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Foreword

The history of the series of the Czech-Japan seminars started in 1999. Thus, it is now more than 20
years ago when the first Czech-Japan Seminar on Data Analysis and Decision Making under Uncer-
tainty was held in JAIST, Hokuriku. Since that time, these seminars were held in eleven splendid
places in Japan, offering the Czech participants possibility to discover different parts of the Japanese
islands. In reciprocity, it was the goal of the Czech partners organizing the past ten seminars to show
the beauty of Czechia to Japanese colleagues, who, during the long Japan–Czech cooperation, became
our close friends. This is also why the seminar has never visited one place two times.

The 22nd seminar takes place in a castle Nový Světlov located in the far east corner of Czechia -
close to the border with Slovakia. Originally, the castle was founded in the fifteenth century to protect
the borders of the Czech Kingdom. Though the castle has more than five hundred years history, it was
several times reconstructed so that nowadays it offers comfort to the seminar participants. They will
also have a possibility to visit a close spa town Luhačovice with a spring of heavily mineralized water
Vincentka famous for a positive effect on diseases of vocal cords and breathing pathways.

The Proceedings you are holding in your hands contain contributions to be presented in Nový Svět-
lov. When reading its content, keep in mind the working character of the Czech-Japanese seminars.
The participants are primarily invited to present new open problems or to introduce ongoing projects
with unfinished results. These presentations inspire informal discussions which were always an inte-
gral part of the Czech Japanese seminars, and which we also expect in this year 2019.

On behalf of the Organizing and Programme Committees

Masahiro Inuiguchi, Radim Jiroušek and Václav Kratochvíl
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Abstract

Statistical analysis of the development of the wage and income distribution
is a crucial precondition for economic modeling of the labor market processes.
A good model that is able to make good predictions of the future wage distri-
butions is necessary for various socio-economic considerations. When consid-
ering a mixture model, the key question is what should be the components of
the model. A mixture model can be created using two different approaches.
In the first approach, the model is created manually, based on user-specified
components, their weights and parameters of the components. In the second
approach, the model is created completely from data. The partitioning will
be done automatically, we need not even to specify the number of compo-
nents.We will compare both approaches addressing the issues of stability and
interpretability of the created models. Data concerning the wages of Czech
employees collected for more than twenty years will be used in our study. We
will create models for each particular year and evaluate the changes of weights
of the components (the stability issue) and the meaning of the components
(the interpretability issue).

1 Introduction

Statistical analysis of the development of the wage and income distribution is a
crucial precondition for economic modeling of the labor market processes. A good

1
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model that is able to make good predictions of the future wage distributions is
necessary for various socio-economic considerations. Our previous work shows that
various probabilistic distributions can be used to model the empirical wage distri-
bution. Among single probabilistic distributions, the three-parameter Log-logistic
distribution gives the best results, followed by the three-parameter Log-normal dis-
tribution. But as the empirical wage distribution becomes less smooth over time,
mixture models, in particular normal mixture, give good results now and are more
promising for the future.

When considering a mixture model, the key question is what should be the
components of the model. A mixture model can be created using two different
approaches. In the first approach, the model is created manually, based on user-
specified components, their weights and parameters of the components. We can e.g.
split the population into group of men, group of women and use their proportion
in the population, and the mean values and standard deviations of wages in both
groups as the corresponding parameters of the model. In the second approach, the
model is created completely from data. The partitioning will be done automatically,
we need not even to specify the number of components.

We will compare both approaches addressing the issues of stability and inter-
pretability of the created models. Data concerning the wages of Czech employees
collected for more than twenty years will be used in our study. We will create mod-
els for each particular year and evaluate the changes of weights of the components
(the stability issue) and the meaning of the components (the interpretability issue).
Our expectation is, that the models created from data will be more accurate but
less stable and less interpretable.

2 Wage Data

We work with time series of wages in Czech Republic (CR) covering the years 1995 -
2018. Our data are in the form of an interval frequency distribution table; the wage
values are divided into intervals with widths of 500 CZK. The data is always taken
from the second calendar quarter in each year because of the long-term stability of
the working hours’ volume in that quarter. The amount of data gradually increases
from the sample size of about 300 000 in 1995 to more than two million in 2018. The
source of our data is the consultant company Trexima (http://www.trexima.cz);
this company collects the wage data for the Czech Ministry of Labor and Social
Affairs. Table in Fig. 1, shows basic characteristics of the wage distributions for
each of this year: number of observations, average value, standard deviation, the
first decile (10% quantile, D1), lower quartile (25% quantile, Q1), median (50%
quantile), third quartile (75% quantile, Q3), and ninth decile (90% quantile, D9).
Fig. 2 visualizes the distribution of wages from these data. The curves shown in
the graph are produced by connecting points of frequency for 500 CZK intervals,
there is no method of empirical distribution smoothing applied. The figure clearly
shows that the empirical wage distributions:

On stability and interpretability of mixture models of wage distributions
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• are bounded by minimum wages

• are skewed, and

• change over time as the average value increases, the variability increases and
the distributions become less smooth.

We also observed, that the proportion of high wages (the wages above 100,000
CZK, i.e. approx. 4,000 EUR) is growing.

Figure 1: Wage data characteristics.

3 Mixture Models of Wage Distributions

Various probabilistic distributions can be used to model the empirical wage dis-
tribution. Our previous work shows, that three parameter log-logistic distribution
gives the best results (out of about 50 different probabilistic distributions available
in the EasyFit system) when modeling the empirical wage distribution in CR for
the years 2000-2017 [5, 7]. But as the empirical wage distribution becomes less

Petr Berka, Michal Vrabec, Luboš Marek
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Figure 2: Wage distributions in CR 1995-2018.

smooth over time, mixture models, in particular normal mixture, give good results
now and are more promising for the future [4].

The probability density for a general model of a normal mixture can be written
as

f(x) =

n∑

i=1

pigi(x) (1)

where gi(x) is the probability density of normal distribution

gi(x) =
1

λi
√

2π
exp

(
− (x− θi)2

2λ2i

)
, (2)

n is the number of components in the mixture and p is the vector of weights, for
which

0 < pi < 1,∀i,
n∑

i=1

pi = 1. (3)

When considering a mixture model, the key question is what should be the compo-
nents of the model. A mixture model can be created using two different approaches.
In the first approach, the model is created manually, based on user-specified com-
ponents, their weights and parameters of the components. In the second approach,
the model is created completely from data. The partitioning will be done automat-
ically, we need not even to specify the number of components.

The first approach, in general, resembles the analytical (or explanation-based)
approach to machine learning, where some initial domain knowledge is refined us-
ing only a few data. Here, we can use expert knowledge about known factors that

On stability and interpretability of mixture models of wage distributions
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influence the wage to define the components in the mixture. We will refer to this
approach as “Scenario 1” later on. The second approach follows the empirical
learning paradigm, where we are using only the data to build a model. We can
distinguish two basic frameworks of empirical learning: learning as approximation
and learning as search. In the former case, we restrict ourself to pre-defined class
of models (e.g. linear functions in the case of linear regression or given number of
clusters for the k-means clustering algorithm) and use the data to find best param-
eters “only” within this class. In the later case, we search the whole space of all
possible models to find the best one, so we do not specify the type of function when
creating a regression model or do not specify the number of resulting clusters as is
the case for hierarchical cluster analysis. To follow the learning as approximation
framework in our experiments, we will specify the number of components (which
we derive from the Scenario 1) but not the components themselves - this will be
the Scenario 2 of our experiments. To follow the learning as search framework, we
will specify (in Scenario 3) only the maximal number of the components (to reduce
the space of the models to be searched).

4 Experiments and Results

For modeling purposes we used the data only for the period 2000-2018 and further
bound the empirical wage distributions by 100 000 CZK (ignoring the heavy tail)
as there were very few employees with wages above this value in the data. We
consider mixtures of up to 6 components in our experiments.

To assess the quality of the models, we used the Akaike Information Criterion
(AIC) [1]. Given a collection of models for given data, AIC estimates the quality
of each model, relative to each of the other models; the lower is the value the
better is the model. AIC deals with the trade-off between the goodness-of-fit of
the model and the simplicity of the model. The goodness-of-fit is expressed using
the likelihood of the model (probability of observed data given the model), the
simplicity of the model is expressed using the number of parameters of the model.
The basic form of AIC is given in formula 4. Here k is the number of the parameters
of the model.

AIC = −2LogLikelihood+ 2k (4)

We used a corrected AIC which considers also the number of observations n. This
version of the criterion is shown in formula 5.

AICc = −2LogLikelihood+ 2k +
2k(k + 1)

n− k − 1
(5)

We used Jmp, a data analysis tool developed by SAS (http://www.jmp.com)
for our computations. The system looks for maximum likelihood estimates so using
AICc to compare the models is very straightforward.

Petr Berka, Michal Vrabec, Luboš Marek
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4.1 Scenario 1

A number of factors influence the economic activities and the wages. Among them,
the most important is the gender followed by age and education (see e.g. [6, 2]). So
we used these factors to define the components of the mixture. We considered the
(obvious) two categories of gender (female, male), three categories of age (below 30,
30-50, above 50) and six categories of education (basic, apprenticeship, secondary,
bachelor, master, PhD). We created three different mixture models based on the
above mentioned factors, i.e. a 2-component model based on gender, a 3-component
model based on age and a 6-component model based on education for every year
from the period 2000-2018. Figures 3, 4 and 5 show the weights of the components
and the average wages. The figures also show the comparison of average wages
within the categories with the average wage in the whole CR (displayed as dots in
the right graphs). While the average wage in the whole CR seems to be “in the
middle” between average wage of men and average wage of women, the average
wage in the whole CR corresponds to the average wage of people above 50 as well
as to the average wage of people with secondary education. It can be also seen that
the weights of the components gender and age are almost stable over time and the
components education exhibit linear trend.

Figure 3: Components defined by gender. Weights of components (left), average
wages (right).

Figure 4: Components defined by age. Weights of components (left), average wages
(right).

On stability and interpretability of mixture models of wage distributions
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Figure 5: Components defined by education. Weights of components (left), average
wages (right).

4.2 Scenario 2

Like in Scenario 1, we again created three models (2-component model, 3-component
model and 6-component model) for every year from the period 2000-2018. But now
we didn’t specified the components to be used. Figures 6, 7 and 8 again show the
weights of the components and the average wages for the corresponding models.
With increasing number of components the average wages become more or less con-
stant, so the changes of the wage distributions over time are modeled by modifying
the weights of the components. Unlike scenario 1, there is no clear relationship
between the average wages in the whole CR and average wages for a component.

Figure 6: Model with 2 components. Weights of components (left), average wages
(right).

4.3 Scenario 3

We aimed at creating a single model with up to 6 components for every year from
the period 2000-2018. As the used software Jmp does not support this scenario
directly, we created a model with different number of components (2 to 6) and
choose the model with the best (lowest) value of AICc criterion for every year. It
turned out that the model with highest number of components was always the best

Petr Berka, Michal Vrabec, Luboš Marek
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Figure 7: Model with 3 components. Weights of components (left), average wages
(right).

Figure 8: Model with 6 components. Weights of components (left), average wages
(right).

one. And it seems that the more components in the mixture model, the better the
model will be. This is because increasing the number of parameters in the model
almost always improves the value of AICc. We confirmed this by creating an extra
model with 10 components (see figure 9).

5 Discussion

The experiments reported in section 4 confirmed our expectation concerning in-
terpretability of the models. Obviously, only models where the components were
determined in advance using some socio-demographic characteristics can be fully
understandable. Concerning the models, where the components were created au-
tomatically, we can only guess their meaning. So in case of 2-component model
presented in Fig. 6 we might think that the 2 components correspond to people
with high and low wage. The experiments also confirmed our expectation con-
cerning stability. The models created according to the scenario 2 and 3 are less
stable (in the sense of more significant changes of weights of components over time)
than models created according to the scenario 1. This instability increases with

On stability and interpretability of mixture models of wage distributions
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Figure 9: Model with 10 components. Weights of components (left), average wages
(right).

the number of components, this might be the effect of the fact that the average
wages within the components became stable (constant) and thus different wage
distributions as they change over time are modeled mainly by different weights of
the components.

The quality of the models in terms of AICc is summarized in tables shown
in figures 10 and 11. The values of this criterion are very high, probably due to
the large size of the data sample. As stated in section 4, lower values of AICc
means better model. But having values of AICc in the order of tens of millions,
the differences between values of AICc shown in the tables are rather small; the
largest relative difference between best and worst value of AICc is 9,6% (the best
value of AICc corresponds to 100%). Within a single scenario when increasing
the number of components we always obtained a model with better value of AICc.
So using scenario 3, we will end up with the most complex model that uses the
upper bound for the number of components (the value of AICc for this model is
displayed in bold). When comparing models with the same number of components
between scenario 1 and scenario 2, we can see that in most cases the model created
according to scenario 1 has better values of AICc than the corresponding model
created according to scenario 2. For mixture models with 3 and 6 components,
the model created according to scenario 1 has always better values of AICc than
model created according to scenario 2, for mixture models with 2 components, the
model created according to scenario 1 has better values of AICc in about half times
than model created according to scenario 2 - the better value of AICc is displayed
in italics. This was a rather unexpected result as we assumed a trade-off between
lower interpretability and higher accuracy of models created according to scenario
2 compared to models created according to scenario 1. We also found out, that for
models created according to scenario 1, more components do not assure model with
better values of AICc (in about half cases, the best model created using scenario 1
was the model using age not the model using education to define three components
- the lowest AICc value is displayed in bold).

Petr Berka, Michal Vrabec, Luboš Marek
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The applicability of the models for prediction is better for models created under
scenario 1. This is because the trends of average wages in “natural” segments
(components) as well as the trends of proportions of these segments in the whole
population can be better predicted than the average wages and proportions of
unclearly defined groups of people.

Figure 10: AICc for scenario 1 and 2.

6 Conclusions

The aim of our experiments was to create mixture models of wage distribution
using different amount of domain knowledge. We propose three scenarios that
were inspired by analytical learning, learning as approximation and learning as
search approaches. When specifying the components of the mixture in advance
in terms of socio-demographic characteristics, we will obtain easily interpretable
models. When specifying only the number of components or the maximal number
of components, the mixture models become less interpretable as the components
do not have clear meaning in terms of natural groups of people. We expected this
result but we did not expect that the models created using “natural” components
will be slightly better (in terms of lower values of AICc). So our results contradict
the idea to create models of wage distributions solely from data as proposed e.g.
in [3].

On stability and interpretability of mixture models of wage distributions
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Figure 11: AICc for scenario 3.
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Abstract

An Uncertainty Theory founded by Baoding Liu in 2007 claims to be
a universal tool for a correct description of uncertainty aiming to overcome
the limitations of probability theory and other alternative approaches. Since
the dependency structures of variables in the last decades appeared to be an
essential and fruitful field of research and an important issue for the decision-
making problems, a fundamental question arise whether the Liu’s Uncertainty
Theory is able to describe the complex character of dependency structures
among the set of uncertain variables. The presented paper aims to contribute
to this field, attempts to define an operator of composition serving as a tool
for building multivariate uncertain measures and as a result opens several
unanswered questions.

1 Introduction

The presented paper in a way extends the authors’ acquaintance with Baoding
Liu’s Uncertainty Theory [7] and its usability for modeling of multivariate distri-
butions of discrete quantities (see B́ına and Váchová [1]) where we endeavored to
propose a way to build up multivariate models using an operator of composition
defined in a similar way to other theoretical approaches as probability theory (see
definition of operator of composition and its properties, e.g. in a fundamental pa-
per by Jiroušek [4]), in a general framework of probabilistic models (see Jiroušek
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and Shenoy [3]), in valuation-based systems (see Jiroušek and Shenoy [2]) or in
Dempster–Shafer Evidence Theory (see Jiroušek and Vejnarová [5]).

In our 2015 Czech–Japan Seminar paper [1] we claimed that more profound
analysis of composition approach under the framework of Uncertainty Theory is
necessary and in this paper we make an effort to discuss possible definitions of
composition together with the philosophical fundamentals and other important
properties of Liu’s Uncertainty Theory. Meanwhile, the field of uncertainty theory
has earned many citations and application (from the vast field let us mention, e.g.,
Zeng et al. [9]). Thus, this paper comprises another step in assessing the Uncer-
tainty Theory and its usability as a possible tool for modeling using multivariate
distributions.

2 Fundamentals of Uncertainty Theory

The fundamentals of Liu’s Uncertainty Theory [7] stand on two basic principles
and a set of axioms. The two principles are:

Law of Truth Conservation Similarly as some other descriptions of uncertainty
Baoding Liu does not fully agree with the well-known ”tertium non datur”
or the ”law of excluded third” (saying that the proposition must be either
true or false) and the law of non-contradiction (contradictory propositions
cannot be both true in the same sense and time). Instead, Liu proposes the
law of truth conservation, stating that The truth values of a proposition and
its negation should sum to unity.

Maximum Uncertainty Principle It is probably intuitive that there is no un-
certainty if we are sure that an uncertain measure of an event takes one of
its extreme values, i.e., it is equal to 0 or 1. Similarly, the uncertain measure
equal to 0.5 stands for the maximum uncertainty because some event and its
complement have equal ”likelihood” of occurrence. In agreement with this,
Baoding Liu postulates a maximum uncertainty principle saying that: For
any event, if there are multiple reasonable values that an uncertain measure
may take, then the value as close to 0.5 as possible is assigned to the event.

The set of axioms in Liu’s Uncertainty Theory is obviously and quite naturally
inspired by the famous Kolmogorov’s axiomatization of probability theory. First of
all, we will clarify and define the basic notions and notation. Let Γ be a nonempty
set called the universal set. An algebra L is a collection of subsets from Γ such
that Γ is an element of this collection and L is closed under complementation (with
respect to Γ) and finite union. The collection L is called σ-algebra if it is closed
under countable union. Having a nonempty universal set Γ, collection L and a σ-
algebra over Γ we call the ordered pair (Γ,L) a measurable space and any element
Λ of L is called a measurable set or an event.

An uncertain measure M on the σ-algebra L assigns a number M{Λ} to each
event Λ representing the belief degree (not frequency) expressing the strength of

Questions Concerning Composition of Discrete Multivariate Uncertain Measures in Liu’s Uncertainty Theory
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trust that Λ will occur. Naturally, this assignment must fulfill the following prop-
erties summarized by Baoding Liu in the following set of axioms.

Axiom 1 (Normality Axiom). M{Γ} = 1 for the universal set Γ.

Axiom 2 (Duality Axiom). M{Λ}+M{Λc} = 1 for any event Λ and its comple-
ment (with respect to Γ) Λc.

Axiom 3 (Subadditivity Axiom). For every countable sequence of events Λ1, Λ2,
. . . we have

M
{ ∞⋃

i=1

Λi

}
≤

∞∑

i=1

M{Λi}.

The duality axiom is just an application of the law of truth conservation. Liu
claims that there does not exist a general formula allowing to evaluate the belief
degree for the union of events using the belief degrees of individual events. Neither
the probabilistic additivity axiom nor possibilistic maximum works. He claims that
perhaps there is no stronger rule than the subadditivity.

From the above presented set of axioms we can infer several interesting prop-
erties (for deeper understanding see [7]).

Theorem 1 (Uncertain Measure of Empty Set). Having an uncertain measure M
it holds that

M{∅} = 0.

Proof. Starting from universal set Γ, normality axiom says M{Γ} = 1. Since
Γc = ∅, from duality axiom we get

M{∅} = 1−M{Γ} = 0.

Theorem 2 (Monotonicity Theorem). Uncertain measure M is an increasing set
function, i.e., for Λ1 ⊂ Λ2 holds

M{Λ1} ≤ M{Λ2}.

Proof. Again we use normality axiom which says thatM{Γ} = 1 and from duality
axiom we have

M{Λc
1} = 1−M{Λ1}.

Since Λ1 ⊂ Λ2 we can express the universal set as Γ = Λc
1 ∪ Λ2 and using the

subadditivity axiom we get

1 =M{Γ} ≤ M{Λc
1}+M{Λ2} = 1−M{Λ1}+M{Λ2}.

And therefore M{Λ1} ≤ M{Λ2}.
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Now, from normality axiom, zero uncertain measure of empty set and from
monotonicity it follows that for an uncertain measureM and any event Λ it holds
that

0 ≤M{Λ} ≤ 1.

For nonempty universal set Γ, σ-algebra L over Γ and uncertain meansure M
the triplet (Γ,L,M) is called an uncertainty space.

Uncertain variable is now defined analogously to a probabilistic random vari-
able.

Definition 1 (Uncertain Variable). An uncertain variable is a function ξ from an
uncertainty space (Γ,L,M) to the set of real numbers such that {ξ ∈ B} is an
event for any Borel set B of real numbers.

3 Product in Uncertainty Theory

To introduce a product of two independent measures we can introduce a product
uncertain measure. For uncertainty spaces (Γk,Lk,Mk) for k = 1, 2, . . . we can
define a product universal set as a cartesian product

Γ = Γ1 × Γ2 × · · · ,

i.e., the set of all order tuples generated using the considered universal sets in the
form (γ1, γ2, . . . ), where γk ∈ Γk for k = 1, 2, . . . . Now measurable rectangle in Γ
is a cartesian product

Λ = Λ1 × Λ2 × · · ·
where Λk inLk for k = 1, 2, . . . The smallest σ-algebra containing all measurable
rectangles in Γ is called the product σ-algebra

L = L1 × L2 × · · · .

Then the product uncertain measure M on the product σ-algebra L is introduced
in the following axiom (some variant was introduced in [6]).

Axiom 4 (Product Axiom I). Let (Γk,Lk,Mk) be uncertainty spaces for k =
1, 2, . . . , then the product uncertain measure M is an uncertain measure satisfying

M
{ ∞∏

k=1

Λk

}
=

∞∧

k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . . .

Remark 1. Let us denote that it is rather surprising to introduce the product
uncertain measure in the form of axiom. As far as we know, the product measure
is usually introduced as a definition (e.g., in probability theory).
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In his paper published in Journal of Uncertain Systems [6] Liu states that the
product axiom can be introduced also in some other way and proposes a ”usual”
product employing multiplication instead of minimum.

Axiom 5 (Product Axiom II). Let (Γk,Lk,Mk) be uncertainty spaces for k =
1, 2, . . . , then the product uncertain measure M is an uncertain measure satisfying

M
{ ∞∏

k=1

Λk

}
=

∞∏

k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . . .

Let us also notice that the product axiom in this paper introduces product
uncertain measure only for rectangles. For possible generalization, see again Liu [7].

3.1 Examples on Product

Let us start with a pair of uncertain variables ξ and ψ both dichotomic with
uncertain measure given for all events by Table 1.

Table 1: Values of Uncertain Measure for Uncertain Variables ξ and ψ.
Uncertain Variable ξ

Event Un. M.
{} 0
{N} 0.3
{O} 0.7
{N,O} 1

Uncertain Variable ψ
Event Un. M.
{} 0
{C} 0.6
{E} 0.4
{C,E} 1

For the pair of uncertain variables ξ and ψ given by Table 1 we can easily com-
pute their product uncertain measure in ”minimum variant”, i.e., using Axiom 4.

Table 2: Product uncertain measure of uncertain variables ξ and ψ according to
the Axiom 4, i.e. product variant based on minimum.

M∧{ξ, ψ} ψ
{} {C} {E} {C,E}

{} 0 0 0 0

ξ
{N} 0 0.3 0.3 0.3
{O} 0 0.6 0.4 0.7
{N,O} 0 0.6 0.4 1

The exact proof that the resulting product uncertain measure based on mini-
mum fulfills set of Axiom 1 – 3 can be found in Peng and Iwamura [8].

Notice that the last column of Table 2 contains the uncertain measure of un-
certain variable ξ and the last row is the uncertain measure of uncertain variable
ψ which means that the ”marginal distributions” are instantly available. Let us
remark that this joint table is a product uncertain measure of two independent
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variables. The requirement of monotonicity implies that in case of dependent vari-
ables, some (or all) of the ”central” four numbers can be only smaller. An example
of dependent variables is given in Table 3.

Table 3: Uncertain measure of dependent uncertain variables ξ and ψ.
Mdep{ξ, ψ} ψ

{} {C} {E} {C,E}
{} 0 0 0 0

ξ
{N} 0 0.1 0.3 0.3
{O} 0 0.6 0.2 0.7
{N,O} 0 0.6 0.4 1

Where lower bounds are constrained also according to the requirement of sub-
additivity in the following sense (the lower bounds for ”central” cells were added
in such a way that the sum of ”central” cell gives the respective ”marginal” or
the uncertain measure of compound event). For this simple example the following
Table 4 provides constraints for the ”central” values.

Table 4: Constraints of two-dimensional uncertain measure of variables ξ and ψ.
Mbounds{ξ, ψ} ψ

{} {C} {E} {C,E}
{} 0 0 0 0

ξ
{N} 0 0-0.3 0-0.3 0.3
{O} 0 0.3-0.6 0.1-0.4 0.7
{N,O} 0 0.6 0.4 1

As we already mentioned, one other possible form of product uncertain measure
can be defined according to the Axiom 5 (see Liu in JUS [6]). Again an example
is given in the following Table 5.

Table 5: Product uncertain measure of uncertain variables ξ and ψ according to
the Axiom 5, i.e. product variant based on multiplication.

M×{ξ, ψ} ψ
{} {C} {E} {C,E}

{} 0 0 0 0

ξ
{N} 0 0.18 0.12 0.3
{O} 0 0.42 0.28 0.7
{N,O} 0 0.6 0.4 1

We can see that the second variant of product axiom formulation (Axiom 5
based on multiplication) provide results in agreement with the set of fundamental
Axioms 1–3. But the use of multiplication leads to a deviation from the basic Prin-
ciple of maximal uncertainty since the result contains lower (i.e. more ”certain”)
values which in the most case are farther from 0.5 than the product based on mini-
mum and formulated in the first variant (Axiom 4). Though we did not succeed in
finding original Liu’s the argumentation, this seems to be a reason why the variant
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of Axiom 5, i.e., product based on multiplication, is no longer mentioned in more
recent texts of Baoding Liu (e.g., in [7]).

4 Attempt to define an operator of composition

In the introduction, we mentioned few papers where the operator of composition as
an important mean of aggregation of multivariate distributions was defined. The
kind reader can see that the composition can be formulated either using a prod-
uct of a (multivariate) distribution with a conditional distribution (conditioned by
variables contained in both distributions) or – under the framework of probability
theory – equivalently using a product of two (multivariate) distributions divided
by marginal of the second distribution in variables appearing again in both distri-
butions. This provides the first ideas for the possible definitions of composition for
two multivariate uncertain measures.

In this section, the operation of composition will be documented on an example
of two bivariate discrete uncertain measures defined by the following Tables 6 and 7
(where the second table was used above as an example Table 3).

Table 6: Bivariate uncertain measure of two uncertain variables φ and ξ.
M1{φ, ξ} ξ

{} {N} {O} {N,O}
{} 0 0 0 0
{R} 0 0.07 0.06 0.1
{Y} 0 0.1 0.3 0.4

φ
{G} 0 0.2 0.5 0.6
{R,Y} 0 0.1 0.35 0.4
{R,G} 0 0.2 0.5 0.6
{Y,G} 0 0.25 0.65 0.9
{R,Y,G} 0 0.3 0.7 1

Table 7: Bivariate uncertain measure of two uncertain variables ξ and ψ.
M2{ξ, ψ} ψ

{} {C} {E} {C,E}
{} 0 0 0 0

ξ
{N} 0 0.1 0.3 0.3
{O} 0 0.6 0.2 0.7
{N,O} 0 0.6 0.4 1

4.1 Composition Based on: Conditional Uncertain Measure

The first considered possibility will be an attempt to define the operator of composi-
tion using a product of multivariate uncertain measure with a conditional uncertain
measure.
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A conditional uncertain measure of an event A given some fixed event B, is in
agreement with the given set of axioms and maximum uncertainty principle defined
(again by Liu [7]) it in the following way.

Definition 2 (Conditional Uncertain Measure). Let (Γ,L,M) be an uncertainty
space and A,B ∈ L. Then for all M{B} > 0 the conditional uncertain measure of
A given B is defined by

M{A|B} =





M{A∩B}
M{B} if M{A∩B}

M{B} < 0.5,

1− M{Ac∩B}
M{B} if M{Ac∩B}

M{B} < 0.5,

0.5 otherwise.

It can be easily shown that conditional uncertain measure M{A|B} is an un-
certain measure and (Γ,L,M{·|B}) is an uncertainty space.

Now, let us use a Definition 2 and compute a conditional uncertain measure
M{ψ|ξ}. The result is in teh following Table 8.

Table 8: Bivariate conditional uncertain measure M{ψ|ξ}
M{ψ|ξ} ψ

{} {C} {E} {C,E}
{} 0 0 0 0

ξ
{N} 0 1/3 2/3 0.3
{O} 0 5/7 2/7 0.7
{N,O} 0 0.6 0.4 1

Let us denote that all rows (as conditional uncertain measures) must fulfill
the duality property. To ensure this, in case of values in the second row and
third column (and also in the third row and second column) the second variant in
a definition of the conditional uncertain measure was used.

Now, we attempt to define an operator of composition using the conditional
uncertain measure. Let us have again uncertainty spaces (Γk,Lk,Mk) for k ∈ K
and their cartesian product Γ = Γ1 × Γ2 × · · · , i.e., the set of all order tuples
generated using the considered universal sets in the form (γ1, γ2, . . . ), where γk ∈ Γk

for k ∈ K. Measurable rectangle in Γ is a cartesian product Λ = Λ1×Λ2×· · · where
Λk ∈ Lk for k ∈ K The smallest σ-algebra containing all measurable rectangles in
Γ is so called the product σ-algebra L = L1 × L2 × · · ·

Definition 3 (Operator of Composition – Based on Conditional Uncertain Mea-
sure). Let L,M ⊂ K such that L ∪ M = K and induce a pair of uncertainty
spaces (ΓL,LL,ML) and (ΓM ,LM ,MM ). Composition of measures ML a MM

is defined by

ML{ΛL} .MM{ΛM} =ML{ΛL} ·MM{ΛM\L|ΛL∩M}

where ΛM\L and ΛL∩M are events from the respective uncertainty spaces.
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Table 9: Result of a composition of two two-dimensional uncertain measures based
on a conditional distribution.

ψ:{} ξ
{} {N} {O} {N,O}

{} 0 0 0 0
{R} 0 0 0 0
{Y} 0 0 0 0

φ
{G} 0 0 0 0

{R,Y} 0 0 0 0
{R,G} 0 0 0 0
{Y,G} 0 0 0 0

{R,Y,G} 0 0 0 0

ψ:{C} ξ
{} {N} {O} {N,O}

{} 0 0 0 0
{R} 0 0.07 0.06 0.1
{Y} 0 0.1 0.3 0.4

φ
{G} 0 0.2 0.5 0.6

{R,Y} 0 0.1 0.35 0.4
{R,G} 0 0.2 0.5 0.6
{Y,G} 0 0.25 0.65 0.6

{R,Y,G} 0 0.3 0.7 0.6
ψ:{E} ξ

{} {N} {O} {N,O}
{} 0 0 0 0
{R} 0 0.07 0.06 0.1
{Y} 0 0.1 2/7 0.4

φ
{G} 0 0.2 2/7 0.4

{R,Y} 0 0.1 2/7 0.4
{R,G} 0 0.2 2/7 0.4
{Y,G} 0 0.25 2/7 0.4

{R,Y,G} 0 0.3 2/7 0.4

ψ:{C,E} ξ
{} {N} {O} {N,O}

{} 0 0 0 0
{R} 0 0.07 0.06 0.1
{Y} 0 0.1 0.3 0.4

φ
{G} 0 0.2 0.5 0.6

{R,Y} 0 0.1 0.35 0.4
{R,G} 0 0.2 0.5 0.6
{Y,G} 0 0.25 0.65 0.9

{R,Y,G} 0 0.3 0.7 1

Using this definition a result of compositionM1{φ, ξ}.M2{ξ, ψ} =M1{φ, ξ} ·
M{ψ|ξ} is not a multivariate uncertain measure, since it violates the property of
monotonicity (see underlined elements in an example of composition in Table 9).

4.2 Composition Based on: Product with Multiplication

Another rather intuitive variant is to take as an inspiration the second variant of
product axiom (an Axiom 5 based on multiplication) and to divide the product
of two multivariate distributions by the marginal of the second one containing all
common variables.

Definition 4 (Operator of Composition – Based on Product Axiom in Multiplica-
tion Version). Let L,M ⊂ K such that L∪M = K and induce a pair of uncertainty
spaces (ΓL,LL,ML) and (ΓM ,LM ,MM ). Composition of measures ML a MM

is defined by

ML{ΛL} .MM{ΛM} =
ML{ΛL} ·MM{ΛM}
MM{ΛL∩M}

where ΛL∩M is an event from the respective uncertainty space.

Again, using this definition a result of composition

M1{φ, ξ} .M2{ξ, ψ} =
M1{φ, ξ} ·M2{ξ, ψ}

M2{ξ}
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Table 10: Result of composition of two two-dimensional uncertain measures based
on a multiplication.

ψ:{} ξ
{} {N} {O} {N,O}

{} 0 0 0 0
{R} 0 0 0 0
{Y} 0 0 0 0

φ
{G} 0 0 0 0

{R,Y} 0 0 0 0
{R,G} 0 0 0 0
{Y,G} 0 0 0 0

{R,Y,G} 0 0 0 0

ψ:{C} ξ
{} {N} {O} {N,O}

{} 0 0 0 0
{R} 0 0.023 0.051 0.06
{Y} 0 0.033 0.257 0.24

φ
{G} 0 0.067 0.429 0.36

{R,Y} 0 0.033 0.3 0.24
{R,G} 0 0.067 0.429 0.36
{Y,G} 0 0.083 0.557 0.54

{R,Y,G} 0 0.1 0.6 0.6
ψ:{E} ξ

{} {N} {O} {N,O}
{} 0 0 0 0
{R} 0 0.07 0.017 0.04
{Y} 0 0.1 0.086 0.16

φ
{G} 0 0.2 0.143 0.24

{R,Y} 0 0.1 0.1 0.16
{R,G} 0 0.2 0.143 0.24
{Y,G} 0 0.25 0.186 0.36

{R,Y,G} 0 0.3 0.2 0.4

ψ:{C,E} ξ
{} {N} {O} {N,O}

{} 0 0 0 0
{R} 0 0.07 0.06 0.1
{Y} 0 0.1 0.3 0.4

φ
{G} 0 0.2 0.5 0.6

{R,Y} 0 0.1 0.35 0.4
{R,G} 0 0.2 0.5 0.6
{Y,G} 0 0.25 0.65 0.9

{R,Y,G} 0 0.3 0.7 1

is not a multivariate uncertain measure, since also in this case it violates the prop-
erty of monotonicity (see again the underlined elements in an example of composi-
tion in Table 10).

4.3 Composition based on: Product with Minimum

We saw that the previous possibilities together with the definition given in pre-
ceding paper [1] all lead to the violation of the set of axioms (particularly the
requirement of monotonicity). Therefore, the last attempt efforts to stand on the
philosophical basis of Liu’s Uncertainty Theory. This variant of the definition of the
operator of composition will be formulated simply as a product in its multiplication
variant.

Definition 5 (Operator of Composition – Based on Product Axiom in Minimum
Version). Let L,M ⊂ K such that L ∪M = K and induce a pair of uncertainty
spaces (ΓL,LL,ML) and (ΓM ,LM ,MM ). Composition of measures ML a MM

is defined by

ML{ΛL} .MM{ΛM} = min (ML{ΛL},MM{ΛM}) .

Now, the result of composition in our example of pair of bivariate uncertain
measures M1{φ, ξ} .M2{ξ, ψ} = min (M1{φ, ξ} .M2{ξ, ψ}) is summarized in
the Table 11.

According to our current insight, this variant is the only one ”clean” in a philo-
sophical sense. It does not violate the requirement of monotonicity and other
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Table 11: Result of composition of two two-dimensional uncertain measures based
on a minimum.

ψ:{} ξ
{} {N} {O} {N,O}

{} 0 0 0 0
{R} 0 0 0 0
{Y} 0 0 0 0

φ
{G} 0 0 0 0

{R,Y} 0 0 0 0
{R,G} 0 0 0 0
{Y,G} 0 0 0 0

{R,Y,G} 0 0 0 0

ψ:{C} ξ
{} {N} {O} {N,O}

{} 0 0 0 0
{R} 0 0.07 0.06 0.1
{Y} 0 0.1 0.3 0.4

φ
{G} 0 0.1 0.5 0.6

{R,Y} 0 0.1 0.35 0.4
{R,G} 0 0.1 0.5 0.6
{Y,G} 0 0.1 0.6 0.6

{R,Y,G} 0 0.1 0.6 0.6
ψ:{E} ξ

{} {N} {O} {N,O}
{} 0 0 0 0
{R} 0 0.07 0.06 0.1
{Y} 0 0.1 0.2 0.4

φ
{G} 0 0.2 0.2 0.4

{R,Y} 0 0.1 0.2 0.4
{R,G} 0 0.2 0.2 0.4
{Y,G} 0 0.25 0.2 0.4

{R,Y,G} 0 0.3 0.2 0.4

ψ:{C,E} ξ
{} {N} {O} {N,O}

{} 0 0 0 0
{R} 0 0.07 0.06 0.1
{Y} 0 0.1 0.3 0.4

φ
{G} 0 0.2 0.5 0.6

{R,Y} 0 0.1 0.35 0.4
{R,G} 0 0.2 0.5 0.6
{Y,G} 0 0.25 0.65 0.9

{R,Y,G} 0 0.3 0.7 1

essential properties. But it also does not introduce arbitrarily more ”certainty”
into the result of composition (in the sense of Maximum Uncertainty Principle).

5 Conclusions

As a preliminary result, we propose a definition of composition operator based on
”minimum product”. Its main advantage consists in the compliance with a basic
postulate, the Maximum Uncertainty Principle. But still the following questions
appear to be open:

• Duality - isn’t the duality axiom too strong? How to handle it in case of mul-
tivariate distributions? (Too complicated constraints in case of multivariate
distributions and search of complementary events.)

• Why is the product (in any variant) stated as an axiom?

• Maximum uncertainty principle restricts the ”definition” of product to its
minimum shape. Doesn’t it follow completely already from the maximum
uncertainty principle?

• Is the ”definition” of the product rich enough to describe non-trivial depen-
dence structures analogically to the situation in probabilistic models?

• Does the definition of composition show useful properties?
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It is obvious that the attempt to define the operator of composition opened
a wide field of unanswered questions concerning the philosophic fundamentals of
Liu’s Uncertainty Theory and thus provides enough space for further research.
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Abstract

The generative adversial networks (GANs) represent an exciting concept
that lies at the borderline between probabilistic modeling and machine learn-
ing. Despite the short history (since 2014) the GANs have caused a dramatic
shift in several machine learning fields, however, mostly in generating pho-
torealistic pictures of different objects. The basic idea the GANs are based
on is conceptually simple, however, concrete implementations are still partly
an art rather than established science and are tightly interconnected with
programming in deep-learning frameworks such as TensorFlow or PyTorch
to mention the most popular ones. The purpose of this contribution is to
present a brief review of the GAN implementations milestones that paved
the way to their current success. The list is not exhaustive as hundreds of
implementations are available in several GANs ZOOs, see e.g., [5], but we try
to be representative.

The seminal paper by Goodfellow at al. [4] introduced the concept. De-
spite rooted in an experimental work, the paper contains a rigorous proof
for that the GAN minimax criterion leads in the end to sampling from the
distribution the real data comes from. The presented examples in the paper
are delivered for the MNIST, TFD and CIFAR-10 databases and the im-
plementations work well with only basic neural network architectures such
as the perceptrons. While the results are not so impressive they show that
the GANs concept is viable and delivers, which has been fully proved in the
subsequent works.

An important follow up work concerns introducing conditioning into the
GANs area [9]. Extending noise input with a conditioning vector enabled
generation of delimited classes of objects. The canonical example is gener-
ating individual digits from the MNIST dataset. A substantial move in the
field came when GANs incorporated deep convolutional architectures [10].
The proposed architecture, called DCGAN, introduced upsampling operation
that increases a resolution of the images generated from a low dimensional
noise. DCGAN was used to generate pictures from the LSUN datasets [11].
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The paper also introduces a vector arithmetic for generated images of human
faces. Whilst faces are in some sense smooth objects, i.e., easier for gener-
ation via continuous transformations, DCGAN proves to be effective also in
generation pictures based on the LSUN bedrooms datasets which frequently
contains sharp edges (furniture or window edges) showing universality of the
GAN concept.

Efforts have been made to theoretically guarantee stability of GAN learn-
ing. One of the main contribution in this direction was incorporating the
Wasserstein distance in learning criteria leading to the Wasserstein GAN [1].
Building on the Wasserstein GAN ideas, the BEGAN architecture was pro-
posed in [2] by controlling the equilibrium state between generator and dis-
criminator during GAN training. The BEGAN architecture brought an im-
proved quality of generated pictures namely for human faces resulting from
learning the CelebA dataset.

A disruptive moment in the field was the introduction of progressive learn-
ing in the PGGAN [6] by the NVIDIA research team. The key idea in their
approach is a gradual increasing of both generator and discriminator net-
works during learning. In effect, the photorealistic portraits were generated
in 1024x1024 resolution. As a byproduct, the NVIDIA team created the
HQ CelebA dataset of 1024x1024 photographs [7] that were used in PGGAN
learning and represent a new standard dataset for general machine learning
purposes.

A long-term goal in the GAN learning area, was “conquering” the Ima-
geNet dataset. That is, to use the ImageNet dataset to construct a single
GAN that would be able to conditionally generate samples from all 1000
categories the ImageNet consists from. The achievement of this goal was
announced by the Google DeepMind team in contribution called BigGAN [3]
which was presented at the ICLR 2019 conference.

The last milestone we mention is called StyleGAN [8] which comes again
from the NVIDIA research. The paper introduces an alternative generator ar-
chitecture drawing on style transfer methodology. The new architecture leads
to an unsupervised separation of high-level attributes such as pose or identity
when learning to generate human faces pictures and enables to conditionally
generate images for different attributes.

In our contribution, we present examples generated by the above architec-
tures so that the quality progress over time can be identified. We also mention
the current challenges the field of GANs is facing and possible directions of
future development in this flourishing area of machine learning.
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Abstract

This study compares the size of conflict based on non-conflicting parts of
belief functions Conf with the sum of all multiples of bbms of disjoint focal
elements of belief functions in question. In general, we make an effort to
reach a simple upper bound function for Conf. (Nevertheless, the maximal
value of conflict is, of course, equal to 1 for fully conflicting belief functions).
We apply both theoretical research using the recent results on belief functions
and also experimental computational approach here.

Keywords: Belief functions, Dempster-Shafer theory, Uncertainty, Conflict-
ing belief masses, Conflict between belief functions, Hidden conflict.

1 Introduction
Belief functions representing an uncertain and/or incomplete, imperfect informa-
tion about the object of interest may be, of course, in mutual conflict. The clas-
sic definition of conflict between belief functions is equivalent to the sum of all
multiples of conflicting belief masses of individual belief functions [17]; i.e. the
belief mass assigned to the empty set when non-normalized conjunction combina-
tion rule is considered (frequently denoted by m ∩⃝(∅)). After this measure was
observed to be inadequate for a correct representation of conflict between belief
functions [1, 14], several different measures were introduced in last dozen years,
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e.g. [6, 7, 12, 13, 14, 15, 16, 19]. Conflict between belief functions is usually
assumed to be less or equal to the belief mass appearing on the empty set m ∩⃝(∅).

One of the progressive current alternative conflict measures of the conflict be-
tween belief functions is based on their non-conflicting parts [7]. Despite the orig-
inal assumption, positive conflict was observed there even in situations when the
previously mentioned conflict measures were zero and belief functions in question
were considered to be non-conflicting. These so-called hidden conflicts were ana-
lyzed and presented in [8, 11]. In this paper we try to give a simple upper-bound
function of conflict based on non-conflicting parts and also of previous measures of
conflict, to obtain an improved general assumption for conflict measures.

We apply here both theoretical approach using our recent results on degrees of
hidden conflicts [11] and of degrees of non-conflictness [10] and also experimental
computational approach continuing our computations from [8, 9].

2 Preliminaries
We assume classic definitions and basic notion from the theory of belief functions
[17] on finite exhaustive frames of discernment Ωn = {ω1, ω2, ..., ωn}. P(Ω) =
{X|X ⊆ Ω} is a power-set of Ω.

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such that∑
A⊆Ω m(A) = 1; the values of the bba are called basic belief masses (bbm). m(∅) =

0 is usually assumed.
A belief function (BF) is a mapping Bel : P(Ω) −→ [0, 1], such that Bel(A) =∑

∅̸=X⊆A m(X). A plausibility function Pl :P(Ω)−→ [0, 1], Pl(A)=
∑

∅̸=A∩X m(X).
Because there is a unique correspondence among m and corresponding Bel and Pl,
we often speak about m as of a belief function.

A focal element is a subset of the frame of discernment X ⊆ Ω, such that
m(X) > 0; if X ⊊ Ω then it is a proper focal element. If all focal elements are
singletons (i.e. one-element subsets of Ω), then we speak about a Bayesian belief
function (BBF); in fact, it is a probability distribution on Ω. If there are only
focal elements such that |X| = 1 or |X| = n we speak about quasi-Bayesian BF
(qBBF). In the case of m(Ω) = 1 we speak about vacuous BF. In the case of
m(X) = 1 for X ⊂ Ω we speak about categorical BF. If m(X) > 0 for X ⊂ Ω and
m(Ω) = 1 − m(X) we speak about simple support BF. If all focal elements have
a non-empty intersection, we speak about a consistent BF; and if all of them are
nested, about a consonant BF.

Dempster’s (normalized conjunctive) rule of combination ⊕: (m1 ⊕m2)(A) =∑
X∩Y=A Km1(X)m2(Y ) for A ̸= ∅, where K = 1

1−κ , κ =
∑

X∩Y=∅ m1(X)m2(Y ),
and (m1 ⊕m2)(∅) = 0, see [17]. Putting K = 1 and (m1 ∩⃝m2)(∅) = κ = m ∩⃝(∅) we
obtain the non-normalized conjunctive rule of combination ∩⃝ , see e. g. [18].

