how the optimal policy of the company as well as the probability of a default
responds to positive shocks in demand.

For the stress testing analysis, we use contamination, which consists of perturbing the
underlying probability distribution using an additional information about the possible changes
in the distribution. In this section, we analyze the effect of the contamination on the produc-
tion and the probability of default. Similarly to Dupačová and Kopa (2012) and Dupačová
and Kopa (2014), both the objective and the constraints of the problem are contaminated by
an alternative probability distribution. In our model, contrary to Dupačová and Kopa (2012),
or Dupačová and Kopa (2014) we contaminate the conditional distribution Pdt |dt−1 by an
alternative conditional distribution Qdt |dt−1 for t = 1, 2, 3. The contaminated conditional
distribution with parameter νt is defined as: Pdt |dt−1(νt ) = (1 − νt )Pdt |dt−1 + νt Qdt |dt−1 ,
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Table 3 The results after contamination

Without contamination ν = 8% ν = 16% ν = 24%

Amount of production (%) 100.00 101.46 102.93 104.39

Probability of default (%) 80.00 75.64 71.01 66.12

νt ∈ (0, 1). This construction guarantees that the cumulative distribution function of the con-
taminated distribution is a linear convex combination (with parameter νt ) of the cumulative
distribution functions of the original and alternative conditional distributions.

In stress testing, the alternative (stress) distribution is typically given exogenously,
often given by just one (very unfavorable) scenario. However, in our model, the alter-
native conditional distributions are derived from the original ones, because we assume
that a shock (negative or positive) in the demand will affect all the scenarios. Since the
original scenario tree is inter-stage independent, Pdt |dt−1 is the same for all t and all real-
izations dt−1(ω

s) : P(dt = vi |dt−1) = 1
8 for all i = 1, ..., 8, t = 1, ..., 3. A shock in

demand will cause a shift in this distribution, i.e., the alternative conditional distribution is:
P(dt = vi + ct |dt−1) = 1

8 for all i = 1, ..., 8, t = 1, ..., 4 where ct is a demand shock
which may differ in time however; it is the same for all the scenarios. Then the contaminated
conditional distribution with parameter νt may be described as follows:

P(dt = vi |dt−1) = (1 − νt )
1

8
, P(dt = vi + ct |dt−1) = νt

1

8
, i = 1, ..., 8, t = 1, ..., 3.

If moreover ct and νt is constant in time, i.e. ct = c, νt = ν then the contaminated scenario
tree again be inter-stage independent. Anyway, the contaminated scenario tree is regular, but
every node now has 16 children instead of 8 in the original tree. This, of course, increases
the computational demand of the proble but, at the same time, it allows us to analyse the
results with respect to both the value of shocks ct and the contamination parameters νt , which
express the chances of shocks.

The values of shocks for all products are set in line with the most optimistic scenario (S5)
in Zapletal and Šmíd (2016). In particular, 1.33 multiples for flat products and 2.03 multiples
for long products and semiproducs are considered. The resulting vector of changes in demand
is

cccT = [168.3, 9.24, 92.7, 20.6].
It would be reasonable to use the continuum of values of contamination parameters ν

and risk aversion coefficients λ. However, as the contaminated scenario tree is eight times
larger than the original one (48× 48× 48× 3 = 331,776 scenarios), the computational time
increases (8 h for a single instance), the computations have been run only for a single risk
aversion λ = 0.2 and three values of contamination parameters ν: ν1 = 0.08, ν2 = 0.16
and ν3 = 0.24 (these values have been chosen to reasonably cover the upper quartile) which
means that the probability that the demand will jump by ccc at the stage t is 8%, 16%, and
24%, respectively.

We have decided to use the same contamination parameter as well as values of shocks for
all the stages. But, if some evidence of irregular chance, or impact of shock exists, different
values for each stage can be chosen.

The results of the stress testing are shown in Table 3 and Fig. 10.
It follows from Table 3 that, even after the shock, the production still follows the demand,

and the average values of the production as well as CO2 emissions increase.
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Fig. 10 Impact of contamination on traded allowances (average values for all scenarios)

The impact of the changes on the optimal number of allowances to trade is provided
by Fig. 10. It can be seen that the optimal policies are very similar for all four considered
situations. The transactions of allowances only differ in volume. Naturally, the higher value
of ν, meaning a higher average demand, the larger amount of allowances (regardless of their
type) to purchase, or vice versa, the smaller amount of allowances to sell.

Table 3 also shows the changes of a default probabilities depending on the contaminating
parameter. As it could have been expected, the positive change in demand decreases the
probability of the company’s default. The value of 80%, achieved without the contamination
(seeTable 2) is decreased to 75.6% (for ν1 = 0.08), 71% (for ν2 = 0.16) and 66.1% (for ν3 =
0.24), respectively. Note that the probability of a default for the non-contaminated scenario
without emissions trading (i.e., 73.4%, see Table 2) is between the values for contaminated
scenarios ν1 = 0.08 and ν2 = 0.16.