Smets’ pignistic probability is given by BetP (ωi) =
∑

ωi∈X⊆Ω
1

|X|
m(X)

1−m(∅) , see
e.g. [18]. Normalized plausibility of singletons1 of Bel is a probability distribution

1Plausibility of singletons is called contour function by Shafer in [17], thus Pl_P (Bel) is a
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Pl_P such that Pl_P (ωi) =
Pl({ωi})∑
ω∈Ω Pl({ω}) [3, 4].

3 Conflicts of Belief Functions
Original Shafer’s definition of the conflict measure between two belief functions
[17] is the following: κ =

∑
X∩Y=∅ m1(X)m2(Y ) = (m′ ∩⃝m′′)(∅) = m ∩⃝(∅), more

precisely its transformation log(1/(1− κ)).
After appearing that m ∩⃝(∅) does not correctly represent conflict between BFs

[1, 14] a series of alternative approaches and measures of conflicts have appeared
in last dozen years, e. g. [2, 6, 7, 12, 14, 15]. Alternative approaches are often
somehow related to m ∩⃝(∅) or use it as one of its components [14].

In 2010, Daniel distinguished internal conflict inside an individual BF from the
conflict between them [5] and pointed out that m ∩⃝(∅) contains both individual
internal conflicts of BFs and conflict between them. Thus the usual assumption or
property of measures of conflict to be less or equal to m ∩⃝(∅) seemed to be natural.

Finally, Daniel’s conflict based on non-conflicting parts of BFs was introduced
in [7]. This last-mentioned measure motivated our research of hidden conflict [9],
hidden auto-conflict [8] and also current research of degrees of non-conflictness [10].

A conflict of BFs Bel′, Bel′′ based on their non-conflicting parts Bel′0, Bel′′0 is
defined by the expression Conf(Bel′, Bel′′) = (m′

0 ∩⃝m′′
0)(∅), where non-conflicting

part Bel0 (of a BF Bel) is unique consonant BF such that Pl_P0 = Pl_P (nor-
malized plausibility of singletons corresponding to Bel0 is the same as that corre-
sponding to Bel); m0 is a bba related to Bel0. For an algorithm to compute Bel0
see [7].

This measure of conflict between BFs in correspondence to Daniel’s approach
from [5] does not include internal conflict of individual BFs. And Theorem 4 from
[7] claims that

Conf(Beli, Belii) ≤ (mi ∩⃝mii)(∅) (∗)

holds true for arbitrary BFs Beli, Belii given by bbas mi,mii on any finite frame
of discernment Ωn. Nevertheless, during later analysis of Conf properties counter-
examples against general validity of (∗) have appeared, for some of them see the
next Section,

Similarly to plausibility conflict, measure Conf respects plausibilities equivalent
to the BFs; and it better generalises the original idea to general frame Ωn.

4 Counter-Examples against General Validity of
Inequality Conf ≤ m ∩⃝(∅)

There are plenty of counter-examples against general validity of inequality (∗),
thus against Conf ≤ m ∩⃝(∅). Counter-examples have started to appear when the
normalization of contour function in fact.
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first hidden conflicts had been observed. Any hidden conflict is a counterexample
against it. We can start with the first and simple Introductory Example from [8, 9]
on Ω3 and Little Angel example from [9], for both the examples see also [11]).

Example 1. Introductory example. Let us assume two simple consistent belief
functions Bel′ and Bel′′ on Ω3 = {ω1, ω2, ω3} given by the bbas m′({ω1, ω2}) = 0.6,
m′({ω1, ω3}) = 0.4, and m′′({ω2, ω3}) = 1.0.

We can display focal elements of BFs Bel′ and Bel′′ on Figure 1.

b

b bbb
∩⃝

b

b bbb
=

b

b bbb

Figure 1: Introductory Example: focal elements of m′,m′′, and of m′ ∩⃝m′′.

ω1 is in both the focal elements of Bel′, thus Pl′({ω1}) = 0.6+0.4 = 1, and the
other two singletons each in the only focal element, thus simply Pl′({ω2}) = 0.6,
Pl′({ω3}) = 0.4 and after the normalization Pl_P ′ = (0.5, 0.3, 0.2). For Bel′′

analogously Pl′′({ω2}) = Pl′′({ω3}) = 1.0 and Pl_P ′′ = (0.0, 0.5, 0.5). Thus non-
conflicting parts of the BFs are given by the following bbms: m′

0({ω1}) = 0.5−0.3
0.5 =

2
5 = 0.4, m′

0({ω1, ω2}) = 0.3−0.2
0.5 = 1

5 = 0.2, and m′
0({ω1, ω2, ω3}) = 0.2

0.5 = 0.4, and
m′′

0({ω2, ω3}) = m′′({ω2, ω3}) = 1.0.
Hence we obtain Conf(Bel′, Bel′′) = m′

0({ω1})m′′
0({ω2, ω3}) = 0.4 · 1.0 = 0.4 >

0 = (m′ ∩⃝m′′)(∅).
Example 2. Little Angel example Let assume belief functions Beli and Belii on
Ω5 = {ω1, ω2, ω3, ω4, ω5} given by the bbas mi({ω1, ω2, ω3}) = 0.1, mi({ω1, ω2, ω3,
ω4}) = 0.3, mi({ω1, ω3, ω4, ω5}) = 0.6, and mii({ω2, ω3.ω4, ω5}) = 1.0.

Analogously to the previous case, we can display focal elements of BFs Beli

and Belii on Figure 2.

b

b

bb

b∩⃝

b

b

bb

b =

b

b

bb

b

Figure 2: Litte Angel Example: focal elements of mi,mii, and of mi ∩⃝mii.

Analogously to the previous case we obtain the following plausibility of single-
tons: Pli(1.0, 0.4, 0.9, 0.9, 0.7), Pl_P i( 1039 ,

4
39 ,

9
39 ,

9
39 ,

7
39 ) and mi

0({ω1}) = 10−9
10 =

0.1, mi
0({ω1, ω3, ω4}) = 9−7

10 = 0.2, mi
0({ω1, ω3, ω4, ω5}) = 7−4

10 = 0.3, mi
0({ω1, ω2,
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ω3, ω4, ω5}) = 4
10 = 0.4. For Belii there is mii

0 ({ω2, ω3, ω4, ω5}) = mii({ω2, ω3, ω4,
ω5}) = 1.0. Hence we obtain Conf(Beli, Belii) = mi

0({ω1})mii
0 ({ω2, ω3, ω4, ω5}) =

0.1 · 1 = 0.1.

Both these examples are simple with a few focal elements only. Nevertheless, we
can find plenty of the other examples moving small belief masses from the original
focal elements to the other subset of the frame and create new ones:
Example 3. Modified Introductory example. Let us suppose belied functions
Bel′, Bel′′ given by the modified bbas m′ and m′′, moving parts of the original
bbms to singletons and to entire Ω3 as it follows:

m′({ω1}) = 0.1 m′′({ω1}) = 0.1
m′({ω2}) = 0.1 m′′({ω2}) = 0.1
m′({ω3}) = 0.1 m′′({ω3}) = 0.1

m′({ω1, ω2}) = 0.4 -
m′({ω1, ω3}) = 0.2 -

- m′′({ω2, ω3}) = 0.6
m′({ω1, ω2, ω3}) = 0.1 m′′({ω1, ω2, ω3}) = 0.1

After this modification we obtain Pl_P ′ = ( 8
18 ,

6
18 ,

4
18 ), Pl_P ′′ = ( 2

18 ,
8
18 ,

8
18 ),

and further m′
0({ω1}) = 8−6

8 = 2
8 = 0.25, m′

0({ω1, ω2}) = 6−4
8 = 2

8 = 0.25, and
m′

0({ω1, ω2, ω3}) = 4
8 = 0.5, and m′′

0({ω2, ω3}) = 8−2
8 = 0.75, m′′

0({ω1, ω2, ω3}) =
2
8 = 0.25.
Hence we obtain Conf(Bel′, Bel′′) = m′

0({ω1})m′′
0({ω2, ω3}) = 0.25·0.75 = 0.1875.

(m′ ∩⃝m′′)(∅) = 6×0.1·0.1+0.1·0.6+0.4·0.1+0.2·0.1 = 0.06+0.06+0.04+0.02 = 0.18.
Hence Conf(Bel′, Bel′′) = 0.1875 > 0.1800 = (m′ ∩⃝m′′)(∅).
Example 4. Modified Little Angel example For following modification of Little
Angel BFs we obtain counter-example again:

mi({ω1}) = 0.05 -
mi({ω2}) = 0.05 mii({ω2}) = 0.05

mi({ω1, ω2}) = 0.05 -
mi({ω2, ω4}) = 0.05 -

- mii({ω3, ω4}) = 0.10
mi({ω1, ω2, ω5}) = 0.10 -
mi({ω2, ω3, ω4}) = 0.05 -

mi({ω1, ω2, ω3, ω4}) = 0.20 -
mi({ω1, ω3, ω4, ω5}) = 0.40 -

- mii({ω2, ω3, ω4, ω5}) = 0.80
mi({ω1, ω2, ω3, ω4, ω5}) = 0.05 mii({ω1, ω2, ω3, ω4, ω5}) = 0.05

where Conf(Bel′, Bel′′) = 0.1114551 while (m′ ∩⃝m′′)(∅) = 0.0875.
After observation of the original examples, we had a working hypothesis of

validity of equality (∗) for all quasi Bayesian BFs on a general finite frame of
discernment, unfortunately, instead of proving the hypothesis we have found several
counterexamples for both qBBF and even for Bayesian BFs already on four-element
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frame of discernment Ω4. We have used a method described in Section 8. The first
counterexample found on Ω4 is shown in the next more general Example with
ε = 0 in which case both BFs are Bayesian and Conf(Beli, Belii) = 0.984375
while (mi ∩⃝mii)(∅) = 0.98.

Example 5. 8-1-1-0 Assume the following class of BFs on Ω4:

mi({ω1}) = 0.1 mii({ω1}) = 0.1
mii({ω2}) = 0.8− ε

mi({ω3}) = 0.8− ε
mi({ω4}) = 0.1 mii({ω4}) = 0.1

mi({ω1, ω2, ω3, ω4}) = ε mii({ω1, ω2, ω3, ω4}) = ε

Because the inequality (∗) holds for the majority of qBBFs on Ω4, i.e. for n = 4,
size of belief mass moved to the entire frame must be rather small. Indeed, note that
in case of ε < 0.008 the inequality (∗) does not hold (the exact bound is slightly
higher). For ε = 0.008 we obtain Conf(Beli, Belii) = 0.964475 > 0.964064 =
(mi ∩⃝mii)(∅).

Any of the above-presented examples can be easily extended for a greater frame
of discernment. For an extension of Example 8-1-1-0 to 10-element frame of dis-
cernment Ω10 see mi−0,mii−0 in Example 8-small-small: Example 6, Section 6.

5 Validity of Conf ≤ m ∩⃝(∅)
We can start from the simplest case of 2-element frame of discernment, which had
motivated too strong version of the statement about (∗) in Belief’14 [7]:

Lemma 1 Inequality Conf ≤ m ∩⃝(∅) holds true for arbitrary BFs on a 2-element
frame of discernment Ω2.

Proof. Let us denote (ai, bi) = (mi({ω1}),mi({ω2}), thus mi({ω1, ω2}) = 1 −
ai − bi. m(∅) = (m1 ∩⃝m2)(∅) = a1b2 + a2b1. Let us suppose a1 ≥ b1. If also
a2 ≥ b2 then both maximal plausibilities are higher for ω1, thus Conf(m1,m2) =
0 ≤ m(∅). Hence there still remain to prove the case a2 ≤ b2. There it holds:
Pli = (1 − bi, 1 − ai) and Pl_Pi = ( 1−bi

2−ai−bi
, 1−ai

2−ai−bi
). m01({ω1}) = a01 = a1−b1

1−b1
,

m01 = (a01, b01) = (a1−b1
1−b1

, 0), and analogously m02 = (a02, b02) = (0, b2−a2

1−a2
.). Thus

Conf(m1,m2) = (a1−b1
1−b1

)( b2−a2

1−a2
). Hence it remains to verify (a1−b1

1−b1
)( b2−a2

1−a2
) ≤

a1b2 + a2b1. We can show that (a1−b1
1−b1

) ≤ a1: (a1 − b1) ≥ a11− b1) = a1 − a1b1,
−b1 ≤ −a1b1, 0 ≤ b1(1 − a1), what follows 0 ≤ a, b ≤ 1, analogously we can show
that ( b2−a2

1−a2
) ≤ b2. Hence (a1−b1

1−b1
)( b2−a2

1−a2
) ≤ a1b2 ≤ a1b2 + a2b1.

Lemma 2 Inequality Conf ≤ m ∩⃝(∅) holds for any pair of consonant BFs on any
finite Ωn.
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Proof. The statement follows the fact that there is the unique consonant non-
conflicting part of a BF. Consonant BFs are because of this uniqueness equal to their
non-conflicting parts. Hence Conf(Beli, Belii) = (mi

0 ∩⃝mii
0 )(∅) = (mi ∩⃝mii)(∅),

thus Conf = m ∩⃝(∅), hence inequality holds true.

Corollary 3 (i) Inequality Conf ≤ m ∩⃝(∅) holds for any pair of categorical BFs
on any finite frame of discernment Ωn.

(ii) Inequality Conf ≤ m ∩⃝(∅) holds for any pair of simple support BFs on any
finite frame of discernment Ωn.

Proof. Both categorical and simple support belief functions are consonant, thus
both (i) and (ii) are special cases of Lemma 2.

Unfortunately, as we have seen in Example 8-1-1-0, inequality (∗) does not
holds either for two arbitrary quasi Bayesian BFs on Ω4. Nevertheless, We have no
counter-example against validity of (∗) for qBBFs on Ω3 but we also do not have
a complete proof of its validity yet. That is why we moved the issue of qBBFs on
Ω3 to the next section about hypotheses. To complete this Section, we have to
mention the following trivial observation:

Observation 4 If one of the belief functions in question is vacuous, inequality
Conf ≤ m ∩⃝(∅) always holds. (Conf = 0 = m ∩⃝(∅) in that cases.)

6 Hypotheses
Hypothesis 5 Inequality Conf ≤ m ∩⃝(∅) holds true for any couple of quasi
Bayesian belief functions on any 3-element frame Ω3.

Partial proof. If we want to find a proof analogous to that for Ω2, there is no
problem with (mi ∩⃝mii)(∅): formula for its computation from input bbms is al-
ways the same for given cardinality n of Ωn. This is different for computation
of value Conf(Beli, Belii), where different focal elements appear in corresponding
Beli0, Belii0 , also focal element of cardinality 2, thus there is not only higher com-
plexity of formula for higher n, but the number of different formulas for different
orders of values of plausibility of singletons (for qBBFs equal to order of input
bbms). Moreover, neither analogy of proof on Ω2 has not been found for any of the
cases of formulas on Ω3. Nevertheless, we have some kind of proof for some special
cases of input qBBFs.

Two simplified cases have been already proven with the usage of WolframAplha
tool: https://www.wolframalpha.com just by checking if the formula corresponding
to the inequality (∗) has a solution in the [0, 1] interval of respective variables. Nev-
ertheless, a complete list of formulae for the general case has not been formulated
yet, thus either proved.
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Let us start from the case of Bayesian BFs with only two positive values: (a, 1−
a, 0|0), (0, 1−a, a|0) where the notation corresponds to (m(ω1),m(ω2),m(ω3)|m(Ω3)),
with maximal values assigned to different singletons (otherwise Conf = 0). If
a ≥ 1 − a, i.e. a ≥ 1/2, then we obtain: Conf :

(
2a−1

a

)2
+ 2

(
2a−1

a

) (
1−a
a

)
and

m(∅) = a2 + 2a(1− a) = 2a − a2.
Nevertheless, the inequality corresponding to the opposite of (∗):

(
2a−1

a

)2
+

2
(
2a−1

a

) (
1−a
a

)
− 2a + a2 > 0 has a solution only for a ̸∈ [−1, 1] and therefore no

counter-example can exists in this case.
Analogously we can consider BBFs one with three different values and the other
with opposite order of the same bbms, thus (a, b, 1−a−b|0), (1−a−b, b, a|0). In case
of a > b > 1−a−b we obtain:

(
a−b
a

)2
+2

(
a+2b−1

a

) (
a−b
a

)
−2a2−2ab+b2+2a−1 > 0

that is necessary to hold for a counter-example, but again, it has not solution for
0 <= b <= a <= 1− b. Therefore NO counter-example can exist here.

In the completely general case for qBBFs on Ω3 it is necessary to verify sev-
eral inequalities with 6 variables. As an example we can present the inequality
( a−b
1−b−c )(

f−e
1−d−e )+( a−b

1−b−c )(
e−d

1−d−e )+( b−c
1−b−c )(

1−d−2e
1−d−e )−(ae+af+bd+bf+cd+ce)≤0,

which should be verified for the case (a, b, c|1− a− b− c) and (c, d, e|1− c− d− e)
where a > b > c and c < d < e.

In the future, we would like to analogously check all the possible Ω3 cases.

Hypothesis 6 Inequality Conf ≤ m ∩⃝(∅) holds true for any couple of quasi
Bayesian belief functions, having all singletons (m({ωi}) > 0 for any ωi ∈ Ωn)
on any finite frame of discernment Ωn.

Arguments for this hypothesis are as follows:

(i) We have not found any counter-example on Ωn for n <= 5 yet.

(ii) When moving some positive mass to any singletons in Example 8-small-small,
Conf decreased bellow m(∅), thus counter-example disappears. This was
checked both for BBF and qBBF counter-examples with BFs without some
singletons on Ω10.

(iii) It is a sort of generalization of the previous hypothesis.

Example 6. Example 8-small-small Let suppose BBFs mi−0 and mii−0 which
are extensions of BFs from Example 8-1-1-0 to Ω10. And their further extension
to qBBFs (thus qBBFs ’with 0’, i.e. without some singleton focal elements, mi−2

and mii−2; (zeros are not typed to be more visible). We can verify, that these are
really counter-examples against general validity of Conf ≤ m ∩⃝(∅):
Conf(mi−0,mii−0) = 0.9982937 > 0.995608 = (mi−0 ∩⃝mii−0)(∅) and also
Conf(mi−2,mii−2) = 0.9884347 > 0.98788 = (mi−2 ∩⃝mii−2)(∅).
When we remove some belief masses to missing singletons we obtain BBFs ’with-
out zero’ mi−1, mii−1 and qBBFs ’without zero’ mi−3, mii−3 in both these cases
counter-examples against Conf ≤ m ∩⃝(∅) disappear:
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Conf(mi−1,mii−1) = 0.9841313 < 0.986424 = (mi−1 ∩⃝mii−1)(∅)and also
Conf(mi−3,mii−3) = 0.9744128 > 0.978536 = (mi−3 ∩⃝mii−3)(∅).
X ⊆ Ω10 BBF with 0 BBF without 0 qBBF with 0 qBBF without 0
X ⊆ Ω10 mi−0 mii−0 mi−1 mii−1 mi−2 mii−2 mi−3 mii−3

{ω1} 0.800 0.800 0.006 0.800 0.800 0.006
{ω2} 0.040 0.012 0.040 0.010 0.040 0.012 0.038 0.010
{ω3} 0.034 0.016 0.034 0.014 0.034 0.014 0.032 0.014
{ω4} 0.030 0.020 0.030 0.018 0.030 0.018 0.030 0.018
{ω5} 0.026 0.022 0.026 0.022 0.026 0.022 0.026 0.022
{ω6} 0.022 0.026 0.022 0.026 0.022 0.026 0.022 0.026
{ω7} 0.020 0.030 0.018 0.030 0.018 0.030 0.018 0.030
{ω8} 0.016 0.034 0.014 0.034 0.014 0.034 0.014 0.032
{ω9} 0.012 0.040 0.010 0.040 0.012 0.040 0.010 0.028
{ω10} 0.800 0.006 0.800 0.800 0.006 0.800
Ω10 0.004 0.004 0.004 0.004

Thus we have a couple of similar BFs, one without some singleton, which is
counter-example and the other with all singletons (positive bbms for all elements of
the frame of discernment), which is not a counterexample. The same we have both
for general qBBFs and BBFs. Note that there are also extensions of mi−0,mii−0 to
qBBFs which are not counter-examples either ’with 0’ or ’without 0’, nevertheless
these are not interesting for us w.r.t. to Hypothesis 6.

7 Open Problems

There are plenty of open problems related to this topic, especially (i) to decide
whether the hypotheses from the previous section hold true or not, and (ii) for
which sets of belief functions inequality (∗) holds true and for which does not.

In the context of Lemma 2 it seems to be interesting to decide, whether the
inequality holds also for any couple of consonant BFs. Nevertheless, this is not
the case, as in both Examples 1 and 2 both BFs are consonant and therefore we
already have counter-examples on Ω3 and Ω5.

A completely different question we did not study so far is whether inequality
(∗) holds for separable support belief functions (i.e. Dempster’s ⊕-sum of simple
support functions). Note that it has a relation to statement (ii) in Corollary 3.

Because the inequality Conf ≤ m ∩⃝(∅) holds only for some types of BFs, we
have to weaken the inequality for more general validity. Perspective/prospective
seems to be question of validity Conf ≤ ( ∩⃝k

1(m1 ∩⃝m2))(∅) for a convenient k.
( ∩⃝k

1(m1 ∩⃝m2))(∅) is related to the hidden conflicts and looking for full non-conflict-
ness [8, 9]. We can see that (∗) is this inequality for k = 1. Due to a new parameter
k in the inequality this is rather complex challenging topic for our future research.
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8 Computation
We have performed many computational experiments to find a counterexample to
(∗) for different classes of BFs on different Ωn. To do so, we have used R-Project, a
free tool for statistical computing and we have implemented all procedures needed
to calculate various conflicts of BFs. BFs are represented using an object based on
several database tables and we have employed the effective implementation of the
join operation for relational databases.

The plan was to systematically search the whole space of BFs of a certain class.
In our search for counterexamples we took BFs being on a grid defined using a
fixed step for bbm values taken in consideration (e.g. 0.1). Then we generated all
BFs with bbms which are multiples of the step. As an example of such BFs you
can take m′ and m′′ from Example 1.

The idea of the grid is quite simple. In the case of n = 3 and general BFs you
have 8 possible focal elements, i.e. up to 8 bbms. Assume step 0.1. Then we can
divide the total belief mass of 1 into 10 pieces. Find all sets of integers that sum
to 10 and limit your search to sets of cardinality 8 and less. Then, to find all BFs
with bbms divisible by the step, you just take all permutations of respective sets
of integers multiplied by the step and use them as bbms.

Because of the exponential increase in the number of focal elements and the
number of permutations, the amount of different BFs is overwhelming even for
small n regardless of the step. We were only able to go through a few classes.
In the case of the other classes, we will have to run through the grid at random.
Another method, which we successfully applied in Examples 5 and 6, is to identify
an area with a chance of success and pass it with another step.

To illustrate the calculations, let us provide several numbers. Note that in case
of n = 3 and step 0.1, there are 8.046 general BFs and 552 qBBFs. By decreasing
the step to 0.01 we have 1011 BFs and 8.037 qBBFs. Note that out of these 64 ·106
combinations of qBBFs (n = 3, step: 0.01) 706.751 represent counterexamples.

In case of n = 4, there are 5 · 1013 general BFs with step 0.1 and 3.600 qBBFs.
In case of qBBFs we can decrease the step to 0.025 (136.824 qBBFs), 0.02 (318.269
qBBFs), or 0.01 (4.598.126 qBBFs).

In case of n = 5 and step 0.1 there are 1037 general BFs and 4.200 qBBFs.

9 Conclusion
Motivated by appearing of counter-examples against general validity of inequality
Conf ≤ m ∩⃝(∅), relations of value of conflict between belief functions based on
non-conflicting parts Conf and of sum of all multiples of disjoint focal elements of
belief functions in question m ∩⃝(∅) have been analysed.

It has been proven that inequality Conf ≤ m ∩⃝(∅) holds for any couple of BFs
on Ω2, it was partially proved that it holds for any quasi Bayesian BFs on Ω3 and
hypothesis that the inequality holds for any couple of quasi Bayesian BFs with

A Step towards Upper-bound of Conflict of Belief Functions based on Non-conflicting Parts

38



positive values for all singletons on any finite frame Ωn was formulated. Further,
it was proven that it holds for any couple of consonant BFs on any finite frame Ωn.

Besides it was shown, where the inequality does not holds: e.g. general BFs,
on Ω3, quasi Bayesian BFs without some singleton on Ω4, etc. Several still open
issues were formulated.

This study enables a better understanding of the measure of conflict Conf and
to understanding of conflicts between belief function in general.

Acknowledgement
This work was supported by grant GAČR 19-04579S.

References
[1] R. G. Almond. Graphical Belief Modeling. CRC Press, Inc., Boca Raton, FL,

USA, 1st edition, 1995.

[2] T. Burger. Geometric views on conflicting mass functions: From distances to
angles. International Journal of Approximate Reasoning, 70:36–50, 2016.

[3] B. R. Cobb and P. P. Shenoy. On the plausibility transformation method for
translating belief function models to probability models. International journal
of approximate reasoning, 41(3):314–330, 2006.

[4] M. Daniel. Probabilistic transformations of belief functions. In L. Godo, editor,
ECSQARU 2005, volume 3571 of LNCS (LNAI), pages 539–551. Springer,
Heidelberg, 2005.

[5] M. Daniel. Conflicts within and between belief functions. In E. Hüllermeier,
R. Kruse, and F. Hoffmann, editors, IPMU 2010, volume 6178 of LNCS, pages
696–705. Springer, Berlin, Heidelberg, 2010.

[6] M. Daniel. Properties of plausibility conflict of belief functions. In
L. Rutkowski, editor, ICAISC 2013, volume 7894 of LNCS, pages 235–246,
Heidelberg, 2013. Springer.

[7] M. Daniel. Conflict between belief functions: a new measure based on their
non-conflicting parts. In F. Cuzzolin, editor, BELIEF 2014, volume 8764 of
LNCS, pages 321–330, Cham, 2014. Springer.

[8] M. Daniel and V. Kratochvíl. Hidden auto-conflict in the theory of belief
functions. In Proceedings of the 20th Czech-Japan Seminar on Data Analysis
and Decision Making under Uncertainty, pages 34–45, 2017.

[9] M. Daniel and V. Kratochvíl. Hidden conflict of belief functions. In Proceedings
of the 21th Czech-Japan Seminar on Data Analysis and Decision Making under
Uncertainty, pages 31–40, 2018.

Milan Daniel, Václav Kratochvíl

39



[10] M. Daniel and V. Kratochvíl. Belief functions and degrees of non-conflictness.
In K.-I. G. and O. Z., editors, Proceedings of ECSQUARU 2019, volume 11726
of LNCS (LNAI), pages 125–136, Cham, 2019. Springer.

[11] M. Daniel and V. Kratochvíl. On hidden conflict of belief functions. In Proceed-
ings of EUSFLAT 2019, volume 1 of Atlantis Studies in Uncertainty Modelling,
volume 1, pages 504–511. Atlantis Press, 2019.

[12] S. Destercke and T. Burger. Toward an axiomatic definition of conflict between
belief functions. IEEE transactions on cybernetics, 43(2):585–596, 2013.

[13] E. Lefèvre and Z. Elouedi. How to preserve the conflict as an alarm in the
combination of belief functions? Decision Support Systems, 56:326–333, 2013.

[14] W. Liu. Analyzing the degree of conflict among belief functions. Artificial
Intelligence, 170(11):909–924, 2006.

[15] A. Martin. About conflict in the theory of belief functions. In Belief Functions:
Theory and Applications, pages 161–168. Springer, Heidelberg, 2012.

[16] J. Schubert. The internal conflict of a belief function. In Belief Functions:
Theory and Applications, pages 169–177. Springer, Heidelberg, 2012.

[17] G. Shafer. A mathematical theory of evidence, volume 1. Princeton university
press Princeton, 1976.

[18] P. Smets. Decision making in the tbm: the necessity of the pignistic trans-
formation. International Journal of Approximate Reasoning, 38(2):133–147,
2005.

[19] P. Smets. Analyzing the combination of conflicting belief functions. Informa-
tion fusion, 8(4):387–412, 2007.

A Step towards Upper-bound of Conflict of Belief Functions based on Non-conflicting Parts

40



On the crossing number of join of

graph of order six with path

Emı́lia Draženská
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Abstract

The crossing number, cr(G), of a simple graph G is the minimum number
of edge crossings in a good drawing of G in the plane. In general, compute the
crossing number for a given graph is a very difficult problem. The crossing
numbers of a few families of graphs are known. One of them are join products
of special graphs. Exact values of crossing numbers of the join products of
graph G with discrete graph Dn, path Pn or cycle Cn are known for several
graphs G. In the paper, we extend known results concerning crossing numbers
for join of 6–vertex graph with path Pn.

1 Introduction

Let the graph G is a simple, undirected and connected with vertex set V and edge
set E. A mapping that assings a point in the plane for each vertex and for each
edge a continuous curve between its two endpoints is called a drawing D of the
graph G = (V,E). A crossing of two edges is the intersection of the interiors of the
corresponding curves. The crossing number, cr(G), of a graph G is the minimum
number of pairwise intersections of edges in any drawing of G in the plane. The
drawing with a minimum number of crossings must be a good drawing, that means,
each two edges have at most one point in common, which is either a commom
end-vertex or a crossing.

Garey and Johnson proved [1] that computing the crossing number of a graph
is an NP-complete problem. The exact values of crossings numbers are known for
several special classes of graphs. One of them is a join products of two graphs. The
join product G1 + G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is obtained
from the vertex-disjoint copies of G1 and G2 by adding all edges between V (G1)
and V (G2). For |V (G1)| = m and |V (G2)| = n, the edge set of G1 + G2 is the
union of disjoint edge sets of the graphs G1, G2, and the complete bipartite graph
Km,n. Let Dn consist on n isolated vertices, let Pn be the paths with n vertices
and Cn be the cycle with n vertices. In the proofs of the paper, we will often use
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the term “region” also in nonplanar drawings. In this case, crossings are considered
to be vertices of the “map”.

The exact values for crossing numbers of G+Pn and G+Cn for all graphs G of
order at most four are given in [7], and the crossing numbers of the graphs G+Dn,
G + Pn, and G + Cn are also known for some graphs G of order five and six, see
[16], [17], [5], [4], [8], [6], [9], [10], [11], [13], [12], and [14].

In this paper we extend these results by giving the exact values of the crossing
numbers for join products for a special two graphs on six vertices with paths Pn.

Let D be a good drawing of the graph G. We denote the number of crossings
in D by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G. We denote the
number of crossings between edges of Gi and edges of Gj by crD(Gi, Gj), and the
number of crossings among edges of Gi in D by crD(Gi).
In the paper, is used the Kleitman’s result published in [3] on crossing numbers of
complete bipartite graphs. More precisely, he proved that

cr(Km,n) =
⌊m

2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, if m ≤ 6. (1)

2 The crossing number of G+ Pn

Let the graph G and its vertex notation is a graph in Figure 1(a). So, the graph
G consists of one 6–cycle, C6(G), and one additional edge which together with
the edges of C6(G) creates two 4–cycles. We consider the join product of G with
the discrete graph Dn. The graph G + Dn consists of one copy of the graph G
and of n vertices t1, t2, . . . , tn, where avery vertex ti, i = 1, 2, . . . , n, is adjacent
to every vertex of G. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the six
edges incident with the vertex ti. Thus, T 1 ∪ T 2 ∪ · · · ∪ Tn is isomorphic with the
complete bipartite graph K6,n and

G+Dn = G ∪K6,n = G ∪
(

n⋃

i=1

T i

)
. (2)

The graph G + Pn contains the graph G + Dn and n − 1 edges {ti, ti+1} for
i = 1, 2, . . . , n− 1.

Let D be a good drawing of the graph G+Pn. The rotation rotD(ti) of a vertex
ti in the drawing D is the cyclic permutation that records the (cyclic) counter-
clockwise order in which the edges leave ti, see [2]. We use the notation (123456) if
the counter-clockwise order the edges incident with the vertex ti is tiv1, tiv2, tiv3,
tiv4, tiv5, and tiv6. We emphasize that a rotation is a cyclic permutation. For
i, j ∈ {1, 2, . . . , n}, i 6= j, every subgraph T i∪T j of the graph G+Pn is isomorphic
with the graph K6,2. We will study the minimum number of crossings between the
edges of T i and the edges of T j in a subgraph T i ∪ T j induced in D of G + Pn

depending on the rotations rotD(ti) and rotD(tj).
D. R. Woodall [18] published that in the subdrawing of T i ∪ T j induced by D

is cr(T i, T j) ≥ 6 if rotD(ti) = rotD(tj). And, if Q(rotD(ti), rotD(tj)) denotes the

On the crossing number of join of graph of order six with path

42



minimum number of interchanges of adjacent elements of rotD(ti) required to pro-
duce the inverse cyclic permutation of rotD(tj), then hold Q(rotD(ti), rotD(tj)) ≤
crD(T i, T j).

We will separate the subgraphs T i for i, j ∈ {1, 2, . . . , n} into three subsets.
First, RD = {T i : crD(G,T i) = 0}. Next, SD = {T i : crD(G,T i) = 1}. And the
last subset contains every T i which crosses G at least twice in D.

Let F i denotes the subgraph G ∪ T i for T i ∈ RD, where i ∈ {1, . . . , n}. Thus,
any F i is represented by rotD(ti). All cyclic permutations of six elements can be
generated using the algorithm published in [15].

We are interested only in such drawings of G in which there is possibility to
have T i ∈ RD. There is only one drawing of G without crossing shown in Figure
1(a). Assume a drawing D of the graph G + Pn in which the edges of G does
not cross each other. We can choose the vertex notation of the graph G in such a
way as shown in Figure 1(a). So, in D there is the only possible configuration of
F i (see Figure 2(a)). There is only one drawing of the graph G with one crossing
among its edges and with a possibility of an existence of a subgraph T i which do
not cross the edges of G. Assume now a good drawing D of the graph G + Pn in
which the edges of G cross once as shown in Figure 1(b). And, the last possibility
is a drawing of the graph G with at least two crossings on edges of G. If there is
T i ∈ RD, we have several such a drawings of G.

v
5

v
1

v
2

v
4v

3

v
6

v
5

v
1

v
2

v
4 v

3

v
6

(a) (b)

Figure 1: The graph G with the vertex notations
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Figure 2: Drawing of the only possible configuration of the subgraph F i

Theorem 1 cr(G+ Pn) = 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
+ 1 for n ≥ 2.

Proof:
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Figure 3: Drawing of G+ Pn

There is a drawing of G+Pn (see Figure 3) with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+2
⌊
n
2

⌋
+1 crossings.

Thus, we have cr(G+ Pn) ≤ 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
+1. We prove the reverse inequal-

ity by induction on n. Using algorithm on the website http://crossings.uos.de/,
we can prove that the result is true for n = 2. Suppose now that, for n ≥ 3, there
is a drawing D with

crD(G+ Pn) < 6
⌊n

2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
+ 1, (3)

and let

crD(G+ Pm) ≥ 6
⌊m

2

⌋⌊m− 1

2

⌋
+ 2
⌊m

2

⌋
+ 1 for any integer m < n. (4)

As the graph G + Dn is a subgraph of the graph G + Pn and crD(G + Dn) =
6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
(see [10]), then we assume that crD(G+Pn) = 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+

2
⌊
n
2

⌋
. Thus, no edge of the path Pn = (t1, t2, . . . , tn) is crossed in D.

First, we prove that the considered drawing D must be antipodal-free, that
is crD(T i, T j) 6= 0 for all i, j. As a contradiction suppose that, without loss of
generality, crD(Tn−1, Tn) = 0. Since the graph G ∪ Tn−1 ∪ Tn contains K4,3 as a
subgraph, and cr(K4,3) = 2, we have 2 ≤ crD(G,Tn−1 ∪ Tn).

The fact that cr(K6,3) = 6 implies that any T k, k = 1, 2, . . . , n − 2, crosses
Tn−1 ∪ Tn at least six times. So, for the number of crossings, in D, we have

crD(G+ Pn) = crD (G+ Pn−2) + crD(Tn−1 ∪ Tn) + crD(K6,n−2, T
n−1 ∪ Tn) +

+ crD(G,Tn−1 ∪ Tn) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 2
⌊n− 2

2

⌋
+ 1 + 6(n− 2) + 2 =

= 6
⌊n

2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
+ 1.

It contradicts that D is not antipodal-free.
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Moreover, our assumption on D together with cr(K6,n) = 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
implies

that
crD(G) + crD(G,K6,n) ≤ 2

⌊n
2

⌋
.

Let us denote r = |RD| and s = |SD|. Then,

crD(G) + 0r + 1s+ 2(n− r − s) ≤ 2
⌊n

2

⌋
.

Thus, 2r + s ≥ 2n− 2
⌊
n
2

⌋
. We will fixed one subgraph T i.

Case 1: crD(G) = 0.
We can choose the vertex notation of the graph as shown in Figure 1(a). At

first, we prove, that n 6= s. If n = s, it means that for every T i ∈ SD we have two
possibilities.

(i) For every i, j, i 6= j : crD(T i, T j) ≥ 3.
Without lost of generality let Tn ∈ SD and let us fix G ∪ Tn. We have

cr(G+ Pn) ≥ crD(K6,n−1) + crD(K6,n−1, G ∪ Tn) + crD(G ∪ Tn) ≥

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(n− 1) + 1 > 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

(ii) There is T i, T j ∈ SD, i 6= j: crD(T i, T j) = 2. Note, that there is not exist
T i, T j ∈ SD with crD(T i, T j) = 1.

If there exists also such T k ∈ SD that for every T l ∈ SD, l 6= k: crD(T k, T l) ≥ 3,
we fixed G ∪ T k. And the same inequalities as in previous case (i) hold.

If there is not such T k ∈ SD, without lost of generality, let crD(Tn−1, Tn) =
2 and let us fix G ∪ Tn−1 ∪ Tn. In this step we are interested in all possible
configurations of the subgraph F i for some T i ∈ SD. Using cyclic permutation it
is possible to prove crD(G ∪ Tn−1 ∪ Tn, T i) ≥ 7 for every T i. So, we have

cr(G+Pn) ≥ crD(K6,n−2) + crD(K6,n−2, G∪ Tn ∪ Tn−1) + crD(G∪ Tn ∪ Tn−1) ≥

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 7(n− 2) + 3 > 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

Thus, n > s. That implies r ≥ 1. We assume that Tn ∈ RD with Fn having the
only possible configuration. Every region of drawing of Fn, different to quadrangu-
lar region, contains exactly 2 vertices of G. The vertex tj of T j can not be placed
in quadrangular region, because no edge of Pn is crossed. It implies cr(Fn, T j) ≥ 4
for every T j . Specially, if T j ∈ RD, then we apply the fact that cr(T i, T j) ≥ 6 if
rotD(ti) = rotD(tj).

We will discuss two possibilities over congruence n modulo 2.
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• Let n be even. By fixing the graph Fn, we have

cr(G+ Pn) ≥ crD(K6,n−1) + crD(K6,n−1, G ∪ Tn) + crD(G ∪ Tn) ≥

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 6(r − 1) + 4(n− r) + 0 =

= 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4n+ 2r − 6 > 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

• Let n be odd. By fixing the subgraph Tn,

cr(G+ Pn) ≥ crD(G+ Pn−1) + crD(G+ Pn−1, T
n) ≥

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 2
⌊n− 1

2

⌋
+ 6(r − 1) + 3s+ 1(n− r − s) + 0 =

= 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 2
⌊n− 1

2

⌋
+ n+ 2(2r + s) + r − 6 ≥

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 2
⌊n− 1

2

⌋
+ n+ 2

(
2n− 2

⌊n
2

⌋)
− 5 >

> 6
⌊n

2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

Case 2: crD(G) = 1.
It means that r ≥ 1. Without lost of generality, we assume that Tn ∈ RD. We

can choose the vertex notation of the graph as shown in Figure 1(b). As there is the
only drawing of the graph G with a crossing and there is also the only configuration
of Fn, it is we get

cr(G+ Pn) ≥ crD(K6,n−1) + crD(K6,n−1, G ∪ Tn) + crD(G ∪ Tn) ≥

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 6(n− 1) + 1 > 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

Case 3: crD(G) ≥ 2.
There are several drawings of G with at least two crossings among its edges.

Without lost of generality, we assume that Tn ∈ RD. For every drawing of G with
arbitrary vertex notation, there is a configuration of Fn uniquelly determined. We
can apply the same idea as in previous case for all possible drawings of the graph
G.

Thus, in every case, the crossing number of the graph G + Pn is at least

6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
+ 1. It completes the proof.
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[11] M. Staš. Determining crossing numbers of graphs of order six using cyclic
permutations. Bull. Aust. Math. Soc., 98:353–362, 2018.
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1 Introduction

Normalized interval vectors [1, 2] are often used in decision analysis because they
show imprecise probabilities and imprecise weights under the condition that the
sum of components is the unity (see [3, 4]). They are different from the sets of
normalized vectors obtained from the conventional interval vectors through nor-
malization. Their information about probabilities or weights is more imprecise
than that of belief functions. In this paper, we show that a normalized interval
vector is seen as a set of belief functions [5, 6, 7]. By the sum of center values of
the normalized interval vector, we obtain two kinds of belief function sets: a set
of normalized belief functions and a set of variant belief functions with a special
condition.

2 Normalized Interval Vectors & Belief Functions

An interval vector W = (W1,W2, . . . ,Wn) [1, 2] is called a normalized interval
vector if and only if it satisfies

wR
i ≥ wL

i ≥ 0, wR
i +

∑

j∈N\i
wL

j ≤ 1, wL
i +

∑

j∈N\i
wR

j ≥ 1, i ∈ N, (1)

where N = {1, 2, . . . , n}, Wi = [wL
i , w

R
i ], i ∈ N .

A belief function Bel : 2N → [0, 1] is characterized by a basic probability
assignment (BPA) m : 2N → [0, 1] satisfying the following properties (see [5, 6, 7]):

m(A) ∈ [0, 1], A ∈ 2N ,
∑

A∈2N

m(A) = 1. (2)
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We consider a special m satsifying m(∅) = max(0, 2−∑
i∈N (m({i})+∑

A∋i m(A)).
The belief function Bel and plausibility function Pl : 2N → [0, 1] are defined by

Bel(A) =
∑

B⊆A

m(B)−min


m(∅),

∑

|B\A|≥2

(|B \A| − 1)m(B)


 ,

P l(A) =
∑

B∩A̸=∅
m(B) + min


m(∅),

∑

i∈A

∑

B∋i, |B|≥2

m(B)−
∑

B∩A ̸=∅, |B|≥2

m(B)


 .

(3)
Bel(A) shows the lower probability of event A while Pl(A) show the upper prob-
ability of event A. The treatment of m(∅) > 0 is special in this model: we as-
sign an additional probability mass m+(i|B) to each i ∈ B and |B| ≥ 2 from
m(∅) as far as m+(i|B) satisfy 0 ≤ m+(i|B) ≤ m(B), i ∈ B and |B| ≥ 2,∑

i∈B m+(i|B) ≤ (|B| − 1)m(B), |B| ≥ 2 and
∑

i∈N

∑
|B|≥2 m

+(i|B) = m(∅).
The BPA m with m(∅) = 2−∑

i∈N (m({i}) +∑
A∋i m(A) ≥ 0 can be obtained

from a BPA m′ with m′(∅) = 0. Namely, BPA m is obtained by

m({oi}) = m′({oi}) for oi ∈ Ω,

m(A) =
1

|A| − 1
m′(A) for A ⊆ Ω such that |A| ≥ 2 and

m(∅) =
∑

A⊆Ω: |A|≥3

|A| − 2

|A| − 1
m′(A).

(4)

On the other hand, from m with m(∅) = 2−∑
i∈N (m({i}) +∑

A∋i m(A) ≥ 0, the
corresponding BPA m′ with m′(∅) = 0 is obtained by

m′({oi}) = m({oi}) for oi ∈ Ω,
m′(A) = (|A| − 1)m(A) for A ⊆ Ω such that |A| ≥ 2 and m′(∅) = 0.

(5)

Therefore, we have a one to one corespondence between a BPA m with m(∅) =
2 − ∑

i∈N (m({i}) + ∑
A∋i m(A) ≥ 0 and a BPA m′ with m′(∅) = 0. When 2 −∑

i∈N (m({i}) +∑
A∋i m(A) = 0, BPA m is a fixed point in this correspondence.

3 Main Results

We obtain the following theorems.

Theorem 1. Let W be a normalized interval vector satisfying
∑

i∈N (wL
i +wR

i ) ≥
2, there exists a BPA m : 2N → [0, 1] such that

m(∅) = 0, Bel({i}) = wL
i , P l({i}) = wR

i , i ∈ N. (6)

Theorem 2. Let W be a normalized interval vector satisfying
∑

i∈N (wL
i +wR

i ) ≤
2, there exists a BPA m : 2N → [0, 1] such that

m(∅) = 2−
∑

i∈N

(wL
i + wR

i ) ≥ 0, Bel({i}) = wL
i , P l({i}) = wR

i . (7)
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Theorem 3. Let m : 2N → [0, 1] be a BPA with m(∅) = 0. Then, the interval
vector W = (W1,W2, . . . ,Wn) defined by Wi = [wL

i , w
R
i ] = [Bel({i}), P l({i})],

i ∈ N is a normalized interval vector satisfying
∑

i∈N (wL
i + wR

i ) ≥ 2.

Theorem 4. Letm : 2N → [0, 1] be a BPA satsifyingm(∅) = 2−∑
i∈N (Bel({i})+

Pl({i})) ≥ 0. Then, the interval vector W = (W1,W2, . . . ,Wn) defined by Wi =
[wL

i , w
R
i ] = [Bell({i}), P l({i})], i ∈ N is a normalized interval vector satisfying∑

i∈N (wL
i + wR

i ) ≤ 2.

Theorem 5. Let W = (W1,W2, . . . ,Wn)
T be a normalized interval vector sat-

sifying
∑

i∈N (wL
i + wR

i ) ≥ 2. For any vector w = (w1, w2, . . . , wn)
T satisfying

wi ∈ Wi and
∑

i∈N wi = 1, there exists a BPA m : 2N → [0, 1] satisfying m(∅) = 0,∑
i∈B mi(B) = m(B), B ⊆ N ,

∑
B∋i mi(B) = wi, i ∈ N , mi(B) ≥ 0, i ∈ N ,

B ⊆ N and Wi = [wL
i , w

R
i ] = [Bel({i}), P l({i})], i ∈ N .

Theorem 6. Let W = (W1,W2, . . . ,Wn)
T be a normalized interval vector sat-

sifying
∑

i∈N (wL
i + wR

i ) ≤ 2. For any vector w = (w1, w2, . . . , wn)
T satisfying

wi ∈ Wi and
∑

i∈N wi = 1, there exists a BPA m : 2N → [0, 1] satisfying m(∅) =
2 − ∑

i∈N (wL
i + wR

i ),
∑

i∈B mi(B) = m(B), B ⊆ N ,
∑

B∋i mi(B) = wi, i ∈ N ,
mi(B) ≥ 0, i ∈ N , B ⊆ N and Wi = [wL

i , w
R
i ] = [Bel({i}), P l({i})], i ∈ N .

4 Concluding Remarks

In this paper, we investigated the relations between normalized interval vectors
and belief functions. It was shown that a normalized interval vector corresponds
to a set of belief functions. Corresponding to normalized interval vectors, two
kinds of belief functions should be considered: one is normalized one, i.e., belief
functions defined by a BPA m with m(∅) = 0 and the other is a variant, i.e., belief
functions defined by a BPA m with m(∅) = 2 −∑

i∈N (m({i}) +∑
A∋i m(A) ≥ 0.

We found a one to one correspondence between a normal belief function and a
variant belief function. As the result, a normalized interval vector is understood
as a set of normalized and variant belief functions whose belief and plausibility
function values of singleton with i-th elementary event are lower and upper bounds
of the i-th interval of the normalized interval vector, respectively. The normalized
condition in both normal and variant belief functions is well established. Therefore,
the results obtained in this paper support the appropriateness of the normalized
condition of normalized interval vectors.
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Abstract

In the literature, some experiments proving that human decision-makers
manifest an ambiguity aversion are described. In our knowledge, no one has
studied a possibility to measure the strength of this aversion and its stability
in time. The research, we have recently started to realize should find out
answers to these and similar questions. The goal of this paper is to present
some preliminary results to initiate a discussion that should help us to modify
either the process of data collection and/or the analysis of the collected data.

1 Introduction

One of the goals of the research project GAČR 19-06569S is to find out how to
construct normative models manifesting the same ambiguity aversion as human
decision-makers. This term is used when speaking about the behavior, which is
irrational if “rationality” means the behavior in agreement with the Savage’s pos-
tulates formulated in his famous book [10]. The term is connected with the fact
that human decision-makers do not like ignorance; they usually prefer uncertainty
connected with a random experiment to total ignorance. The difference will be clear
when describing the lotteries, which we use to test the behavior of experimental
persons.

One of the first authors who experimentally studied this phenomenon was Ells-
berg [4], and so it is not surprising that the behavior is often connected with the
term Ellsberg’s paradox . His experiments were often repeated [1, 5] but, in our
knowledge, nobody made the experiments to measure the strength of ambiguity
aversion. And this is why, during the first year of the above-mentioned project, we
realize several experiments, the results of which should help us to characterize the
concept of subjective ambiguity aversion. We want to find out to what extent we
can rely upon our starting assumptions:
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• In analogy to risk aversion, the ambiguity aversion is also a personal char-
acteristic; not all decision-makers are influenced by this phenomenon in the
same way.

• To some extent, it is possible to measure the strength of ambiguity aversion
for individual human decision-makers.

Nevertheless, even if the above-stated assumptions are not declined, currently no-
body knows to what extent the strength of the ambiguity aversion of a decision-
maker depends also on the type of a decision task, and to what extent it is stable in
time. All these are the open questions we are planning to study within the project
mentioned above. As the starting point of our experimental research, we have de-
signed the experiments, in which volunteers are asked to describe their behavior in
several situations.

All the considered situations are formulated in the form of lotteries, in which the
participants have a chance to win 100 CZK. At each of the situation, the content
of a lottery drum is partially described, and the participants are asked to decide
how much they are maximally willing to pay to be allowed to take part in the
specified lottery. Details from the organization of these experiments are described
in another paper presented at this conference. Here we just say that the following
14 situations are presented to experimental persons.

F1 The drawing urn contains 30 balls, five of each of the following colors: red,
black, yellow, white, green, and azure. How much are you maximally willing
to pay to take part in the lottery in which you win 100 CZK if the randomly
drawn ball is red?

F2 The drawing urn contains 30 balls, five of each of the following colors: red,
black, yellow, white, green, and azure. How much are you maximally willing
to pay to take part in the lottery in which you choose a color and get 100
CZK if the randomly drawn ball is of the color of your choice?

I1 The drawing urn contains 30 balls, they may be of the following colors: red,
black, yellow, white, green, and azure. You know nothing more, you even
do not know how much colors are present in the urn. How much are you
maximally willing to pay to take part in the lottery in which you win 100
CZK if the randomly drawn ball is red?

I1 The drawing urn contains 30 balls, they may be of the following colors: red,
black, yellow, white, green, and azure. You know nothing more, you even
do not know how much colors are present in the urn. How much are you
maximally willing to pay to take part in the lottery in which you choose a
color and get 100 CZK if the randomly drawn ball is of the color of your
choice?

Rn This represents 8 lotteries for n= 5, 6, 7, . . ., 12. The drawing urn contains n
balls, each of which is either red, or black, or yellow, or white, or green, or

Preliminary Results from Experiments on the Behavior under Ambiguity
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azure. You know that one and only one of them is red, nothing more. You
even do not know how many colors are present in the urn. How much are
you maximally willing to pay to take part in the lottery in which you choose
a color and get 100 CZK if the randomly drawn ball is of the color of your
choice?

E1 The drawing urn contains 15 red, black and yellow balls, you know that exactly
5 of them are red, you do not know the proportion of the remaining black
and yellow balls. How much are you maximally willing to pay to take part
in the lottery in which you choose a color and get 100 CZK if the randomly
drawn ball has the color of your choice?

E2 The drawing urn contains 15 red, black and yellow balls, you know that exactly
5 of them are red, you do not know the proportion of the remaining black
and yellow balls. How much are you maximally willing to pay to take part
at the lottery in which you choose a color and get 100 CZK if the randomly
drawn ball is either yellow or of the color of your choice?

2 Uncertain Knowledge representation

Considering the situations F1 and F2, the knowledge can fully be described by a
uniform probability distribution. Denoting the corresponding state space (i.e., a
set of possible outcomes of a random draw) Ω = {red, black, white, yellow, green,
azure} (Ω = {r, b, w, y, g, a} for short), for the uniform probability distribution
Pu(r) = Pu(b) =, . . . , Pu(a) = 1

6 . Notice that, due to additivity of probabilities,
we also know (for example) that Pu({r, g}) = 1

3 , and Pu({b, y, a}) = 1
2 . Generally,

for a ⊆ Ω, Pu(a) = |a|
6 . It is also clear that from the situations introduced in

the previous section, only the situations F1 and F2 can fully be described by
probability distributions. For the description of the remaining situations we have
to use another theoretical instrument.

2.1 Belief Functions

Consider the situation Rn describing One-red-ball example with n balls in a draw-
ing drum. In this case we know only the probability P%,n(r) = 1

n . We do not know
the probabilities of other colors. But, again thanks to additivity of probability, we
know that P%,n({b, w, y, g, a}) = P%,n(Ω\{r}) = 1− 1

n . And this is the information
that can be used to define a belief function. It is the information, which allows us
to define the basic notion from this theory, so called basic probability assignment .

Since there is abundant literature on belief function theory (e.g., [11, 3, 12], and
the papers introducing the models discussed in this paper [9, 8]), we presume that
the reader is familiar with at least the foundations of this approach. Therefore, we
introduce just the notation used in this paper.
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The fundamental notion is that of a basic probability assignment (bpa), which
describes all the information about the considered situation at our disposal. It is
a function1 m : 2Ω → [0, 1], such that

∑
a∈2Ω m(a) = 1 and m(∅) = 0.

For bpa m, a ∈ 2Ω is said to be a focal element of m if m(a) > 0. In what
follows we will consider the following two special classes of bpa’s representing the
extreme situations:

• m is said to be vacuous if m(Ω) = 1, i.e., m has only one focal element, Ω. A
vacuous bpa is denoted by mι. It represents total ignorance, i.e., it represents
the situations I1 and I2.

• m is said to be Bayesian, if all its focal elements are singletons, i.e., for
Bayesian bpa m, m(a) > 0 implies |a| = 1. Bayesian bpa’s represent ex-
actly the same knowledge as probability functions. As all focal elements of a
Bayesian bpa m are singletons, we can define probability distribution Pm for
Ω such that

Pm(x) = m({x}) (1)

for all x ∈ Ω. Thus, Bayesian bpa’s represent in our examples situations F1
and F2.

Exactly the same knowledge that is expressed by a bpa m can also be expressed
by a belief function, and by plausibility function.

Belm(a) =
∑

b∈2Ω:b⊆a
m(b). (2)

Plm(a) =
∑

b∈2Ω:b∩a6=∅
m(b). (3)

In this paper we take advantage of the fact that for each bpa there exists a
credal set, which is a convex set of probability distributions P on Ω defined as
follows (P denotes the set of all probability distributions on Ω):

P(m) =

{
P ∈ P :

∑

x∈a
P (x) ≥ Belm(a) for ∀a ∈ 2Ω

}
.

Notice that Pm defined by Equation (1) for a Bayesian bpa m is such that P(m) =
{Pm}, and that P(mι) = P. From Equations (2) and (3), it can easily be deduced
that for all P ∈ P(m)

Belm(a) ≤ P (a) ≤ Plm(a),

for all a ∈ 2Ω. Thus, if Bel(a) = Pl(a) then we are sure that the probability of
a equals Bel(a). Otherwise, the larger the difference Pl(a) − Bel(a), the more
uncertain we are about the value of the probability of a. Using the terminology

1As usually, 2Ω denote a set of all subsets of Ω.

Preliminary Results from Experiments on the Behavior under Ambiguity

56



of Srivastava [15], the greater this difference, the more ambiguity one has for the
event (set of states) a.

The last notion we need in this paper is that of a famous pignistic trans-
form, which was introduced in [16] and for decision making strongly advocated
by Philippe Smets [13, 14]):

Bet Pm(x) =
∑

a∈2Ω:x∈a

m(a)

|a| . (4)

Notice, it defines for each bpa m a probability distribution, which is from the
corresponding credal set P(m).

2.2 Measuring Strength of Ambiguity

The proposed way of measuring the strength of individual ambiguity aversion is
based on the following mental model.

Consider situations I1 and F1 (or equivalently I2 and F2). Usually (and it
is confirmed also in our experiments) people are willing to pay more to take part
in the lottery F1 than in the lottery I1. This well known, seemingly paradoxical
phenomenon, can hardly be explained by different subjective utility functions or
by different subjective probability distributions. To explain this fact, we accepted
a hypothesis that humans do not use their personal probability distributions but
just capacity functions that do not sum up to one [6, 17]. Roughly speaking,
the subjective probability of drawing a red ball is 1

6 in the case that the person
knows that the number of balls of all colors are the same in the drum. However,
the respective “subjective probability” in the case of lack of knowledge is ε < 1

6 .
The lack of knowledge psychologically decreases the subjective chance of drawing
the selected color – it decreases the subjective chance of success. Thus, while we
can accept that in situation F2 the decision-maker considers that the probabilities
of individual colors are 1

6 ,
1
6 , . . . ,

1
6 , in situation I2 these “subjective probabilities”

are only ε, ε, . . . , ε. Assuming this decrease is linear with the subjective strength of
ambiguity, we can measure it by a personal coefficient of ambiguity α, which can
be expressed, in case that the person is willing to pay a CZK in situation F1 and
b CZK in situation I1, by the following simple formula

α =
a− b
a

. (5)

The higher this coefficient, the stronger the aversion. Namely, if the person is
willing to pay a CZK when her expected probability of success is 1

6 (situation F1),
then, in case of the decreased probability of success, which is (1−α) · 1

6 (in case of
I1), she is willing to pay

(1− α) · a = (1− a− b
a

) · a = a− (a− b) = b.
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Let us, now, show how this personal coefficient of ambiguity influences behavior
of an experimental decision maker in situations Rn.

As we have already said at the beginning of Section 2.1, in situation Rn, the
content of the drawing drum is described by bpa m%,n given as follows:

m%,n(a) =





1
n , if a = {r};
n−1
n , if a = {b, g, o, y, w};

0, otherwise,

and the corresponding belief function is Belm%,n
({x}) = 0 for all x ∈ {b, g, o, y, w},

and Belm%,n
({r}) = 1

n .
For the sake of simplicity let us accept here the Smets’ advice [14] saying that

for decision making one should compute the expected value using the pignistic
transform (for a survey of other probabilistic transforms see [2], and for more
discussion on the problem of a probabilistic transfrom selection see [7]), which is

Bet Pm%,n
(x) =

{
1
n , if x = r ;

n−1
5n , for x ∈ {b, g, o, y, w}.

If there were not for the ambiguity, we should use it directly for the computation
of the expected winnings. However, in our approach, we have to decrease it using
the personal coefficient of ambiguity aversion α. We have to decrease it at each
point of Ω proportionally to the strength of the ambiguity connected with the
considered point. Realize, that Bet Pm%,n

(x) − Belm%,n
({x}) ≥ 0, and equals 0

if and only if Plm%,n
(x) = Belm%,n

({x}). Thus, if Bet Pm%,n
(x) = Belm%,n

({x}),
we know the respective probability exactly, we do not have any ambiguity about
its value. However, the greater the difference Bet Pm%,n

(x) − Belm%,n
({x}), the

greater the ambiguity, and therefore we have to decrease probabilities Bet Pm%,n(x)
accordingly. After the decrease, they do not sum up to one, any more, and therefore
we call them reduced weights, and compute them according to the following formula:

rm,α(x) = (1− α)Bet Pm(x) + αBelm({x}). (6)

Thus, in situation Rn we get:

rm%,n,α(x) =

{
1
n , if x = r ;

(1− α) · n−1
5n , for x ∈ {b, g, o, y, w}.

Considering (for the sake of simplicity just two) gain functions gr(x), and gw(x)
(corresponding to betting on red and white color, respectively), the total subjective
rewards are as follows. When betting on red it equals

Rm%,n,α(r) =
1

n
gr(r) +

∑

x∈Ω:x 6=r

(1− α)(n− 1)

5n
gr(x) =

100

n
,
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Table 1: One Red Ball Example: Total subjective reward as a function of the
coefficient of ambiguity aversion α, and the number of balls n.

Rm%,n,α(w)
n Rm%,n,α(r) α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6

5 20.00 16.00 14.40 12.80 11.20 9.60 8.00 6.40

6 16.67 16.67 15.00 13.33 11.67 10.00 8.33 6.67

7 14.29 17.14 15.43 13.71 12.00 10.29 8.57 6.86

8 12.50 17.50 15.75 14.00 12.25 10.50 8.75 7.00

9 11.11 17.78 16.00 14.22 12.44 10.67 8.89 7.11

10 10.00 18.00 16.20 14.40 12.60 10.80 9.00 7.20

11 9.09 18.18 16.36 14.55 12.73 10.91 9.09 7.27
12 8.33 18.33 16.50 14.67 12.83 11.00 9.17 7.33

and analogously, for betting on white

Rm%,n,α(w) =
1

n
gw(r) +

∑

x∈Ω:x6=r

(1− α)(n− 1)

5n
gw(x) =

100(1− α)(n− 1)

5n
.

Some of the values of these functions are tabulated in Table 1. From this table
we see that, for example, a person with α = 0.4 should bet on red color for n ≤ 9,
because for these Rm%,n,α(r) > Rm%,n,α(x) (x 6= r), and bet on any other color for
n ≥ 10, because for these n, Rm%,n,α(r) ≤ Rm%,n,α(x) (x 6= r). This means that for
n ≤ 9, it is subjectively more advantageous to bet on the red color. In the next
section we say that the computed breaking point of such a person is 10.

We conclude this section mentioning that the description of the reduced function
for the Ellsberg’s examples is more complicated, because the gain function for the
situation E2 equals 100 for two values. In this case, we have to consider both
pignistic transform and reduced weights functions as mappings on 2Ω. Since we
do not necessarily need it in the rest of this paper, we do not describe it here and
refer the interested reader to [9, 8].

3 Results from Experiments

At the time of preparation of this paper, we have data from 49 respondents. Nat-
urally, not all the respondents undertook the task with the same responsibility. It
can be seen, among others, from the time, which they needed for finishing the task.
In average, the respondents needed 5 minutes, and 19 seconds, but two of them
finished the whole task in less then one minute (33 and 36 seconds). A similarly ir-
responsible attitude may be expected from the respondents who were willing to bet
just one CZK (or 0 CZK) for all twelve situations. Naturally, for correct statistical
data processing we should clean the data, and delete these obviously misleading
responses. Because we do not have enough data and we do not have criteria how
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to detect misleading data, for this preliminary discussion we keep all the data as
they were collected.

3.1 First Glance Comments

The reader certainly noticed that in situations F1 and F2 (in the same way as
in situations I1 and I2) the participants have the same information about the
content of the drawing drum. The difference is just that in F1 the winning color
is predetermined (red), while in F2 the participant determines the winning color
herself. We included both of them into the battery of the considered situations,
because we were not sure whether the participants would not suspect the organizers
to exclude red color from the drawing drum in case that the winning color (red)
is predetermined. This suspicious appeared false. The total amount of money bet
in I1 was 292 CZK, while in I2 they altogether bet 290 CZK (for F1 and F2 the
total amounts were 584 and 557 CZK, respectively).

The only observation, which surprised us at the first glance, concerns the be-
havior of the respondents in situations E1 and E2. The reader familiar with the
famous Elsberg’s paper [4] already noticed that these situations were designed to
repeat the Eslberg’s experiment. Let us briefly recollect his example.

In [4] (pp. 653–654), Ellesberg considers the situation with a drawing drum con-
taining 30 red balls and 60 black or yellow balls, the latter in unknown proportion.
With this drum, Ellsberg considers two experiments. The first experiment (which
we repeat as E1 in our study) finds out whether people prefer betting on red or
black ball, in the case they get the reward if the ball of the respective color is drawn
at random. According to his observations, “very frequent pattern of response is
that betting on red is preferred to betting on black”. This corresponds also with
our results, in which 36 (out of all 49) respondents bet on black color. In the second
Ellsberg’s experiment (simulated in our experiments as E2), a decision-maker can
bet on red and yellow, or on black and yellow. Again, the participant gets the
reward in case that the randomly drawn ball is of one of the selected colors. In this
case, the Ellsberg’s observation is that “ betting on black and yellow is preferred
to betting on red and yellow”, which is not in the agreement with the results we
have achieved. In our case, only 16 participants betted on black color.

3.2 Coefficient of Ambiguity α

Let us turn our attention to what can be said about the coefficient of ambiguity
on the basis of the considered preliminary data. As a starting point, we computed
this coefficient according to Formula (5) for all respondents. Having two pairs of
situations, we computed two such coefficients; one from the bets in situations F1
and I1, the other from bets in situations F2 and I2. The situations are submitted
to the participants in a random order, so it is quite interesting to what extent the
two coefficients differ from each other. The results are depicted in Figure 1. Each
point corresponds to one respondent (or several, if both coefficients coincide for
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Figure 1: Comparison of coefficients α computed from bets in F1, I1 and F2, I2.

several respondents), who took part in our experiments. The coordinates of each
point are the respective coefficients α. From this figure, we see several unexpected
facts. First, a few participants are exhibiting ambiguity inclination; their coefficient
of ambiguity α is negative. Second, there is not a small part of participants, who
manifest the ambiguity aversion just in one pair of situations (either in F1, I1, or in
F2, I2) – see the points on the axes. For only a small number of participants, both
coefficients are close to each other. Naturally, we have only a small amount of data
(some of which should be removed because of the reasons mentioned above), so we
cannot make any final conclusions. Therefore, in what follows, we consider just one
coefficient of ambiguity, which is computed from sum betted together in F1 and
F2, and the sum betted in I1 and I2 together. To simplify the next exposition, let
us call these coefficients the joint coefficients of ambiguity .

Going back to situations Rn, and assuming that the joint coefficient α expresses
the strength of the ambiguity aversion of the individual respondents, we can, using
Table 1, estimate the breaking point, i.e., the number of balls when the partici-
pants start betting on another color than the red one. We compute it for each
experimental person using her personal joint coefficient of ambiguity. Comparing
the computed breaking point with that, which can be read from data, we have
found out that for half of the respondents (more precisely, for 25 out of 49) the
breaking point computed from the models does not differ from the actual breaking
point by more than one.

It is worth mentioning that from three respondents with negative joint coeffi-
cient of ambiguity, one did not bet on red color even for n = 5, and another betted
on blue color already for n = 6. Thus, these two respondents displayed their ambi-
guity inclination even when reacting in situations Rn. Again, even this surprising
result must be taken with a great care because of a small amount and not cleaned
data.

Though the amount of money, the respondents are maximally willing to pay to
take part in lotteries, is not in the center of our interest, the question is whether
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Figure 2: Maximal and average bets on individual lotteries.

these numbers should be taken into consideration when evaluating the quality of
data. For example, is it meant seriously, if an experimental person claims that she
is willing to pay 5, 8, 10, 15, 20, 30, 40 CZK in situations R5, R6, . . ., R12, respec-
tively? Some irrational behavior of respondents can also be read from Figure 2, in
which each situation (lottery) is described with two boxes. Left-hand box corre-
sponds to those 25 respondents, for which the breaking point from lotteries R5 –
R12 does not differ from that computed using the joint coefficient α by more than
one. The right-hand box is computed from data of the rest of 24 respondents. The
lower edge of each box shows the average of the amounts the respondents are will-
ing to pay for taking part in the lottery, the upper edge shows the maximal value
(it does not have the sense to depict the minimum because of the above-mentioned
respondents stating that they are willing to pay just 1 CZK ( or 0 CZK) in all
situations).

4 Conclusions

In the paper, we described the experiments we are realizing to better understand
the concept of individual subjective ambiguity aversion. The analysis of first data
arises more questions than answers, and this is the main reason, why we present
this paper at the Czech-Japan seminar. We want to initiate the discussion that
should help us to find answers to the following questions:

• Is it possible to minimize the number of respondents replying the questions
without thinking?

• Should the data be cleaned before their processing?
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• If yes, what criteria should be used to clean the data?
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Abstract

An introduction to the winning qualification strategy to the Olympics
in badminton. The tournament planning strategy is based on many factors
which you cannot, as a player, influence such as tournament status, level of
players entering tournaments, results of the other players etc. Thus in this
paper, we introduce a generalized framework of IF-THEN fuzzy rules for the
tournament’s planning strategy. The framework is based on the results of
athletes who qualified for the latest Summer Olympic Games in Rio 2016.

1 Introduction

Planning is a crucial part of the sportsmen’s life. A well planned season delivers
success and improvement for the players. On the other hand a wrongly peaked sea-
son can negatively impact all the previous sportsman’s results and preparations.
During planning the key factor is to make the right decisions. Decision making
in sport is constantly developing areas especially with technological development.
Thus the scientific part of these decisions become increasingly important, because
that could be the only competitive advantage a sportsman has in comparison with
the others. Badminton has been a Summer Olympic Sport since 1992. Understand-
ing how to choose the tournaments which could be a qualification for the Olympics
is important for planning the season and pacing peak performance to achieve the
necessary results at these tournaments. This fuzzy inference model allows coaches
to visualise rules for planning tournaments based on nominated pairs.
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2 Literature review

Planning is in fact the root of the training procedure during the period which is
divided into smaller cycles. [1]. Planning is based on the concept of the peri-
odisation. Such scheduling increases the training organisation and provides the
possibility of order and scientifically conducting the periodisation [2]. There are
many occasions for studying decision making in sport. The article published by [5]
describes various situations where decisions are made. This article proposes the
idea of immediately determining the performance by fans and the media. There
are technical and tactical aspects which influence decision making.

The coaching style is one of the impacts as well. [4] highlights three character-
istics of decision-making in the field of sports. The decisions are naturalistic which
means that coaches and athletes naturally encounter the decision in a sporting
environment with some degree of task familiarity. The majority of the decisions
in the sport are dynamic despite some decisions being a lengthily process. The
author places emphasis on decisions which are often made on-line during the tasks
or intense timely stressful situations which it’s related to, but distinct from, the
dynamic nature of sporting decisions. Thus the element of variability must be re-
alised when studying sporting decisions. The article published by [6] introduced
a method to use fuzzy theory for annual planning. The plan is divided into sec-
tions (weekly cycles, tournaments, training camps, testing or review) and thus the
sections are easily managed while planning the season. Despite badmintons long
history in the world, there has not yet been any attempts to use fuzzy theory for
planning the tournament or the season in badminton.

3 Sport strategic decision

Planning tournaments has always been tricky. It seems the best option is to enter
a high number of tournaments, however this is not practical, because you need to
achieve great results on each tournament and for that you need a lot of training.
It is a tough question for the coach to plan a season to attain enough points and
get a good ranking especially when only the last 52 weeks are counted in the BWF
ranking system. Planning for the Olympics is in a four year cycle, but the key weeks
are the 52 qualification weeks involving a lot of tournaments. Thus the question
is which tournament to go for and which achievements have to be made to secure
one of the 16 spots for men’s/ women’s doubles.

3.1 Qualification system for the Tokyo 2020

The qualification system is known before the qualification’s cycle begins so the
players and coaches have enough time to plan. Comparing the Rio 2016 and Tokyo
2020 qualification system there are some changes thus the coaches will need to use
more science behind the planning qualification’s cycle. The qualification’s cycle
starts on 29 April 2019 and ends on 26 April 2020. The World Ranking Lists of
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30 April 2020 will be used to allocate the athletes places in Mens and Womens
Singles, and Mens, Womens and Mixed Doubles. There are four main constrains
the players/coaches have to be aware of. There is a total quota of 172 players
for badminton including one women’s/men’s spot for the host country. There is a
quota per NOC (National Olympic Committee). The NOC is allowed to have the
8 mens and 8 womens across all 5 events however the NOC can only put forward
a maximum of two pairs if both are within the top 8 of the World Ranking list
as of 30 April 2020. The last limitation is the maximum number of athletes per
event. There could be only 38 players in women’s/men’s singles and 16 pairs in
women’s/men’s/mixed doubles. Each event has to include at least one pair from
all five BWF Continental Confederations (Pan America, Oceania, Europe, Africa,
Asia), provided that the pairs are ranked within the top 50 on the cut-off date (30
April 2020).

The Badminton World Federation World (BWF) Ranking is the official ranking
of the BWF for badminton players who participate in tournaments sanctioned by
BWF. It is used to determine the qualification for the World Championships and
Summer Olympic Games as well as BWF World Tour tournaments. The BWF
World Ranking was introduced to determine the strength of the players. The
points awarded are based on the final results of each tournament participated in
for the past 52 weeks. The points awarded are based on the level and progress of
the tournament from each player/pair. If a player or pair has participated in 10
or fewer World Ranking tournaments, then the ranking is worked out by adding
the points won at the tournaments. If a player or pair has participated in 11
or more World Ranking tournaments, only the 10 highest points scored in the
tournaments during the 52-week period count towards their ranking. The highest
possible ranking points are 116,000.

3.2 Men’s/ Women’s double

Table 1 gives a summary of the ranking of each pair through the last 52 weeks.
The majority of players are from Asia, but at first glance there is no clear guidance
for the number of tournaments necessary for qualification.

4 IF-THEN rules approach

Using fuzzy logic allows us to build the fuzzy inference system. The case study
used Matlab for building the fuzzy inference system based on the Mamdani logic
using theory from [3]. IF-THEN rules for each pair were created using the data
from the qualification for Rio 2016. Even if the qualification’s system is slightly
altered then still the most important rules remain. The system is based on the
results of each tournament for 52 weeks. The model was created using the data
from Rio 2016 as illustrated in figure 1.

For the qualification period there were more than 100 tournaments. The whole
list of tournaments are listed on the BWF website. There are five events played
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Table 1: Men’s and Women’s qualified pairs

Qualif. BWF BWF National Earned Points Number of
position Ranking federation tournament

Men Women Men Women Men Women Men Women

1 1 1 Korea Japan 92,480 82,469 19 19

2 2 2 Indonesia Indonesia 75,380 78,649 19 20

3 3 3 China China 73,117 77,369 14 11

4 4 5 Korea Denmark 71,867 74,604 26 16

5 5 6 China Korea 70,915 72,097 19 23

6 7 7 Japan China 66,327 71,523 18 15

7 8 8 Denmark Korea 65,604 64,876 11 23

8 10 11 Russia Netherlands 58,073 53,705 21 23

9 14 14 Malaysia Indonesia 55,098 45,811 25 22

10 18 15 Taipei Bulgaria 47,151 45,157 21 25

11 19 17 England Thailand 45,754 44,336 22 24

12 20 21 Indonesia Malaysia 44,549 42,067 28 19

13 27 22 Poland Hong Kong 38,425 41,480 29 15

14 28 23 Germany Germany 37,096 40,070 28 28

15 35 26 USA England 31,867 37,540 29 30

16 46 29 Australia USA 26,104 36,001 18 27

at the Olympics - men’s single, women’s single, men’s double, women’s double and
mixed double. It is easier to qualify to the Olympics in the single events because 38
players were selected to compete compared with just 16 pairs in the double events.
Thus the case study is focusing only on the men’s and women’s double because it’
s harder to secure the Olympic place therefore the planning is more challenging.
The rules reflect the qualification’s criteria in particular the one stating that the 16
pairs in each doubles category must include pairs from all five BWF Continental
Confederations (Asia, Europe, Oceania, Pan America, Africa), provided that the
pairs are ranked within the top 50 by the cut-off date and the NOC has a maximum
of two pairs that are both within the top 8 of the World Ranking list.

How to make the Olympics: Tournament planning strategy using fuzzy inference system

68



Figure 1: Fuzzy inference model

4.1 Modeling in MATLAB SIMULING

The system is based on the results in the different categories (men’s and women’s
double) and the performance evaluation. The model for 16 pairs was created by the
Fuzzy Logic Designer in Matlab. The crucial decision was to select the right model.
There was either a model which included all tournaments during qualification or
a model which included different variables. For the first model mentioned we have
the data and therefore this model is more accurate albeit restricted. A benefit for
the second model was that it uses more variables and easier to use and adjust.
Thus the second model (figure 1) was created based on in-depth evaluation of both
models.

Figure 2: Rules define in fuzzy inference system

The variables in the rules are chosen based on their importance. The model in-
cludes four main variables - BWF ranking, number of tournaments, points reached,
confederations involved in the fuzzy inference system. It is hard to define which
BWF ranking the player will achieve and the fuzzy logic easily defines the ranking
through the season. The number of tournaments is hard to determine particularly
at the beginning of the qualification period. This model allows quick modification
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of the number of planned tournaments. Points reached is defined between low,
average, high and very high. The easiest variable to determine is confederation.
The qualified men’s and women’s double pairs show similar results. Some of the
sixteen rules are illustrated in the figure 2.

We can analyse the results from a different perspective using the surface viewer.
Figure 3 shows the most significant surface view determined after comparing all
surface analyses. As seen in figure 3 a different strategy is required for planning

Figure 3: Men’s and Women’s double surface view for points and number of tour-
naments

men’s and women’s double tournaments. Surface view showed that in men’s double
there is a greater chance to qualify if a player enters more tournaments whereas in
women’s double there isn’t the strong dependency between achieving the top qual-
ification and the number of tournaments entered. We can see from the model that
the same points are associated with the different qualification place and ranking.
For men’s double it is clear that there is a larger points range between the first and
the last qualifier while for women’s the points distribution is narrower.

Creating the strategy of planning tournaments using this system is easy to use
because it allows dynamic changing. If a player gets injured during the season
you can still adjust the strategy of choosing which tournaments to enter (the entry
deadline is usually around a month before the tournament) and lets the player
recover. You can work with the model and change the rules in real time. It enables
accurate modelling of the opponent’s situation and it gives the coach a realistic idea
of situation. It helps coaches make more precise decisions based on the previous
data as well on the real-time data.

5 Conclusion

The purpose of this article, based on the extensive review, was to identify the key
variables for planning tournaments and creating a fuzzy inference model using the

How to make the Olympics: Tournament planning strategy using fuzzy inference system

70



MATLAB SIMULING software. The article also emphasises the different approach
for women’s and men’s double.

However, the results brought significant improvement in choosing tournaments
and then implementing those tournament choices in the sportsman’s year planning,
the model has some constraints which need to be considered. There are 52 weeks
which is a long period to make precise predictions especially when multiple tour-
naments are being held on the same weekend. To build a more robust model more
players need to be involved as well as all tournaments played by the successful
player but not counting towards their ranking.
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Abstract

The research of network interdiction (NI) concerned with networks each
of which is to provide a certain kind of service, and its performance depends
of its structure and the status of its links and/or nodes. Links and/or nodes
of the network can be interdicted (i.e. destroyed, failed, deleted, etc.) so as to
reduce network performance. In the literature, evolutionary algorithm to the
shortest-path network interdiction problem has been developed for optimizing
two objectives : (1) maximization of shortest-path length and (2) minimiza-
tion of interdiction strategy cost. This approach allows approximating the
optimal Pareto set of network interdiction strategies. This paper presents a
new algorithm that allows getting optimal solutions for this problem. This
method is based on graph theory to analyze strategies’ shortest path and a
branch and bound method according to the change of distance (from source
node to each node) by interdiction of each edge. Shortest-path of the network
is determined by Dijkstra’s algorithm and the branch-and-bound procedure
partially enumerates interdiction strategies. Examples for different sizes of
networks and network behavior are used throughout the paper to illustrate
and validate the approach.
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1 Introduction

The research of network interdiction (NI) concerned with networks each of which is
to provide a certain kind of service. The shortest path length, maximum flow and
reliability are considered as evaluation values of the network function. The purpose
of this problem is to optimize (maximize or minimize) the functions (that is, the
evaluation values representing them) of network. This is achieved by “interdiction”
- destroying a edge or increase or decrease the evaluation value associated with the
edge - a certain edge of network. Identifying edges to be interdicted is the NI.
This problem is applied to various fields, and various models exist. For example,
military[2, 3], US drug issues[4, 5], infectious control[8], supply chain[13], evaluation
of performance in the event of communication network failures[6, 7].

In general, it is assumed that cost is required to interdict edges. So, we un-
derstand that the shortest path length and interdiction cost are in a trade-off
relation. In the literature, there are problems aimed at reducing the functions
of the network as much as possible at a limited cost, and there are problems
aimed at optimizing the functions and minimizing the interdiction cost without
cost restrictions[11, 12, 14]. That is, the latter is a bi-objective optimization prob-
lem. We focus on the bi-objective shortest path network interdiction problem
with the objective function of maximizing the shortest path length and minimiz-
ing the total interdiction cost. It is described in [9] that the shortest path NI is
NP-complete. This problem is proposed in [10]. It is proposed a multi-objective
evolutionary algorithm (MOEA) as a method for this problem[10]. This heuristic
algorithm provides an approximation of the optimal Pareto set for this problem.

The existing algorithm[10] explore regions of the solution space based on prob-
abilistic search based on a function value of solutions generated at each cycle to
obtain high-quality solutions. While this algorithm can be implemented in a short
time, there is a problem that the output is not guaranteed to be the optimal Pareto
set because it is heuristic.

In this paper, we proposed an exact algorithm for this problem. In this algo-
rithm, Solutions are searched based on a branch and bound method using Dijkstra’s
algorithm. Our approach of simultaneously performing branch and bound opera-
tion and calculating the shortest path length with Dijkstra’s algorithm not only
guarantees the quality of the output, but also reduces enormous computation time
and memory.

In this paper, we demonstrate the usefulness of the proposed algorithm by
implementing with several networks and comparing it with output obtained with
the existing algorithm. We also consider the challenges of this approach and future
work.

The rest of the paper is organized as follows. In Section 2, we describe the
formulation of the bi-objective network interdiction problem, In Section 3, we pro-
pose our approach and describe in detail. In Section 4, we apply our algorithm
to some networks, evaluate and illustrate the performance of it by comparing with
the results obtained with existing algorithm. In Section 5, we present conclusions.
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2 Problem Formulation

Let us formulate our problem, namely the shortest path network interdiction prob-
lem. An instance I = (G, s, t, α, β, c) of our problem is a 6-tuple such that

• G = (N,E) is a directed graph (network) specified by a set N of nodes and
a set E ⊆ {(i, j) ∈ N ×N | i 6= j} of directed edges (links),

• s ∈ N and t ∈ N are specified nodes satisfying s 6= t, respectively called
source and sink of G.

• α : E → R≥0 is a nominal distance function such that the nominal distance
of each edge e ∈ E is represented by α(e),

• β : E → R≥0 is a prolongation function such that β(e) represents how much
the distance of edge e ∈ E is prolonged due to its interdiction, i.e., the
interdicted distance of each edge e ∈ E is α(e) + β(e), and

• c : E → R≥0 is a cost function such that c(e) is the interdiction cost of edge
e ∈ E.

Here, we assume that interdiction of each edge requires a certain amount of cost and
it increases the nominal distance of the edge, and thus, those values are assumed
to be non-negative. In fact, we shall assume that those values to be positive. If
β(u, v) = 0 for some (u, v) ∈ E, such edges is not be interdicted by default. If
β(u, v) > 0 and c(u, v) = 0 for some (u, v) ∈ E, we shall assume the such edge is
to be interdicted by default.

A solution for an instance I = (G, s, t, α, β, c) is an interdiction strategy σ ⊆ E,
which denotes the set of edges to be interdicted. Each interdiction strategy σ is
evaluated by two measures, namely, the length of the shortest path from source s
to sink t and the total interdiction cost when all edges in σ are interdicted. More
formally, under an interdiction strategy σ, the length of shortest path from s to t
can be expressed by L(σ) defined as follows:

L(σ) = min

{∑

e∈P
α(e) +

∑

e∈P∩σ
β(e)

∣∣∣∣∣ P ⊆ E is an s-t path in G

}
.

The total interdiction cost C(σ) is the total of interdiction costs of all edges in σ.

C(σ) =
∑

e∈σ
c(e).

Hence, we are dealing with a bi-objective optimization such that L(σ) is to be
maximized and C(σ) is to be minimized among all interdiction strategies.

max L(σ)
min C(σ)

subject to σ ⊆ E
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It is obvious that L(σ) is maximized when all edges in E are interdicted (i.e.,
σ = E), and C(σ) is minimized when no edges are interdicted (i.e., σ = ∅), and
indeed, the two objectives are in a trade-off relation. Hence, we solve our problem
by finding the set of all Pareto optimal interdiction strategies. Let σ ⊆ E be an
interdiction strategy.

• We say that σ ⊆ E is dominated by another interdiction strategy σ′ ⊆ E if

– both L(σ) ≤ L(σ′) and C(σ) ≥ C(σ′) are satisfied, and

– at least one of L(σ) < L(σ′) and C(σ) > C(σ′) holds.

• We say that σ ⊆ E is Pareto optimal if σ is not dominated by any other
interdiction strategy.

3 A Branch and Bound Approach

In general, a sketch of a branch and bound approach to a multi-objective optimiza-
tion problem is such that

• a partial solution p and a set P of non-dominated solutions are maintained
all the time during the process,

• branches are made by deciding one by one the value of a decision variables,

• bounds of the objectives (for all complete solutions can be obtained by ex-
tending p) are estimated in order to eliminate unnecessarily branches, and

• once p becomes a complete solution, the set P of non-dominated solutions is
to be updated by the set of all non-dominated solutions among P ∪ {p}.

The keys are

• to find an effective ordering of decision variables (and their values as well),
and

• to estimate bounds of our objectives in efficient ways.

These keys are strongly related to each other.

3.1 Dijkstra’s Algorithm based Edge Selection

For our problem, each of the decision variables corresponds to an edge and de-
cides whether such an edge is to be interdicted or not. Hence, in our branch and
bound process, a partial solution is represented by a pair (Y, σ) of a set Y ⊆ E
of decided edges and a set σ ⊆ Y of interdicted edges among those in Y (i.e., σ
is an interdiction strategy). At each branching stage of the process, based on the
current partial solution (Y, σ), an edge e ∈ E \ Y is selected and the process may
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make at most two branches respectively with partial solutions (Y ∪ {e}, σ) and
(Y ∪{e}, σ ∪{e}). Without removing any branch, the process becomes an exhaus-
tive search with any ordering of edge selection. However, some ordering may help
to estimated bounds of our objectives in some efficient ways, and hence, may help
to eliminate some unnecessary branches. We find out that Dijkstra’s algorithm
provides us an answer.

Dijkstra’s algorithm solves the (single-source) shortest path problem when every
edge (in the directed graph under consideration) has non-negative length. More
precisely, the algorithm

• receives a directed graph G = (N,E), a weight function w : E → R≥0, a
source node s ∈ N as input, and

• returns, for each u ∈ N , the length dist(u) of a shortest path from s to u
in G.

Algorithm 1: Dijkstra’s Algorithm

1 d(s)← 0
2 for u ∈ N \ {s} do
3 d(u)←∞
4 X ← {s}
5 while X 6= N do
6 Select u ∈ N \X satisfying d(u) = min{d(v) | v ∈ N \X}
7 X ← X ∪ {u}
8 for (u, v) ∈ E do
9 d(v)← min{d(v), d(u) + w(u, v)}

It is shown that the final value of d(u) is the length dist(u) of a shortest path
from s to u. In a sense, this algorithm is node oriented, since operations in each
iteration of the while loop are determined based on the node u ∈ N \ X found
in Line 6, and all selected nodes are collected in the set X. Moreover, observe
that each edge (u, v) ∈ E is applied in Line 9 exactly once. Without changing the
correctness, an edge-oriented version of this algorithm can be obtained by a simple
modification.
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Algorithm 2: An Edge-Oriented Version of Dijkstra’s Algorithm

1 d(s)← 0
2 for u ∈ N \ {s} do
3 d(u)←∞
4 Y ← ∅
5 while Y 6= E do
6 Select (u, v) ∈ E \ Y satisfying d(u) = min{d(x) | (x, y) ∈ E \ Y }
7 Y ← Y ∪ {(u, v)}
8 d(v)← min{d(v), d(u) + w(u, v)}

Observe that, at the end of each iteration of the while loop, each d(u) is the
length of a shortest path from s to u in the directed graph (N,Y ). Let distY (u)
be the length of a shortest path from s to u ∈ N in (N,Y ), and let

EY = {(x, y) ∈ E \ Y | distY (x) = distmin
Y },

where distmin
Y = min{distY (x) | (x, y) ∈ E\Y }. Then, Line 6 can be reformulated

as follows.

• Select (u, v) ∈ EY .

According Line 8, we have

distY ∪{(u,v)}(x) =

{
min{distY (v),distY (u) + w(u, v)} if x = v,

distY (x) otherwise.

Now let switch our focus to our branch and bound algorithm. Let (Y, σ) be a
partial solution maintained in the algorithm, and let dist(Y,σ)(u) be the length of
a shortest path from s to u ∈ N in (N,Y ) with all edges in σ ⊆ Y are interdicted,
i.e., the weight function w is defined as follows.

w(u, v) =

{
α(u, v) + β(u, v) if (u, v) ∈ σ,

α(u, v) otherwise.

By initializing (Y, σ) with (∅, ∅), we select an edge (u, v) from E(Y,σ) at each branch-
ing stage.

E(Y,σ) = {(x, y) ∈ E \ Y | dist(Y,σ)(x) = distmin
(Y,σ)},

distmin
(Y,σ) = min{dist(Y,σ)(x) | (x, y) ∈ E \ Y },

and based on dist(Y,σ)(x)s, dist(Y ∪{(u,v)},σ)(x)s and dist(Y ∪{(u,v)},σ∪{(u,v)})(x)s
can be maintained by updating at most two of them.

Obviously, the total interdiction cost C(σ) can be maintained as well during
the process. As a side effect, when (Y, σ) become a complete solution, i.e., Y = E,
the length L(σ) = dist(Y,σ)(t) of a shortest path from s to t with all edges in σ
are interdicted and the total interdiction cost C(σ) are obtained as well.
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3.2 Branch Elimination

Let (Y, σ) be a partial solution is obtained at some stage, and an edge (u, v) ∈ E(Y,σ)

is selected for branching into (Y ∪ {(u, v)}, σ) and (Y ∪ {(u, v)}, σ ∪ {(u, v)}).
Suppose dist(Y,σ)(v) ≤ dist(Y,σ)(u) + α(u, v). Then, we have

dist(Y ∪{(u,v)},σ)(v) = min{dist(Y,σ)(v),dist(Y,σ)(u) + α(u, v)}
= dist(Y,σ)(v),

and, from β(u, v) ≥ 0, we have dist(Y ∪{(u,v)},σ∪{(u,v)})(v) = dist(Y,σ)(v) as well.
It implies that dist(Y ∪{(u,v)},σ)(x) = dist(Y ∪{(u,v)},σ∪{(u,v)})(x) for each x ∈ N .
Moreover, for all π ⊆ E \ {(u, v)} satisfying σ ⊆ π, we have L(π) = L(π ∪
{(u, v)}), but C(π ∪ {(u, v)}) = C(π) + c({u, v}) > C(π), i.e., the interdiction
strategy π∪{(u, v)} is not Pareto optimal since it is dominated by the interdiction
strategy π. Therefore, the branch to (Y ∪ {(u, v)}, σ ∪ {(u, v)}) can be eliminated
when dist(Y,σ)(v) ≤ dist(Y,σ)(u) + α(u, v).