Summarised, the effect of positive shocks in demand is not surprising. In particular, the
production as well as the way of the risk hedging, albeit changing the expected way, follow
the same pattern as those given by the low demand. The default probabilities are naturally
descreased; however, they still remain large. Maybe it is worth noting here, that the modelled
company has indeed been closed down before these results are published.

5.2 Stochastic margins

A question may arise to what extent our results are influenced by our simplifying assumption
of constant productmarginsmwhile these numbers vary in practice. To examine this question,
we ran our computations with stochastic margin m̃ taking two possible equiprobable values
(1−α)m, (1+α)m, where 0 < α < 1. Due to the lack of empirical knowledge, we assume m̃
to be independent of the demand and the spot prices. Similarly to the case of contamination,
the size of the scenario tree increased eight times by adding random parameter m̃; hence we
run the computation only for a single λ = 0.2 and three values of α = 0.05, 0.15, 0.25.

The results, namely the default probabilities and the differences in the average amounts
of the spots/futures purchased, for the three values of parameter α, are shown in Tables 4
and 5, respectively.

The decrease in the default probability, seemingly counter-intuitive (one would expect this
risk to increase with additional randomness), can easily be explained: as the default proba-
bility is always above 50% and as the increasing variability widens the income distribution
symmetrically, the default probability decreases because the lower half of the distribution
is “lost anyway” and widening of the distribution increases its mass above the probability
threshold level.
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Table 4 Probability of default in case of stochastic demands (and their comparison with the results of the
original model), (λ = 0.2, p0 = 6.54)

α 0.05 0.15 0.25

Probability of default (%) 78.23 75.65 72.55

Comparison with the original results (p.p.) − 1.77 − 4.65 −7.45

Table 5 Traded allowances in case of stochastic demands compared to the originalmodel (λ = 0.2, p0 = 6.54)

α Deviation from the original model 2017 2018 2019 2020

0.05 Futures 0 2738 849 −264

Spots 0 − 5146 1893 − 70

0.15 Futures 0 − 4118 − 2784 − 961

Spots 0 7740 517 − 395

0.25 Futures 0 − 5338 − 3918 − 1652

Spots 0 10034 1544 − 670

As for the emissions trading, only slight changes in the optimal portfolio have occurred
without any clear pattern. For α = 0.05, the company buys more futures in comparison with
the original model by 1.5%. However, for α = 0.15 and α = 0.25, the original amounts of
the traded futures are reduced by 3.5% and 4.9%, respectively.

5.3 Dependent demands

Another simplification we have made is that the distribution of demands dt is i.i.d. In
practice, however, the demands are likely to be autocorrelated. To examine the effect of
autocorrelation, we rerun our analysis with demands following a simple AR(1) process
dt = 0.5dt−1 + 0.5(Ed1 + εt ) with εt binomial symmetric with its atoms set so that the
average of unconditional standard deviations of d1, d2 and d3 is the same as the standard
deviation of the original di (see Sect. 3). Again, we run our analysis for a single value
λ = 0.2 and the actual price level.

As a result of the change in demand distribution, only small changes in the production
occur. In particular, the total production increases by roughly 1% in the second period and
decreases in the remaining two periods (about 1% each year). It is worth noting that despite
the overall production (of all the products and all the periods together) is slightly decreased,
the company needs more allowances. This is given by the fact that the company produces
less plates, but more cuts, which are less carbon-friendly.

The structure of the traded allowances has also been changed; the results can be found in
Table 6. It can be seen that the company decreases the number of the traded futures (by almost
8%), and more spots are purchased instead (by almost 59%). Obviously, these changes are
caused by the changes in the risk associated with demand at different times (originally, the
risk was constant but now it increases in time).

Figure 11 shows that the probability of default has decreased in comparison with the
original model with the stationary demand, namely, from 0.0344 (for p0 = 52.32) to 0.0985
(for p0 = 13.08) .
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Table 6 Traded allowances in case of dependent demand compared to the originalmodel (λ = 0.2, p0 = 6.54)

Deviation from the original model 2017 2018 2019 2020

Number of futures 0 − 3796 − 5876 − 2624

Number of spots 0 9325 6799 − 2422

Fig. 11 Default probability in case of dependent demands compared to the original model (λ = 0.2)

6 Conclusions

The impact of the emissions trading on a real-life risk-averse European steel company is
studied in this paper.