3.3 Our Proposed Algorithm

Algorithm 3: Our Proposed Algorithm

1 Function main()

2 d(s)← 0
3 for u ∈ N \ {s} do
4 d(u)←∞
5 P ← ∅
6 BranchAndBound(∅, ∅, P, d, 0)
7 return P

8 Function BranchAndBound(Y, σ, P, d, C)
9 if Y = E then

10 P ← NonDominatedSet(P ∪ {σ})
11 else
12 Select (u, v) ∈ E(Y,σ)

13 D ← d(v)

// The first branch

14 d(v)← min{D, d(u) + α(u, v)}
15 BranchAndBound(Y ∪ {(u, v)}, σ, d, C)

// The second branch

16 if D 6= d(v) then
17 d(v)← min{D, d(u) + α(u, v) + β(u, v)}
18 BranchAndBound(Y ∪ {(u, v)}, σ ∪ {(u, v)}, d, C + c(u, v))
19 d(v)← D
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4 Results

We implemented this proposed approach in three networks that were also used in
[10] (Figure 1). Table 1 shows the output of our proposed algorithm and existing
algorithm by Rocco et al. [10] applied to Network 1 of Figure 1. In this output,
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Figure 1: Networks for numerical experiments

the length after interdicting any edge is set to ∞ (the link is destroyed), and the
existing algorithm’s output is implemented in [10]. This exact algorithm provides
the optimal Pareto set, which is high-quality than that of the existing algorithm.
This section considers the computation time of this algorithm on networks with
different total number of edges. Table 2 shows the calculation time when this
algorithm was implemented on the three networks(Figure 1). In the paper, the
calculation time for each network is not described, but the maximum CPU time to
obtain a solution to each network is described as 20 s, so it can be said that the
existing algorithm is implemented in 20 s or less. Note that our proposed exact
algorithm can be implemented in three networks with a total number of edges
of 40 or less, with computation time equal to or better than that of the existing
algorithm. Our proposed algorithm is implemented in a Java based language,
namely Processing, and by running it on a Macintosh with 2.9 GHz Intel Core i9,
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the results shown in those tables are obtained.

Non-dominated Interdiction strategies
distance cost Our Approach Rocco et al. [10]

193 0
292 18 {(17, t)} {(17, t)}
348 50 {(s, 3), (17, t)} {(s, 3), (17, t)}
366 82 {(s, 3), (13, 15), (17, t)} {(s, 3), (13, 15), (17, t)}

{(s, 3), (5, 8), (17, t)}
∞ 94 {(12, 16), (13, 15), (17, t)}
∞ 95 {(13, 15), (16, t), (17, t)}

Table 1: Results for Network 1

network (total number of edges) 1(30) 2(30) 3(40)
calculation time(s) 0.05 0.66 58.87

Table 2: Calculation Time

5 Conclusions

In this paper, we proposed an exact algorithm for the bi-objective shortest-
path network interdiction problem (maximization of shortest-path length and min-
imization of interdiction strategy cost). Based on the results, our proposed exact
algorithm can provide the optimal Pareto set for the problem in reasonable time
when the total number of edges is 40 or less. This solution allows network decision
makers to fully understand the impact of each strategy on network performance.
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Abstract

People are risk-takers, risk-averse, or neutral. In the literature, one
can find experiments illustrating the ambiguity aversion of human decision-
makers. Recently, a personal coefficient of ambiguity aversion has been in-
troduced. We have decided to measure the coefficient and its stability during
the time. In this paper, we describe performed experiments and their struc-
ture to launch a discussion of possible design weaknesses or to suggest other
methods of measuring it.

1 Introduction

When designing new methods of artificial intelligence, it is necessary to know how
people behave when they have to make decisions and do not have enough infor-
mation to do so. In this case, the fact of whether the decision-maker is either
risk-taker or risk-averse has a huge influence.

It is generally accepted that the basis for the normative decision-making theory
was laid by [25], and (ten years later) [18] who has developed the idea that the
behavior of a decision-maker can be modeled with the help of subjective probability
and utility functions. Such a subjective setting explains why different decision-
makers accept different decisions but all of them, if they are rational, use the
same decision criterion: all of them maximize the expected utility. Since that time,
many papers presenting situations with human decision-makers not following this
principle, have been published. Let us mention here just some of these papers like
[14, 1, 9, 4] (the last one introduces the famous Ellsberg’s example/paradox, which
is generally accepted as evidence for ambiguity aversion), and especially the papers
introducing the prospect theory [15, 16] (Nobel prize 2002). The phenomenon of
ambiguity aversion is connected with the fact that human decision-makers do not
like ignorance. They usually prefer uncertainty connected with randomness than
total ignorance.
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We believe that the ambiguity aversion phenomenon [4, 5, 6, 14, 13] is closely
connected to the fact that classical probability theory has difficulties with repre-
senting ignorance, or vagueness [19]. And it is this shortcoming, which causes why
some decision theorists - using probability theory as the main theoretical tool -
consider human decision-making behavior paradoxical. The importance of a “more
powerful” tool for decision-making starts to be obvious to a wide range of users.
E.g. [8] argued that traditional approaches to decision-making based on expected
utility maximization are out of their depth in the area of environmental policy, “as
they force us to act as if we know things that we know we do not”.

The goal of our current research is to find a way to create mathematical models
proving the same ambiguity aversion as human decision-makers. The method of
our research is described in detail in our other paper in these proceedings that
contains the preliminary results from performed experiments [11]. This paper tries
to describe the way how the experiments were performed and how they evolve
during the time. It also brings a description of the testing tool - a web-based
application.

2 Belief functions

The theory of belief functions [19, 3, 21] (and it does not matter at this moment
whether we consider Dempster-Shafer theory of evidence, or if we understand be-
lief function as a generalization of a probability theory based on the concept of
credal sets) was designed to describe situations under vagueness and/or ignorance.
Therefore, there is no surprise that situations described by Allais, or Ellsberg can
be well represented in this theory. This is also the reason why we have decided
to apply the theory of belief functions to model subjective human decision-making
under ambiguity (as suggested already by Thomas [24])

The idea of representing the knowledge in the form of belief function is not
new. Nevertheless, it is of great importance to have a tool how to compute the
expected utility from it. To do so, we use the approach suggested in [12, 10]). We
assume that the reader is familiar with at least the foundations of this approach.
Therefore, we introduce just the notation used in this paper.

The theory of belief functions [19] can be interpreted as a generalization of
probability theory [7], or within another nonadditive uncertainty theory having a
possibility to represent situations that are connected with the terms like vagueness,
ignorance, or ambiguity. The same role that is played by a probability distribution
(measure) in probability theory can be played by several functions in the theory of
belief functions. In our brief exposition, we will do just with three of them: basic
probability assignment, belief and plausibility functions.

Suppose X is a random variable with state space ΩX . Let 2ΩX denote the set
of all non-empty subsets of ΩX . A basic probability assignment (BPA) m for X is
a function m : 2ΩX → [0, 1] such that
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∑

a∈2ΩX

m(a) = 1.

The subsets a ∈ 2ΩX such that m(a) > 0 are called focal elements of m. An
important example of a BPA for X is the vacuous BPA for X, denoted by ιX , such
that ιX(ΩX) = 1. It corresponds to total ignorance. If all focal elements of m are
singletons (one-element subsets) of ΩX , then we say m is Bayesian. In this case,
m is equivalent to a probability distribution.

In the theory of belief functions, the fact that a ⊆ Ω, for which |a| > 1, is a
focal element for BPA m, expresses our ignorance regarding how the probability
mass m(a) is distributed among the elements of set a. For example, suppose
Ω = {x1, x2}, and BPA m is defined as follows: m({x1}) = 0.2, m({x2}) = 0.3,
m({x1, x2}) = 0.5. This m represents the knowledge that the probability of x1 is
at least 0.2 and at most 0.7, and the probability of x2 is at least 0.3 and at most
0.8. We know nothing more, nothing less.

As said above, the information in a BPA m can be equivalently represented
by corresponding belief and plausibility functions Belm and Plm, respectively that
are defined as

Belm(a) =
∑

b∈2ΩX : b⊆a
m(b), P lm(a) =

∑

b∈2Ω:b∩a6=∅
m(a),

for all a ∈ 2ΩX . Notice that it is obvious that for all a ∈ 2Ω, Bel(a) ≤ Pl(a). If
Bel(a) = Pl(a) then we are sure that the probability of a equals this value. Other-
wise, the larger difference Pl(a)−Bel(a) the more ambiguity about the value of the
probability of a. This follows from the fact that like Bayesian BPA corresponds
to a unique probability distribution, a non-Bayesian BPA m corresponds to the
following convex set of probability distributions on Ω called a credal set of BPA m
(P denote the set of all probability distributions on Ω):

P(m) =

{
P ∈ P :

∑

x∈a
P (x) ≥ Belm(a) for ∀a ∈ 2Ω

}
.

3 Decision making

Savage’s decision-making theory [18] is based on the computation of expected util-
ity. To this end, we need a respective (subjective) probability distribution. In
our approach, we follow the same basic idea, but to compute a value of decision
criterion we do not use a subjective probability distribution but another function
that, from the mathematical point of view, manifests properties of a superadditive
capacity. Such a function is deduced from the credal set P(m) in two steps de-
scribed below [13]. In the first step, we select a probability distribution, which in
a way represents the knowledge from the considered credal set – this is done by a
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probability transform – and by a subsequent subjective reduction that models an
ambiguity aversion of a decision-maker.

In the belief function theory, there are several methods how to find a mapping
that assigns a probability distribution to each BPA [2]. As examples, let us mention
just two of them: well-known Maximum entropy element of P(m), and pignistic
transform, advocated by [22, 23], defined by the formula

Bet Pm(x) =
∑

a∈2Ω:x∈a

m(a)

|a| .

Notice that the importance of the latter transform is stressed by the fact that, as it
was recently proved by [17], it coincides with the famous Shapley value [20] known
from the game theory.

As already explained, the maximization of the expected utility does not corre-
spond to the human way of decision-making. Therefore, we do not use a probability
distribution to compute an expected value. We assume that the ambiguity aver-
sion makes a decision-maker to underestimate the probabilities of some events.
The greater ambiguity, the greater underestimation. Therefore we reduce a prob-
ability Pm (got by some of the above-introduced probability transforms) to get a
personalized weights

rm,α(x) = (1− α)Pm(x) + αBelm({x}),

where the coefficient α ∈ [0, 1] reflects the level of the ambiguity aversion of a
considered decision-maker. Notice, that the amount of reduction depends not
only on the ambiguity aversion coefficient α but also on the amount of igno-
rance associated with the state x. If we are certain about the probability of state
x, it means that Pm(x) = Belm({x}), the corresponding probability is not re-
duced: rm,α(x) = Pm(x). On the other hand, the maximum reduction is achieved
for the states connected with maximal ambiguity, i.e., for the states for which
Belm({x}) = 0.

4 Experiments

People are different. Some are risk-takers, some are risk-averse. We believe that the
behavior can be modeled using the theory of belief functions and that each decision-
maker has different strength of ambiguity aversion – possibly expressible using
coefficient α defined above. We even found some people with negative coefficient
using our experiments - they are risk-takers. Using the following experiments we
would like to prove or disapprove whether the ambiguity aversion is a personal
characteristic of the decision-maker and whether it is possible to measure it.

As far as we know, nobody has studied an inter-temporal behavior of an indi-
vidual decision-maker under different scenarios concerning ambiguity aversion up
to now. Therefore, though keeping the anonymity of the experimental individuals,
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we have designed our experiments to analyze the behavior of a decision-maker fac-
ing different problems, plus we plan to test one problem in different experimental
sessions (e.g., half a year afterward). This was however not done so far. This
should also testify whether the coefficient of ambiguity aversion (mentioned in the
previous section) is a personal characteristic of a decision-maker.

What is important, no personal data are collected and stored. All persons par-
ticipating the behavioral testing are identified by their identifiers (a sequence of
characters of their personal choice). To be able to answer some statistical ques-
tions, the only information of personal character are age, sex, and education. The
main information stored mirror the behavior of experimental persons in specified
situations of a gamble.

4.1 Experiment design

Discussions with psychologists have revealed some interesting insights. People be-
have differently in real situations comparing to a presented hypothetical situation.
How to achieve real behavior in a laboratory environment? One option is to use
the concept of money by putting the participant’s own money into the experiment.
The fact of using their own money is crucial – the behavior when playing with
artificial money or money belonging to someone else is different. Similarly, to min-
imize the influence of the ordering of the individual tasks, we have to give them to
each participant in different random order.

Participation in the experiment is rewarded. People will receive 50CZK but
this amount is paid before the experiment and it is emphasized that fact that this
money belongs to them and they can keep it (and use it in the experiment as well).
Using this we expect that the participants will feel that they play with your own
money.

The experiment is realized in the form of a lottery. Imagine an urn with colored
balls. Colors are known, information about the number of balls of each color varies
according to the actual lottery. In total there are about 12 different scenarios.
Players will receive all known information about the urn content and must decide
which color to bet on and how much to bet. Depending on the amount of the bet,
they participate in a real lottery. If the player guesses the color of the draw, he/she
wins 100CZK.

The participants can use the money they received as a reward for participation
as an input “capital” for the lottery games they are participating in. Of course,
one can bet more than 50CZK in the sum to increase the change of winning. After
betting, the lottery is played and any eventual winnings are paid out.

Because the participants receive game situations in a different order, the lot-
teries cannot be played immediately. The participants have to go through all the
situations and bet on all games. Then the betting is closed and the lotteries are
performed in reality. To do so, we have a real urn and real balls. Following the
description of each situation, we randomly fill the urn and then one of the partic-
ipants randomly drawn a ball. Note that this part is no longer important for our
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needs and we do not collect information about winnings and losses. Nevertheless,
it is vital for the real-life feeling of the participants.

4.2 Typical session

Typically, the session is organized as follows. After an introduction of the goal of
the research, the participants are asked to select their identifier. The sessions are
usually held in a computer laboratory so that each person answers the questions
using a keyboard.

The assistant then gives out an information leaflet with the following text:

4.3 Information letter

Dear participants of Decision Making under Uncertainty experiment.

When designing new methods of artificial intelligence, it is necessary to know
how people’s behavior changes when they face varying degrees of lack of information.
Therefore, we sincerely thank you for your help in participating in this experiment.
Please, accept 50 CZK as a little reward for this help and also as an input “capital”
for several lottery games on which the experiment is based. The assistant will reward
you within the next few minutes.

Please note that this is a statistical anonymous survey. We do not collect
or store your personal information. Nevertheless, we would like to know if there
is a difference in the behavior of men and women, students and mature managers.
Therefore, we ask you for information about your sex, age, and education. Since
we would like to know if you are always behaving the same (or alike), we would like
to welcome you to participate in experiments repeatedly, so please also sign up with
a nickname that you will remember for the next time.

After you start your computer and sign in with your nickname, your computer
presents you with a variety of situations. In each of them, you can participate in
the draw and win 100 CZK.

How the given lotteries differ? For each lottery you will learn some (even incom-
plete) information about the contents of the lottery urn in which there are colored
balls:

• You will always find out whether balls that can appear in the urn are of three
colors (black, white, yellow) or six colors (black, white, yellow, red, green,
blue).

• You can learn how many balls are in the urn (but you don’t have to).

• You can know the exact number of balls of one (or several) colors used in the
draw (but you don’t have to). In almost all situations, however, you will lack
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information on the ratio of other colors. In this case, one of the colors maybe
not presented in the urn at all. For example, if you only know that there are
eight balls in the urn of six possible colors, and just one of them is red, then
maybe only balls of two colors are presented in the urn. Or you can imagine
an urn with five balls only, each of six possible colors. Of course, one color
may be missing at all.

For each lottery you must specify:

• Which color is the winning color for you?

• How much you are willing to bet to participate in the game.

When the betting is finished by all participants, all the draws will be realized (we
cannot realize them during the data collection because the individual situations are
presented to you in random order). Therefore, when you fill in the data on your
computer, think well about each situation, because you have a chance to win, but
also to lose real money. Only a part of you is involved in each draw. The bigger
the amount you bet, the more chance you will participate in the draw. On the other
hand, you also risk this amount if your color is not drawn. You are no longer
allowed to withdraw from the game during the draw. If the computer selects you
in the game, it will deduct the money you bet and, in case of a win, it will credit
you 100 CZK. Be aware that lotteries are designed so that the vast majority of you
have a big chance of winning (even over 300 CZK). However, some of you will lose
(although losing more than the 50 CZK you received as an entry reward is unlikely
- even though it has already happened). Any winnings and losses are settled with
the assistant after the experiment.

After everyone has read the information letter, the web-based application is
launched and participants go through different lotteries and answer questions about
selected color and bet. Recall that each participant receives lotteries in random
order to minimize the impact of the order on experiment results. In the following
example, you can see a typical lottery from the experiment.

In the experiment, we want to estimate the aversion to uncertainty. To calculate
it, we need to get the maximum amount the player is willing to bet on his chosen
color. So, we want to push him into the highest bet he is still willing to make. We
do this by limiting the number of participants in a real lottery. At the beginning of
the experiment, it is announced that the number of participants in each real game
will be limited to about a third of all participants, mainly based on the amount
staked. More precisely, the greater part of the players is selected based on the
amount staked (the larger the bet, the more likely you are to play a real game).
The smaller part is then selected randomly.

So if you don’t bet enough money in the game, it’s highly likely that you won’t
participate in real games at all. So you can neither to win nor to lose.
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4.4 Example

Figure 1 illustrates the design of the application. Because we expect to have Czech
participants only, the application is in Czech only so far. The description of the
lottery can be translated as follows:

Figure 1: Screenshot from the application

Experiment
Task 1/8 - (situation no. 9)
Urn A

Number of balls:

• total number: 9

• number of colors: 6

• red balls: exactly one

• numbers of balls of other colors
are unknown

Question
Choose a color. If the randomly drawn
ball has the color you have selected, you
win 100 CZK. How much are you max-
imally willing to pay to take part in the
lottery?
Then you can see the list of six colors
and a text input form for your bet. You submit your bet and color by clicking on
the button. Then the next task is shown. The lottery is illustrated by a sketch of
an urn with 9 balls. Exactly one of them is red and the rest is gray to emphasize
that we have no information about their colors.

5 Experiences

During the first few experiments, we have discovered several problems in the ex-
periment settings.

• The game labeled as Rn, which contains several lotteries, was split into
separate lotteries in the first experiment. The results of the experiment were
confusing and inconsistent across participants. It seems that people are not
able to keep in mind the individual variants of this game and therefore the
associated game Rn was created. The variants are next to each other.

• In the second experiment, we did not sufficiently emphasize the fact that only
a part of the participants with the highest bet will participate in the draw.
This led to the printed manual you saw in the previous section.
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List1

Stránka 1

ID

1 10 10 10 10 5 5 5 5 5 5 5 5 15 15
2 5 7 16 10 1 1 1 1 1 1 1 1 8 17
3 3 1 16 16 20 16 13 12 11 10 9 8 33 66
4 0 0 20 20 10 0 0 0 0 0 0 0 10 30
5 1 1 1 20 1 1 1 1 1 1 1 1 1 10
6 10 10 16 16 19 15 14 12 10 10 10 10 32 20
7 16 15 16 11 6 10 6 2 5 3 2 7 15 11
8 10 20 10 12 15 8 4 5 5 5 5 5 20 20
9 3 6 20 17 10 5 5 4 3 2 1 1 23 15
10 3 3 16 15 19 15 14 12 11 9 9 8 33 33
11 1 0 5 5 5 10 0 0 0 0 0 0 5 5
12 6 2 0 9 2 6 1 1 1 1 1 1 10 13
13 14 14 14 14 19 14 14 14 15 15 15 15 24 24
14 1 3 19 2 16 8 11 8 7 8 9 5 26 7
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Figure 2: An overview of bets on selected colors in one experiment.

• In another experiment, we came across the fact that some of the participants
were playing some sort of alternative game, trying to guess how much the
others would bet and bet accordingly.

• During standard experiments with students, the average profit was around
CZK 130 per person. An interesting situation occurred in an experiment
carried out during the traditional seminar of our institute. In this case,
perhaps no one left the experiment with some winnings. Some participants
lost more than 150 CZK. We are not sure about the reasons for this to
happen, however, education does not seem to be an asset. Thanks to the
knowledge of probability theory, the participants bet amounts corresponding
to the probability of drawing the color. Unfortunately, this is not a good
approach even in the long run, because you win as much as you loose only.
Moreover, the draw is done only once in our case.

Above that, even in the case of Ellsberg’s case of variant E2 with a chance to
win of 2

3 in the case of choosing black color, the red color was finally drawn.

6 Experiment application

As already mentioned above, we created a web-based application for the betting.
You can find it at http://ambiguity.utia.cas.cz/. It is a simple application written
in PHP scripting language that is especially suited to web development. Data are
stored in MySQL database that has 6 tables. The structure of the database is
illustrated by Figure 3.
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*

1

*

1

*

1

*

1

1

*

*

1

*

1

players

nickname varchar(50)

sex varchar(2)

age tinyint(11)

student int(1)

school varchar(50)

experiments

name varchar(50)

id int(11)

start timestamp

open tinyint(1)

games

id int(11)

name varchar(50)

description varchar(100)

default varchar(20)

title varchar(50)

experimentSetting

experiment int(11)

game int(11)

ordering int(11)

reality

experiment int(11)

game int(11)

status varchar(50)

result varchar(50)

totalPlayers int(50)

randomPlayers int(50)

results

experiment int(11)

player varchar(50)

stop timestamp

time time

ordering int(11)

answer varchar(250)

bet int(50)

win int(11)

game int(11)

selectedToPlay tinyint(1)

Figure 3: Database structure

• players - the list of participants. The table has 5 columns: nickname, sex,
age, student (Yes/No), school

• games - the list of possible situations in the system. The table has 5 columns
including unique integer identifier, name, and description

• experiments - the list of experiments. The table has 4 columns including
unique integer identifier, name, date, and a flag whether the experiment is
running (Yes/No)

• lotterySetting - it specifies the games(lotteries) assigned to each experi-
ment

• results - table with bets and answers. It has 10 columns: game, player,
time needed to finish the task, in which ordering the question arrived, etc.
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7 Conclusion

Work on experiments is still ongoing. However, it is already clear that it is possible
to measure a personal coefficient expressing something like ambiguity aversion and
the answers seem to be consistent with this coefficient. In the future, we plan to
conduct further experiments with the same participants to see where the coefficient
changes over time. We are also planning to add more variants and other situations
containing ambiguities.
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Abstract

Pairwise comparisons method is widely used to obtain ratings of alterna-
tives or criteria in multiple criteria decision making. The quality and reli-
ability of human experts’ opinions are measured by (in)consistency indices.
Saaty suggested eigenvector and eigenvalue of the pairwise comparison ma-
trix for both priority vector and inconsistency computation — he introduced
the Consistency Index and the Consistency Ratio and suggested CR = 0.1
as a maximal acceptable level of inconsistency in his Analytic Hierarchy Pro-
cess. It is shown, that consistent ratings in the pairwise comparison matrix
are localised in specific regions of the rating space, depending on the matrix
dimension and the degree of the preference rating. Moreover, the relative fre-
quency of acceptable consistent ratings significantly decreases as the rating
intensity increases.

1 Introduction

Decision making is one of the most common activities of all living beings. To sup-
port human rational decision making, many formal methods have been proposed so
far. Pairwise comparisons method represents a relatively simple, formally accept-
able and widely applied approach for expert based rating of alternatives or criteria
in multiple criteria decision models (MCDM). From the very beginning, much at-
tention has been paid to computational algorithms for the transformation of the
pairwise comparisons set to the “optimal” priority vector. Concurrently, the qual-
ity and reliability of human experts’ opinions were studied and measured by many
different (in)consistency indices [3]. Moreover, several methods for minimizing the
inconsistency of human subjective ratings have been suggested [13]. Saaty [10], for
example, prioritized eigenvector and eigenvalue approach for both priority vector
and matrix inconsistency computation -– he introduced the Consistency Index (CI)
and the Consistency Ratio (CR) and suggested CR = 0.1 as a maximal acceptable
level of inconsistency in his Analytic Hierarchy Process (AHP).
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The research gap can be identified in the previous works where most authors
focused their attention to bring various methods and algorithms with the intention
of minimizing the existing inconsistency of the pairwise comparison matrix (either
obtained from randomly generated matrices by simulations [12] or from respondents
in real-world experiments [4] or as a combination of the both [6]).

Many review papers have dealt with inconsistency indices for pairwise compar-
ison matrices [2], [3], [1] and their axiomatization [7] so far. However, as far as is
known, no systematic analysis of inconsistency distribution in pairwise comparison
matrices has been done yet.

2 Methodology

For our analysis, MATLAB R© environment and its corresponding scripting language
were utilized to model pairwise comparison matrices and compute their inconsis-
tency values for all possible evaluations. Some post-processing and visualizations
of generated data were also provided in the EXCEL 2016 spreadsheet environment.

From many available consistency measures ([9], [2], [5]) we have selected the
original Saaty’s approach for this study as it is broadly accepted and has been
successfully implemented in many real-world scenarios [11].

3 Definitions and preliminaries

In the following, we assume that A = (aij) is a positive multiplicative pairwise
comparison matrix (PCM) of size n. Further, Saaty’s fundamental scale [8] with
integer values {1, 2, 3, 4, 5, 6, 7, 8, 9} (where 1 stands for “Ai is equal to Aj” and 9
stands for “Ai extremely exceeds Aj”) for pairwise comparisons is considered and
the eigenvalue approach to inconsistency computation is used.

The Consistency Index (CI) was defined by Saaty [10] as

CI(A) =
λmax − n
n− 1

(1)

where λmax is the principal eigenvalue of A; Aw = λmaxw; CI ≥ 0.
For completely consistent rating the following relation must hold:

aij .ajk = aik,∀i, j, k (2)

and then λmax = n and CI = 0.
The Consistency Ratio (CR) is a standardized version of CI. We obtain CR

by dividing CI by a real number RI (Random Index) where RI is calculated as an
average CI of a very large number of randomly generated reciprocal matrices of the
same size n:

CR(A) =
CI(A)

RI
(3)
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Table 1: Values of RI for different number of random PCMs used in the computa-
tion. Adopted from selected authors [1] compared to own results.

n Saaty (500) Alonso, Lamata (100,000) Mls (1,000,000)

3 0.58 0.5245 0.52388
4 0.90 0.8815 0.88332
5 1.12 1.1086 1.10816
6 1.24 1.2479 1.24848
7 1.32 1.3417 1.34045
8 1.41 1.4056 1.40417
9 1.45 1.4499 1.45059
10 1.49 1.4854 1.48587

The Random Index has already been experimentally generated by several
authors [1] with varying results depending on the computational method and on
the number of generated random matrices involved in the process. For inconsistent
matrices, the number of acceptable ratings depends not only on the proposed limit
value of CR (e.g. 0.1) but to a certain extent also on the computed value of RI.
Therefore, before analyzing inconsistencies of reciprocal PCMs, values of Random
Indexes for 1,000,000 random matrices were computed and compared with the
previously published results. It can be seen (Table 1) that the differences in RI
between 100,000 and 1,000,000 random matrices are very small (less than 0.1%
in most cases). Nevertheless, even such small deviation may result in about 5%
increase of the number of acceptable ratings. Therefore we used our RI values
rounded to four decimal places in all subsequent simulations.

Assuming that the pairwise matrices A are reciprocal, only m = n2−n
2 of their

elements aij has to be evaluated. Moreover, each element, evaluated by Saaty’s
fundamental scale can theoretically reach any of 17 different numerical values:
aij ∈ {1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9}. It leads to
17m different ratings of the pairwise matrix A. For example, considering the matrix
A, dim(A) = 3 we have 173 = 4913 possible rating combinations of which only 85
(1.73%) are completely consistent (CI = CR = 0). For practical reasons, some small
tolerance for the rating inconsistency was recommended by Saaty. We say, that
all ratings with CR ≤ 0.1 are sufficiently consistent. In the case dim(A) = 3, the
number of acceptable (sufficiently consistent) ratings then rise to 1021 (20.78%).

As the matrix size n is increasing, the number of possible rating combinations
(rating space) rise exponentially and from n ≥ 5 the complete (in)consistency
analysis becomes practically impossible (Table 2). Therefore, just 3D rating space
inconsistency distribution of the PCMs of size 3 will be analysed in more detail in
this contribution.
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Table 2: Number of all possible ratings of the reciprocal pairwise n × n matrix A
for n = 3, 4, ...10.

n No. of matrix elements for rating No. of ratings

3 3 4913
4 6 241375569
5 10 2.01599× 10+12

6 15 2.86242× 10+18

7 21 6.90919× 10+25

8 28 2.83511× 10+34

9 36 1.97770× 10+44

10 45 2.34532× 10+55

4 Results

In the Matlab environment, .m functions were written:

• to generate 1,000,000 random reciprocal matrices and to compute average RI
for matrix size n = 3, ..10 (Table 1),

• to generate all possible ratings of the PCM of size 3, to compute CI and RI
and to show frequencies of consistent ratings as a function of rating intensity
in one dimension (Table 3),

• to generate all possible ratings of the PCM of size 4, to compute CI and RI
and to sum all consistent ratings.

Some generated data were also processed in MS Excel spreadsheet to make fast
ad-hoc analyses and visualizations. In the Table 2, dimensions of the considered
rating spaces are quantified. In the Table 4, absolute and relative numbers of
acceptable consistent ratings in rating sub-spaces, computed from the center of the
rating space are arranged. Finally, Figure 1 displays consistent ratings in two limit
evaluations of the PCM.

5 Discussion and future work

The analysis of inconsistency distribution revealed some new knowledge. First, suf-
ficiently consistent ratings (CR ≤ 0.1) in a PCM of size 3 are more (about twice)
frequent in case that pairwise comparisons indicate weak or moderate intensity
compared to very strong or extreme importance. Second, despite there is an in-
crease in the absolute number of sufficiently consistent ratings (from 1021 in PCMs
of size 3 to 760,913 in a PCM of size 4), relatively it corresponds to a decline from
20.78% to 3.15%.
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Table 3: Frequencies of consistent ratings of the pairwise reciprocal 3 × 3 matrix
A (289 ratings for each row).

C1/C2 No. of consistent ratings No. of consistent ratings
Preference rating (CR= 0) (CR≤ 0.1)

1/9 and 9 3 45
1/8 and 8 4 45
1/7 and 7 2 49
1/6 and 6 4 46
1/5 and 5 2 52
1/4 and 4 5 56
1/3 and 3 6 69
1/2 and 2 8 94

1/1 17 109

Table 4: Distribution of consistent ratings (CR≤ 0.1) in 3D rating sub-spaces.

Distance d Total ratings Consistent Consistent
from the center ((2d− 1)3) ratings ratings [%]

1 1 1 100.00
2 27 19 70.37
3 125 55 44.00
4 343 121 35.28
5 729 235 32.24
6 1,331 373 28.02
7 2,197 553 25.17
8 3,375 769 22.79
9 4,913 1,021 20.78
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Figure 1: Consistency mapping of 3D rating space for C1/C2 = 1 (left) and
C1/C2 = 9 (right).

Subsequent research in the field of (in)consistency distribution in pairwise com-
parison matrices will be focused on two particular and closely related problems - on
the one hand, a new algorithm for identifying consistent ratings in larger matrices
(with corresponding 10, 15, and more dimension rating spaces) will be searched. On
the other hand, human expert evaluations of pairwise comparisons will be analysed
from the rating intensity point of view with the intention to obtain new balancing
coefficient for consistency index in the AHP.
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Abstract

For building a business system quickly, more efficient project management
is needed. However, uncertain and subjective factors in requirements from
customer cause cost overruns or schedule delays in the project. Furthermore,
uncertain and subjective factors can lead to misunderstandings and false esti-
mates when converting requirements into specifications or scheduling within
a project. Thus this paper proposes a probabilistic risk evaluation method
with Requirements Analysis and Bayesian estimation for project management
to accurately evaluate the project risk. If this method works well, efficient
project management will be realized.

1 Introduction

Business System development projects are challenging, because there are many re-
quirements demanded from customers even while these requirements are proposed
with the same priority. Additionally, requirements have subjective factors. Thus
it is important to correct accuracy and prioritize requirements according to their
essentiality and criticality to finish by schedule under budget. Although system de-
velopers estimate according to the complexity of projects[1][2], on the other hand
customers expect the cost to be based on the number of requirements they de-
mand. As a result, there is a difference between the customer and the system
developer in the evaluation of estimate. Over cost or schedule delay is caused by
missing estimate. Thus, evaluating risks based on requirement analysis properly
is important to finish project successfully. Previous paper proposed cost share
rate for projects based on requirements analysis in order to estimate and evaluate
requirements accurately [3]. But the attention must be paid to the fact that estima-
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tion has subjective factors, for example productivity and skills of the programmer.
This paper proposes the cost share rate and Bayesian estimation to predict risks of
project. Cost share rate is defined as the percentage of total cost assigned to each
requirement. This paper shows the potential for evaluating risks of project.

2 Cost Prediction Methods for Projects

2.1 Previous research of project management

This paper demonstrates the potential to evaluate risk of a project using Bayesian
estimation based on requirement analysis in system development project manage-
ment. Previous research of project management focused by schedule, cost esti-
mation or productivity [1]-[4]. Improving productivity contribute to finish project
successfully [1]. There was also a previous research that deals with changing re-
quirement in mechanical engineering design. This research showed one example
of requirements analysis by exploring the possibility of predicting requirements
change with graphical models of the requirement documents and historical change
trends[4]-[8]. There is no research that refers uncertain and subjective factors in es-
timating based on requirement analysis. Therefore this paper proposes the method
taking uncertain and subjective factors into account by the means of Bayesian
estimation based on requirement analysis.

2.2 Typical Cost Prediction Methods

Usually the amount of program source code is predicted by some prediction method
in order to assess projects [8]-[10]. Then the amount of program source code is
converted into basic monetary cost. Next total cost is made by adding contingency
budget to basic monetary cost. It is set as a budget for a project at first. In
case of COCOMO method [8]. The amount of program source code acquired by
this way would be converted into monetary cost using a parameter (PM: Person-
Months) [8]. On the other hand, in case of Function Point method, the point are
accumulated according to the complexity of system, for example the number of
DB tables, dialog boxes, print forms and interfaces. Next, the acquired points
would be converted into monetary cost using a parameter (PM: Person-Months) as
those of COCOMO methods [8]. These method estimate according to complexity
of systems, not according to their requirements.

Proposal of probability risk Evaluation for System Development Project Based on Requirements Analysis and
Bayesian estimation
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3 Requirement Analysis and Evaluation with Cost
Share Rate

3.1 Cost Share Rate

Cost overrun or schedule delay is caused by lots of changes in requirements. In
particular, changing and uncertainty in essential requirement could bring a high
risk. It is vital to distinguish the essential requirement which gives significant
impacts to system specification or budget of the project. Thus, this research pro-
poses the method to distinguish influential requirements that has high risks for
cost share rate[3] Cost share rates indicate the impact of requirements based on
requirements analysis. Costs for projects are usually estimated by grouping costs
with the number of dialog boxes, interfaces or print forms and complexity based
on requirements. Alternatively, costs are estimated by associating amount of cost
with logic design, development, test, adjustment and documents of requirements,
not according to the essentiality of requirements. System developers estimate ac-
cording to the complexity of specifications, but customers expect the cost according
to the number of requirements they demand. Thus, customers could not under-
stand the estimates provided by system developers. This paper shows a method
to calculate cost share rate for each requirement in order to evaluate requirements
accurately for mutual understanding of the developer and customers. Cost share
rate also indicates the importance and distinguishes essential requirements to pri-
oritize properly. Requirements that have a high cost share rate must have a high
risk, and should be also under strict control, because change or modification for
essential requirement give impact to costs or the schedule.

3.2 Prediction of probability of the schedule delay for each
task

In quantitative evaluation for risk management, risks are evaluated by the monitory
loss[9] [10]. The monitory loss is defined as the damage multiplied by the probability
of risk. Thus this section explains the trial for calculating risks by multiplying
probability and cost share rate of each requirements. In this research, risk is
considered as the probability of the schedule delay. Thus this research suppose
that the probability of the schedule delay follows beta distribution (see Equation
1 ). In Figure 2 horizontal axis(x) shows the normalized start date of tasks. The
vertical axis(y) shows the probability for the schedule delay against planed days for
each task. Each task is categorized into process category. From these results the
average of the probability for the schedule delay is considered to be 0.225. Thus this
probability of 0.225 is assigned to standard requirements. Standard requirements
are the requirements that belong to the design or programming, because they have
average complexity and average risks for cost overrun and schedule delay.

f(x) = c× xα −1(1− x)β −1 (1)
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Figure 1: Cost share rate

Project risk is the defined possibility of cost overrun after this. On the other hand,
In Table 2 requirement1 is about investigation and the main design. It indicates
the probability of cost overrun risk as 0.1, because the uncertainty of the main
requirement is the main reason for arranging an extra budget called contingency
budget as 10% of total cost in addition to the basic budget. These past projects
needed extra cost of 10% of total cost, because there are uncertainties at the be-
ginning of the project. Because tasks are planned on the basis of requirements, it
is important to evaluate requirements accurately in order to avoid the cost over-
run. If requirements would be accurate, tasks would be set up appropriately, as
a result the project could be finished successfully. Therefore, in this research, in
order to avoid the cost overrun, it propose a method to categorize appropriately
and evaluate requirements according to the degree of risk. Requirements should be
categorized as the main design, design, development, and others according to their
risk by the linguistic analysis and regression analysis.

Table 1: Obtained Parameters for β distribution

Coefficient C α β

Value 0.840 1.021 3.048

3.3 Applying probability for another project

This section shows a trial to apply the probability of cost overrun to another small
project which is building document management system. In this project, there are
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Figure 2: Curve for possibility of schedule delay

requirements2, requirements4, requirement7 and requirement8 which concern the
design. These four requirements are standard requirements. Standard requirement
is the requirement which has normal complexity and risks for the cost overrun.
Thus, it has been assigned the probability of the schedule delay from β distribu-
tion as 0.225. The requirement 1 is concerning the main design and it has been
assigned the probability of 0.1, because usually the schedule delay is caused by the
uncertainty of the main design. Table 2 shows the estimated cost adapting the
above mentioned probability of the schedule delay to each requirement. At the
result, estimated total cost that includes expected monetary risk is about 110 ; on
the other hand, actual total cost at completion is about 127(see Table 2). Thus
from this result more efficient method is needed to estimate risk accurately.

4 Risks Evaluation of Projects using Cost Share
Rate and Bayesian Estimation

4.1 Influence diagram for system development project

This research considers an influence diagram that shows the relationship between
factors in a project as shown in Figure 5 [11] . This influence model includes type
of chance nodes as follows: AE (Accuracy of Estimate), SPM (Skill of Project
Manager), STP (Skill of Team of Programmers), AR (Accuracy of Requirements).
Additionally, this influence model includes decided nodes as follows: Category of
Project, The number of Requirements, The number of Dialog and Print form, and
decision node as Project Budget and Schedule (see Figure 3). In addition, this is
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Table 2: Estimated cost using beta distribution

Require- Category Cost share Probability Expected Estimated Actual
ment No Rate(%) for Schedule Monetary Cost cost

Delay Risk

1 Main 6.4 0.1 0.6 7.0 10.6

2 Design 10.6 0.2 2.4 13.0 10.6

3 Program 2.1 0.0 0.0 2.1 2.1

4 Design 4.3 0.2 1.0 5.2 8.5

5 Program 2.1 0.0 0.0 2.1 2.1

6 Program 12.8 0.0 0.0 12.8 17.0

7 Design 6.4 0.2 1.4 7.8 8.5

8 Design 21.3 0.2 4.8 26.1 12.8

9 Program 12.8 0.0 0.0 12.8 25.5

10 Other 12.8 0.0 0.0 12.8 17.0

11 Program* 8.5 0.0 0.0 8.5 12.8

100.0 10.2 110.2 127.7

*Program: Programming
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Chance nodes(), Decision nodes(), Decided nodes().

Figure 3: Expanded Influence Diagram for projects

expanded, by adding Decided nodes(). Decided nodes has only information about
projects, Decided nodes give no influence for calculating risks of projects.

4.2 Risk Evaluation with Bayesian network

Figure 4 shows the Bayesian network using Weka for the influence diagram shown
in Figure 4 before given evidence, and it shows the conditional probability given
by 3 [12] [13]. Numbers in Table 3 are obtained from two project managers sub-
jectively. Thus Figure 5 called case1 shows the conditional probability for project
delay is 0.13 when engineers skill is high and accuracy of requirement is standard.
On the other hand, Figure 6 called case 2 shows the conditional probability for
project delay is 0.29 when engineers skill is high and accuracy of requirement is
low. For predicting risks of the project using Bayesian estimation and cost share
rate, in this method, the expected monetary value for risk is obtained by cost share
rate multiplied by the probability of schedule delay of whole project using Bayesian
estimation with Weka. Table 4 shows the result of expected monetary value for
risk is 0.13 when engineers skill is high with standard accuracy of the requirements
(Case1). And the expected monetary value for risk is 0.29 when engineers skill is
high with low accuracy of the requirements (Case2). This result, estimated cost is
129 is fit to seance of project manager. For example, actual cost is 127 (normal-
ized) in Table 2 showed the case when engineers skill is high with low accuracy of
the requirements. Although Figure 7shows the conditional probability for project
delay is 0.07 when engineers skill is high, skill of project manager is high and ac-
curacy of requirements is low(Case3). Also it shows that skill of project manager
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is important for project.

Table 3: Conditional Probability from staffs

Probability Distribution Table for AE

AE:Accuracy of Estimate

Project Status Low Standard High Sum

Delay 0.6 0.25 0.15 1.0

On Schedule 0.1 0.2 0.7 1.0

Probability Distribution Table for SPM

SPM:Skill of Project Manager

Project Status Low Standard High Sum

Delay 0.65 0.25 0.1 1.0

On Schedule 0.1 0.3 0.6 1.0

Probability Distribution Table for STP

STP:Skill of Team of Programmer

Project Status Low Standard High Sum

Delay 0.6 0.3 0.1 1.0

On Schedule 0.1 0.3 0.6 1.0

Probability Distribution Table for AR

AR:Accuracy of Requirements

Project Status Low Standard High Sum

Delay 0.55 0.3 0.15 1.0

On Schedule 0.2 0.3 0.5 1.0

5 Conclusion

More efficient project management is needed in order to meet budget, finish by
schedule, and maintain high quality in projects. Though it is difficult to evalu-
ate risks accuracy, because there are uncertain and subjective factors in projects,
especially requirements have much uncertainty. Thus this paper propose the cost
share rates in order to distinguish essentiality of each requirements. In section 3, it

Proposal of probability risk Evaluation for System Development Project Based on Requirements Analysis and
Bayesian estimation

110



Figure 4: Bayesian network for the project(before given evidence)

Figure 5: Bayesian network for the project (Case1)

Figure 6: Bayesian network for the project (Case2)
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Figure 7: Bayesian network for the project (Case3)

Table 4: Probability of schedule delay using Bayesian estimation

NO Req Category A:Cost B:Proba Estima C:Proba Estima Actual
uire Share bility for ted bility for ted cost
ment Rate(%) Schedule Cost Schedule Cost
No (from Delay A*(1+B) Delay A*(1+C)

Table 5) (Case1) (Case1) (Case2) (Case2)

1 R1 Main 6.4 0.130 7.21 0.29 8.23 10.6

2 R2 Design 10.6 0.130 12.02 0.29 13.72 10.6

3 R3 Program 2.1 0.130 2.40 0.29 2.74 2.1

4 R4 Design 4.3 0.130 4.81 0.29 5.49 8.5

5 R5 Program 2.1 0.130 2.40 0.29 2.74 2.1

6 R6 Program 12.8 0.130 14.43 0.29 16.47 17.0

7 R7 Design 6.4 0.130 7.21 0.29 8.23 8.5

8 R8 Design 21.3 0.130 24.04 0.29 27.45 12.8

9 R9 Program 12.8 0.130 14.43 0.29 16.47 25.5

10 R10 Other 12.8 0.130 14.43 0.29 16.47 17.0

11 R11 Program 8.5 0.130 9.62 0.29 10.98 12.77

100.00 1.43 113.00 3.19 129.00 127.7
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shows it is difficult to predict risk of projects with cost share rate and probability
for schedule delay is obtained from β distribution. Next this paper shows a trial to
predict risk of projects accuracy using the cost share rate and Bayesian estimation.
As a result, this paper shows the potential to evaluate the risk of projects accuracy
using Bayesian estimation and cost share rate, in addition this method provides
the opportunity to break down the cause of risks into risk factors [8] [9][10][14].
The conditional probability shown Table 3 includes subjective factor since it was
obtained by a questionnaire filled in by project engineers, thus obtaining the condi-
tional probability more logically is needed in future works. In addition, in order to
manage projects better, further research is needed on risk evaluation with require-
ments analysis that takes into account uncertain factors and subjective factors in
requirements.
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Abstract

In real world, interpretation of natural data using a natural language is
very popular. In our previous papers, we introduced mathematical definitions
of intermediate quantifiers, which were used for an analysis of natural data
using fuzzy association rules. The main objective of this paper is to analyze
new kind of generalized syllogisms with new intermediate quantifiers “A few”
and “Several”.

1 Introduction

The theory of a syllogism was, from the classical syllogisms point of view, already
analyzed in the Aristotle’s period, when it was Aristotle who proved the truthful-
ness of 24 basic syllogisms [17]. Later in the 20th century, several authors followed
up this work and extended these basic syllogisms with new quantifiers and their
related new shapes of true syllogisms. Most credit for this extension goes to Thomp-
son and later Peterson [19, 16], who proposed 69 new syllogisms with intermediate
quantifiers. Among these syllogisms, Thompson did not consider a possibility of
two intermediate quantifiers in both premises. This work was later extended by
Peterson in [16], where he proved another special group of so-called non-trivial
syllogisms containing intermediate quantifiers in both premises. Verification of the
truth of these syllogisms was constructed using Venn diagrams.

The theory of syllogisms was later extended for generalized quantifiers by several
authors. The extensions were proposed in several directions. The first extension is
generalization of the syllogistic reasoning in the four classical figures by replacing
classical quantifiers by the generalized (fuzzy) ones. It was done in 1985 by L.
Zadeh, who semantically analyzed a special class of syllogisms with intermediate
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quantifiers in both premises ([22]), which we dealt with from the syntactical point
of view in [9]. Zadeh’s works were later elaborated by many authors. The extended
syllogistic reasoning by adding new quantifiers was proposed (see, e.g., [3, 18]).

In our previous paper ([6]), we generalized Peterson’s approach and syntactically
proved 105 generalized syllogisms with generalized intermediate quantifiers. Re-
call that generalized intermediate quantifiers are expressions of a natural language,
which form a transition between universal and existential generalized quantifiers
(cf., for example,[21, 20]). Typical examples are “Almost all children like choco-
late”, “Most children do not like mathematics”, etc. Other mathematical models of
some generalized quantifiers were suggested by several authors, for example Hájek,
Pereira and others [5, 4, 14, 15]. Later, in [8], we proposed a general structure of
generalized syllogisms, while the possibility of syllogisms with more premises was
discussed.

The main objective of this paper is to continue in studying of the theory of
syllogistic reasoning and to analyze new syllogisms.

2 Preliminaries

In this section, we will briefly recall a few main concepts of the  Lukasiewicz fuzzy
type theory ( L-FTT) and of the theory of evaluative linguistic expressions. The
reader can find details in several papers [7, 10, 11].

2.1 Fuzzy type theory

The basic syntactical objects of  L-FTT are classical (cf. [1]), namely the concepts of
type and formula. The atomic types are ε (elements) and o (truth values). General
types are denoted by Greek letters α, β, . . .. We will omit the type whenever it is
clear from the context. The set of all types is denoted by Types. The (meta-)symbol
“:= ” used below means “is defined by”.

The language consists of variables xα, . . ., special constants cα, . . . (α ∈ Types),
the symbol λ, and parentheses. The connectives (which are special constants) are
fuzzy equality/equivalence ≡, conjunction ∧∧∧, implication ⇒⇒⇒, negation ¬¬¬, strong
conjunction &&&, strong disjunction ∇∇∇, disjunction ∨∨∨, and delta ∆∆∆.

 L-FTT has 17 logical axioms (all of them can be found in [10]) and two inference
rules while rules of modus ponens and generalization are derived rules in  L-FTT.
We recall that by T ` Ao we mean that Ao is provable in T . We will sometimes
also use the short Ao 6≡ Bo instead of ¬¬¬(Ao ≡ Bo).

The truth values form an MV∆-algebra (see [2, 13]). Its special case is the
standard  Lukasiewicz MV∆-algebra

L = 〈[0, 1],∨,∧,⊗,→, 0, 1,∆〉 (1)

where

∧ = minimum, ∨ = maximum,
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a⊗ b = 0 ∨ (a+ b− 1), a→ b = 1 ∧ (1− a+ b),

¬a = a→ 0 = 1− a, ∆(a) =

{
1 if a = 1,

0 otherwise.

The  Lukasiewicz disjunction is ∇∇∇ interpreted by a⊕ b = 1 ∧ (a+ b).
Let J be a language of  L-FTT and (Mα)α∈Types be a system of sets called basic

frame such that Mo,Mε are sets and for each α, β ∈ Types, Mβα ⊆MMα

β , i.e., it is
a set of functions from Mα to Mβ . The general frame is a tuple

M = 〈(Mα,$α)α∈Types ,L∆〉 (2)

so that the following holds:

(i) The L∆ is a structure of truth values that is a linearly ordered MV∆-algebra.
We put Mo = L and assume that the set Moo ∪ M(oo)o contains all the
operations from L∆.

(ii) $α is a fuzzy equality on Mα, i.e., $α∈M(oα)α for every α ∈ Types.

A frame M is a general model of T (M |= T ) if it is a general frame and all axioms
of T are true in the degree 1 in M . If Ao is true in the degree 1 in all models of
T then we write T |= Ao.

Interpretation of formulas in a frame M is defined w.r.t. an assignment p of
elements from M to variables. Namely, p is a function from the set of all variables
of the language J to elements from M in keeping with the corresponding types.
The set of all assignments over M is denoted by Asg(M ).

Theorem 1 ([10]) (a) A theory T is consistent iff it has a general model M .

(b) For every theory T and a formula Ao

T ` Ao iff T |= Ao.

2.2 Theory of evaluative linguistic expressions

Evaluative linguistic expressions are expressions of a natural language such as small,
medium, big, very short, more or less deep, quite roughly strong, extremely high,
etc. In the model of intermediate quantifiers, we consider evaluative expressions in
the following simple form:

〈linguistic hedge〉〈TE-adjective〉. (3)

The model of the semantics of expressions (3) is formulated in the special theory
TEv of FTT. Its language JEv has the following special symbols:

(i) The constants >,⊥ ∈ Formo for truth and falsity and † ∈ Formo representing
the middle truth value.
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(ii) A special constant ∼∈ Form(oo)o for an additional fuzzy equality on the set
of truth values L.

(iii) A set of special constants ννν, . . . ∈ Formoo for linguistic hedges and a set of
triples of additional constants aννν ,bννν , cννν , . . . ∈ Formo where each triple is
associated with one hedge ννν.

For the theory of evaluative expressions, it is the concept of a linguistic context
w that is important. In a model, it is a function M (w) : L→Mα determining an
interval [vL = M (w⊥), vS = M (w†)]∪ [vS = M (w†), vR = M (w>)].∗) We usually
interpret the context by the triple of elements w = 〈vL, vS , vR〉 representing the
smallest, typically medium and the largest thinkable values, respectively.

In TEv, we will use the following constants representing special hedges: Ex,Si,Ve,
ML,Ro,QR,VR ∈ Formoo. They construe the linguistic hedges (extremely, signif-
icantly, very, more-or-less, roughly, quite roughly, very roughly, respectively)†).
A special linguistic hedge that will be used below is the empty hedge ν̄νν. We
take this hedge as present when modeling the meaning of the fundamental eval-
uative trichotomy “small, medium, big” because we can take, e.g., “small” as
“〈empty hedge〉small”.

3 Theory of intermediate quantifiers

The model of intermediate quantifiers is based on the concept of evaluative lin-
guistic expressions whose theory is the main constituent of the fuzzy natural logic.
Motivation, fundamental assumptions and the formalization of their theory are in
detail presented in [11]. Because the paper is limited by number of pages, we im-
mediately introduce definitions of intermediate quantifiers (details can be found in
[6]).

For the definition of the intermediate quantifier, we need a special operation
“cut of a fuzzy set” for the given fuzzy sets y, z ∈ Formoα:

y|z ≡ λxα · zx&&&∆∆∆(Υ(zx)⇒⇒⇒ (yx ≡ zx)).

Lemma 1 Let M be a model and p an assignment such that B = Mp(y) ⊂∼ Mα,

Z = Mp(z) ⊂∼Mα. Then for any m ∈Mα

Mp(y|z)(m) = (B|Z)(m) =

{
B(m), if B(m) = Z(m),

0 otherwise.

One can see that the operation B|Z “cuts” B by taking only thosem ∈Mα from the
fuzzy set B whose membership B(m) is equal to Z(m), otherwise (B|Z)(m) = 0.

∗)We write the interval [vL, vR] as the union of intervals [vL, vS ] ∪ [vS , vR] to emphasize the
role of the middle point vS (typically medium).
†)Of course, this is only a tentative list that can be extended, if necessary.
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If there is no such element then B|Z = ∅. We can thus take various fuzzy sets Z
to “pick up proper elements” from B.

Definition 1 Let T IQ be a theory containing intermediate quantifiers w.r.t. a set
of types S . Let Ev ∈ Formoo be a formula representing some evaluative linguistic
expression. Finally, let z ∈ Formoα, x ∈ Formα be variables and A,B ∈ Formoα

be formulas and T IQ `Mo(oα)B, α ∈ S . An intermediate quantifier of type 〈1, 1〉
is one of the following formulas:

(Q∀Ev x)(B,A) ≡ (∃z)[(∀x)((B|z)x⇒⇒⇒ Ax)∧∧∧ Ev((µB)(B|z))], (4)

(Q∃Ev x)(B,A) ≡ (∃z)[(∃x)((B|z)x∧∧∧Ax)∧∧∧ Ev((µB)(B|z))]. (5)

Either of the quantifiers (4) or (5) construes the sentence

〈Quantifier〉 B’s are A.

An intermediate quantifier of type 〈1, 1〉 with presupposition is one of the following
formulas:

(∗Q∀Ev x)(B,A) ≡
(∃z)[(∃x)(B|z)x&&&(∀x)((B|z)x⇒⇒⇒ Ax)∧∧∧ Ev((µB)(B|z))], (6)

(∗Q∃Ev x)(B,A) ≡
(∃z)[¬¬¬(∃x)Bx)∇∇∇((∃x)((B|z)x∧∧∧Ax)∧∧∧ Ev((µB)(B|z)))]. (7)

The formula Boα in (i)–(iii) represents a universe of quantification.

If we replace the metavariable Ev in (4)–(7) by a formula representing a specific
evaluative linguistic expression, we obtain a definition of a concrete intermediate
quantifier. As a special case, the four basic quantifiers all, almost all, most are ob-
tained from (4), (6), using the evaluative expressions the biggest (Bi ∆∆∆), extremely
big (Bi Ex), very big (Bi Ve), respectively. The quantifier many is obtained from
(4) using the expression not small (¬¬¬(Sm ν̄νν)) (for details see [6, 7]). Using similarly
small (Sm Si) we define the quantifier “A few” and by very small (Sm Ve) we can
introduce the quantifier “Several”. Details can be found in [12].

Namely, we will consider the following quantifiers:

(A) “All B’s are A”: (Q∀Bi ∆∆∆x)(B,A) (E) “No B’s is A”: (Q∀Bi ∆∆∆x)(B,¬¬¬A)

(P) “Almost all B’s are A”: (Q∀Bi Exx)(B,A)
(B) “Almost all B’s are not A”: (Q∀Bi Exx)(B,¬¬¬A)

(T) “Most B’s are A”: (Q∀Bi Vex)(B,A) (D) “Most B’s are not A”:
(Q∀Bi Vex)(B,¬¬¬A)

Petra Murinová

119



(F) “A few B’s are A”: (Q∀Sm Six)(B,A) (V) “A few B’s are not A”:
(Q∀Sm Six)(B,¬¬¬A)

(S) “Several B’s are A”: (Q∀Sm Vex)(B,A) (Z) “Several B’s are not A”:
(Q∀Sm Vex)(B,¬¬¬A)

(K) “Many B’s are A”: (Q∀¬Smx)(B,A) (G) “Many B’s are not A”:
(Q∀¬Smx)(B,¬¬¬A)

(I) “Some B’s are A”: (Q∃Bi ∆∆∆x)(B,A) (O) “Some B’s are not A”:
(Q∃Bi ∆∆∆x)(B,¬¬¬A)

Below we introduce the theorem which explains the monotonicity property of
five basic quantifiers.

Theorem 2 (Monotonicity[6]) (a) T IQ ` A⇒⇒⇒ P, T IQ ` P⇒⇒⇒ T, T IQ `
T⇒⇒⇒ K.

(b) T IQ ` E⇒⇒⇒ B, T IQ ` B⇒⇒⇒ D, T IQ ` D⇒⇒⇒ G.

The monotonicity property for new quantifiers was introduced and proved in
[12]. Recall that the special axiom is assumed (see Subsection 4.1 in [12])].

Theorem 3 (Monotonicity [12]) Let Boα, Aoα be formulas. Then the following
is provable in T IQ:

(a) T IQ ` (S)⇒⇒⇒ (I),

(b) T IQ ` (F)⇒⇒⇒ (S).

(c) Let T IQ ` SQo(oα)Boα. Then T IQ ` Q∀¬¬¬Sm ν̄νν x)(B,A)⇒⇒⇒ Q∀+ Sm Si x)(B,A)

(i.e., T IQ ` (K)⇒⇒⇒ (F)).

4 Generalized Peterson’s syllogisms with “A few”
and “Several”

The categorical syllogism is a special kind of a logical argument in which the con-
clusion is inferred from two premises: the major premise (first) and minor premise
(second). The intermediate syllogism is obtained from any traditional syllogism
when replacing one or more of its formulas by formulas containing intermediate
quantifiers. As we mentioned above, the 105 (24 Aristotle’s and 81 Peterson’s)
generalized Peterson’s syllogisms with two premises were syntactically proved in
[6]. The construction was based on the assumption of one middle formula and four
corresponding figures. The structure of all the generalized Peterson’s syllogisms
can be found in [8].
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In general, we can define syllogism as follows. Let P1, P2, C be quantifiers of a
certain type. By syllogism, we understand a triple 〈P1, P2, C〉 where P1 is a major
premise, P2 a minor premise and C is a conclusion.

We say that the syllogism 〈P1, P2, C〉 is strongly valid in a theory T if P1, P2, C
are formulas of the language J(T ) and T ` P1 &&&P2 ⇒⇒⇒ C, or equivalently, if T `
P1⇒⇒⇒ (P2⇒⇒⇒ C).

Classical theory of syllogisms deals with quantifiers of type 〈1, 1, 〉 divided into
four figures. Let Q1, Q2, Q3 be intermediate quantifiers of type 〈1, 1〉 and X,Y,M ∈
Formoα be formulas representing properties. Then the following figures represent
basic syllogisms:

Figure I

Q1 M is Y

Q2 X is M

Q3 X is Y

Figure II

Q1 Y is M

Q2 X is M

Q3 X is Y

Figure III

Q1 M is Y

Q2 M is X

Q3 X is Y

Figure IV

Q1 Y is M

Q2 M is X

Q3 X is Y

where the first line in each figure is the major premise P1, the second line is the
minor premise P2 and the third line is the conclusion C. If Q1, Q2, Q3 ∈ {∀,∃}
then the above syllogisms are classical.

To simplify the notation, we will write syllogism of the corresponding figure as
P1P2C-I, . . . , P1P2C-IV.

4.1 Figure-I

Theorem 4 Strong validity of syllogisms AAA-I, APP-I, ATT-I, AKK-I, AFF-
I and ASS-I in T IQ implies strong validity of the syllogisms summarized below:

Figura-I: Positive generalized syllogisms

AAA

AAP APP

AAT APT ATT

AAK APK ATK AKK

AAF APF ATF AKF AFF

AAS APS ATS AKS AFS AFF

A∗AI A∗PI A∗TI A∗KI A∗FI A∗SI AII

Proof 1 The validity of the syllogisms AAA, APP, ATT, AKK, AFF, ASS
can be obtained using Theorem 11 from [6]. The proofs of syllogisms in the first
column can be proved using the validity of the syllogism AAA-I applying Theo-
rem 2. Analogously we continue with other columns. The novelty of this proof is to
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apply new monotonicity Theorem 3 for the quantifiers “A few” and “Several” for
the verification of the validity of syllogisms AAF,APF,ATF,AKF-I.

We continue with negative generalized syllogisms of Figure-I.

Theorem 5 Strong validity of syllogisms AAA-I, APP-I, ATT-I, AKK-I, AFF-
I and ASS-I in T IQ implies strong validity of the syllogisms summarized below:

Figura-I: Negative generalized syllogisms

EAE

EAB EPB

EAD EPD ETD

EAG EPG ETG EKG

EAV EPV ETV EKV EFV

EAZ EPZ ETZ EKZ EFZ ESZ

E∗AO E∗PO E∗TO E∗KO E∗FO E∗SO EIO

Proof 2 Analogously as in the previous theorem.

5 Conclusion

In this article, we continued to study the theory of syllogistic reasoning. We fo-
cused on generalized syllogisms with new intermediate quantifiers “A few” and
“Several”. We syntactically proved generalized syllogisms of Figure-I. Recall that
all the presented syllogisms are bordered by Aristotle’s syllogisms, which means
that all the generalized syllogisms have been caused by weakening or strengthening
of the conclusion. Other generalized syllogisms of other figures will be analyzed in
the prepared paper.
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Abstract

When analyzing uncertain data expressed by a set of data points, calculat-
ing the density difference between any two sets of data points is an important
task. Least squares density difference (LSDD) estimator which uses a non-
parametric model approximates the true density difference accurately. In the
previous method, it searches for the parameters of the model by using the
grid search. However, there is no guarantee that the obtained parameters by
the grid search are optimal, we apply a firefly algorithm which is suitable to
the multimodal optimization problem for the parameter search. Numerical
experiments are conducted to show that the LSDD estimator by using the
firefly algorithm approximate the true density differences and L2-distances
more accurately than the grid search.

1 Introduction

It is usually difficult to consistently obtain accurate measurement values as the
noise cannot removed. Thus, it is not necessary to measure once, instead, it is
better to repeatedly conduct the measurement and obtain a distribution fo the
measured values.

As stated above, there is uncertainty in the measurement due to the instability
of measuring devices and measurement environments as well as the instability of the
objects to be measured. When analyzing such measured values with uncertainty,
one way is to use the whole distribution of the measured values instead of the
representative values such as averages and variances. For example, in order to
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analyze the difference between two objects with such uncertainty measurements,
it is necessary to calculate the difference between the two distributions obtained
through the measurements of the two objects.

One way is to calculate the representative values of a distribution such as the
average and the median to calculate the difference between two distributions. How-
ever, such representative values cannot consider the variance in the distributions.
There is another way to estimate the probability density function and the differ-
ence between the two corresponding probability density functions are calculated.
However, this method would suffer from two errors: One is the error in the estima-
tion of the probability density functions, and the other is in the estimation of the
difference between the estimated probability density functions.

This paper considers a direct estimation method for estimating the difference
between two distributions without such two-step estimations. This method is called
Least Squared Density Difference method (LSDD) [1]. It was shown in [1] that the
LSDD estimation method produces the estimation with less error than two-step
estimation method. As the application of the LSDD estimation method, two-
sample test [2], the estimation of the class prior under the condition of varying
class balance [3], and clustering of probability distributions [4].

In the LSDD estimation method, it is necessary to find the appropriate param-
eters of non-parametric models that help approximate the true density difference.
A common approach for finding the appropriate parameter values is called Grid
Search (GS) where all combinations of the candidate parameters are tried and pick
up the optimal parameters that produce the best performance. However, as GS
only finds the best parameter set among the candidate sets, the obtained parameter
set might not be the best among all the possible parameter sets. In this paper, we
try to overcome this problem by using a hyper heuristics called firefly algorithm
[5].

A series of computational experiments are conducted to compare the perfor-
mance of the parameter search algorithms between GS and the firefly algorithm.
The performance of the search algorithms are examined by the difference between
the true density difference and the calculated difference by the search algorithms.

2 Least Squared Density Difference (LSDD) Esti-
mation

Now, let us assume that there are two sets (called distribution hereafter) of d-
dimensional points as follows:

X = {~xi}mi=1 ∼ p(~x), (1)

X ′ = {~x′j}mj=1 ∼ p′(~x), (2)

where p(~x) and p(~x′) are the probability density functions for X and X ′, respec-
tively. It is assumed that the probability density functions are not known a priori.
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In this case, the distance between p(~x) and p(~x′) is calculated in terms of L2 dis-
tance, which is defined as follows:

L2
(
p(~x), p′(~x′)

)
=

∫
(p(~x)− p′(~x))

2
d~x. (3)

Although it is hardly possible to calculate the exact value of the L2 distance, it is
possible to estimate it from the two distributions X and X ′. The LSDD estimation
minimizes the error between the estimated value and the true density difference.
Specifically, the following squared error is minimized by the LSDD estimation:

Minimize

∫ {
g(~x)− (p(~x)− p′(~x))

2
}
d~x. (4)

In this paper, the following Gaussian kernel model is used to represent the density
difference model:

g(~x) =

n+m∑

l=1

θl exp

{
−||~x− ~cl||

2

2σ2

}
, (5)

where (~c1, . . . ,~cn,~cn+1, . . . ,~cn+m) = (~x1, . . . , ~xn, ~xn+1, . . . , ~xm) is the center of the
Gaussian kernel, θ = (θ1, . . . , θn+m) is a set of the model parameters, and σ is the
width of the kernel. The optimal value of the model parameters θ∗ can be obtained
by the following equation:

θ∗ = arg min
θ

∫
{g(~x)− (p(~x)− p′(~x))}2 d~x

= arg min
θ

[
θTHθ − 2hθ

]

= H1h, (6)

where H is a matrix of (n+m)× (n+m) elements and h is an (n+m)-dimensional
vector. They are defined as follows:

Hll′ =

∫
exp

(
−||~x− ~cl||

2

2σ2

)
· exp

(
−||~x− ~cl′ ||

2

2σ2

)
d~x

= (πσ2)
d
2 · exp

(
−||~cl − ~cl′ ||

4σ2

)
, (7)

hl =

∫
exp

(
−||~x− ~cl||

2

2σ2

)
· p(~x)d~x−

∫
exp

(
−||

~x′ − ~cl′ ||2
2σ2

)
p′(~x′)d~x′. (8)

The calculation of hl is not possible because the probability density functions in (8)

are not known. Thus, h in (6) is replaced with its estimate ĥ and to reformulate the
optimization with the addition of a l2-regularization term. The objective function
of the re-formulated optimization problem is written as follows:

θ̂ = arg min
θ

[
θTHθ − 2ĥT θ + λθT θ

]
, (9)
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where λ(≤ 0) is a constant for the regularization and ĥ is an (n+m)-dimensional
vector which is defined by the following:

ĥl =
1

n

n∑

i=1

exp

(
−||~xi − ~cl||

2

2σ2

)
− 1

m

m∑

j=1

exp

(
−||

~x′j − ~cl||2
2σ2

)
(10)

From the above, the solution (i.e., the optimal value for θ) is as follows:

θ̂ = (H + λI)−1ĥ. (11)

The precision of the LSDD estimate depends on the specification of the parame-
ters such as the kernel width and the regularization constant. Usually, the optimal
values for the kernel width and the regularization constant are obtained through
the cross-validation using the distributions X and X ′. In the cross-validation, the
distributions X and X ′ are divided into T subsets. The T subsets are used one
of the following two usages: One is to model the density difference model and the
other is to estimate the hold-out error CV which is defined by the following:

CV t =
∫
ĝt(~x)2d~x− 2

|Xt|
∑
~x∈Xt

ĝt(~x) + 2
|X′

t|
∑

~x′∈X′
t
ĝt(~x′),

t = 1, . . . , T.
(12)

The following average hold-out error is calculated to pick up the optimal parameter
that produces the minimum one:

CV =
1

T

T∑

t=1

CV t. (13)

The estimated density difference with the optimal parameters is obtained by the
following equation:

ĝ(~x) =

n+m∑

l=1

θ̂l · exp

(
−||~x− ~cl||

2

2σ2

)
. (14)

Furthermore, the L2 difference is estimated considering the regularization bias as
follows:

L̂2 (p(~x), p′(~x)) = 2ĥT θ̂ − θ̂THθ̂. (15)

In this paper, we use grid search (GS) and Firefly algorithm (FA) to search for
the optimal parameters of the kernel width and the regularization constant that
minimizes the average hold-out error CV in (13).

3 Firefly Algorithm (FA)

Firefly algorithm is one of nature-inspired meta-heuristics with a swarm of fireflies.
A firefly has a function of lightning on the tail. In the firefly algorithm, the position
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of a firefly represents the set of the parameters to be optimized and the intensity
of the firefly is assumed to be proportional to the quality function in terms of an
objective function to be optimized. The following assumptions are made in the
firefly algoirthm:

1. There is no sexuality in the fireflies (i.e., no male nor female).

2. A firefly is attractive when its light intensity is strong. A firefly with a weaker
light intensity approaches to the one with the stronger light intensity. The
attractiveness also depends on the distance between the two fireflies. That is,
even if one firefly has a strong light intensity, it does not attract the one which
locates far away from it.

3. The firefly with the strongest light intensity among all the fireflies moves ran-
domly.

The procedure of the firefly algorithm with the above assumptions is shown in
Algorithm 1.

Objective function: f(~x), ~x = (x1, . . . , xd)
Initial position of fireflies: ~xi, i = 1, . . . ,M
Light intensity of the i-th firefly: Ii = −f(~xi)

Set t = 0;
while t < MaxGenerationtmax do

for i = 1 to M do
for j = 1 to M do

if Ij > Ii then
Move ~xi toward ~xj ;
Update Ii;

end

end

end
Randomly move the best firefly with the largest intensity;

end

Algorithm 1: Firefly algorithm.

In the firefly algorithm, there are M fireflies, each of which represents a solution
of the problem to be solved. The fireflies are attracted to each other and find the
position that produce the largest light intensity, which means that the parameters
are the optimal in terms of the objective function. Because our optimization prob-
lem aims to minimize the objective function, the light intensity is defined as the
negative value of the objective function. This allows the firefles to search for the
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best position with the largest light intensity. The initial position of the fireflies are
randomly determined within a pre-defined solution domain.

Let us assume that the j-th firefly is more attractive than the i-th firefly. That
is, we assume that Ij > Ii. In this case, the i-th firefly is attracted by the j-th firefly
and is moved towards. The following equation is used for updating the position of
teh i-th firefly by the attraction:

xnewid = xoldid + βi,j · (xoldjd − xoldid ) + α · εi,
i, j = 1, . . . ,M, i 6= j, d = 1, . . . ,m,

(16)

where M is the number of the fireflies in the swarm, m is the total number of
parameters to be searched for, εi is a uniform random value for the i-th firefly within
an interval [−0.5, 0.5], α is a control value that decides the degree of the influence
of the random value (i.e., εi). βi,j is a ratio of the i-th firefly’s attractiveness to
the j-th firefly’s one and is defined as follows:

βi,j = β0 · e−γ·r
2
i,j , (17)

where β0 is a positive constant value that represents the default attractiveness when
ri,j = 0, γ is an optical-absorption coefficient, and ri,j is the distance between the
i-th firefly and the j-th firefly and is defined as the Euclidean distance between
them.

The best firefly with the largest light intensity is randomly moved by the fol-
lowing equation:

xnewbest,d = xoldbest,d + α · εi, d = 1, . . . ,m. (18)

If the updated position of the best firefly by the above equation leads to a lesser
light intensity, the best firefly is moved back to its original position.

4 Computational Experiments

4.1 Experimental Settings

The following probability density functions are used for the computational experi-
ments of this paper:

p(~x) = N
(
~x; (a, 0, . . . , 0)T , (4π)−1Id

)
, (19)

p′(~x) = N
(
~x; (0, 0, . . . , 0)T , (4π)−1Id

)
, (20)

whereN(~x;µ,
∑

) represents a multi-dimensional normal distribution with the mean
µ and the variance-covariance matrix

∑
, and Id is a d-dimensional identity matrix.

From each of these probability density functions, five data sets are generated. These
sampled distributions are used to calculate the estimated density difference by using
L2 distance. The grand truth of the density difference is obtained by the average
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over all the combination of the two distribtutions from different probability density
functions.

In the search methods using the firefly algorithm (FA) and the grid search
(GS), the performance is measured by five-hold cross validation method. In the
grid search, the best parameter set among all possible combination of the following
candidates of the kernel width σ and the regularization constant λ is used as the
search result:

σ ∈
{

10−2, 10−1.5, 10−1, 10−0.5, 100
}
, (21)

λ ∈
{

10−1, 10−0.5, 100, 100.5, 101
}
. (22)

In the firefly algorithm, the position of a firefly is defined as (σ, λ). That is, the
search space is spanned by the kernel width σ and the regularization constant λ.
The firefly algorithm searches for the best parameters of σ and λ that minimizes
the objective function. The fireflies in the swarm is initialized so that each firefly is
located on the grid points in the grid search. The maximum number of iterations is
set to 200, and the other parameters in the firefly algorithm are set to (α, β0, γ) =
(0.2, 1.0, 1.0).

4.2 Experimental Results

We first compare the search performance of the firefly algorithm and the grid
search algorithm for an experimental settings of the sample size n = m = 200,
and the dimensionality d = 1. The search performance is measured by the squared
error between the ground truth density difference and the one obtained from each
algorithm. We show the obtained squared error by each algorithm when a = 0 in
Fig. 1. From Fig. 1, it can be seen that the squared error by the firefly algorithm
is smaller than the that by the grid search.

Figure 1: Squared error between the estimated density difference and its true value
(α = 0).

Next, we show the squared error between the true density difference and the
estimated one by the search algorithms when α = 0.5 in Fig. 2. We can see from
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Figure 2: Squared error between the estimated density difference and its true value
(α = 0.5).

Fig. 2 that the search performance of the firefly algorithm and the grid search are
almost the same.

Now, we compare the search performance between the firefly algorithm and
the grid search algorithm with the following experimental settings: Sample sizes
n = m = 200, the dimensionality d = 1, 2, 3, 4, 5. The search performance is
measured by the difference between the true L2 distance and the estimated L2

distance by the search algorithms. Figure 3 shows the squared error between the
true density difference and the estimated density difference obtained by the search
algorithms when a = 0. We can see from Fig.3 that the squared error by the firefly
algorithm is smaller than that by the grid search.

Figure 3: Squared error between the estimated density difference and its true L2

distance (α = 0).

The squared error between the true density difference and the estimated density
difference by the search algorithms when a = 0.5 is shown in Fig. 4. From Fig.4,
we can see that the error by the firefly algorithm is smaller than that by the grid
search.

From the all experiments explained above, it is shown that the search perfor-
mance by the firefly algorithm is better than the grid search.
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Figure 4: Squared error between the estimated density difference and its true L2

distance (α = 0.5).

5 Conclusions

This paper examined the performance of the firefly algorithm for finding the opti-
mal parameters that lead the minimum objective function. The task of the search
algorithms is to find the minimum density difference between the true density dif-
ference and the estimated density difference. The density difference was estimated
by L2 distance. Firefly algorithm and grid search are employed in this research.
Through the computational experiments, it was shown that the firefly algorithm
perform better than the grid search.
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Abstract

Finding minimum necessary intersections in graph representations is use-
ful in many areas, especially automated graph drawings and VLSI-layouts. A
drawing of the graph G with the vertex set V and the edge set E is a repre-
sentation of G in the plane such that its vertices are represented by distinct
points and its edges by simple continuous arcs connecting the corresponding
point pairs. The crossing number cr(G) of the graph G is de�ned as the
minimal number of pairwise intersections of nonadjacent edges in any draw-
ing of G in the plane. It is well known that the problem of determination of
the crossing numbers of graphs is NP-complete [5] and it remains NP-hard
even for cubic graphs [6]. The exact value of the crossing number is known
only for few classes of graphs, mainly with regular structure such as various
products of graphs.

The aim of this article is to extend known results and determine the
exact value of the crossing number of the products of the special graphs on
six vertices with paths.

1 Introduction

The problem of reducing the number of crossings is a classical and moreover very
di�cult problem. It is studied not only in the graph theory, but also by computer
scientists, especially automated graph drawings, improved the readability of hier-
archical structures and the most prominent areas - VLSI-layouts. The visualized
graph should be easy to read and understand. For the understandability of graph
drawings, the reducing of crossings is by far the most important.

Let G be a simple graph with vertex set V and edge set E. A drawing of G is
a representation of G in the plane such that its vertices are represented by distinct
points and its edges by simple continuous arcs connecting the corresponding point
pairs. For simplicity, we assume that in a drawing (a) no edge passes through any
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vertex other than its end-points, (b) no two edges touch each other (i.e., if two edges
have a common interior point, then at this point they properly cross each other),
and (c) no three edges cross at the same point. The crossing number cr(G) of a
simple graph G with vertex set V (G) and edge set E(G) is de�ned as the minimum
possible number of edge crossings in a good drawing of G in the plane. It is easy
to see that a drawing with minimum number of crossings (an optimal drawing)
is always a good drawing, meaning that no edge crosses itself, no two edges cross
more than once, and no two edges incident with the same vertex cross each other.
Let G1 and G2 be simple graphs with vertex sets V (G1) and V (G2), and edge sets
E(G1) and E(G2), respectively. The Cartesian product G1�G2 of the graphs G1

and G2 has vertex set V (G1�G2) = V (G1) × V (G2) and two vertices (u, u′) and
(v, v′) are adjacent in G1�G2 if and only if either u = v and u′ is adjacent with v′

in G2, or u′ = v′ and u is adjacent with v in G1. Let Pn and Cn be the path and
the cycle on n edges, respectively, and Sn be the star isomorphic to K1,n. In the
proofs of the paper, we will often use the term �region� also in nonplanar drawings.
In this case, crossings are considered to be vertices of the �map�.

The exact values of the crossing numbers are known only for some graphs or
some families of graphs, mainly with regular structure such as various products of
graphs. Specially for join product it was proved the crossing numbers for join of two
paths, join of two cycles, and for join of path and cycle in [11] and for join product
of all graphs G of order at most four with paths and cycles in [16]. Moreover, the
crossing numbers of join product the discrete graphs, paths and cycles with some
graphs of order �ve and six are given in [12], [13], [15], [17], [18], [19], [20], [21],
[22], [23] and [24].

Among the products of graphs, the Cartesian product has received great at-
tention in the mathematical publications. In [7], [8] and [9], the crossing numbers
of Cartesian products of paths, cycles and stars with all graphs of order four are
given. Bokal in [1] con�rmed the general conjecture for crossing numbers of Carte-
sian products of paths and stars formulated in [7]. The crossing numbers of Carte-
sian products of paths with all graphs of order �ve are collected in [10] and with
40 graphs of order six are collected in [14]. Determining the crossing numbers of
Cartesian product of some graphs of order six, seven and eight with paths or cycles
is given in [2], [3] and [4].

In the paper, these known results will be extended by determining the crossing
numbers of Cartesian products of paths with other 6-vertex graphs shown in Fig. 1.

2 Preliminary results

In this section, it will be proven some lemmas, which help to give the crossing
numbers of Cartesian products of paths with graph G1.

We assume n ≥ 1 and �nd it convenient to consider the graph G1�Pn in the
following way: it has 6(n + 1) vertices and edges that are the edges in n + 1
copies of Gi

1, i = 0, 1, . . . , n, and in six paths of length n. The labeling of the
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Figure 1: The graphs G1 and G2 on six vertices

vertices of graphs G1 is shown in Fig. 1. Let us denote by M i the subgraph of
G1�Pn containing the vertices of Gi−1

1 and Gi
1 and six edges joining Gi−1

1 to Gi
1,

i = 1, 2, . . . , n. Let Qi, i = 1, 2, . . . , n− 1, denote the subgraph of G1�Pn induced
by V (Gi−1

1 ) ∪ V (Gi
1) ∪ V (Gi+1

1 ). So, Qi = Gi−1
1 ∪M i ∪ Gi

1 ∪M i+1 ∪ Gi+1
1 . Let

Ki denote the subgraph of Gi
1 which is isomorphic with K1,1,2, i = 0, 1, . . . , n and

let K�Pn denote the graph K1,1,2�Pn. By M i
K we will denote the corresponding

subgraph of M i in K�Pn.
In a good drawing D, we say that a graph Ki separates the graphs Kp and Kq

(the vertices of a graph Kp) if there exists a cycle C of Ki such that Kp and Kq

are contained in di�erent components of R2 \ C.
The following results enable us to simplify the proofs in the next section.

Lemma 1 Let D be a good drawing of the graph K�Pn, n ≥ 2, in which each
of the graphs Ki−1, Ki, and Ki+1, i = 1, 2, . . . , n − 1, has at most two crossings
on its edges. Then Ki−1 does not separate Ki and Ki+1, Ki+1 does not separate
Ki and Ki−1, and if Ki has an internal crossing, Ki does not separate Ki−1 and
Ki+1.

Proof. If Ki−1 separates Ki and Ki+1 (Ki+1 separates Ki and Ki−1), then the
subgraph Ki−1 (Ki+1) is crossed by all four edges joining the separated subgraphs.
This contradicts the assumption that every graph Ki has at most two crossings
on its edges. It remains to show that Ki does not separate Ki−1 and Ki+1, if
Ki has an internal crossing. Without loss of generality, let Ki−1 is placed inside
Ki. The subdrawing of Ki induced by D divides the plane in such a way that on
the boundary of every region inside Ki there are at most two vertices of Ki (see
Fig. 2(b)). Thus, one of graphs Ki−1 and M i

K crosses Ki at least twice. So, this
contradicts the assumption of at most two crossings of every graph Ki in D and
we are done. �

Lemma 2 Let D be a good drawing of the graph K�Pn, n ≥ 2, in which each of
the graphs Ki−1, Ki, and Ki+1, i = 1, 2, . . . , n − 1, has at most two crossings on
its edges and none of them separates two other. Then Ki−1, Ki and Ki+1 do not
cross each other.
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Proof. Assume a good drawing D of the graph K�Pn, n ≥ 2, in which each of
the graphs Ki−1, Ki, and Ki+1, i = 1, 2, . . . , n − 1, has at most two crossings on
its edges and none of them separates two other. If two of the 2-connected graphs
Ki−1, Ki, and Ki+1 cross, then they cross at least twice. So, none of Ki−1, Ki,
and Ki+1 crosses both others. Moreover, if two graphs of Ki−1, Ki, and Ki+1

cross, then none of them has an internal crossing. If crD(Ki,Ki−1) 6= 0, then the
subdrawing of Ki induced by D divides the plane as shown in Fig. 2(a) and, as
crD(Ki,Ki+1) = 0, in D at least one edge of M i+1

K joining Ki to Ki+1 crosses Ki.
This contradicts the assumption of at most two crossings on the edges of Ki. The
same contradiction is obtained if crD(Ki,Ki+1) 6= 0. The last possibility is that
crD(Ki−1,Ki+1) 6= 0. In this case Ki−1 divides the plane as shown in Fig. 2(a)
and at least one edge ofM i

K crosses Ki−1. This contradiction completes the proof.
�

(a) (c)(b)

Figure 2: The unique planar drawing of Ki, drawing of Ki with internal crossing
and the graph G1�Pn

Lemma 3 Let D be a good drawing of the graph K�P2 in which every graph Ki,
i = 0, 1, 2, has at most two crossings on its edges. If the subgraphs K0, K1, and K2

do not cross each other, none of them separates two other and K1 has an internal
crossing, then crD(K1) + crD(K1,M1

K ∪M2
K) + crD(K0 ∪M1

K ,K
2 ∪M2

K) ≥ 3.

Proof. Assume that there is a good drawing D of the graph K�P2 in which the
graphs K0, K1, and K2 do not cross each other, none of them separates two
other and K1 has an internal crossing and that crD(K1) + crD(K1,M1

K ∪M2
K) +

crD(K0 ∪M1
K ,K

2 ∪M2
K) ≤ 2. Then at least one of K0 ∪M1

K and M2
K ∪K2 does

not cross K1. Without loss of generality, let crD(K1,K0 ∪M1
K) = 0. Then the

subdrawing of K0 ∪M1
K ∪K1 induced by D divides the plane in such a way that

on the boundary of every region outside K1 there are at most two vertices of K1

(see Fig. 3(b)). The graph K2 does not cross an edge of the 2-connected subgraph
K0∪M1

K∪K1, otherwise crD(K1)+crD(K1,M1
K∪M2

K)+crD(K0∪M1
K ,K

2∪M2
K) ≥

3, a contradiction. Thus, K2 is placed in one region outside K1. But, in this case,
at least two edges of M2

K joining K2 with the vertices of K1 cross the edges of
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K0∪M1
K ∪K1. So, crD(K1) + crD(K1,M1

K ∪M2
K) + crD(K0∪M1

K ,K
2∪M2

K) ≥ 3
and the proof is done. �

(a) (b)

K 
i-1

K 
i

K 
i-1

K 
i

Figure 3: Two possible drawings of the graph Ki−1 ∪M i
K ∪Ki

3 The crossing number of G1�Pn and G2�Pn

The graph G1�P1 is planar. The crossing number of the graph G1�P2 is two,
because the graph S4�P2 is its subgraph and cr(S4�P2) = 2 (see [1]). The reverse
inequality cr(G1�P2) ≤ 2 one can verify by �nding a suitable drawing of the graph
G1�P2 with two crossings. In Fig. 2(c) there is the drawing of the graph G1�Pn

with 3n− 5 crossings. The next result is fundamental in proving that the crossing
number of the graph G1�Pn is 3n− 5 for n ≥ 3.

Lemma 4 If D is a good drawing of the graph G1�Pn, n ≥ 3, in which every of
the subgraphs Gi

1, i = 0, 1, 2, ..., n, has at most two crossings on its edges, then in
D there are at least 3n− 5 crossings.

Proof. In a drawing of the graph G1�Pn, let us consider the following types of
possible crossings on the edges of Qi for all i = 1, 2, ..., n− 1:

(1) a crossing of an edge in Gi−1
1 ∪M i with an edge in Gi+1

1 ∪M i+1,

(2) a crossing of an edge in M i ∪M i+1 with an edge in Gi
1,

(3) a crossing among the edges of Gi
1,

(4) a crossing of an edge in Gi−1
1 ∪Gi+1

1 with an edge in Gi
1.

It is readily seen that every crossing of types (1), (2) and (3) appears in a
good drawing of the graph G1�Pn only on the edges of one subgraph Qi. For
i ∈ {2, 3, . . . , n− 1}, a crossing of type (4) in Qi between an edge of Gi−1

1 and an
edge of Gi

1 appears only inQ
i−1 as a crossing of type (4) and for i ∈ {1, 2, . . . , n−2},

a crossing between an edge of Gi+1
1 and an edge of Gi

1 appears only in Qi+1 as a
crossing of type (4).
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In a good drawing of G1�Pn, we de�ne the force f(Qi) of Qi in the following
way: every crossing of type (1), (2), and (3) contributes the value 1 to f(Qi) and
every crossing of type (4) contributes the value 1

2 to f(Qi) (and 1
2 to Qi−1 or 1

2
to Qi+1). The total force of the drawing is the sum of f(Qi). It is easy to see
that the number of crossings in the drawing is not less than the total force of the
drawing. So, the aim of this proof is to show that if each of the subgraphs Gi

1,
i = 0, 1, 2, . . . , n, has at most two crossings on its edges, then f(Qi) ≥ 3 for all
i = 2, 3, . . . , n− 2 and f(Qi) ≥ 2 for i = 1 and i = n− 1.

Consider now the good drawing D of G1�Pn assumed in Lemma 4. First, we
prove that f(Qi) ≥ 3 for all i = 2, 3, . . . , n − 2. By Lemma 1, in every subdraw-
ing D(Qi) of the subgraph Qi induced by D, i = 1, 2, . . . , n − 1, Ki−1 does not
separate Ki and Ki+1, Ki+1 does not separate Ki and Ki−1, and if Ki has an
internal crossing, Ki does not separate Ki−1 and Ki+1. It remains to prove that
Ki does not separate Ki−1 and Ki+1, if Ki has the planar drawing. Without loss
of generality, let Ki−1 is placed inside Ki. Then the planar subdrawing of Ki in-
duced by D divides the plane as shown in Fig. 2(a) and, either crD(Ki,Ki−1) ≥ 2
or at least one edge of M i

K joining Ki to Ki−1 crosses Ki. Moreover, both paths
di−1ei−1eiei+1di+1 and di−1di−2ei−2fi−2fi−1fifi+1fi+2ei+2di+2di+1 cross the sub-
graph Ki in D. So, this contradicts the assumption that every subgraph Gi

1 has at
most two crossings on its edges. Thus, none of the subgraphs Ki−1, Ki and Ki+1

separates two other and by Lemma 2, they do not cross each other. By Lemma 3,
if Ki has internal crossing, every subdrawing D(Qi), i = 2, 3, . . . , n − 2, contains
at least three crossings, every of types (1), (2) or (3).

Now we show that, in D, no edge of M i
K crosses Ki+1 as well as no edge of

M i+1
K crosses Ki−1, if Ki has a planar drawing. Without loss of generality, let an

edge of M i+1
K crosses Ki−1. As two di�erent Ki and Kj do not cross and every of

the subgraphs Gi
1 has at most two crossings on its edges, crD(Ki−1,M i+1

K ) = 2 and
f(Qi) ≥ 2. Then the subdrawing of D induced by the subgraph Ki ∪M i+1

K ∪Ki+1

without crossings divides the plane in such a way that at most two vertices ofKi are
on the boundary of every region outside Ki. Therefore, at least one vertex of Ki is
not on the boundaries of the regions with the vertices of Ki−1 inside. This requires
at least one crossing between an edge of M i

K and an edge of Ki ∪M i+1
K ∪ Ki+1

and so, f(Qi) ≥ 3. So, D(Ki−1 ∪ M i
K ∪ Ki) divides the plane in such a way

that on the boundary of every region outside Ki there are at most two vertices
of Ki, see the drawings in Fig. 3(a), where possible crossings among the edges of
Ki−1 ∪M i

K are inside the dotted cycle. As crD(Ki+1,Ki−1 ∪M i
K ∪ Ki) = 0, it

is easy to verify that every placing of the subgraph Ki+1 outside Ki enforces at
least two crossings between the edges of M i+1

K and the edges of Ki−1 ∪M i
K ∪Ki.

Thus, f(Qi) ≥ 2. So, the unique drawing of the subgraph Ki−1 ∪M i
K ∪ Ki up

to labeling the vertices is shown in Fig. 3(a). The vertices ei and fi are placed
outside the subgraph Ki. Otherwise at least one of the edges eiei−1 and fifi−1
crosses Ki and so, f(Qi) ≥ 3. Moreover, the subgraph Ki+1 is placed inside the
region where is situated the vertex ei. Otherwise the edge eiei+1 crosses the sub-
graph Ki−1 ∪M i

K ∪ Ki. Thus f(Qi) ≥ 3 and we are done. Then there is one
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of the following cases: the cycle dieiei−1di−1di crosses the subgraph Ki+1, or the
subgraph Ki+1 is placed inside or outside this cycle. In the �rst case, the cycle
dieiei−1di−1di crosses the subgraph Ki+1 at least twice. These crossings are of
type (1) or (4) and so, f(Qi) ≥ 3. The subgraph Ki+1 can not be placed inside
the cycle dieiei−1di−1di, because the remaining three vertices of Ki are placed
outside this cycle. It enforces at least three crossings between the edges of M i+1

K

and the edges of Ki−1 ∪M i
K ∪Ki and so, f(Qi) ≥ 3 again. This implies that the

subgraph Ki+1 is placed outside the cycle dieiei−1di−1di. It is easy to see that two
edge-disjoint cycles separate one of the vertices ai or ci and the subgraph Ki+1.
Without loss of generality, let it be the vertex ci and so, the vertex ci is placed
inside the edge-disjoint cycles dieiei−1di−1ai−1aidi and didi−1bi−1bidi. Moreover,
as crD(Ki+1,Ki−1 ∪M i

K ∪ Ki) = 0 and the subgraph Ki+1 is placed inside the
region where is situated the vertex ei, the cycle dieiei−1di−1ai−1aidi separates the
vertex bi and the subgraph Ki+1. So, there are at least three crossings of the edges
in subgraph M i+1

K with the edges in Ki−1 ∪M i
K ∪Ki ∪ dieiei−1di−1, which every

of them contribute the value 1 to f(Qi) and we are done. The similar way we
can prove that if two edge-disjoint cycles separate one of the vertices ai and the
subgraph Ki+1, then also f(Qi) ≥ 3.