Our results are unique in several ways. No such complex model focused on the rela-
tionships between the European Emissions Trading System and an industrial company has
ever been published before. No analysis focused on a single particular steel company has
been performed so far. Moreover, the way of applying the contamination to the post-optimal
analysis is also innovative.

The most significant result is that the production of the company, hence the amount of
emissions, is little influenced by the emission prices. The main reason for this is that the
company typically produces the maximum of the demand and its production limits, and
stops doing so only if much higher emission prices are given than those of the 2017 level.1

What the emission prices do influence, however, are the economic results of the company,
and consequently the probability of its survival.

Naturally, such a result raises questions about effectiveness of the emission trading
system—once the company is closed, economic and social harms arise, and the steel will be
produced abroad, outside of the European regulation framework. Finding a more exhaustive
answer to the question of the system’s effectiveness would, however, require much broader
research than the present case study.

Similarly to the price level, the production and the default probabilities depend little on
the risk aversion by the producer. This, however, could have been expected as the production,
contrary to the emission trading, is risk-less in our model.

Another question we studied has been to what extent the risk stemming from the emission
trading can be reduced by using derivatives, in particular futures, and by banking. Here, apart
from zero risk aversion, we obtained non-trivial results showing that it is optimal to use a
combination of both with a higher weight of the futures in this mix.

Further we studied the same situation under various perturbations of our model, namely,
given positive demands shocks, stochastic margins, and a time dependent demand dis-
tribution. Under these perturbations, the results, namely the production amounts, default

1 Even if the prices started at the prices from the time of submission of this paper, i.e., 20 EUR, the production
still would not be affected.
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probabilities and optimal emission trading, changed only slightly, which suggests that our
results are quite robust.

Although this analysis is based on the data of only one company and despite several sim-
plifications (especially, the approximations of the random parameters) having been assumed,
the results of this paper can shed at least some light on the way companies are affected by
emission reducing policies.
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Dupačová, J., & Kopa, M. (2014). Robustness of optimal portfolios under risk and stochastic dominance

constraints. European Journal of Operational Research, 234(2), 434–441.
Gong, X., & Zhou, S. X. (2013). Optimal production planning with emissions trading. Operations Research,

61(4), 908–924.
Kopa, M., Moriggia, V., & Vitali, S. (2018). Individual optimal pension allocation under stochastic dominance

constraints. Annals of Operations Research, 260(1), 255–291.
Kovacevic, R., & Pflug, G. C. (2009). Time consistency and information monotonicity of multiperiod accept-

ability functionals. Advanced Financial Modelling, 8, 347.
Luo, C., & Desheng, W. (2016). Environment and economic risk: An analysis of carbon emission market and

portfolio management. Environmental Research, 149, 297–301.
Miller, R. E., &Blair, P. D. (2009). Input–output analysis: Foundations and extensions. Cambridge: Cambridge

University Press.
Moriggia, V., Kopa, M., & Vitali, S. (2019). Pension fund management with hedging derivatives, stochastic

dominance and nodal contamination. Omega. https://doi.org/10.1016/j.omega.2018.08.011.
Pisciella, P., Vespucci, M. T., Bertocchi, M., & Zigrino, S. (2016). A time consistent risk averse three-stage

stochasticmixed integer optimizationmodel for power generation capacity expansion.EnergyEconomics,
53, 203–211.

Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of
Banking & Finance, 26(7), 1443–1471.

Rong, A., & Lahdelma, R. (2007). CO2 emissions trading planning in combined heat and power production via
multi-period stochastic optimization. European Journal of Operational Research, 176(3), 1874–1895.

Shapiro, A., & Ugurlu, K. (2016). Decomposability and time consistency of risk averse multistage programs.
Operations Research Letters, 44(5), 663–665.

Šmíd, M. (2009). The expected loss in the discretization of multistage stochastic programming problemsesti-
mation and convergence rate. Annals of Operations Research, 165(1), 29–45.

Šmíd, M., Zapletal, F., & Hančlová, J. (2017). Which Carbon derivatives are appicable in practise? A case
study of a European steel industry. Kybernetika, 53(6), 1071–1085.

Tang, H., & Song, G. (2013). Optimization of enterprise production based on carbon emissions credits trading.
In Proceedings of the 2nd international conference on green communications and networks 2012 (GCN
2012) (Vol. 5, pp. 325–330). Springer.

Zapletal, F., & Šmíd, M. (2016). Mean-risk optimal decision of a steel company under emission control.
Central European Journal of Operations Research, 24(2), 435–454.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.omega.2018.08.011

	Multi-stage emissions management of a steel company
	Abstract
	1 Introduction
	2 The model
	3 Random parameters
	4 Results
	5 Alternative models
	5.1 Positive demand shocks
	5.2 Stochastic margins
	5.3 Dependent demands

	6 Conclusions
	Acknowledgements
	References