It remains to prove that f(Qi) ≥ 2 for i = 1 and i = n − 1. Consider �rst the
subgraph Q1 and let f(Q1) < 2. By Lemma 1, K0 does not separate K1 and K2,
K2 does not separate K1 and K0, and if K1 has an internal crossing, K1 does not
separate K0 and K2. So, it remains to prove that K1 does not separate K0 and
K2, if K1 has a planar drawing. Otherwise, the planar subdrawing of K1 induced
by D divides the plane as shown in Fig. 2(a) and, either crD(K0,K1) ≥ 2 or at
least one edge of M1

K joining K0 to K1 crosses K1. So, f(Q1) ≥ 1. Moreover, the
path d0e0e1e2d2 crosses the subgraph K1 and so, f(Q1) ≥ 3

2 . The force f(Q1) of
Q1 is equal to 3

2 , if the edge e2d2 crosses the subgraph K
1. As it was proved above

that the subgraph K1 can not separate K3, the edge e2e3 crosses the subgraph
K1. This contradicts the assumption that every subgraph Gi

1 has at most two
crossings on its edges. It implies that f(Q1) ≥ 2. So, none of the subgraphs K0,
K1 and K2 separates two other. Moreover, by Lemma 2, the subgraphs K0, K1

and K2 do not cross each other. This implies that no edge of M1
K crosses K2 as

well as no edge of M2
K crosses K0. Otherwise crD(K0,M2

K) = crD(K2,M1
K) = 2

and f(Qi) ≥ 2. It implies, that regardless of the edges of K1 cross each other or
not, D(K0 ∪M1

K ∪K1) divides the plane in such a way that on the boundary of
every region outside K1 there are at most two vertices of K1, see the drawings in
Fig. 3, where possible crossings among the edges of K0 ∪M1

K are inside the dotted
cycle. As crD(K2,K0 ∪M1

K ∪ K1) = 0, it is easy to verify that every placing of
the subgraph K2 outside K1 enforces at least two crossings between the edges of
M2

K and the edges of K0 ∪M1
K ∪K1. Thus, f(Q1) ≥ 2 and this is contradiction

with assumption f(Q1) < 2. The similar analysis for the subdrawing of Qn−1 gives
f(Qn−1) ≥ 2.

So, this enforces that, there are at least
∑n−1

i=1 crD(Qi) = 4 + 3(n− 3) = 3n− 5
crossings among the edges of the subgraph G0

1 ∪M1 ∪G1
1 ∪ · · · ∪Gn−1

1 ∪Mn ∪Gn
1 ,
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in D. This completes the proof. �

For the crossing number of the graph G1�Pn for n ≥ 3 we have the next result.

Theorem 1 cr(G1�Pn) = 3n− 5 for n ≥ 3.

Proof. The drawing in Fig. 2(c) with 3n− 5 crossings con�rms that cr(G1�Pn) ≤
3n − 5 for n ≥ 3. We prove the reverse inequality by induction on n. The graph
S4�P3 is a subgraph of G1�P3 and we know that cr(S4�P3) = 4 (see [1]). Thus,
the crossing number of G1�P3 is at least four and the result is true for n = 3.
Assume that it is true for n = k, k ≥ 3, and suppose that there is a good drawing
of the graph G1�Pk+1 with fewer than 3k− 2 crossings. By Lemma 4, some of the
subgraphs Gi

1, i = 0, 1, ..., k + 1, must be crossed at least three times. If G0
1 has

at least three crossings on its edges, then deleting of all vertices of G0
1 results in a

drawing of the graph G1�Pk with fewer than 3k−5 crossings. This contradicts the
induction hypothesis. The same contradiction is obtained if at least three crossings
appear on the edges of Gk+1

1 . If some Gi
1, i ∈ {1, 2, ..., k}, is crossed at least three

times, by the removal of all edges of this Gi
1, a subdivision of G1�Pk with fewer

than 3k−5 crossings is obtained. This contradiction with the induction hypothesis
completes the proof. �

  

(a) (b) (c)

Figure 4: The graphs H, G2�P3 and G2�P4

For the crossing number of the graph G2�Pn for n ≥ 1 we have the next results.

Theorem 2 cr(G2�Pn) = 2(n− 1) for n ≥ 1.

Proof. It is easy to see that the graph G2�P1 is planar. In Fig. 4(b), Fig. 4(c)
and Fig. 5 there are the drawings of the graph G2�Pn for n ≥ 2 with 2(n − 1)
crossings. The reverse inequality follows from the fact that the graph H presented
in Fig. 4(a) is the subgraph of G2 and cr(H�Pn) = 2(n− 1) (see [10]). �
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Figure 5: The graph G2�Pn for n ≥ 5
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Abstract

A continuous skew-symmetric bilinear (SSB) representation of preferences
has recently been proposed in a topological vector space, assuming a weaker
notion of convexity of preferences than in the classical (algebraic) case. Equip-
ping a linear vector space with the so-called inductive linear topology, we de-
rive the algebraic SSB representation on a topological basis, thus weakening
the convexity assumption. Such a unifying approach to SSB representation
permits also to fully discuss the relationship of topological and algebraic ax-
ioms of continuity, and leads to a stronger existence result for a maximal
element. By applying this theory to probability measures we show the ex-
istence of a maximal preferred measure for an infinite set of pure outcomes,
thus generalizing all available existence theorems in this context.

1 Introduction
Many systematic violations of the expected utility theory [13] have been observed,
see e.g. [12], stimulating the development of alternative decision-making theories [5,
11, 8]. In particular, the axiom of transitivity of preferences, nowadays understood
as an intuitively appealing cornerstone of rationality, is not always supported by
empirical evidence [2]. A concise mathematical model of non-transitive decision-
making has been proposed in [3], representing preferences with a skew-symmetric
bilinear (SSB) functional. Note that from the mathematical point of view, such
representation is closely related to the regret theory [7], see [1].

∗This research has been supported by grant GA17-08182S of the Czech Science Foun-
dation.
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Denoting � an asymmetric relation of strict preferences on a non-empty convex
set P , we say that a functional φ on P × P is an SSB representation of � if φ is
SSB and p � q ⇐⇒ φ(p, q) > 0 for all p, q ∈ P . Let ∼ and % be indifference and
preference-or-indifference relations defined in a standard way using �. Then, the
axioms of (algebraic) SSB representation stated for all p, q, r ∈ P and all λ ∈]0, 1[
are as follows:

(C1) Continuity: p � q, q � r =⇒ q ∼ αp+ (1− α)r for some α ∈]0, 1[,

(C2) Convexity: p � q, p % r =⇒ p � λq + (1− λ)r,

p ∼ q, p ∼ r =⇒ p ∼ λq + (1− λ)r,

q � p, r % p =⇒ λq + (1− λ)r � p,
(C3) Symmetry1: p � q, q � r, p � r =⇒

[
q ∼ p+ r

2
=⇒

(
λp+ (1− λ)r ∼ p+ q

2
⇐⇒ λr + (1− λ)p ∼ r + q

2

)]
.

If P is, moreover, a set of probability measures, axioms (C1)–(C3) hold if and only
if there exists an SSB representation of �, see [3, Theorem 1].

Recently, a variant of an SSB representation of preferences has been proposed in
a topological vector space [9]. For a non-empty convex subset P (being equipped
with the relative topology) the axioms for all p, q, r ∈ P and λ ∈]0, 1[ are the
following:

(F1) Continuity: sets {s ∈ P :p � s} and {s ∈ P :s � p} are open,
(F2) Convexity: p � q, p % r =⇒ p � λq + (1− λ)r,

q � p, r % p =⇒ λq + (1− λ)r � p,
(F3) Balance1: q ∼ p+ r

2
, λp+ (1− λ)r ∼ p+ q

2
=⇒

λr + (1− λ)p ∼ r + q

2
.

An asymmetric binary relation � on P satisfies (F1), (F2) and (F3) if and only if
there exists an SSB representation of � that is, moreover, separately continuous in
each variable, see Theorem 1 below. Further, we have shown that in a compact and
convex subset of P there exists a maximal element with respect to �, see Theorem
3 below. Consequently, we have generalized the existence result for a maximal
element in the case of an infinite set of outcomes, see Theorem 5.

Finally, equipping a linear vector space X with the so-called inductive linear
topology [6], i.e. the finest topology such that X is a Hausdorff t.v.s. and for any
finite-dimensional subspace Y of X canonical injection of Y into X is continuous,
the algebraic SSB representation may be considered as an application of the above
introduced topological theory [10]. Such an observation leads to a generalization of

1We use a slightly adapted variant of axiom (C3) to stress that the conclusion of axiom (C3)
is equivalent to axiom (F3). Note that axioms (C3) and (F3) are equivalent given axioms (C1)
and (F2), see [10, Theorem 4.2].
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the algebraic SSB representation theorem, as well as the theorem for the existence
of a maximal element in a linear vector space, see Corollary 2 and Corollary 4,
respectively. The proposed technique may be of general interest since it permits
one to use topological tools to obtain relatively stronger results that may be finally
transposed to a purely algebraic setting employing the inductive linear topology.

The basic notation used is standard. A topological space is a setX equipped with
a family of subsets τ ⊂ 2X (called open sets) satisfying the following conditions:
∅, X ∈ τ ; every union of open subsets of X is open; every finite intersection of
open subsets of X is open. A topological space is compact if each of its open
covers has a finite sub-cover; is a Hausdorff space if any two distinct points are
respectively contained in disjoint open sets; is a real topological vector space (t.v.s)
if it is moreover a real linear vector space (l.v.s.) such that operations of addition
and multiplication are continuous. By P(X) we denote a set of all regular Borel
probability measures on X equipped with the so-called weak? topology.

2 Main Results
First, we present the topological version of the SSB representation theorem, see [9,
Theorem 3.6 and Theorem 5.3].

Theorem 1. Let P be a non-empty convex subset of a t.v.s. equipped with the
relative topology. An asymmetric relation � on P satisfies (F1), (F2) and (F3) if
and only if there exists a separately continuous SSB functional φ on P × P such
that for all p, q ∈ P , p � q ⇔ φ(p, q) > 0.

Transposing the above theorem in a l.v.s. with the use of inductive linear topol-
ogy, one obtains the following generalization of [3, Theorem 1], see [10, Theorem
4.2].

Corollary 2. Let P be a non-empty convex subset of a l.v.s. A binary relation �
on P satisfies (C1), (F2) and (F3) if and only if there exists an SSB functional φ
on P × P such that for all p, q ∈ P , p � q ⇔ φ(p, q) > 0.

Comparing the statements of Theorem 1 and Corollary 2, we see that axiom
(C1) plays two different roles. First, it implies asymmetry of � that has to be
explicitly assumed in Theorem 1. Besides, it amounts to continuity axiom (F1)
in the algebraic setting; indeed, any SSB functional is separately continuous with
respect to inductive linear topology, see [6, Proposition 4.1.2 and Proposition 4.5.4].

Next, we show that standard continuity and convexity assumptions imply the
existence of a maximal and a minimal element in a t.v.s., see [9, Corollary 3.4 and
Theorem 3.6].

Theorem 3. Let P be a non-empty compact convex subset of a Hausdorff t.v.s.,
and � be an asymmetric relation on P satisfying axioms (F1) and (F2), then there
exist a minimal and a maximal element of P with respect to �.
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147



Employing the inductive linear topology again, see [10, Theorem 4.3], one ob-
tains an analogous statement in a l.v.s.

Corollary 4. Let P be a non-empty compact convex subset of a finite-dimensional
l.v.s., and � be a relation that satisfies (C1) and (F2) on P , then there exist a
minimal and a maximal element of P with respect to �.

Note that previously a similar existence result that has been shown only for a
(finitely generated) polyhedral subset of P assuming, moreover, axiom (C3), see
[5, Theorem 6.2].

Finally, we generalize [4, Theorem 5] on the basis of Theorem 1 and Theorem
3, for a detailed proof see [9, Theorem 6.2].

Theorem 5. Let set of outcomes X be a compact Hausdorff space and φ be a
bounded real function on X ×X that is separately continuous in each variable and
satisfies φ(x, y) = −φ(y, x) for all x, y ∈ X. Define functional Φ on P(X)×P(X)
by

Φ(p, q) ≡
∫

X×X

φ(x, y)dp(x)dq(y).

Then Φ is a separately continuous SSB functional on P(X), and for a closed and
convex set K ⊂P(X) there exists p ∈ K such that Φ(p, q) ≥ 0 for all q ∈ K.
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Abstract. In this paper we deal with Condition of Order Preservation
(COP) of pairwise comparisons (PC) matrix with fuzzy elements. Fuzzy
elements are appropriate whenever the decision maker (DM) is uncertain
about the value of his/her evaluation of the relative importance of elements
in question, or, when aggregating crisp pairwise comparisons of a group of
decision makers in the group DM problem. We formulate the problem in a
general setting investigating pairwise comparisons matrices with elements
from abelian linearly ordered group (alo-group). Such an approach enables
extensions of traditional multiplicative, additive or fuzzy approaches. We
review the approaches known from the literature, then we propose our new
order preservation concept based on alpha-cuts. We define the concept of
consistency of PC matrix with fuzzy elements (FPC matrices). We derive
the necessary and sufficient conditions for strict consistency as well as weak
and strong POP conditions and relationships. Finally, we deal with some
consequences to the problem of ranking the alternatives. Illustrating exam-
ples are presented and discussed.

1 Introduction

The problem we consider here is as follows: Let C = {c1, c2, ..., cn} be a finite set
of alternatives (n > 1). The goal of the DM is to rank the alternatives from the
best to the worst (or, vice versa, which is equivalent), using the information given
by the decision maker in the form of an n×n pairwise comparisons matrix (PCM).
The ranking of the alternatives is determined by the priority vector of real numbers
w = (w1, w2, ..., wn) which is calculated from the corresponding PCM. There exist
various methods for calculating the vector of weights based on the DM problem,
particularly, on the pairwise comparisons matrix, see e.g. [7].

Fuzzy sets as the elements of the pairwise comparisons matrix can be applied
in the DM problem whenever the decision maker is not sure about the preference
degree of his/her evaluations of the pairs in question. Fuzzy elements are useful
in order to capture uncertainty stemming from subjectivity of human thinking
and from incompleteness of information that is an integral part of multi-criteria
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decision-making problems. Fuzzy elements may be also useful as aggregations of
crisp pairwise comparisons of a group of decision makers in the group DM problem.

In [10] and [11], the author presented a general approach for PCM with fuzzy
number elements based on alo-groups unifying the previous approaches. In [12],
the concept of strong consistency was introduced and some relationships with the
(ordinary) consistency was derived. In comparison to [10] and [11]. Fuzzy intervals
are elements of the PCM called Fuzzy Pairwise Comparisons matrix (FPCM).

In this paper we follow definitions from [12], generalize the concept of COP to
FPC matrices defining α-Weak COP and α-Strong COP. Here, we reconsider Gen-
eralized Geometric Mean Method (GGMM) and show that satisfying ”fuzzy” COP,
the criteria under a generalized GMM depend on the locally defined inconsistency.
Furthermore, we solve the problem of measuring inconsistency of FPC matrices by
defining a corresponding index. Finally, we discuss several numerical examples in
order to illustrate the proposed concepts and properties.

2 Preliminaries

The reader can find the corresponding basic definitions, concepts and results in the
previous proceedings of the CJS seminar, [12]. Remember, that for X, a nonempty
subset of the n-dimensional Euclidean space Rn, a fuzzy set S = (a, b, c, d) in X
is called closed, bounded, compact or convex if the α-cut [S]α is a closed, bounded,
compact or convex subset of X for every α ∈]0; 1], respectively.

In order to unify various approaches and prepare a more flexible presentation, we
apply alo-groups, see [12]. Recall that an abelian group, [2], is a set,G, together with
an operation � and corresponding group axioms that combines any two elements
a, b ∈ G to form another element in G denoted by a � b, see [2]. The well known
examples of alo-groups can be found in [12], or, [11].

Example 1. Additive alo-group R = (R,+,≤) is a continuous alo-group with:
e = 0, a(−1) = −a.

Example 2. Multiplicative alo-group R+ = (R+, •,≤) is a continuous alo-group
with: e = 1, a(−1) = a−1 = 1/a. Here, by • we denote the usual operation of
multiplication.

Example 3. Fuzzy additive alo-group Ra=(R,+f ,≤), see [12], is a continuous alo-
group with: a+f b = a+ b− 0.5, e = 0.5, a(−1) = 1− a.

Example 4. Fuzzy multiplicative alo-group Rm=(]0; 1[, •f ,≤), see [5], is a continu-
ous alo-group with: a •f b = ab

ab+(1−a)(1−b) , e = 0.5, a(−1) = 1− a.

3 FPC matrices, reciprocity and consistency

Our general approach based on alo-groups is useful, as it unifies various important
approaches known from the literature. This fact has been already demonstrated on 4
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examples presented above, where the well known alo-groups are shown. Particularly,
all concepts and properties which will be presented bellow can be easily applied
to any alo-group. Before we shall investigate PC matrices with fuzzy elements we
remember some concepts and properties of PC matrices on alo-group with crisp
elements.

A crisp PC matrix A = {aij} is said to be �-reciprocal, if the following condition
holds: For every i, j ∈ {1, ..., n}

aij � aji = e, or, equivalently, aji = a
(−1)
ij . (1)

A crisp FPC matrix A = {aij} is �-consistent if for all i, j, k ∈ {1, ..., n}

aik = aij � ajk, or, equivalently, aij � ajk � aki = e. (2)

Remember that an �-consistent PC matrix A = {aij} is �-reciprocal, but not
vice-versa. The following equivalent condition for consistency of PC matrices is
well known, see e.g. [5], [14].

A crisp PC matrix A = {aij} is �-consistent if and only if there exists a vector
w = (w1, ..., wn), wi ∈ G, such that

aij = wi ÷ wj for all i, j ∈ {1, 2, ..., n}. (3)

Here, wi ÷ wj = wi � w(−1)
j .

In [12], we extended the above stated definition of�-reciprocity and�-consistency
to non-crisp matrices with fuzzy elements. Particularly, we introduce a new con-
cept of reciprocity and consistency based on α-cuts: α-�-reciprocity and α-�-
consistency. We start, however, with the α-�-reciprocity in the crisp case.

Let G = (G,�,≤) be a divisible and continuous alo-group over an open interval
G of R. Let α ∈ [0; 1], Ã = {ãij} be an n × n matrix, where each element is a
bounded fuzzy interval of the alo-group G, let [ãij ]α = [aLij(α), aRij(α)] be an α-cut
of ãij .

Matrix Ã = {ãij} is said to be α-�-reciprocal, if the following two conditions hold
for each i, j ∈ {1, ..., n}:

aLii(α) = aRii(α) = e, (4)

aLij(α)� aRji(α) = e. (5)

If Ã = {ãij} is α-�-reciprocal for all α ∈ [0; 1], then it is called �-reciprocal.

If Ã = {ãij} is �-reciprocal, then Ã = {ãij} is called the fuzzy pairwise comparisons
matrix, fuzzy PC matrix, FPC matrix, or, shortly, FPCM.

Now, we turn to the concept of consistency of FPC matrices. We start with the
definition of weak α-�-consistent FPC matrix. Later on, we shall define a stronger
concept, particularly, an α-�-consistency of FPC matrix.

Definition 1. Let α ∈ [0; 1]. A FPC matrix Ã = {ãij} is said to be weak α-�-
consistent, if the following condition holds:
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There exists a crisp matrix A′ = {a′ij} with a′ik ∈ [ãik]α, a′ij ∈ [ãij ]α, a′jk ∈ [ãjk]α,
such that A′ = {a′ij} is consistent, i.e. for each i, j, k ∈ {1, ..., n} it holds

a′ik = a′ij � a′jk. (6)

The FPC matrix Ã = {ãij} is said to be weak �-consistent, if Ã is weak α-�-
consistent for all α ∈ [0; 1].
If for some α ∈ [0; 1] the FPC matrix Ã = {ãij} is not weak α-�-consistent, then

Ã is called α-�-inconsistent.

Ramarks. Let α, β ∈ [0; 1], α ≥ β.

– For a crisp PCM, definitions of �-reciprocity and �-consistency in Definition 1
coincide with the classical definitions.

– If Ã = {ãij} is weak α-�-consistent, then it is weak β-�-consistent.

– (5) holds for all i, j ∈ {1, ..., n} if and only if (5) holds for all i, j ∈ {1, ..., n},
1 ≤ i < j ≤ n.

– (6) holds for all i, j, k ∈ {1, ..., n} if and only if (6) holds for all i, j, k ∈
{1, ..., n}, 1 ≤ i < j < k ≤ n.

The next proposition gives four equivalent conditions for a FPC matrix to be weak
α-�-consistent, for the proof see [12].

Proposition 1. Let α ∈ [0; 1], let Ã = {ãij} be a FPC matrix, [ãij ]α = [aLij(α), aRij(α)]
be an α-cut of ãij. The following conditions are equivalent.

– Ã = {ãij} is weak α-�-consistent.

– There exists a vector w = (w1, ..., wn) with wi ∈ G, i ∈ {1, ..., n}, such that
for each i, k ∈ {1, ..., n}, it holds:

aLik(α) ≤ wi ÷ wk ≤ aRik(α). (7)

– For each i, j, k ∈ {1, ..., n}, it holds:

aLik(α) ≤ aRij(α)� aRjk(α), (8)

– For each i, j, k ∈ {1, ..., n}, it holds:

aRik(α) ≥ aLij(α)� aLjk(α). (9)

Example 5. Consider the additive alo-group R = (R,�,≤) with � = +, see Ex-
ample 1. Let Ã = {ãij} be given by triangular fuzzy number elements as follows:

Ã =




(0, 0, 0) (1, 3, 4) (4, 6, 8)
(−4,−3,−1) (0, 0, 0) (2, 4, 5)
(−8,−6,−4) (−5,−4,−2) (0, 0, 0)


 ,
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or, equivalently, by α-cut notation, each fuzzy set is given by the corresponding
family of α-cuts, i.e. intervals. Particularly, for α ∈ [0; 1], we obtain:

Ã =




[0; 0] [1 + 2α; 4− α] [4 + 2α; 8− 2α]
[−4 + α;−1− 2α] [0; 0] [2 + 2α; 5− α]
[−8 + 2α;−4− 2α] [−5 + α;−2− 2α] [0; 0]


 .

Here, Ã is a 3 × 3 matrix with triangular fuzzy number elements and the corre-
sponding piece-wise linear membership functions. Conditions (4) and (5) can be
easily verified for all α ∈ [0; 1], hence, Ã is �-reciprocal.
By Proposition 1 we check only one of inequalities (8) (or (9)), for all triples of
indices i, j, k ∈ {1, 2, 3}, i < j < k. By simple calculations, we obtain that Ã is
weak α-�-consistent for all 0 ≤ α ≤ 5

6 .

It is also evident that Ã is α-�-inconsistent FPCM for 5
6 < α ≤ 1.

Now, we are going to define a stronger concept of α-�-consistency (without
adjective ”weak”) based on formula similar to (2) in the crisp case. In the literature
there exist more other concepts of consistency, e.g. Liu’s consistency, approximate
consistency, or strong consistency, see e.g. [13]. These approaches are not, however,
investigated here.

Definition 2. Let α ∈ [0; 1]. A FPC matrix Ã = {ãij} is said to be α-�-consistent,
if the following condition holds:
For all i, j, k ∈ {1, ..., n}, it holds:

aLij(α)� aLjk(α)� aLki(α) = aLik(α)� aLkj(α)� aLji(α), (10)

aRij(α)� aRjk(α)� aRki(α) = aRik(α)� aRkj(α)� aRji(α). (11)

Moreover, if Ã = {ãij} is α-�-consistent for all α ∈ [0; 1], then Ã is said to be
�-consistent.

An α-�-consistent FPC matrix is not necessarily α-�-reciprocal, as it is in the crisp
case. In real DM problems, α-�-reciprocity condition is, however, a natural assump-
tion. Therefore, in the sequel we assume that FPCMs are always -�-reciprocal. The
following proposition gives a characterization of α-�-reciprocal α-�-consistent FPC
matrices, see also [6]. The proof is straightforward and is left to the reader.

Proposition 2. Let α ∈ [0; 1], let Ã = {ãij} be a reciprocal FPC matrix, [ãij ]α =
[aLij(α), aRij(α)] be an α-cut.

Ã = {ãij} is α-�-consistent if and only if for all i, j, k ∈ {1, 2, ..., n}, it holds:

aLik(α)� aRik(α) = aLij(α)� aRij(α)� aLjk(α)� aRjk(α). (12)

Definition 3. Let α ∈ [0; 1], let Ã = {ãij} be a FPC matrix, [ãij ]α = [aLij(α), aRij(α)]
be an α-cut. For all i, j ∈ {1, ..., n} denote

amij (α) = (aLij(α)� aRij(α))(
1
2 ). (13)

A crisp n× n - matrix Am(α) = {amij (α)} is called α-�-mean matrix associated to

FPC matrix Ã = {ãij}.
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By (13) in Proposition 2, FPC matrix Ã = {ãij} is α-�-consistent, if and only
if crisp α-�-mean matrix Am(α) is �-consistent, i.e. the following formula holds
for all i, j, k ∈ {1, ..., n}:

amij (α) = amij (α)� amjk(α). (14)

Moreover, if FPC matrix Ã = {ãij} is α-�-consistent for all α ∈ [0; 1], then Ã is
�-consistent.

Remark 1. Notice that α-�-consistency of FPC matrix Ã = {ãij} is equivalent to
�-consistency of the associated crisp matrix, particularly, α-�-mean matrix asso-
ciated to Ã, with elements being given by (13). This property will be advantageous
in deriving a corresponding priority vector of the FPC matrix as we can see in the
next section.

Example 6. Let Ã = {ãij} be given FPC matrix from Example 5.

Moreover, α-+-mean matrix Am(α) associated to Ã for α ∈ [0, 1] is calculated by
(13) as

Am(α) =




0 5+α
2 6

− 5+α
2 0 7+α

2
−6 − 7+α

2 0


 .

Checking equality (14), we obtain that Ã is α-+-consistent for all α = 0.

The following propositions give some characterizations of α-�-consistent FPC
matrices, see also [6]. The proofs are left to the reader.

Proposition 3. Let α ∈ [0, 1], let Ã = {ãij} be a FPC matrix, [ãij ]α = [aLij(α), aRij(α)]
be an α-cut.
Ã = {ãij} is α-�-consistent if and only if there exists a vector w(α) = (w1(α), ..., wn(α))
with wj(α) ∈ G, j ∈ {1, ..., n}, such that for each i, k ∈ {1, ..., n}, it holds:

amik(α) = wi(α)÷ wk(α). (15)

Proposition 4. Let α ∈ [0; 1], let Ã = {ãij} be a FPC matrix.

If Ã is α-�-consistent then Ã is weak α-�-consistent. Moreover, if Ã is �-consistent
then Ã is weak �-consistent.

4 Desirable properties of the priority vector

Pairwise comparisons matrices may violate some desirable conditions of multiple
criteria decision making: e.g. the ’best’ alternative with respect to DMs preferences
is selected from the set of non-dominated alternatives, on condition this set is non-
empty. The other PCMs may violate the conditions of order of preferences (the so
called COP conditions), see Bana e Costa and Vansnick [1].
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A PC matrix with crisp elements A = {aij} is said to satisfy preservation of
order preference condition (POP condition) with respect to priority vector w if

aij > e⇒ wi > wj . (16)

Finally, a PC matrix A is said to satisfy reliable preference (RP) condition with
respect to priority vector w if

aij > e⇒ wi > wj , (17)

aij = e⇒ wi = wj . (18)

From (17) in the above definition it is evident that if a crisp PC matrix A satisfies
RP condition with respect to priority vector w, then A satisfies POP condition
with respect to priority vector w. The opposite is not true.

Let A = {aij} be a crisp consistent PC matrix, and let w = (w1, ..., wn) be a
priority vector associated to A satisfying (3). Then it is obvious that FS, POP and
RP conditions are satisfied. Moreover, it is well known, see e.g. [14], that for each
crisp consistent PC matrix, the priority vector satisfying (3) can be generated ei-
ther by the eigenvalue method (EVM), or, by the geometric mean method (GMM).

Now, we are going to extend the POP condition for a FPC matrix Ã = {ãij},
as we mentioned before.

Definition 4. Let ci, cj ∈ C, Ã = {ãij} be a FPC matrix on alo-group
G = (G,�,≤), α ∈ [0; 1].

amij (α) = (aLij(α)� aRij(α))(
1
2 ). (19)

We say that ci α-mean dominates cj , if amij (α) > e.
Moreover, ci mean dominates cj , if ci α-mean dominates cj , for all α ∈ [0; 1].

Definition 5. Let ci, cj ∈ C, Ã = {ãij} be a FPC matrix on alo-group
G = (G,�,≤), w = (w1, ..., wn), wi ∈ G, be a priority vector, α ∈ [0; 1].
We say that the α-mean preservation of order preference condition (α-MPOP con-
dition) is satisfied:
if ci α-mean dominates cj , then wi > wj .
We say that the mean preservation of order preference condition (MPOP condi-
tion) is satisfied:
if ci mean dominates cj , then wi > wj .

In what follows we introduce the local error indexes and global error index based
on the �-mean of the end points of α-cuts of fuzzy elements of FPCM.

Let x ∈ G, the norm of x in alo-group G, ‖x‖, is defined as

‖x‖ = max{x, x(−1)}. (20)
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Definition 6. Let Ã = {ãij} be an FPC matrix on alo-group G = (G,�,≤). For
each pair i, j ∈ {1, . . . , n}, and a priority vector w = (w1, ..., wn), wi ∈ G, α ∈ [0; 1]

and for amij (α) = (aLij(α)� aRij(α))(
1
2 ) let us denote:

εm(i, j, w, α) = ‖amij (α)� wj ÷ wi‖, (21)

The global error index, E(Ã, w, α), for a FPC matrix Ã = {ãij} and a priority
vector w = (w1, . . . , wn), is defined as the maximal value of εm(i, j, w, α), i.e.

E(Ã, w, α) = max
i,j∈{1,...,n}

εm(i, j, w, α). (22)

5 Priority vectors, measuring inconsistency of FPC
matrices

In this section we extend our considerations from crisp PC matrix A = {aij} to FPC

matrix Ã = {ãij} by using crisp α-�-mean matrix Am(α) = {amij (α)} associated to

FPC matrix Ã = {ãij}. Here, the elements of crisp PC matrix Am(α) are defined
by (13) as

amij (α) = (aLij(α)� aRij(α))(
1
2 ),

depending on the given α ∈ [0; 1].
We propose a method for calculating the priority vector of n × n FPC matrix

Ã = {ãij} for the purpose of rating the alternatives c1, ..., cn ∈ C. Here, we do not
follow the way of calculating the fuzzy priority vector proposed e.g. in [4], and oth-
ers. Here, we generate a crisp priority vector, therefore, no defuzzification will be
necessary for final ranking the alternatives. The proposed method for calculating
the priority vector can be divided into two steps as follows.

Step 1.
In Step 1 we check whether the given FPC matrix Ã = {ãij} is weak α-�-consistent
for some α, where 0 ≤ α ≤ 1. Then we calculate the maximal such α denoted by
α∗. By Remark 3, FPCM Ã is therefore weak α-�-consistent for all α ≤ α∗. The
following optimization problem is solved:

(P1)

α −→ max; (23)

subject to

aLij(α) ≤ wi ÷ wj ≤ aRij(α) for all i, j ∈ {1, ..., n}, (24)

n⊙

k=1

wk = e, (25)

0 ≤ α ≤ 1, wk ∈ G, for all k ∈ {1, ..., n}. (26)
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Hence, in problem (P1), the objective function (23) is maximized under the
constraints securing that FPC matrix Ã = {ãij} is weak α-�-consistent, in (24),
and w = (w1, ..., wn), in (25), is normalized.

If optimization problem (P1) has a feasible solution, i.e. system of constraints
(24) - (26) has a solution, then (P1) has also an optimal solution. Let α∗ and
w1 = (w1

1, ..., w
1
n) be an optimal solution of problem (P1). Then α∗ is called the

weak �-consistency grade of FPC matrix Ã, denoted by g�(Ã), i.e. we define

g�(Ã) = α∗. (27)

Here, 0 ≤ α∗ ≤ 1. Moreover, if g�(Ã) = 1, then FPC matrix Ã is weak�-consistent.
If optimization problem (P1) has no feasible solution, which means that FPC

matrix Ã = {ãij} is weak α-�-consistent for no α ∈ [0; 1], then we define

g�(Ã) = 0. (28)

In that case, the corresponding priority vector will be defined bellow.
Go to Step 2.

Remark 2. In general, problem (P1) is a nonlinear optimization problem that may
be solved by a numerical method, e.g. by the well known dichotomy method, which
is a sequence of relatively simple optimization problems, see e.g. [3].

In the next step we obtain a corresponding priority vector with our desirable prop-
erties.

Step 2.
First, assume that problem (P1) is feasible. By solving new optimization problem
with α∗-�-mean matrix A∗ = {a∗ij} associated to FPC matrix Ã = {ãij}, see (13),
we obtain a corresponding priority vector with our desirable properties FS, POP,
and RP. Here, the elements of crisp PC matrix A∗ = {a∗ij} are defined by (13) as

a∗ij = (aLij(α
∗)� aRij(α∗))(

1
2 ),

where α∗ ∈ [0; 1] has been calculated in Step 1, α∗ = g�(Ã).
Now, we solve problem (P2) as follows. Let A∗ = {a∗ij} ∈ PCn(G) be a PC

matrix, ε > e. Based on this PCM, we define the following two sets of indexes:

I(1)(A∗) = {(i, j)|i, j ∈ {1, . . . , n}, a∗ij = e}, (29)

I(2)(A∗) = {(i, j)|i, j ∈ {1, . . . , n}, a∗ij > e}, (30)

An error index, E(A∗, w), of A∗ = {a∗ij} and w = (w1, . . . , wn) has been defined by
(22) as

E(A∗, w, α∗) = max
{i,j∈{1,...,n}}

{‖a∗ij � wj ÷ wi‖}. (31)

Jaroslav Ramík

159



(P2)
E(A∗, w, α∗) −→ min; (32)

subject to
aLij(α

∗) ≤ wi ÷ wj ≤ aRij(α∗) for all i, j ∈ {1, ..., n}, (33)

n⊙

k=1

wk = e, wk ∈ G for all k ∈ {1, ..., n}. (34)

Problem (P2) is feasible, as w1 = (w1
1, . . . , w

1
n) is a feasible solution of problem

(P1), hence, it is also a feasible solution of (P2) with objective function (32).
The optimal solution w∗ = (w∗1 , ..., w

∗
n) of (P2) will be called the �-priority vector

of Ã.

Second, assume that problem (P1) is infeasible. By solving problem (P2) with
α∗ = 0, where α∗-�-mean matrix A∗ = {a∗ij} is associated to FPC matrix Ã =
{ãij}, see (13), we obtain a corresponding priority vector w∗ = (w∗1 , ..., w

∗
n) with our

desirable properties FS, POP, and RP, i.e. (35), (36). Here, however, the elements
of crisp PC matrix A∗ = {a∗ij} are defined by (13) as

a∗ij = (aLij(0)� aRij(0))(
1
2 ).

In order to obtain an �-priority vector satisfying desirable properties FS, POP and
RP, we have to solve problem (P2) with two additional constraints

wr = ws ∀(r, s) ∈ I(1)(A∗), (35)

wr ≥ ws � ε ∀(r, s) ∈ I(2)(A∗). (36)

The existence of such optimal solution satisfying properties (35) and (36) is, how-
ever, not secured.

The �-inconsistency index of Ã, I�(Ã), is defined as follows.

I�(Ã) = sup{inf{E(Am(α), w, α)|w = (w1, ..., wn) satisfies (25)}|α ∈ [0; 1]}. (37)

Remark 3. If α∗ = 1, w∗ = (w∗1 , ..., w
∗
n) is the optimal solution of (P2), then by

(37) and Definition 6 we obtain

I�(Ã) = E(A∗, w∗, α∗) = e. (38)

Moreover, if α∗ < 1, then I�(Ã) > e.

Remark 4. In general, the uniqueness of optimal solution of (P2) is not saved.
Depending on the particular operation �, problem (P2) may have multiple optimal
solutions which is an unfavorable fact from the point of view of the DM. In this
case, the DM should reconsider some (fuzzy) evaluations in the original pairwise
comparison matrix. Consequently, we obtain the following proposition.

Proposition 5. If Ã = {ãij} is a FPC matrix, then exactly one of the following
two cases occurs:
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– Problem (P1) has a feasible solution α∗. Then weak consistency grade g�(Ã) =
α∗, 0 ≤ α∗ ≤ 1.
For each α, such that 0 ≤ α ≤ α∗ ≤ 1, FPC matrix Ã is weak α-�-consistent.
The associated priority vector w∗ = (w∗1 , ..., w

∗
n) is the optimal solution of (P2)

and I�(Ã) ≥ e.
– Problem (P1) has no feasible solution. Then consistency grade g�(Ã) = 0,
Ã is �-inconsistent, hence I�(Ã) > e. The associated priority vector w∗ =
(w∗1 , ..., w

∗
n) is the optimal solution of (P2) with A∗ = {a∗ij} and

a∗ij = (aLij(0)� aRij(0))(
1
2 ).

Remark 5. In particular, if Ã is weak �-consistent, then g�(Ã) = 1 and by the
properties of the distance function, we obtain I�(Ã) = e. However, if Ã is weak
�-inconsistent, then g�(A) = 0 and I�(Ã) > e.
In particular, if Ã = {aij} is a crisp FPC matrix, then �-inconsistency index

I�(Ã) = e, if and only if A is �-consistent.

Example 7. Consider the multiplicative alo-group R+ = (R+, .,≤) with � = ., see
Example 2. Let for three alternatives C = {c1, c2, c3}, FPCM Ã = {ãij} be given
by triangular fuzzy number elements as follows:

Ã =




(1, 1, 1) (1, 2, 3) (7, 8, 9)
( 1
3 ,

1
2 , 1) (1, 1, 1) (3, 4, 5)

( 1
9 ,

1
8 ,

1
7 ) ( 1

5 ,
1
4 ,

1
3 ) (1, 1, 1)


 ,

or, equivalently, by α-cut notation. Each fuzzy set is given by the corresponding
family of α-cuts, i.e. intervals. Particularly, for α ∈ [0; 1], we obtain:

Ã =




[1; 1] [1 + α; 3− α] [7 + α; 9− α]
[ 1
3−α ; 1

1+α ] [1; 1] [3 + α; 5− α]
1

9−α ; 1
7+α ] [ 1

5−α ; 1
3+α ] [1; 1]


 .

Here, Ã is a 3× 3 PC matrix with triangular fuzzy number elements and the cor-
responding piece-wise linear membership functions.
Priority vector of Ã is obtained as the optimal solution of problem (P2), particu-
larly, w∗ = (w∗1 , w

∗
2 , w

∗
3) = (2.520, 1.260, 0.315).

The corresponding ranking of alternatives is c1 > c2 > c3.
Weak consistency grade is g(Ã) = α∗ = 1.0, hence, Ã is weak α-�-consistent for
all 0 ≤ α ≤ 1, or, in other words, Ã is weak �-consistent.
Inconsistency index I�(Ã) = E(A∗1, w

∗, 1) = 1.000.

6 Conclusion

This paper deals with PC matrices with fuzzy elements.In comparison with PC
matrices investigated in the literature, here we investigate PCMs with elements
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from abelian linearly ordered group (alo-group) over a real interval. We also define
the concept of priority vector which is an extension of the well known concept in
crisp case and is used for ranking the alternatives. Such an approach allows for
extending various approaches known from the literature. Some numerical examples
are presented to illustrate the concepts and derived properties.

Acknowledgements: This research has been supported by GACR project No.
18-01246S.
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1 Introduction
Toward the discovery of useful information and knowledge from stored data, tech-
niques for data mining and knowledge discovery have been studied remarkably. In
this paper, a rough set-based approach to rule induction is applied to real world
daily data about automatic ticket gate machines, in order to mine rules useful for
the judgment of necessity of maintenance of the machine. By the rough set-based
rule induction method, we obtain simple If-Then rules. However, it is not very easy
to induce If-Then rules applicable for various homogeneous data from a given train-
ing data because there are too many condition attributes. Then we transform the
daily data to cumulative data, i.e., accumulated daily data just after the mainte-
nance day, considering the monotonicity between condition and decision attributes.
We evaluate the improvement of induced If-Then rules by the transformation by
comparison with If-Then rules induced directly from daily data.

2 The Argument
In this research, we apply a rough set-based rule induction algorithm MLEM2 [1]
to the daily data of actual automatic ticket gates. By this application, we explore
rules useful for judging the necessity of maintenance of the machines. To this
purpose, we induce rules useful for the prediction of the number of errors observed
a week later. We demonstrate that the simple and direct application of MLEM2



algorithm does not work well for our purpose. Then we transform daily data to
cumulative data from most recent maintenance. Because the cumulation of data,
we can assume the monotonicity between cumulative data. From this point of
view, we restrict the if-then rules to be induced into those satisfying the monotone
relation between premises and conclusions. We demonstrate how the proposed
approach works by showing the results of experiments using real world daily data
about automatic ticket gate machines. We compare the induced rules in four
different approaches: (i) direct application of MLEM2 with intervals of errors, (ii)
application of MLEM2 to cumulative data with intervals of errors, (iii) application
of MLEM2 to cumulative data with minimum and maximum numbers of errors
and (iv) application of MLEM2 with monotonicity restriction to cumulative data
with minimum and maximum numbers of errors.

3 Results
We use two datasets observed in Machines A and B, respectively. The error occurs
more frequently in Machine B than Machine A. A dataset is used for inducing if-
then rules and the other dataset is used for testing the induced rules. We examined
both cases. In Table 1 to 4 in the Appendix of these proceedings, the statistics
(average and standard deviation) of the number of induced rules, length of the
condition, support of induced data as well as the statistics (average and standard
deviation) of precision, recall and F-Value of induced data in test dataset are shown
for some intervals of errors and for some minimum/maximum numbers of errors.

As shown in Tables 1 to 4 in the Appendix of these proceedings, approaches (ii)
and (iii) generally produce better rules than approaches (i) and (iV), respectively.
We observe that rules for minimum numbers of errors induced in the dataset of
Machine A performs well in the estimation of the minimum numbers of errors in
Machine B. On the other hand, rules for maximum numbers of errors induced in
the dataset of Machine B performs well in the estimation of the maximum numbers
of errors in Machine A. These can be understood from the fact that the error occurs
more frequently in Machine B than Machine A.
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michal.stas@tuke.sk

Abstract

The investigation on the crossing numbers of graphs is very difficult prob-
lem provided that an computing of the crossing number of a given graph in
general is NP-complete problem. The problem of reducing the number of
crossings in the graph is studied not only in the graph theory, but also by
computer scientists. The exact values of the crossing numbers are known only
for some graphs or some families of graphs. The main aim of the paper is to
give the crossing number of join product G + Dn for the connected graph G
of order five isomorphic with the complete bipartite graph K1,4, where Dn

consists on n isolated vertices. The proof of the crossing number of K1,4,n

was published by a partially unclear discussion of cases by Ho [4]. In our
proof, the idea of cyclic permutations and their combinatorial properties will
be used. Due to the mentioned algebraic topological approach, we are able to
extend known results concerning crossing numbers for join products of new
graphs.

1 Introduction

In this article are used notations and definitions of the crossing numbers of graphs
like in [6]. We will often use the Kleitman’s result [5] on crossing numbers of the
complete bipartite graphs. More precisely, he proved that

cr(Km,n) =
⌊m

2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, for m ≤ 6.

Using Kleitman’s result [5], the crossing numbers for join of two paths, join of two
cycles, and for join of path and cycle were studied in [6]. Moreover, the exact
values for crossing numbers of G+Dn and of G+ Pn for all graphs G of order at
most four are given in [11]. It is also important to note that, the crossing numbers
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of the join product of graph G with other graphs are known for few graphs G of
order five and six in [1], [2], [7, 8, 9, 10], [12, 13, 14, 15, 16, 17, 18] and [20].

The methods presented in the paper are new, and they are based on multiple
combinatorial properties of the cyclic permutations. The similar methods were
partially used first time in the papers [3] and [13]. In [14], [15], [20] and [21], the
properties of cyclic permutations are also verified by the help of software in [19].

2 Cyclic Permutations and Configurations

Let G be the connected graph of order five isomorphic with the complete bipartite
graph K1,4. We consider the join product of G with the discrete graph on n vertices
denoted by Dn. The graph G + Dn consists of one copy of the graph G and of n
vertices t1, t2, . . . , tn, where each vertex ti, i = 1, 2, . . . , n, is adjacent to every
vertex of G. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the five edges
incident with the vertex ti. Thus, T 1 ∪ · · · ∪ Tn is isomorphic with the complete
bipartite graph K5,n and

G+Dn = G ∪K5,n = G ∪
(

n⋃

i=1

T i

)
. (1)

In the paper, we will use the same notation and definitions for cyclic permu-
tations and the corresponding configurations for a good drawing D of the graph
G + Dn like in [14]. Let D be a drawing of the graph G + Dn. The rotation
rotD(ti) of a vertex ti in the drawing D as the cyclic permutation that records
the (cyclic) counter-clockwise order in which the edges leave ti have been defined
by Hernández-Vélez, Medina, and Salazar [3]. We use the notation (12345) if the
counter-clockwise order the edges incident with the vertex ti is tiv1, tiv2, tiv3,
tiv4, and tiv5. We have to emphasize that a rotation is a cyclic permutation.
We will separate all subgraphs T i, i = 1, . . . , n, of the graph G + Dn into three
mutually-disjoint subsets depending on how many times the considered T i crosses
the edges of G in D. For i = 1, . . . , n, let RD = {T i : crD(G,T i) = 0} and
SD = {T i : crD(G,T i) = 1}. Every other subgraph T i crosses the edges of G at
least twice in D. Moreover, let F i denote the subgraph G∪T i for T i ∈ RD, where
i ∈ {1, . . . , n}. Thus, for a given subdrawing of G in D, any subgraph F i is exactly
represented by rotD(ti).

Since there is only one possible drawing of G, without loss of generality, we can
choose the vertex notations of the graph in such a way as shown in Fig. 1. Our aim
shall be to list all possible rotations rotD(ti) which can appear in D if the edges
of T i do not cross the edges of G. Since there is only one subdrawing of F i \ {v5}
represented by the rotation (1234), there are four possibilities for how to obtain the
subdrawing of F i depending on in which region the edge tiv5 is placed. These four
possibilities under our consideration are denoted by Ak, for k = 1, . . . , 4. For our
purposes, it does not matter which of the regions is unbounded, so we can assume
that the drawings are as shown in Fig. 2.
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v1v2

v3 v4

v5

Figure 1: One possible drawing of the graph G.

In the rest of the paper, we represent a cyclic permutation by the permuta-
tion with 1 in the first position. Thus, the configurations A1, A2, A3 and A4 are
represented by the cyclic permutations (12345), (12534), (12354) and (15234), re-
spectively. Of course, in a fixed drawing of the graph G+Dn, some configurations
from M = {A1,A2,A3,A4} need not appear. We denote by MD the set of all
configurations for the drawing D belonging to M.

A4
A3

A2
A1

 

v1
v2

v3 v4

v5

v1
v2

v3 v4

v5

v1
v2

v3 v4

v5

v1

v2

v3 v4

v5

Figure 2: Drawings of four possible configurations from M of the subgraph F i.
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We remark that if two different subgraphs F i and F j with configurations from
MD cross in a drawing D of G + Dn, then only the edges of T i cross the edges
of T j . Thus, we will deal with the minimum numbers of crossings between two
different subgraphs F i and F j depending on their configurations. Let X , Y be
the configurations from MD. We shortly denote by crD(X ,Y) the number of
crossings in D between T i and T j for different T i, T j ∈ RD such that F i, F j have
configurations X , Y, respectively. Finally, let cr(X ,Y) = min{crD(X ,Y)} over all
good drawings of the graph G + Dn with X ,Y ∈ MD. Our aim is to establish
cr(X ,Y) for all pairs X ,Y ∈M.

Now, we are ready to find the necessary numbers of crossings between subgraphs
T i and T j for the corresponding configurations of F i and F j fromM. The configu-
rations A1 and A2 are represented by the cyclic permutations (12345) and (12534),
respectively. Since the minimum number of interchanges of adjacent elements of
(12345) required to produce cyclic permutation (12534) = (14352) is two, any sub-
graph T j with the configuration A2 of F j crosses the edges of T i at least twice,
that is, cr(A1,A2) ≥ 2. Details have been worked out by Woodall [22]. The same
reason gives cr(A1,A3) ≥ 3, cr(A1,A4) ≥ 3, cr(A2,A3) ≥ 3, cr(A2,A4) ≥ 3 and
cr(A3,A4) ≥ 2. Clearly, also cr(Ai,Ai) ≥ 4 for any i = 1, . . . , 4. The resulting
lower bounds for the number of crossings of configurations fromM are summarized
in symmetric Table 1 (here, Ak and Al are configurations of the subgraphs F i and
F j , where k, l ∈ {1, 2, 3, 4}).

− A1 A2 A3 A4

A1 4 2 3 3
A2 2 4 3 3
A3 3 3 4 2
A4 3 3 2 4

Table 1: The necessary number of crossings between T i and T j for the configura-
tions Ak, Al.

3 The crossing number of G+Dn

Two vertices ti and tj of G + Dn are antipodal in a drawing of G + Dn if the
subgraphs T i and T j do not cross. A drawing is antipodal-free if it has no antipodal
vertices. In the rest of the paper, each considered drawing of the graph G + Dn

will be assumed antipodal-free. In the proof of the main theorem, the following
lemma related to some restricted subdrawings of the graph G+Dn is needful. So,
let us first define notation of regions in some subdrawings of G+Dn. The unique
drawing of F i contains five regions with the vertex ti on its boundary. For example,
if F i has the configuration A1, then let us denote these five regions by ω1,5,2, ω2,3,5,
ω3,5,4, ω4,5 and ω1,5 depending on which of vertices are located on the boundary
of the corresponding region.
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Lemma 1 Let D be a good and antipodal-free drawing of G + Dn, for n > 2,
with the vertex notation of the graph G in such a way as shown in Fig. 1. Let
for T i ∈ RD, the corresponding subgraph F i has the configuration Aj ∈ MD for
some j ∈ {1, . . . , 4}. If there is a subgraph T k ∈ SD with crD(T i, T k) = 1, then all
possible rotD(tk) are given in Table 2.

conf(F i) rotD(tk)

A1 (12543), (15342)
A2 (13452), (12435)
A3 (15324), (14523)
A4 (14235), (13254)

Table 2: The corresponding rotations of tk for T k ∈ SD with crD(T i, T k) = 1.

Proof. Let us assume the configuration A1 of F i, i.e., rotD(ti) = (12345). The
unique subdrawing D(F i) of the subgraph F i contains five regions with the vertex
ti on their boundaries. If there is a subgraph T k ∈ SD with crD(T i, T k) = 1, then
the vertex tk must be placed in the region with three vertices of G on its boundary.
Therewith, if tk ∈ ω1,5,2 or tk ∈ ω3,5,4, then the edge tkv4 or tkv1 crosses the edges
of G ∪ T i at least twice, respectively. In the case tk ∈ ω2,5,3, then the edge v3v5
or v2v5 of G must be crossed by the edge tkv4 or tkv1, respectively. This forces
rotD(tk) = (12543) and rotD(tk) = (15342). For the remaining possible cases of
the configurations of the subgraph F i, using the same arguments, one can easy to
verify the mentioned rotations of the vertex tk in Table 2. �

v
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4
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3

(a) (b)

Figure 3: Two drawings of G+D2 and of G+Dn.
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Theorem 1 cr(G+Dn) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
= n(n− 1) for n ≥ 1.

Proof. In Fig. 3(b) there is the drawing of G+Dn with 4
⌊
n
2

⌋⌊
n−1
2

⌋
+2
⌊
n
2

⌋
crossings.

Thus, cr(G+Dn) ≤ 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
. We prove the reverse inequality by induc-

tion on n. The graph G+D1 is planar, hence cr(G+D1) = 0. The graph G+D2

contains a subdivision of K3,4, and therefore cr(G+D2) ≥ 2. So, cr(G+D2) = 2
by the good drawing of G + D2 in Fig. 3(a). Suppose now that, for some n ≥ 3,
there is a drawing D with

crD(G+Dn) < 4
⌊n

2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
(2)

and that

cr(G+Dm) ≥ 4
⌊m

2

⌋⌊m− 1

2

⌋
+ 2
⌊m

2

⌋
for any integer m < n. (3)

We claim that the considered drawing D must be antipodal-free. For a contra-
diction suppose, without loss of generality, that crD(Tn−1, Tn) = 0. Using positive
values in Table 1 and possible subdrawings in Fig. 2, one can easily to verify that
both subgraphs Tn and Tn−1 are not from the set RD, and if Tn ∈ RD then
crD(G,Tn−1) ≥ 2 by possible subdrawings in Fig. 2, i.e., crD(G,Tn−1 ∪ Tn) ≥ 2.
The known fact that cr(K5,3) = 4 implies that any T k, k = 1, 2, . . . , n− 2, crosses
Tn−1 ∪ Tn at least four times. So, for the number of crossings in D we have

crD(G+Dn) = crD(G+Dn−2) + crD(Tn−1 ∪ Tn) + crD(K5,n−2, T
n−1 ∪ Tn)+

+crD(G,Tn−1 ∪ Tn) ≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 2
⌊n− 2

2

⌋
+ 4(n− 2) + 2 = n(n− 1).

This contradiction with the assumption (2) confirms that the considered draw-
ing D must be antipodal-free. Moreover, if r = |RD| and s = |SD|, the assumption
(3) together with the well-known fact cr(K5,n) = 4

⌊
n
2

⌋⌊
n−1
2

⌋
imply that in D, there

is at least one subgraph T i, which do not cross the edges of G. More precisely:

crD(G) + crD(G,K5,n) ≤ crD(G) + 0r + 1s+ 2(n− r − s) < 2
⌊n

2

⌋
,

i.e.,

s+ 2(n− r − s) < 2
⌊n

2

⌋
. (4)

This forces that r ≥ 1, and 2r + s ≥ 2n − 2
⌊
n
2

⌋
+ 1. Now, for T i ∈ RD, we

will discuss the existence of possible configurations of subgraphs F i = G ∪ T i in
the drawing D. Without loss of generality, we can choose the vertex notation of
the graph G in such a way as shown in Fig. 1. Thus, we will deal with the configu-
rations belonging to the nonempty setMD. Let us first denote by SD(A1,A2) and
SD(A3,A4) the set of all subgraphs T k ∈ SD for which there is a T i ∈ RD such that
crD(T k, T i) = 1 with the configuration A1 or A2 and A3 or A4 of F i, respectively.
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Consequently, let us denote s1 = |SD(A1,A2)|, and s2 = |SD(A3,A4)|. Remark
that SD(A1,A2) and SD(A3,A4) are disjoint subsets of SD provided that the cor-
responding rotD(tk) are given by Lemma 1. Of course, the mentioned subsets can
be empty, i.e., 0 ≤ s1 + s2 ≤ s. In addition, we will discuss two possibilities:

Case 1: SD(A1,A2) and SD(A3,A4) are empty subsets, i.e., for any T i ∈ RD

there is no T k ∈ SD with crD(T i, T k) = 1.

1. {Aj ,Aj+1} ⊆ MD for some j ∈ {1, 3}. Without lost of generality, let us sup-
pose that {A1,A2} ⊆ MD. We will discuss two possibilities over congruence
n modulo 2.

• Let n be odd, and let us also consider two different subgraphs Tn−1,
Tn ∈ RD such that Fn−1 and Fn have configurations A1 and A2, re-
spectively. Then, crD(Tn−1∪Tn, T i) ≥ 6 holds for any T i ∈ RD with i 6=
n− 1, n by summing the values in the corresponding two rows of Table
1. Moreover, it is obvious that the condition crD(G∪Tn−1∪Tn, T k) ≥ 5
is fulfilling for any T k ∈ SD. Thus, by fixing the graph G ∪ Tn−1 ∪ Tn

we have

crD(G+Dn) = crD(K5,n−2) + crD(K5,n−2, G ∪ Tn−1 ∪ Tn)

+crD(G ∪ Tn−1 ∪ Tn) ≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 6(r − 2)

+5s+ 4(n− r − s) + 2 = 4
n− 3

2

n− 3

2
+ 4n+ (2r + s)− 10

≥ (n− 3)(n− 3) + 4n+ 2n− 2
n− 1

2
+ 1− 10 ≥ n(n− 1).

• Let n be even, and let us also consider that Tn ∈ RD with the con-
figuration A1 of the subgraph Fn, and the number of subgraphs with
the associated configuration A1 is at least as much as the number of
subgraphs with the configuration A2. Hence,

∑

T i∈RD, i 6=n

crD(Tn, T i) ≥ 3(r − 2) + 2 = 3(r − 1)− 1.

So, by fixing the graph G ∪ Tn we have

crD(G+Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3(r − 1)− 1 + 3(n− r) + 0

= (n− 2)(n− 2) + 3n− 4 ≥ n(n− 1).

2. {Aj ,Aj+1} 6⊆ MD for any j = 1, 3. Without lost of generality, we can assume
that Tn ∈ RD with the configuration Ak of Fn for some k ∈ {1, . . . , 4}. Then
crD(Tn, T i) ≥ 3 trivially holds for any T i ∈ RD with i 6= n. Thus, by fixing
the graph G ∪ Tn we have

crD(G+Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3(n− 1) + 0 ≥ n(n− 1).
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Case 2: At least one of the subsets SD(A1,A2) and SD(A3,A4) is nonempty.
Without lost of generality, let us suppose that s1 ≥ s2. Let us also consider
a subgraph T k ∈ SD(A1,A2), and some T i ∈ RD with crD(T k, T i) = 1. Then,
crD(T i ∪ T k, T j) ≥ 5 holds for any T j ∈ RD with j 6= i, and crD(T i ∪ T k, T j) ≥ 5
is true for any T j ∈ SD \ SD(A3,A4) with j 6= k.1 Hence, by fixing the graph
T i ∪ T k we have

crD(G+Dn) = crD(G+Dn−2) + crD(T i ∪ T k) + crD(K5,n−2, T
i ∪ T k)+

+crD(G,T i ∪ T k) ≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 2
⌊n− 2

2

⌋
+ 5(r − 1) + 5(s1 − 1)

+5(s− s1 − s2) + 3s2 + 3(n− r − s) + 1 + 1 = 4
⌊n− 2

2

⌋⌊n− 3

2

⌋

+2
⌊n− 2

2

⌋
+ 3n+ (2r + s) + s− s2 − 8 ≥ 4

⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 2
⌊n− 2

2

⌋

+3n+ 2n− 2
⌊n

2

⌋
+ 1 + 1− 8 ≥ n(n− 1),

where the inequalities s− s2 ≥ s1 ≥ 1 were used.
Thus, it was shown in all mentioned cases that there is no good drawing D of

the graph G+Dn with less than 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
crossings. This completes the

proof of the main theorem. �

4 Four Other Graphs

G1 G2 G3 G4

Figure 4: Four graphs G1, G2, G3 and G4 by adding new edges to the graph G.

Finally, into the subdrawing in Fig. 3(b), we are able to add the edges v1v2,
v2v3 and v3v4 to the graph G without additional crossings, and we obtain four
new graphs Gi for i = 1, 2, 3, 4 in Fig. 4. Therefore, the drawings of the graphs
G1 + Dn, G2 + Dn, G3 + Dn and G4 + Dn with 4

⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
crossings are

obtained. On the other hand, G+Dn is a subgraph of each Gi +Dn, and therefore,
cr(Gi +Dn) ≥ cr(G+Dn) for any i = 1, 2, 3, 4. Thus, the next results are obvious.

1We have to emphasize that, for the mentioned subgraphs Tk ∈ SD(A1,A2), and T i ∈ RD

with crD(Tk, T i) = 1, there is a possibility to find a subdrawing of G ∪ T i ∪ Tk ∪ T j in which
crD(T i ∪ Tk, T j) = 3 for some T j ∈ SD(A3,A4).
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Collorary 1 cr(Gi +Dn) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
for n ≥ 1, where i = 1, . . . , 4.

Moreover, into the drawing in Fig. 3(b) in the cases of graphs G, G1 and G2, it
is possible also to add n− 1 edges, which form the path Pn, n ≥ 2 on the vertices
of Dn without another crossing. Thus, the next results are also obvious.

Collorary 2 cr(G + Pn) = cr(Gi + Pn) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
for n ≥ 2, where

i = 1, 2.
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Abstract

We use Bayesian Networks to model the influence of diverse socio-economic
factors on subjective well-being and their interrelations. The classical statis-
tical analysis aims at finding significant explanatory variables, while Bayesian
Networks can also help sociologists to explain and visualize the problem in
its complexity. Using Bayesian Networks the sociologists may get a deeper
insight into the interplay of all measured factors and their influence on the
variable of a special interest. In the paper we present several Bayesian Net-
work models – each being optimal from a different perspective. We show how
important it is to pay a special attention to a local structure of conditional
probability tables. Finally, we present results of an experimental evaluation
of the suggested approaches based on real data from a large international
survey. We believe that the suggested approach is well applicable to other
sociological problems and that Bayesian Networks represent a new valuable
tool for sociological research.

1 Introduction

Bayesian Networks (BNs) [13, 10] are probably the most popular representative
from the class of probabilistic graphical models. In this paper we show how BNs
can help social scientists to get a deeper insight into a studied problem of their
interest. We will use the problem of subjective well-being throughout the paper to
illustrate key benefits of the suggested approach.

Although the subjective well-being (SWB) has been researched for decades [4, 6]
the debate on its association with the material living conditions still continues
and many questions remain unanswered. The people mostly think their happiness
and satisfaction are directly linked with the wealth. Modern researchers have
also proved that material aspects of life matter, yet their findings are sometimes
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surprising. Better understanding of the association between the variables related
to the material living conditions such as income, wealth, material deprivation and
SWB is valuable.

Typical questions the classical statistical analysis can answer are questions like:
what factors have a significant influence on subjective well-being? If regression
models are used we may study strengths and signs of the influence of explanatory
variables on the dependent variable of our interest. In addition to this analysis,
probabilistic graphical models help to get a deeper insight into the interplay of all
measured factors and their influence on the variable of the special interest. In BNs
the relations are visualized graphically using acyclic directed graphs representing
conditional independence relations among variables.

The paper is organized as follows. In Section 2 the concept of subjective well-
being is introduced and briefly reviewed. In Sections 3 and 4, the hypotheses of
SWB and its association with the variables of material situation are examined using
appropriate statistical methods on empirical data. The main original contribution
of this paper is presented in Section 5, where BNs are applied to the analysis of
SWB. We present two principally different approaches to learning BN structures:
one based solely on collected data and on minimization of Bayesian information
criteria (BIC) and other where we use an expert version of the PC algorithm
to build the model using the expert knowledge of the modeled domain. Special
attention is given to learning conditional probability tables (CPTs). The general
form of these CPTs, which is commonly used in diverse applications, leads to an
undesired and counter-intuitive model inference despite a relatively large dataset
used for learning. The main problem is a non-monotone behavior. We show that
this problem can be overcome by using appropriate local structure of CPTs – we
use Ordinal Logistic Regression (OLR) in Section 6. In Section 7 we evaluate
models by measuring how well they fit the data and by measuring their prediction
accuracy. We also provide an example of the BN model use in Section 8. We
summarize our contribution in Conclusions.

2 Subjective Well-Being

Broadly speaking, SWB is the self-evaluation of one’s overall life in positive terms [4].
The concept of SWB has little to do with the objective living conditions, it is de-
termined solely by the subjective assessment.

SWB has two dimensions based on [6]. The affective (or emotional) dimension
includes positive and negative moods and emotions (affects). They represent on-line
evaluations of events occurring in one’s life, whereas the happiness is the surplus
of the positive affects over the negative ones. Positive and negative affects are
considered to be, in essence, the independent factors. The cognitive dimension of
SWB means the judgement of one’s satisfaction with the life as a whole as well
as with the various life domains, such as job, income, family, leisure etc. Hence,
the people high in SWB experience pleasant emotions frequently and unpleasant

Bayesian Networks for the Analysis of Subjective Well-Being
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Table 1: Model Variables

Abbr. Description States

SWB Subjective Well-Being {unhappy, fairly unhappy,
fairly happy, happy}

PAST Income compared to own past {better, the same, worse}
OTHR Income compared to others {worse, the same, better}
DEPR Material deprivation {none, weakly deprived, deprived}
STRS Subjective economic strain {easily, fairly easily,

(ability to make ends meet) with some difficulty, with difficulty}
FPRO Financial problems {none, minor, major}
HOUS Housing problems {no defect, single defect, several defects}
INC Household income {low, fairly low, fairly high, high}
CRY Respondent’s country {C1, C2, C3, C4}

emotions rarely and feel satisfied with the conditions of their lives [5].
Some authors strictly distinguish the happiness from the life satisfaction, where

the happiness resulted from the positive experience and the life satisfaction is an
outcome of an individual evaluations of discrepancy between material and social
aspirations, expectations and achievements. The variable of the subjective well-
being in our model incorporates both happiness and life satisfaction components.

The most frequently referred correlates of SWB can be grouped, for exam-
ple, as follows: demographic factors (age; gender; marital status; religion; physical
health), social factors (education; occupation; social relationships), personality fac-
tors (extraversion; neuroticism; self-esteem; optimism; purpose-in-life), and wider
environmental factors (culture; governance; inflation; unemployment; climate etc.).
In this study we consider only factors related to the material situation. In Table 1
we list studied model variables, their brief description, and the number of states of
these variables1.

In the analysis we use data from the third survey of the European Quality
of Life Study conducted in 2011 [7]. The survey covers all persons aged 18 and
more whose usual place of residence is in the territory of the surveyed countries at
the time of the data collection. Only one interview per household. We used the
data from four post-communist central European countries – the Czech Republic,
Hungary, Poland and Slovakia. These four countries are culturally, geographically,
economically, and politically similar. The total of 5,298 respondents from these
four countries participated in the survey, out of whom 3,259 complete data vectors
are extracted by removing respondents having answered the relevant questions
incompletely (613 in the Czech Republic; 586 in Hungary; 1,428 in Poland; and
632 in Slovakia).

1Variables SWB and INC were transformed from the original scales using a quantile discretiza-
tion. The states of variables DEPR, STRS, FPRO, and HOUS are summaries from answers of
several questions on the corresponding topic.
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Table 2: P-values for the hypothesis of equal means of SWB given values of each
explanatory variable.

Pairs of values 1 vs. 2 1 vs. 3 2 vs. 3
INC 0.000 0.000 0.000

OTHR 0.000 0.000 0.000
PAST 0.125 0.000 0.000
DEPR 0.000 0.000 0.000
STRS 0.000 0.000 0.000
FPRO 0.000 0.000 0.629
HOUS 0.000 0.000 0.000

Pairs of values 1 vs. 4 2 vs. 4 3 vs. 4
INC 0.000 0.000 0.000

STRS 0.000 0.000 0.000

3 Basic Statistical Analysis

In [18] a basic statistical analysis of the influence of factors related to the material
situation on SWB in four countries of Central Europe was performed. The null
hypothesis of equal means of SWB were rejected for all variables2. The results
are summarized in Table 2 where we present p-values of Welch t-test [19] of equal
means of SWB. The results of the tests are presented for each pair of values of
every factor variable.

From the table we can see that for almost all explanatory variables the hy-
pothesis of equal means can be rejected except for PAST=1 and PAST=2 and for
FPRO=2 and FPRO=3, where means are not significantly different. However, we
can conclude that all explanatory variables are significant for SWB since all of
them help differentiate between SWB values for at least two of their states. More
details can be found in [18].

4 Ordinal Logistic Regression

A natural model for ordinal variables is Ordinal Logistic Regression (OLR) [12].
Since the variable SWB has four states the OLR model of the dependent variable Y
representing SWB is defined for i = 1, 2, 3 using cumulative distribution functions:

P (Y ≤ i) = logit−1


ζi −

∑

j∈J
βj · xj


 ,

2In this paper the SWB variable used the original ten points scale.
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Table 3: Ordinal logistic regression model.

variables βj std. error t-value p-value
CRY2 0.3834 0.1124 3.4118 0.001
CRY3 0.7840 0.0947 8.2815 0.000
CRY4 0.1367 0.1081 1.2644 0.206
INC 0.0870 0.0361 2.4108 0.016
OTHR 0.4660 0.0617 7.5470 0.000
PAST -0.2709 0.0583 -4.6450 0.000
STRS -0.2741 0.0451 -6.0728 0.000
DEPR -0.4960 0.0610 -8.1378 0.000
FPRO -0.1047 0.0496 -2.1098 0.035
HOUS -0.2044 0.0466 -4.3879 0.000
intercepts
ζ1 -2.3252 0.2977 -7.8105 0.000
ζ2 -0.8687 0.2949 -2.9460 0.003
ζ3 0.4056 0.2949 1.3754 0.169

where ζi, i = 1, 2, 3 are the intercepts for different values of SWB, βj , j ∈ J are
coefficients of explanatory variables Xj , j ∈ J taking states xj . The probability
distribution of the dependent variable Y is computed from the cumulative distri-
bution functions as P (Y = i) = P (Y ≤ i) − P (Y ≤ i − 1) for i = 1, 2, 3, 4, where
P (Y ≤ 0) = 0 and P (Y ≤ 4) = 1.

The coefficients and intercepts of the OLR model learned from SWB data are
presented in Table 3. We can see that income relatively higher than income of
other people increases probability of higher values of SWB. On the other hand, if
the respondent has had a higher income in the past than now then his/her SWB
has a higher probability of being lower now. Also, problems specified by variables
STRS, DEPR, FPRO, and HOUS imply lower SWB. Since the country variable is
not ordinal it is transformed to 3 binary variables taking CRY=1 as the reference
value.

5 Bayesian Networks for Subjective Well-Being

A main advantage of BNs is that they represent conditional independence rela-
tions graphically. Uncertain relations between variables are modeled using the
conditional probability distributions. Hence, BNs enable an efficient encoding of a
domain knowledge and improve understanding of complex problems. BNs provide
a compact representation of the joint probability distribution.

BNs enable exact probabilistic inference assuming the structure and parameters
are estimated correctly – the posterior probability distribution of any variable can
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be computed. BNs help answering queries under the uncertainty. As the software
for modeling and learning the structure and parameters is available, the complex
situations can be modelled with the help of BNs.

The BNs construction includes two main consequent phases: (1) determining
the structure and (2) learning the parameters. Determining the structure includes
definition of model variables and establishing of directed links among the variables
in a network. The structure can be determined based on the expert knowledge or
learned from the available data using a structure learning algorithm. In Section 5.1
we use the expert knowledge and in Section 5.2 we learn a BN model from data.

5.1 Expert model

In order to make the process of building the expert model structure systematic
we decided to follow the scheme of the PC algorithm [16]. The major difference
is that in the standard PC algorithm collected data are used to decide whether a
Conditional Independence (CI) statement holds or not while in the expert version of
the PC algorithm the expert knowledge is used to decide validity of CI statements
for this purpose. If necessary, a detailed review of the SWB literature helped us to
reach decisions3. The resulting model structure is presented on the left hand side
in Figure 1.

5.2 BIC optimal model

Another possibility is to use data to learn a BN model structure. A class of standard
model estimation methods is based on finding a model that maximizes the log-
likelihood (LL) of data given the model. It is well-known that this often leads
to overfitting the training data and results in complex models. Therefore criteria
that penalizes complex structures are often used instead. The BIC criterion [15]
subtracts from LL a penalty which is proportional to the number of parameters of
the BN model M:

BIC(M) = LL(M)− 1

2
κ logN ,

where κ is the number of free parameters in modelM and N is the number of data
records.

On the right hand side of Figure 1 we present the structure of a BIC optimal
BN model. This model was learned using the Gobnilp tool [1]. Apparently, the
BIC greedy search implemented in [9] also results in a model that is equivalent to
the BIC optimal one.

3A detailed description of the whole process exceeds the scope of this paper. This description
is part of a paper currently under review in a journal.
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Figure 1: Expert BN (left) and a BIC-optimal BN (right).

6 Conditional probability tables

For the estimation of values of conditional probability tables (CPTs) of BNs from
data the EM algorithm is commonly used [3]. If data are complete (i.e., if they
contain no missing records) then this procedure reduces to computing relative fre-
quencies from data and this is the case of all our experiments since we used complete
data records only. We observed that if the general form of CPTs is used it leads
to an undesired and counterintuitive inference despite a relatively large training
dataset. The main problem is a non-monotone behavior.

For example, in the model learned from data we observed that P (SWB =
1|e,PAST = 2) ≤ P (SWB = 1|e,PAST = 3) ≤ P (SWB = 1|e,PAST = 1), which
means that the lowest SWB is achieved when variable PAST takes its medium value.
One would rather expect the influence of PAST is monotone and SWB is the lowest
when the relative income compared to one’s own past has become much worse (state
3). The symbol e stands for a particular evidence on remaining parents of SWB.
The undesired behaviour was observed for e = (OTHR=1, DEPR=1, STRS=1).
Such non-monotone behavior can be observed if there are not enough observations
for a given evidence e, which is a quite common situation. This problem should be
eliminated since the users do not trust any system with such behaviour. One may
believe that this problem disappears when data are large enough but we would like
to stress that a mere large dataset does not guarantee that certain combinations
are not rare in data. The problem can be properly solved by using a local structure
of CPTs appropriate for the application.

Ordinal logistic regression models [12] have several properties that make them
good candidates for CPTs in BNs for subjective well-being problem. They assume
a natural ordering of the states of variables, which corresponds well to all variables
in our model except the country (CRY). Also, the OLR models allow explanatory
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Table 4: Comparisons of models’ LL and BIC.

Model LL BIC std. BIC OLR
Full -27,328 -278,930
OLR -32,129 -79,419 -32,283

Expert -29,579 -31,342
Expert OLR -29,938 -31,702 -30,112

BIC-optimal -29,195 -29,822
BIC-optimal OLR -29,395 -30,022 -29,706

TAN -29,285 -30,268
TAN OLR -29,525 -30,508 -29,928

variables to have either positive or negative effect on the dependent variable, which
fits well the studied problem. We learned OLR models for all CPTs of our expert
model except for two CPTs: P (CRY ) and P (INC|CRY ). In this way, the non-
monotonicity property observed for general CPTs completely disappeared.

Other methods that guarantee monotonicity in CPTs exist, e.g. [17, 11, 14].
We have decided to use OLR models since they are commonly used in sociology.
However, a more detailed study considering other methods would be interesting,
but we leave this task for a future research.

7 Models’ Evaluation

We will compare the discussed BN models and the Tree Augmented Naive Bayes
model (TAN), which is a BN model commonly used in classification problems [8].
First, we compare the models using the Log-Likelihood (LL) and the Bayesian In-
formation Criteria (BIC). The values of these two criteria are presented in Table 4.
The measures are computed with respect to the whole dataset consisting of 3259
data vectors.

From Table 4 we can see that the best model with respect to the BIC criteria
is (indeed) the BIC-optimal model whose structure was learned by Gobnilp. The
Expert model with unrestricted CPTs has 436 free parameters. When we restrict
the conditional probability tables to have parameters of the OLR models (for all
nodes except CRY and INC since CRY is not an ordinal variable) the number of
free parameters drops to 43. This means the penalty reduces from 1,763 to 174,
which implies the BIC value of Expert OLR drops from -31,702 to -30,112. Thus,
by the OLR restriction of the CPTs we can get a significantly better BIC value.
Similar observations hold for the BIC-optimal and BIC-optimal OLR models.

The primary goal of our work was to help sociologists to get a deeper insight into
the problem of SWB, to explain the relation between variables, and to provide a tool
for computations of marginal conditional probabilities in situations of sociologists’
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interest. However, this being said, we decided to test also the predictive ability of
the learned models. The prediction variable is SWB.

We split data into 10 folds and used 10-fold cross-validation to evaluate models
predictive abilities4. In order to analyze the influence of the data size we performed
experiments on fractions of the whole dataset. This means that for small subsets of
data we performed more cross-validation experiments. In this way we have achieved
comparable results since each single respondent record was used exactly once in
testing (in all considered data sizes).
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Figure 2: Accuracy with respect to the size of training data.

The models’ accuracy is presented in Figure 2. It is the ratio of correctly
classified instances with respect to all instances:

acc =
1

N

4∑

i=1

C(i, i) ,

where symbol C denotes the confusion matrix which contains at C(i, j) the number
of cases predicted as SWB=i with the reference value SWB=j and N is the total
number of instances, i.e.,

N =

4∑

i=1

4∑

j=1

C(i, j) .

From the plot we can see that for small data sizes the OLR versions of all models
have better accuracy than their standard versions. The expert OLR and standard

4The structure of the tested models was fixed. Each time, nine folds were used to learn model
parameters only.
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Figure 3: Prediction error with respect to the size of training data.

OLR models performed best. The standard expert model and TAN require more
training data to achieve comparable performance. BIC optimal model remains
significantly worse than his competitors5. The worst of all tested models is the full
table model despite this model has the best fit of data. This model is a typical
example of a model overfited to training data but performing badly on testing data.
Though, the overall accuracy of 0.42 may seem to be low, we should stress that
it is significantly higher than the no-information-rate, which is 0.278 (note that
SWB has 4 states). The observed level of accuracy is a natural consequence of
restricting the study to only factors related to the material situation. Clearly, the
omitted factors also play an important role in SWB and since they are not part
of our tested models we cannot hope for predictions of a very high accuracy. But,
as we have already mentioned, the high accuracy predictions were not the primer
goal of our work reported in this paper.

Since the SWB variable is ordinal a more appropriate measure of models’ per-
formance than accuracy might be a prediction error. Contrary to the accuracy,
which does not consider the distance between the predicted and observed SWB
values, the average prediction error defined below does it by means of the absolute
difference between the predicted and observed SWB value:

err =
1

N

4∑

i=1

4∑

j=1

|i− j| · C(i, j) .

From Figure 3 we can see that for small data sizes the full table model and the
(non OLR) expert model are clear losers and TAN is also slightly worse. Other

5We verified the claimed differences by Wilcoxon signed-rank tests. Due to the lack of space
we do not report the p-values of these tests in this paper.
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models have comparable performance. When more training data are available TAN
quickly gains comparable performance and latter even the (non OLR) expert model
also gains comparable performance to models that were better on smaller datasets.
We observe an unexpected performance deterioration for the BIC optimal OLR.
We have looked more closely at this model and in its confusion matrix we can
see that this model never classifies any instance as SWB=3. Since 3 is one of
the middle SWB values the prediction error is affected more than the accuracy.
The BIC optimal OLR model is simply not a good candidate for the classification
since only two variables (OTHR and DEPR) have any influence on SWB and by
restricting the already small CPTs further by the OLR requirement we worsen its
performance.

When compared to accuracy the prediction error is more satisfactory, since
the prediction error values imply that most testing instances have their difference
between the predicted and observed SWB values at most 1. For example, for the
best performing model on the largest training set, i.e. for BIC optimal, only 20%
of tested instances had this difference larger than 1, while for 40% of instances this
difference was equal to 1 and 40% of instances were correctly predicted.

8 An example of a BN model use

In Figure 4 we present an example of a model use. For this purpose we use the
Expert OLR model whose structure was presented on the left hand side of Figure 1.
This model can be used to predict most probable values of variables of interest in
different life circumstances.

For example, assume a person with a low income, but with no subjective ma-
terial deprivation and making easily ends meet (a low subjective economic strain).
When we enter these conditions as evidence into the BN model we can read the
conditional probability distributions of remaining variables. From Figure 4 we can
see that despite a low income the person is expected to have a high SWB since a
low subjective material deprivation and a low subjective economic strain overweight
the negative influence of a low income.

9 Related work

Probably, the closest related work is the working paper by Ceriani and Gigliarano [2].
Our motivation is similar to their motivation but our approach differs from their
approach in several aspects. Ceriani and Gigliarano do not require monotonicity
in CPTs, which we believe is important, as we have shown in our paper. They also
used different learning algorithms from the bnlearn R package, that, contrary to
Gobnilp, do not necessarily provide BNs optimal with respect to BIC. In addition,
we proposed to use an expert-based method which can a domain expert use to
build a BN model.
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Figure 4: Prior marginal probabilities (top) and the marginals updated for the
observed evidence (bottom).
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10 Conclusions

In the sociology literature it is still an ongoing debate which factors are important
for SWB and which are mediated through others. In the basic statistical analysis
of the SWB all studied socio-economic variables were proved to be statistically
significant for SWB, but this analysis cannot decide whether their influence is
direct or mediated through other variables. We applied BNs to this problem since
they can model complex relations between variables. The expert model constructed
using an expert version of the PC algorithm can be used to resolve this debate in
a systematic and mathematically rigorous way.

From the point of view of sociology, both, the Expert and the BIC-optimal
BNs suggest that the objective conditions such as the income and the financial
problems influence SWB only indirectly through the subjective perception of the
relative income, the material deprivation and the economic stress. We were able
to derive this conclusion (and few others) due to the analysis based on BNs. We
believe that BNs represent a valuable tool for social scientists.
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Abstract

Internet, power network, traffic network, etc. are network systems that are
required high reliability. Independently, costs may occur for the construction
or maintenance of links in the networks. In this study, we consider a bi-
objective network design problem with objectives of maximizing all-terminal
reliabilities and minimizing construction costs of edges. In general, these
objectives are in trade-off relation, and cannot be optimized simultaneously.
Therefore, the meaning of solving the problem is to find the set of all Pareto
solutions. On the other hand, the problem of evaluating all-terminal reliabil-
ity of a given network is computationally intractable, which suggests that our
bi-objective network design problem is computationally intractable as well.
Hence, it is reasonable to switch our goal to develop a solution method for
finding a set of quasi-Pareto solutions. Previous study restricted calculated
networks by using Pareto solutions properties. These Pareto properties were
also applied to GA-based algorithm. This previous GA expanded calculatable
networks. But solution search of this algorithm is inaccurate. In this paper,
we improve previous GA-based algorithm such that obtained non-dominated
solutions are closer to Pareto solutions. The accuracy of our proposed al-
gorithm is evaluated based on comparison of quasi-Pareto solutions to other
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algorithms.

1 Introduction

Internet, power network, traffic network, etc. are network systems that are required
high reliability. In addition, independently, costs may occur for the construction
or maintenance of links in the networks. In this study, we consider a bi-objective
network design problem with objectives of maximizing all-terminal reliabilities and
minimizing construction/maintenance costs of edges. In general, costs occur to
increase reliabilities. So, these objectives are in trade-off relation, and cannot be
optimized simultaneously. Therefore, the meaning of solving the problem is to
find the set of all Pareto solutions. On the other hand, the problem of evalu-
ating all-terminal reliability of a given network is computationally intractable[2],
which suggests that our bi-objective network design problem is computationally
intractable as well. Akiba et al.[1] proposed an algorithm which finds all Pareto
solutions. However, this algorithm can be applied to only networks of restricted
size. Hence, it is reasonable to switch our goal to develop a solution method for
finding a set of quasi-Pareto solutions, i.e., a set of pairwise non-dominated good
solutions in terms of our objectives.
Previous study[3] restricted calculated networks by using Pareto solutions proper-
ties. This algorithm can search n ≤ 6. These Pareto properties were also applied
to GA-based algorithm [4]. This previous GA expanded calculable networks. But
solution search of this algorithm is inaccurate in n ≥ 6.
In this paper, we improve previous GA-based algorithm[4] such that obtained non-
dominated solutions are closer to Pareto solutions in n ≥ 6. Proposed GA re-
considers selection and crossover operation such that Pareto solutions properties
are reflected. And then, the accuracy of our proposed algorithm is evaluated based
on comparison of quasi-Pareto solutions to other algorithms.

2 Model Description and Properties of Pareto So-
lutions

2.1 Notations

For describing our problem, we define some notations as follows.
n : the number of nodes
m : the number of edges of complete graph with n nodes, that is m = nCr.
ei : the i-th undirected edge
E : the set of undirected edges
xi : binary variable where, xi = 1 if ei is included in network, and xi = 0 if not.
x : the vector of binary variable xi. particularly, x indicates a connected network.
X : the set of networks
pi : reliability of edge ei
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ci : construction cost of edge ei
R(x) : all-terminal reliability of network x
C(x) : total construction cost of network x
xk : the connected network with n nodes by k edges, that is,

∑
xi∈x xi = k.

Xk : the set of network xk

pxk : the network which satisfies definition of Pareto solutions in Xk.
PXk : The set of network pxk

2.2 Assumptions

The following assumptions are considered for the study.

• All-terminal nodes do not fail.

• Each edge is in either operational or failure state.

• Each edge fails independently.

• Each edge ei has cost ci and reliability pi, and these values are known.

2.3 Definition of Problem

In this study, we consider network design problem with all-terminal reliability and
construction cost. The problem can be expressed as follows.

R(x)→ max

C(x)→ min

s.t.x ∈ X

It is a rare case that a network makes two objectives optimal simultaneously.
For solving this problem, we find Pareto solutions. Let X be the set of feasible
solutions.

• For x,x′ ∈ X, we say that x is dominated by x′ if x satisfies both of following
conditions:

– both R(x) ≤ R(x′) and C(x) ≥ C(x′)

– at least one of R(x) < R(x′) and C(x) > C(x′)

• We say that x is a Pareto solution if x is not dominated by any other solutions.

2.4 Properties of Pareto Solutions

2.4.1 The distribution of Pareto Solutions Candidates

When Pareto solutions are plotted on two-dimensional space, whose axes are R(x)
and C(x), Pareto solutions distribution is like an exponential curve. Takahashi et
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al.[3] restricted Pareto solutions candidates to near the Pareto front based on the
slope of certain linear function. The certain linear function satisfies the following
property.

Property 1 :

For ∀pxk ∈ PXk, define px∗k = arg min R(pxk)
C(pxk)

. pxk+1 = (∈ PXk+1) is likely to be

constructed by adding an edge to xk such that
R(px∗

k)
C(px∗

k)
< R(xk)

C(xk)
.

2.4.2 Edge Efficiency

Takahashi et al.[3] thought of an edge which is added to selected networks xk.
Pareto solutions depend on reliability pi and cost ci of each edge which constructs
the network. The following index is defined.

Definition :
fi = (pi/ci) denotes efficiency of edge ei.

3 Proposed Algorithm

3.1 Genetic Algorithm

Genetic Algorithm (GA) is based on the mechanism of the natural selection. Solu-
tion candidates are represented by genes and are named individuals. The individual
with good fitness value is preferentially selected. The crossover and mutation are
operated on selected individuals. The repetition of these operations generates so-
lutions.

3.1.1 Initial Population

Initial population is generated by random uniform number, and complete graph x∗

is also generated as a solution. Complete graph is used for selection operation.

3.1.2 Evaluation

Solutions fitness is evaluated by all-terminal reliability and construction cost. All-
terminal reliability R(x) is calculated by improved factmem[2], and construction
cost C(x) is summation of edges in x.

3.1.3 Selection

This operation selects individuals as parents. Based on Takahashi et al.[3], the
property with the distribution of Pareto solutions is used in proposed algorithm.
The algorithm based on Pareto properties[3] divides networks into groups accord-
ing to the number of edges, and restricts Pareto candidates in networks with same
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number of edges the order of the number of edges. However, our algorithm gener-
ates networks regardless of the number of edges. Therefore, we apply this property
in each generation. Previous GA[4] generates selection area by using two solutions.
This algorithm generates complete graph x∗ as Initial population. In each gener-
ation, Pareto solutions (non-dominated solutions) are obtained. We calculate the
line which connects two endpoints (xmin,x

∗) of Pareto solutions . The area for
parents selection is above this line, which is shown in Figure 1(a). If minimal cost
of non-dominated solution decreases, xmin is updated.
On the other hand, proposed GA generates selection area by using three solutions.
This algorithm also generates complete graph x∗ as Initial population. In each
generation, Pareto solutions (non-dominated solutions) are obtained. In addition
to two endpoints, xmin and x∗, we define a middle restricting point xmid of Pareto
solutions. xmid is |PX|/2-th Pareto solution in ascending order of cost, where PX
is the set of Pareto solutions. We calculate two lines which connect xmin,xmid and
xmid,x

∗. The selected parents are above the calculated lines as shown in Figure
1(b). And then, these lines are updated when the minimal cost of non-dominated
solutions decreases, or the restricting point xmid is dominated by other solution.

C(x)0

R(x) Restricting point
x*

xmid

xmin

C(x)0

R(x)

● Non-dominated
solutions

x*

xmin

(a) (b)

Figure 1: Selection Area of Previous and Proposed GA

3.1.4 Crossover

Individuals are represented by M -dimensional vector x = (x1, x2, . . . , xm), where
xi corresponds to the i-th gene. xi is a binary variable. xi = 1 if solution has edge
ei, xi = 0 otherwise. The crossover operates on selected two parents’ genes and
generates two offsprings by swapping their genes. We apply edge efficiency[3] to
the crossover operator. Our crossover method is such that each offspring includes
edge ei with higher fi.

Previous GA[4] generates offsprings in two ways. If one of parents has the most
efficient edge, the most efficient edge is crossover point and one-point crossover is
conducted such that both include the most efficient edge. Else, usual one-point
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crossover is conducted. Crossover point is selected at random (See Figure 2).
Proposed GA expands a way of crossover. If one of parents has more efficient

edge, this efficient edge is crossover point and one-point crossover is conducted such
that both include the efficient edge. Else, if both parents have (dont have) more
efficient edge, usual two-point crossover is conducted. In this case,crossover points
are selected at random.

In figure 3(a), since either of parents has edge e3 with the highest fi, crossover
point is x3. Right genes of this crossover point are swapped between the parents.
On the other hand, in figure 3(b), both parents dont have edge e3, but one of them
has the second most efficient edge e8. So, x8 is crossover point. Figure 3(c) shows
the case that both parents have (dont have) more efficient edge.

1 1 1 0 0 1 0 1 0

0 1 0 0 0 0 1 1 1

0 1 1 0 0 1 0 1 0

1 1 1 0 0 0 1 1 1

highest 
efficiency

1 1 0 0 0 1 0 1 0

0 1 0 0 0 0 1 1 1

0 1 0 0 0 0 0 1 0

1 1 0 0 0 1 1 1 1

crossover 
point

highest 
efficiency

x1 x2  x3 x4 x5 x6 x7 x8 x9

(a) (b)

Figure 2: Crossover of Previous GA

1 1 1 0 0 1 0 1 0

0 1 0 0 0 0 1 1 1

0 1 1 0 0 1 0 1 0

1 1 1 0 0 0 1 1 1

highest 
efficiency

1 0 1 1 0 1 0 0 0

0 1 1 0 1 0 1 1 1

0 1 1 0 1 0 1 1 0

1 0 1 1 0 1 0 1 1

highest 
efficiency

_

2nd highest 
efficiency

1 0 0 1 0 1 0 1 0

0 1 0 0 1 0 0 1 1

0 0 0 1 0 0 0 1 1

1 1 0 0 1 1 0 1 0

highest 
efficiency

2nd highest 
efficiency

3rd highest 
efficiency

x1 x2  x3 x4 x5 x6 x7 x8 x9

(a) (b) (c)

Figure 3: Crossover of Proposed GA

3.1.5 Mutation

The mutation operation changes genes of an offspring with a given rate. Our
algorithm decides whether each gene mutates for all offsprings. Then, mutation
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may occur several times on one individual.

3.2 Proposed Algorithm

This section describes the procedure of proposed algorithm. In the following proce-
dure, N is population size and G is generation number. X is the current population
whose elements are N individuals. Xp is the set of non-dominated solutions in X
and PX is the set of non-dominated solutions up to current generation. x∗ is the
complete graph.

STEP 1 : (Initialization)

STEP 1-1 : Set Gnum ← 0, Nnum ← 0 and X ← ∅.
STEP 1-2 : Generate an individual x∗ where xi = 1 for all i.

Generate N − 1 individuals x ∈ X whose genes are obtained by the
uniform random number.

STEP 2 : (Fitness evaluation)

STEP 2-1 : Calculate C(x), R(x) for ∀x ∈ X.

STEP 2-2 : Search for Pareto solutions Xp ∈ X, and PX ← PX ∪Xp

STEP 3 : (Generation of new population)

STEP 3-1 : (Selection)
Select individual xmin and xmid in the non-dominated solutions PX.
xmin satisfies C(xmin) = min{C(x) | ∀x ∈ PX}. For ∀x′ ∈ X, X ←
X \ x′ where x′ satisfies neither of following conditions.

– (R(x′)−R(xmin))/(C(x′)−C(xmin)) > (R(xmid)−R(xmin))/(C(xmid)−
C(xmin)).

– (R(x∗) − R(x′))/(C(x∗) − C(x′)) > (R(x∗) − R(xmid))/(C(x∗) −
C(xmid)).

STEP 3-2 : (Crossover)
Select xp1,xp2 ∈ X.
If the value of xi relating to more efficient edge ei is equal in xp1,xp2,
two-point crossover is operated.
Otherwise, select a crossover point xi relating to more efficient edge ei.
Then, two offsprings are generated by swapping genes of parents such
that efficient gene xi = 1 in xp1,xp2.
If no crossover is operated, parents are copied as offsprings.

STEP 3-3 : (Mutation)
With a mutation rate, change genes of offsprings.

STEP 4 : Add generated offsprings to population X ′ and Nnum ← Nnum + 2. If
Nnum < N , go to STEP 3-2. Otherwise, go to STEP 5.
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Table 1: GA parameters
N G Pc Pm

Proposed GA 150 3000 0.8 0.01
Previous GA[4] 100 100 0.9 0.03

STEP 5 : X ← X ′, X ′ ← ∅. If Gnum < G, Gnum ← Gnum + 1 and go to STEP
2. Else, go to STEP 6.

STEP 6 : Output all individuals x ∈ PX as Pareto solutions.

4 Numerical Experiments

Numerical experiments are conducted to evaluate proposed algorithm with respect
to the robustness. Networks of 6 ≤ n ≤ 9 are used as examples. In n = 6, proposed
algorithm is compared with Akiba et al.[1] whose algorithm enumerates all solu-
tions. In more than n = 6, our algorithm is compared with Takahashi et al.[3][4].
Reliability pi of each edge is generated by random uniform number between 0.70
and 0.99. Cost ci of each edge is also generated by random uniform number be-
tween 70 and 90.
To apply the GA, several GA parameters, which are generation number (G), popu-
lation size (N), crossover rate (Pc) and mutation rate (Pm), should be determined.
We conducted preliminary experiments. As the results, determined parameters are
shown in Table 1. Table 1 also shows parameters of Previous GA[4]. In proposed
algorithm, optimal solutions are improved by increasing generation number.
In n = 6, algorithms are evaluated by obtained rate and error rate. Obtained
rate means the percentage of obtained optimal solutions by our algorithm to real
Pareto solutions. Proposed algorithm also outputs some non-Pareto solutions as
optimal solutions. Error rate means the percentage of these non-Pareto solutions
by proposed algorithm to real Pareto solutions. Results of experiments are shown
in Table 2. Proposed GA is conducted three times. Obtained rate of proposed GA
is more than 90%, and error rate is less than 2%. Proposed GA can find Pareto so-
lutions more correctly than previous studies. In terms of computing time, previous
studies are more efficient than proposed algorithm. In cases of more than n = 6,
proposed GA algorithm is compared with Takahashi et al.[3][4]. In n = 7, proposed
GA finds better solutions than previous GA. Obtained solutions of proposed GA
are close to solutions of Pareto properties[3]. With respect to computing time,
Pareto Properties algorithm takes 77.39 seconds, while proposed algorithm takes
1313.25 seconds. Figure 4 shows optimal solutions distribution in n = 9. In this
case, generation number is set to 1000. Proposed GA finds superior solutions than
previous GA. But, proposed GAtakes about five times as long as previous GA.
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Table 2: Comparison of Evaluation Criteria
Computing time(sec.) Obtained rate(%) Error rate(%)

Pareto properties[3] 0.55 70.00 17.65
Previous GA[4] 1.67 35.00 52.27
Proposed GA1 154.90 95.00 1.72
Proposed GA2 145.75 96.67 0
Proposed GA3 166.89 95.0 0
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Figure 4: Optimal Solutions of Previous and Proposed GA

5 Conclusion

In our study, we focused on bi-objective network design problem with all-terminal
reliability and construction cost. We improved a GA-based algorithm. As the
results, proposed algorithm could obtain better solutions than previous GA. Pre-
liminary experiments suggested that optimal solutions of proposed algorithm were
improved by increasing generation number and population size. Therefore, com-
puted solutions were increased. Considering computing time, proposed algorithm is
inefficient. We may need to restrict gene generation to effective gene. In this study,
area for parents selection is more restricted than previous GA. This restriction may
reduce obtained optimal solutions per one generation.
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1 Introduction

When publishing a data table, the privacy protection is indispensable. In this
study, we consider the publishment of rules induced from a data table. Rules
are generalizations of data so that they are easier to protect the privacy, and by
using them we may obtain reproduce the data table to a certain extent if rules
are accurate and exhaustive. However, if the number of objects matched to a
rule is very small, some private data can be revealed. Therefore, we should take
care of privacy protection even on rules induced from data tables. We consider
rules inferring a class to which the object belongs. For privacy protection of rules,
we apply the k-anonymization technique [1]. Applying k-anonymization technique
usualy deteriorates the usufulness of rules or decreases the number of publishable
rules. To avoid this, we consider imprecise rules [2]. Inuiguchi et al. [2] have
succeeded to induce k-anonymous imprecise rules without great deterioration of
usefulness and the number of publishable rules. However, imprecise rules can be
induced from data table with more than two classes. Then we investigate a method
for inducing k-anonymous imprecise rules from a data table with two classes.

2 Class refinement

We describe a method to induce k-anonymous rules from a decision table with two
decision classes D1 and D2. First, for each Di, we induce rules Rij of the form “if
u satisfies Pij then u belongs to Di”, j = 1, 2, . . . , qi by MLEM2, where qi is the
number of rules induced by MLEM2 for Di. We define a subset Yij of object set U
whose elements satisfy the condition Pij of rule Rij and its complement Nij , i.e.,

Yij = {u ∈ Di | u satisfies Pij}, Nij = U − Yij . (1)



Table 1: Experimental result
MLEM2 k = 2 k = 5 k = 8 k = 10

A 0.6842 ±0.1350 0.7325±0.1186∗∗ 0.7425 ±0.1106∗∗ 0.7350 ±0.1216∗∗ 0.7375 ±0.1192∗∗

D 0.7870 ±0.1347 0.7760 ±0.1335 0.7870 ±0.1301 0.8080 ±0.1155∗ 0.8070 ±0.1185∗

G 0.6550±0.1472 0.6400±0.1523 0.6450 ±0.1645 0.6780 ±0.1610 0.6910 ±0.1550∗∗

Using Yij , a sub-class Dij of Di is defined by

Dij = Yij −
∪

k=1,2,...,j−1

Yik,


 ∪

k=1,0

Yik = ∅


 . (2)

RegardingDij as a decision class, we apply the k-anonymous rule inducing method [2],
where we input Nij as the set of negative examples.

The k-anonymous rule induction method proposed by Inuiguchi et al. [2] can
require o(2n) iterations by its nature. The reducing n is effective to reduce the
computational effort. Then, we propose the following simplified algorithm for k-
anonymous rule induction.
1. R := ∅，i := 1，U ′ := U，p := 1．(In R, we obtain k-anonymous rules.)
2. Induce rules for unions of p classes Dij from objects in Dij ∩ U ′ by MLEM2.
3. The induced rules whose support is not less than k are added to R.
4. Exclude objects satisfying the condition of a rule in R from U ′. Let i := i + 1

and p := i. If i = n or U ′ = ∅, terminate the algorithm. Otherwise, return to 2.

3 Numerical experiments

Using datasets ‘adult(A)’, ‘default(D)’ and ’german credit(G)’ obtained from UCI
Data Repository [3], we examined the performance of the proposed algorithm. In
dataset A, using only numerical attributes, we generated 10 decision tables with 120
objects selected randomly. In datasets D and G, all attributes were used to generate
10 decision tables with 100 objects selected randomly. We set k = 2, 5, 8, 10. The
classification accuracy was evaluated by the 10-fold cross validation method. The
obtained results ([average]± [standard deviation]) are shown in Table 1.

In Table 1, the column ‘MLEM2’ shows the classification accuracy of rules
induced by MLEM2 without k-anonimization. The significant difference at level of
5% compared to MLEM2 by t-test is shown by ∗ and that at level of 1% is shwon
by ∗∗. The accuracies of the anonymous rules for all k are sufficiently high. In our
experiments, the classification accuracy increases as k increases.
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Abstract

The goal of Artificial General Intelligence is to create systems capable of
solving many different and unforseen tasks. Suitable methods to evaluate the
intelligence of artificial systems are thus needed. This review paper searches
for such methods. An extensive literature overview is conducted that covers
philosophical and cognitive presumptions of intelligence and also definitions
and tests of intelligence grounded in Algorithmic Information Theory. A com-
parison of the introduced approaches identifies two distinct groups based on
fundamentally different presumptions. One group of approaches, such as the
Turing test, is based on the presumption that success in a complex task is suf-
ficient for intelligence evaluation, while the other group of approaches, such
as the Algorithmic Intelligence Quotient test, also require explicit verification
of success in simple tasks. This paper concludes that the Algorithmic Intelli-
gence Quotient test is currently the most suitable candidate for a method to
evaluate the intelligence of artificial systems.

1 Introduction

The goal of artificial intelligence (AI) as a field of study can be understood differ-
ently, cf. [26, 8]: What has been traditionally called a Weak AI, or more recently a
Narrow AI, seeks to create useful tools to solve particular tasks. Such systems may
implement a specific cognitive ability, however, the ability is implemented indepen-
dently from others that are usually considered to manifest in intelligent entities.
By contrast, Artificial General Intelligence (AGI), or more traditionally Strong AI,
seeks to create an artificial system capable of solving many different and possibly
unforeseen tasks thus its intelligence is comparable to that of a human.

This review paper looks specifically at AGI. One of the crucial problems of AGI
is the search for suitable methods that can practically evaluate the intelligence of
(not only) artificial systems [12]. The goal of this paper is to provide an overview
and comparison of such methods.
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In an attempt to clarify the problematic concept of intelligence, Section 2 focuses
on the evaluation approaches originating from the field of philosophy and cognitive
science. Such an endeavor as AGI, however, requires more solid methods that can
evaluate whether a system is intelligent, and to what extent. Section 3 searches
for such methods among approaches grounded in Algorithmic Information Theory.
Section 4 will conclude the paper with a comparison of the introduced approaches.

2 Philosophy and Cognitive Science

To illustrate the extent of the concept of intelligence, it will be approached along
two lines. In Section 2.1, several attempts to answer the question: “What does
it mean to think?” will be summarized. In Section 2.2, the relationship between
intelligence and other cognitive abilities will be examined.

2.1 Turing Test and its Extensions

The question “What does it mean to think?” is central to the field of AI, as its main
goal is the construction of thinking machines . Attempts to answer this question
can be traced back to long before the conception of AI. According to Descartes [5],
thinking is connected with language and rational speech. Descartes also considers
thinking to be universal, i.e. capable of solving numerous different problems.

Turing [32] famously transformed the initial question: “Can machines think?”
into the imitation game that is now known as the Turing Test. A human inter-
rogator asks questions to two test subjects in order to determine which is a human
and which a machine. Indirect communication employed by this setting ensures
the test focuses on the differences in thought manifestation instead of superficial
characteristics of the test subjects. If the interrogator is unable to determine which
is which, the machine can be considered comparable to the human. The commonly
human traits, such as the mind, consciousness or intelligence, should then extend
to the machine in question. While the ability of rational speech is explicitly eval-
uated, the test also allows for evaluation of other properties of thinking that can
be reported by language. Further, Turing’s idea of learning machines as a possible
solution to his test illustrates a connection between intelligence and learning.

Turing’s paper [32] elicited many debates. Searle’s [26] mind experiment with
the Chinese Room can serve as a well known example. Actually, there are many
problems with the original Turing test, be it in its stronger form as a test of
intelligence or in its weaker form as a test of language. These problems originate in
the purely language-based communication. Dennett [4] argues that since language
reacts to the events happening in the world, as well as causes events to happen in
the world, the Turing test is able to evaluate only a part of language capacity.

Apart from these language limits of the Turing test, Harnad [9] notes that the
test sidelines a broad variety of human behavior that is commonly considered in-
telligent. By transforming Turing’s question into the form: “Do machines have
a mind?” Harnad links the evaluation of machine intelligence to the Mind–Body
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Problem. In this broad set of philosophical problems, Harnad focuses on its episte-
mological form and picks a solution called the Analogical Inference (for an in-depth
discussion consult [15]). Thus, according to Harnad, humans attribute minds to
others based on their real word behavior that they find indistinquishable from their
own behaviour in comparable situations. Consequently, Harnad proposes the Total
Turing test in which the tested subject is a robot interacting with the real world.
This setting would enable both the evaluation of language capabilities in relation
to the world, as well as the evaluation of a broad set of other intelligent behavior.

However, even such an extension of the test is not quite sufficient, as can be
shown by considering the philosophical theory of Externalism. According to this
theory, see e.g. [18], there are several external aspects necessary for understanding
language, due to its social, historical, and evolutionary origin. Employing this
theory, Schweizer [25] proposes the Truly Total Turing test in which there is not a
single tested subject but a particular species of subjects interacting with the world.
The goal of the test is to ascertain that the tested species (robots) can evolve their
own language and intelligent behavior, and not merely parasite on the pre-existing
language and behavior of another species (such as that of humans).

The introduced approaches focus on the manifestation of thought–intelligence
in language communication and real-world behavior and to some extent learning
and understanding. For a sufficient evaluation of such capacities in machines it is,
however, necessary to conduct a rather demanding Truly Total Turing Test. Even
if this was possible, some fundamental objections would remain, for example, the
dependence on a human interrogator, succeptibility of the test to cheating, or its
Boolean result. For a more detailed account see [10].

2.2 Intelligence as a Cognitive Ability

As indicated by some approaches from Section 2.1, intelligence is not solely a
property of the mind but related to other cognitive abilities. These are subject
to cognitive science governed by a cognitive paradigm [3]. The main idea is that
information processing requires the system in question to have a certain form of
a world model for environment representation. There is likely not a single world
model but a set of models of different granularity and structure that together
form a dynamic cognitive schema to organize knowledge. The schema also forms
expectations about the world that influence its perception, making it both object
and subject dependent. The process of knowledge acquisition depends both on
perception as well as on action and through these also on current knowledge.

An important part of cognitive science focuses on cognitive modelling. The re-
sulting cognitive architectures are domain-generic computational models of struc-
tures and proceses in human or animal minds [29]. While their primary purpose is
to test theories of cognitive science, they can also inspire AI development. Further,
as these models aim to be general, they also require general evaluation.

Through Psychometry, psychology as a part of cognitive science has a long
tradition of systematically measuring psychological properties (especially intelli-
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gence) in humans and animals using various tests. According to Bringsjord and
Shimanski [2], psychometry answers the question “What is intelligence?” and AI
should thus be conceived as psychometric. This means that AI should strive to
construct systems that would perform well in all established and validated tests of
intelligence and other mental abilites. However, as Besold et al. [1] argues, it is
problematic to adopt psychometric tests and definitions without any changes. It
would be necessary to modify and, more importantly, generalize them.

Cognitive science can help in defining intelligence and putting it in context
of other cognitive abilites. The level of details of such description can be rather
high as shown by cognitive architectures. However, while directly employing this
knowledge has its benefits it also has many limits as shown by psychometric AI.

3 Algorithmic Information Theory

The answers given in Section 2 to the question “What is intelligence?” are either
rather abstract and informal or tightly connected to existing biological systems.
More solid methods are needed to facilitate the development of AGI and measure
its progress. In this section, a number of different approaches originating from
the Algorithmic Information Theory will be discussed, including the C-Test (3.1),
the Universal Intelligence definition (3.2), the Pragmatic General Intelligence and
the Efficient Pragmatic General Intelligence definitions (3.3), the Anytime Intelli-
gence Test proposal (3.4), the Algorithmic Intelligence Quotient Test (3.5), a formal
measure of environment difficulty (3.6), and a formal Task Theory (3.7).

3.1 C-Test

In his pioneering work [10] from 2000, Hernández-Orallo proposes a formal compu-
tational measure of intelligence founded in Algorithmic Information Theory. The
formalism focuses on a factor of intelligence that “allows us to comprehend the
world.” The resulting C-Test is a practically feasible test, yet a drawback of this
approach is its sole focus on static tasks.

3.2 Universal Intelligence Definition

Intelligence is a high-level concept with complex connections to other similar con-
cepts that are also difficult to grasp. According to Legg and Hutter [20], it is the
lack of a formal definition of intelligence that hampers progress in the field of AI.

In order to keep the definition as broad as possible, Legg and Hutter [19] sur-
veyed a variety of definitions, theories and tests of both human and animal in-
telligence. After generalizing the results, they arrived at the following informal
definition: “Intelligence measures an agent’s ability to achieve goals in a wide
range of environments.” A formalization of this working definition is given by Legg
and Hutter [20] in Equation 1. The definition described by this equation is called
Universal Intelligence.
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Universal Intelligence [20] considers step-based interaction between the agent
π (which sends actions ai) and an environment µ (which sends rewards ri and
observations oi). The definition does not restrict considered agents, however to
facilitate the construction of a computer-run test, only environments that can be
described by Turing computable probability measures are considered.

Υ(π) :=
∑

µ∈E
2−K(µ)V π

µ , where V π
µ := E

( ∞∑

i=1

ri

)
≤ 1, (1)

where Universal Intelligence Υ of an agent π is given by its ability to achieve goals
described by the value function V πµ as an expected sum of all future rewards over
the set E of environments µ weighted by Algorithmic Probability that is based on
Kolmogorov complexity K [17]. Consequently, an agent’s success in various en-
vironments contributes to its intelligence to a varying degree: in accordance with
Occam’s Razor, complex environments have a lower impact than less complex ones.

Universal Intelligence [20] can be understood as a generalization of C-Tests
[10] from static tasks to interactive dynamic environments. While this definition
is very general and has several desirable properties, it also has several practical
limitations. Its adoption of Kolmogorov complexity makes it uncomputable, which
is further amplified by it considering all (i.e. infinitely many) Turing computable
environments as well as infinitely long agent-environment interaction sequence.
Thus, any derived test can only be an approximation.

While Universal Intelligence [20] is not culturally dependent or antropocentric,
it does due to the Kolmogorov complexity dependend on the chosen reference Turing
machine. This dependence can lead to serious issues, as shown by Hibbard [14],
since it makes the overall measure biased towards, and dominated by, a relatively
small set of environments described by short programs. The environments in the
set can then become profoundly different when the reference machine is changed.
To reduce this issue, a minimal length of programs can be set arbitrarily.

Hibbard [14] also proved that intelligence measures have to be based on unequal
weighting of environments in order to avoid the No Free Lunch Theorem. This
condition is met by Universal Intelligence since it employs Algorithmic Probability
to weight the environments.

3.3 Pragmatic General Intelligence Definition

Universal Intelligence [20] has some limitations. Goertzel [7] notes further issues
when considering real agents in real environments:

• In addition to the explicit goals given by the environment, there are also
implicit goals originating in the agent, however no definition should make
assumptions about the agent’s cognitive architecture.

• Agents are usually adapted to certain environments (through evolution or
design). Instead of true universality, a biased generality is of more interest
when evaluating intelligence.
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• Real agents in real environments are always bound by limited resources, there-
fore efficiency of intelligence is important.

Based on the above critique, Goertzel [7] introduces a definition of Pragmatic
General Intelligence, as given by Equation 2:

Π(π) ≡
∑

µ∈E,g∈G,T
ν(µ)γ(g, µ)V πµ,g,T , (2)

where the Pragmatic General Intelligence Π of an agent π is given by its ability to
achieve complex goals in complex environments as described by a value function
V πµ,g,T as an expected sum of future rewards relative to a probability distribution ν
of environments µ and a probability distribution γ of goals g in a time interval T .

Goertzel [7] modifies the value function: V πµ,g,T ≡ E
(∑t

i=s rg(Ig,s,i)
)

, so that

the agent’s ability to achieve goals is related to a goal g given at the beginning of
a time interval T in which the agent considers the goal related rewards rg in all
interaction sequences Ig,s,i chosen according to the current environment µ.

In order to incorporate the computation efficiency, Goertzel [7] introduces the
idea of Efficient Pragmatic General Intelligence, as defined in Equation 3:

ΠEff(π) ≡
∑

µ∈E,g∈G,Q,T

ν(µ)γ(g, µ)ηπ,µ,g,T (Q)

Q
V πµ,g,T , (3)

where ηπ,µ,g,T describes the probability that an agent π in an environment µ while
pursuing a goal g in a time interval T consumes Q units of computational resources.
Since a probability distribution η is being used, agents can be non-deterministic. A
positive real Q denotes an amalgam of time, memory, energy and other resources.

Since the probability distributions considered by Goertzel [7] are not restricted
to Solomonoff–Levin Universal Probability Distribution, the sums in the equations
need not converge and a search for convergence conditions is difficult.

Goertzel [7] also attempts to define an agent’s generality, which he calls Intelec-
tual Breadth. His approach uses a fuzzy set of contexts (triples of environment, goal
and time interval) towards which the agent is intelligent. After normalizing the set
into a probability distribution, the entropy is assessed. Yet Goertzel admits that
his approach fails to consider interdependencies among environments and goals.

3.4 Anytime Intelligence Test

Hernández-Orallo and Dowe [13] proposed the Anytime Intelligence Test as a test
of intelligence aimed at current and future artificial as well as biological agents of
any intelligence level operating at any time scale. The test can be interrupted at
any time, resulting in as precise an estimate of an agent’s intelligence as the time
allowed. The test combines a computatable modification of Universal Intelligence
[20] with the prior work on C-tests [10] and compression-enhanced Turing tests [6].

Hernández-Orallo and Dowe [13] dealt with the three aspects of uncomputability
of Universal Intelligence in the following way:
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• A finite sample is used to approximate the infinite set of all environments.
This raises the question of discriminative power so that the sampled envi-
ronments meaningfully contribute to the intelligence evaluation. Hernández-
Orallo and Dowe proposed considering only reward-sensitive environments,
i.e. those where the choice of agent’s action can always influence its rewards.

• A finite number of agent-environment interactions is considered in order to
approximate the infinite interaction sequence. Therefore, a suitable way of
combining rewards into the overall score is needed. Hernández-Orallo and
Dowe suggested averaging the rewads according to the number of interactions.
In addition, they also require the environments to be balanced, meaning that
rewards are from an interval of [−1,+1] and random behavior leads to an
average close to 0. Such restrictions are necessary for this type of score-
aggregation method to be meaningfull.

• A computable complexity function that is inspired by Levin’s Kt Complexity
[23] is used to approximate the Kolmogorov Complexity. The function is based
on an upper bound on the computation time required for a single interaction
and is further limited by the total number of interactions. Hernández-Orallo
and Dowe call it Ktmax. The function preserves Occam’s Razor while also
enforcing a time limit for the computation of an environment.

Hernández-Orallo and Dowe [13] also include physical time in the test. For an
environment, this is achieved by the Ktmax function. For an agent, a time limit
of the test run is proposed and the agent’s reaction time can be included into the
overall score. The number of interactions is no longer fixed, but depends on the
time limit and agent’s reaction time. The score averaging method also consideres
delays between the agent’s actions, discouraging it from cheating.

Hernández-Orallo and Dowe [13] propose the testing procedure to adapt the
environment complexity and time limit to the agent’s time scale. The initial envi-
ronment complexity and time limit are low. The time limit increases if the agent
fails to react in time. The complexity is increased when sufficiently high rewards
are achieved, but decreased when sufficiently low rewards are achieved. Both mech-
anisms are balanced in order to discourage cheating.

Insa-Cabrera et al. [16] introduced a prototype implementation of the Anytime
Intelligence Test and employed it in simple experiments. While this implementa-
tion used an interesting idea of species dependent interfaces in front of the same
test, it remains an overly simplified version of the original proposal.

3.5 Algorithmic Intelligence Quotient Test

Legg and Veness [22] brought forward a practically feasible test that approximates
the Universal Intelligence definition [20] and incorporates some of the ideas from
the Anytime Intelligence Test proposal [13]. Legg and Veness transformed the
Universal Intelligence described by Equation 1 into the form given in Equation 4.
This resulting approximation is called the Algorithmic Intelligence Quotient.
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To overcome the uncomputability of the original definition, the Algorithmic In-
telligence Quotient test (AIQ test) [22] uses a finite episode length of k steps and a
finite sample of N environment programs pi that describe environments. Environ-
ment sampling maintains the idea of Occam’s Razor while avoiding the Kolmogorov
Complexity due to the choice of Solomonoff’s Universal Distribution [27, 28]. Sev-
eral programs in the sample can, however, describe the same environment.

Υ̂(π) :=
1

N

N∑

i=1

V̂ πpi , where V̂ π
pi :=

1

k

k∑

i=1

ri, (4)

where the AIQ estimate of Universal Intelligence Υ̂ of an agent π is given by its
ability to achive goals as described by the empirical value function V̂ πpi as an average
reward achieved by the agent over k interactions with an environment program pi
from a finite sample of N environment programs.

As is the case with Universal Intelligence, the choice of reference machine (the
language of the environment programs) influences the classes of programs that are
likely to be included in the sample [22]. To minimize this issue, the AIQ test uses a
rather simple BF reference machine [24]. The BF is a very low-level language that
only uses 10 instructions which are closely related to operating a Turing machine,
yet the programs can be nondeterministic [21].

Honoring the call for balanced environments [13], the rewards are normalized to
an interval [−100,+100] which also limits the achivable AIQ score. The way the
test works ensures that a randomly behaving agent will reach AIQ close to 0 [22, 21].

To deal with non-halting and long-running programs, a computation limit is set
for an interaction. If the program tries to output more than a preconfigured number
of observations, it is also halted. The proportion of non-interactive programs in
the sample is reduced by excluding programs without read or write instructions
and by excluding programs that return constant rewards [22, 21]. Thus, the call
to exclude environments without discriminative power [13] is partially fulfiled.

Legg and Veness [22, 21] employed several variance reduction techniques to
speed up the AIQ estimation. The implemented test is available as open source
software. It can be configured in several ways: Setting the number of programs
in the sample influences the precision of the estimate. Setting the episode length
increases the “learning time” available to the agent. Changing the number of sym-
bols used by the BF machine and the number of output observations influences the
complexity of the interaction space. The implementation comes with a few supplied
reinforcement learning agents, while others can be hooked in through a wrapper.

3.6 Environment Difficulty Measure

A novel view on environment difficulty was suggested by Hernández-Orallo [11, 12]
that no longer identifies it with the complexity of environment description. The
key idea of his approach is that it is actually the complexity of the solution that
determins the difficulty of a problem or an environment.
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Hernández-Orallo [11] explored several notions of difficulty functions. A version
inspired by Levin Complexity [23] uses both the length of the solution as well as the
number of computational steps required. According to this measure, the difficulty
of an environment can then be given by the difficulty of its easiest solution.

The necessary changes in averaging an agent’s performance over a range of
tasks also reduce the bias resulting from the choice of reference machine [11]. First,
there is a uniform or slightly decaying weighting of dificulties. Then, for a given
difficulty, a set of solutions is derived that has a uniform distribution. Finally, for
each solution, tasks are generated according to the Universal Distribution.

3.7 Task Theory

Tasks or environments play a central role in all introduced approaches to intel-
ligence evaluation. Yet, the formalization of tasks focuses mainly on interfacing
them to the evaluated agent and their overall properties such as complexity or dif-
ficulty. Thórisson at al. [30, 31] attempted to formulate a Task Theory to enable
detailed understanding of tasks and ways to generate and compare them.

While work on Task Theory is still in the beginning, some initial results were
given. A list of requirements for the theory was formulated [30, 31]. Since the
final goal of AGI is to construct real-world agents, the main requirement is that
the theory should be rooted in physics, and therefore enable modeling of physical
tasks including the ensuing time and energy constraints.

An initial version of a formalism to facilitate task analysis was given [30, 31].
An environment can be described by a set of variables with associated domains,
invariant relations between them, and dynamic functions to transform them over
time from an initial state. An agent can perceive the environment through sensors
with access to some of the variables, and act upon it through actuators with control
over other variables. The task is given by a goal state with a set of desirable
properties and restricted by a failure state with a set of undesirable properties.

4 Discussion and Conclusion

This paper overviewed approaches to evaluation of intelligence in artificial systems.
A comparison of the introduced approaches identifies two distinct groups based on
fundamentally different presumptions:

1. Success in a complex task is a sufficient condition for intelligence. A rep-
resentative example is the Turing test [32]. While these approaches focus
mainly on the level of complexity of the assigned task, the sufficiency of the
condition can be challenged if entities different from humans are considered.

2. Explicit verification of success in simple tasks, as well as in complex ones, is
required for intelligence. An example is the AIQ test [22]. This presumption
makes such approaches suitable to evaluate intelligence not only in humans
but also in entities such as artificial systems or animals.
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While Section 2 also overviewed approaches to intelligence evaluation originat-
ing in philosophy and cognitive science, the main focus was on approaches em-
ploying Algorithmic Information Theory overviewed in Section 3. In contrast to
the former, the later are usally thoroughly formalized, and are rooted in a strong
theoretical background. Let us now briefly discuss the introduced approaches.

The C-Test [10] is an initial practical work in this area, however, its sole focus
on static tasks is rather limiting. This issue was solved by the Universal Intelligence
definition [20]. A shortcoming of the definition is its bias due to the choice of the
reference Turing machine [20]. A further analysis of this issue including proposals
to alleviate it was given in [14, 11]. A potential risk of Hibbard’s solution [14] is that
it reduces explicit testing of an agent in simple tasks which could undermine the
key idea of the Universal Intelligence definition. Some caution is therefore needed
when employing it. The critique of Universal Intelligence given by Goertzel [7] is
not unfounded – intelligence evaluation cannot be fully decoupled from the real
tasks that the evaluated systems are intended to solve. Nevertheless, evaluation
methods originating in Universal Intelligence seem to be rather promissing.

Since Universal Intelligence is a definition, it is by itself insufficient. The Any-
time Intelligence Test proposal [13] extends the original definition by interesting
theoretical (relation of intelligence and time) as well as practical (adaptability)
aspects, while the Algorithmic Intelligence Quotient test [22] remains closer to the
original. There are, however, also practical considerations when choosing a suitable
test. While the Anytime Intelligence Test proposal is supperior to the AIQ test, the
Anytime Intelligence Test prototype is so simplified that the AIQ test is clearly the
better method for general evaluation of intelligence in artificial systems. However
as the paper showed, there are several limits:

• Since the Universal Intelligence definition depends on the choice of the refer-
ence Turing machine [20, 14, 11], it is also the case for the AIQ test. Further,
this also holds for the parameters of the used BF machine [33]. However, a
method proposed by Hibbard [14] was implemented in [33], that alleviated
the issue.

• The Universal Intelligence definition considers the success of an agent in all
computable environments. This set necessarily contains many environments
without discriminative power as noted by [13]. While this is not really an
issue for an intelligence definition, it is critical for a practical test, since it
results in wasting resources as well as biasing the estimated score. As was
confirmed practically in [34], the AIQ test is not guarded against some cases
of non-discriminative environments. However, a method was implemented in
[34] that alleviates the issue to a certain degree.

• The Universal Intelligence measure as well as the derived AIQ score include
some of the aspects of intelligence such as the measure of success or generality,
yet only do so implicitly, which makes detailed comparison of agents more
complicated. Further, the effectiveness of the agent as advocated e.g. by [7]
is not included at all, neither is the time aspect as advocated e.g. by [13].
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Further practical limits of the AIQ test were analyzed in detail in [33, 34] resulting
in several improvements of the test. Thus, the AIQ test remains the most suitable
method for general evaluation of artificial systems that is both theoretically well
grounded as well as readily available for practical use.

Many areas remain for future work in the field of general evaluation of artificial
systems. These include:

• A measure of environment dificulty, proposed by Hernández-Orallo [11, 12],
that could be compared to the way results are aggregated in the AIQ test.

• A Task Theory that is being pursued by Thórisson at al. [30, 31] could per-
haps be used to gain a better understanding of the environment programs
used in the AIQ test or even serve as a guide when generating new environ-
ments.
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[6] D. L. Dowe and A. R. Hájek. A non-behavioural, computational extension
to the Turing test. In H. Selvaraj and B. Verma, editors, Proceedings of
ICCIMA’98, pages 101–106, Singapore, 1998. World Scientific.

[7] B. Goertzel. Toward a formal characterization of real-world general intel-
ligence. In E. Baum, M. Hutter, and E. Kitzelmann, editors, Proceedings of
AGI 2010, volume 11 of AISR, pages 19–24, Amsterdam, 2010. Atlantis Press.

[8] B. Goertzel. Artificial general intelligence: Concept, state of the art, and
future prospects. Journal of Artificial General Intelligence, 5(1):1–48, 2014.

[9] S. Harnad. Other bodies, other minds: A machine incarnation of an old
philosophical problem. Minds and Machines, 1(1):43–54, 1991.
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Abstract

In this paper we continue our previous research focused on multiple cri-
teria optimization of system design. First we briefly recall Zeleny’s basic
model and two solution methods of so called de novo programming problems;
namely, original Zeleny’s approach and later modification proposed by Shi.
Then we point out to some possible extensions and applications and present
examples showing features that were not observed previously. We conclude
with pointing to an interesting connection to the Nash model of cooperative
bargaining.

1 Introduction

To avoid misunderstandings, we first agree on some notation and meaning of basic
terms. Ordered n-tuples x = (x1, . . . , xn) of real numbers are considered as mem-
bers of the real n-dimensional space Rn. For x = (x1, . . . , xn) and y = (y1, . . . , yn)
from Rn we write x < y and x ≤ y if, respectively, xi < yi and xi ≤ yi for each
i from {1, 2, . . . , n}. The relations > and ≥ between n-tuples x and y are defined
analogously. The sets {x ∈ Rn : x ≥ 0} and {x ∈ Rn : x > 0} are denoted by
Rn+ and Rn++, respectively. If S is a subset of Rn and x is a point in Rn, then we
denote the sets {a+x : a ∈ S} and {a−x : a ∈ S} by S+x and S−x, respectively.
Similarly, if λ is a real number, we define λS as the set {λa : a ∈ S}. If a is such
that x 6∈ S for every x > a, then we say that a is weakly Pareto optimal in S. If
a is such that x 6∈ S for every x ≥ a with x 6= a, then we say that a is strongly
Pareto optimal in S.
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As a rule, we are not interested in solving only one particular example of an
abstract problem but in being able to solve also many other possible examples.
Therefore, when dealing with solution methods (procedures, algorithms), it is im-
portant to distinguish between “problems” and “instances of problems”.

By analogy with the theory of computational complexity, we will understand
by a problem a general question to be answered or a task to be solved that has
several free parameters whose values are left unspecified. An instance of a problem
is then given by specifying particular values for all the problem parameters. In
other words, problems can be considered as sets of instances.

For example, when we consider the problem of finding a solution of system





a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

. . .
...

...
am1x1 + am2x2 + · · · + amnxn = bm

of m linear equations over n variables, then an instance of this problem could be the
task of finding a solution for the specific system of 2 linear equations in 3 variables

2x1 + 5x2 − 3x3 = 5

3x1 − 2x2 + 2x3 = 0

obtained by specifying values of parameters m,n, aij , bi. Also it must be sufficiently
clear what is meant by a solution. If the components of x are allowed to be arbitrary
real numbers, then it would be a different problem if components of x are required
to be integers.

We will be interested in studying a class of optimization problems. The basic
ingredients of an optimization problem are (a) the set of instances or input objects,
(b) the set of feasible solutions or output objects associated with any instance, and
(c) the measure of quality of feasible solutions that is to be optimized. Formally,
we define an optimization problem O as 4-tuple (I, F,M,G) where

• I is the set of instances of problem O,

• F is a mapping that assigns to each instance X ∈ I the set of feasible solutions
of X,

• M is a function that assigns to every ordered pair (X,Y ), where X ∈ I and
Y ∈ F (X), some measure of quality of Y .

• G specifies the goal of optimization, which is usually1 maximization or min-
imization. However, depending on the meaning of measure of quality it may
need further specification.

1For example, when values of M are real numbers.
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For example, in the case of maximization, the purpose of an optimization problem
with respect to an instance X is to find a feasible solution Ŷ ∈ F (X) such that

M(X, Ŷ ) = maximum of M(X,Y ) subject to Y ∈ F (X).

In this paper we are concerned with specially structured linear optimization
problems that were introduced by Milan Zeleny under the name “De novo pro-
gramming” or “De novo optimal system design”; see, for example, [4, 5, 6]. In this
case, the optimization problem (I, F,M,G) we are interested in can be formulated
as follows.

Instance: A 4-tuple (A,B,C, p) where A is a real (m,n)-matrix, B is a positive
number, C is a real (q, n)-matrix, and p is a real (1,m)-matrix p.

Feasible solutions: Ordered pairs (x, b) satisfying the system of inequalities

Ax− Eb ≤ 0, pb ≤ B, x ≥ 0, y ≥ 0

where E is the (m,m)-unit matrix.

Measure: M(x, b) = Cx.

Goal: Maximization.

Here the goal needs further specification when q > 1 because in this case Cx is
a vector in q-dimensional space, and it is not clear what is meant by maximum.
Moreover, the set of feasible instances will be often restricted by further conditions
on A,B,C, and p.

The paper is organized as follows. First we briefly recall Zeleny’s basic model
and two solution methods of de novo programming; namely, original Zeleny’s ap-
proach [5] and Shi’s modification [1]. Then we point out to some possible extensions
and applications and present examples showing features that were not observed pre-
viously. We conclude with pointing to an interesting connection to the Nash model
of cooperative bargaining and several remarks.

2 Zeleny’s Model

To introduce Zeleny’s approach to the optimal system design, we first recall one of
the standard linear programming models for allocating resources to activities so as
to attain a given economic objective; that is, the problem

maximize cx subject to Ax ≤ b and x ≥ 0,

where c is a given real (1, n)-matrix (vector), b a given real (m, 1)-matrix (vector),
A is a given real (m,n)-matrix, and x is an (n, 1)-matrix (vector) of real variables.

This model have several natural interpretation. To be explicit we will have in
mind the following meaning of input and output data: (i) For each activity j, xj is
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the decision variable whose values represent the levels of activity j, and cj denotes
the profit per unit of activity j. (ii) For each resource i, bi is the available amount
of resource i. (iii) For each resource i and each activity j, aij is the amount of
resource i required to perform one unit of activity j.

In de novo programming, the components of b are considered to be real variables
the values of which are restricted by the condition

pb ≤ B, b ≥ 0

where p is a given positive (1,m)-matrix (vector) whose components are interpreted
as the unit prices of resources, and B is a given positive number representing the
total available budget. It is worth mentioning that the linear programming prob-
lems in which there is some freedom in the choice of values of coefficients of an
activity or levels of resources have been studied since the early days of linear pro-
gramming; see, for example, the Chapter 22 (Programs with variable coefficients)
in the famous book by Dantzig [13], or the Chapter 4 (Linear programming with
set coefficients) in more recent book by M. Fiedler et al. [14].

To indicate that the components of b are now real variables we change the
notation and use the letter y instead of b. Then the de novo problem of optimal
system design can be formulated as the problem of

maximizing cx+ 0y
subject to Ax− Ey ≤ 0, py ≤ B, x ≥ 0, y ≥ 0.

We will see later that this specially structured linear programming problem can be
solved very efficiently with the help of a continuous knapsack problem, provided
all cj and all (pA)j are positive.

The situation becomes more complex (and de novo programming more useful)
when we have to deal with multiple criteria; that is, with the problem of

maximizing Cx+ 0y
subject to Ax− Ey ≤ 0, py ≤ B, x ≥ 0, y ≥ 0,

where C is a real (q, n)-matrix of coefficients of q objective functions. The com-
plication is caused by the fact that finding an optimum requires the comparison of
real vectors instead of comparison of real numbers.

2.1 Single criterion problems

We begin with de novo programming for single criterion problems because they
are used in essential way for solving problems with multiple criteria. Thus let us
consider the problem of

maximizing cx+ 0y (1)

subject to Ax− Ey ≤ 0, py ≤ B, x ≥ 0, y ≥ 0 (2)
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where we assume that every instance (A,B,C, p) is required to satisfy the condi-
tions B > 0, c > 0, p > 0, pA > 0.

The instances of this problem can be solved by any of the standard procedures
for linear programming but de novo programming solves them more efficiently by
taking advantage of the special structure of the problem.

First we observe that each solution (x̄, ȳ) of inequalities

Ax− Ey ≤ 0, py ≤ B, x ≥ 0, y ≥ 0 (3)

is also a solution of inequalities

(pA)x ≤ py, py ≤ B, x ≥ 0, y ≥ 0.

It follows that if (x̄, ȳ) is a solution of system (3), then x̄ is a solution of system

(pA)x ≤ B, x ≥ 0. (4)

Consequently, if (x̄, ȳ) is an optimal solution of problem (1)-(2), then x̄ is a feasible
solution of the continuous knapsack problem

maximize cx (5)

subject to (pA)x ≤ B, x ≥ 0, (6)

and cx̄ ≤ cx̂ where cx̂ is an optimal solution of (5)-(6).
On the other hand, if x̂ is an optimal solution of the knapsack problem (5)-(6),

then (as we show later) there is a ŷ such that (x̂, ŷ) is a feasible solution of problem
(1)-(2), and consequently we have cx̂ = cx̂ + 0ŷ ≤ cx̄ + 0ȳ = cx̄ where (x̄, ȳ) is
optimal solution for problem (1)-(2). Thus we can conclude that cx̂ = cx̄ + 0ȳ
whenever x̂ and (x̄, ȳ) is optimal for (5)-(6) and (1)-(2), respectively.

To solve the continuous knapsack problem, we first notice that the dual problem
to

maximize c1x1 + c2x2 + · · ·+ cnxn
subject to (pA)1x1 + · · ·+ (pA)nxn ≤ B

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0

has the form

minimize uB
subject to u ≥ c1

(pA)1
, · · · , u ≥ cn

(pA)n
;u ≥ 0.

Let k be such that ck
(pA)k

= maxj{ cj
(pA)j

} and define

û =
ck

(pA)k
, x̂k =

B

(pA)k
, x̂j = 0 if j 6= k.

Then x̂, û are not only feasible but also optimal because

cx̂ =
ckB

(pA)k
, ûB =

ckB

(pA)k
.
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Now using the optimal solution x̂ of the knapsack problem, we can obtain an
optimal solution of problem (1)-(2) by using the following observations. First we
observe that it follows from (2) that every feasible (x̂, y) must satisfy yi ≥ aik B

(pA)k

for each i ∈ {1, 2, . . . ,m}. Consequently, if at least one of these inequalities would
be satisfied strictly, then py would be greater than B and (x̂, y) would be infeasible.
Therefore, we have to define ŷ by setting ŷi = aik

B
(pA)k

for each i. Then pŷ = B,

and (x̂, ŷ) is feasible, and therefore also optimal. Now it is also easy to see that
cx̂ = ckB

(pA)k
, ŷ = Ax̂, B = (pA)x̂. The ordered triple (x̂, ŷ, ẑ) where ẑ = cx̂ is called

the optimal system design [5].

2.2 Multiple criteria problems

De novo multiple criteria problems (I, F,M,G) differ from single criteria ones only
in two items: (a) The matrices C in instances (A,B,C, p) have more than one
row. (b) The values of measure M are real q-vectors with q > 1. As mentioned
previously, the situation is more complex because it is not clear what is meant by
goal G; that is, by maximization (or minimization). Since the relation > between
vectors is not a linear order, it is natural to understand by maximum (or minimum)
a maximal (or minimal) element with respect the partial order >. Then the task of
maximization is to find a feasible solution x whose value is a maximal (or minimal)
element with respect to order >; that is, a Pareto optimal element. However, as a
rule there are many maximal (or minimal) elements, and consequently many Pareto
optimal solutions.

2.2.1 Zeleny’s method

Zeleny [5] proposes to obtain a Pareto solution by the following procedure. Given
an instance (A,B,C, p), we first solve all single criterion problems given by rows
of matrix C; that is, the problems

maximize cαx+ 0y
subject to Ax− Ey ≤ 0, py ≤ B, x ≥ 0, y ≥ 0

where cα = (cα1 , c
α
2 , . . . , c

α
n) and α = 1, 2, . . . , q.

We know from the previous section that, for each α, x̄α solves the α-problem
when the components of x̄α are defined by

x̄αj =

{
B

(pA)k(α)
when j = k(α),

0 when j 6= k(α),

where k(α) is such that
cαk(α)

(pA)k(α)
= maxj{ cαj

(pA)j
}.

Let z∗ = (z∗1 , z
∗
2 , . . . , z

∗
q ) where the components z∗α are defined by z∗α = cαx̄α,

and let x∗ be the optimal solution of problem

minimize (pA)x subject to Cx = z∗ and x ≥ 0. (7)
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Then the ordered triple

(x̂, ŷ, ẑ) =

(
B

B∗x
∗,
B

B∗ y
∗,
B

B∗ z
∗
)

(where B∗ = (pA)x∗, y∗ = Ax∗) is called the optimal design with respect to B.
In [5], the problem (7) is called the meta-optimization problem and value B∗ is
called the meta-optimum budget. It is useful to note that B∗ is the minimum
budget to achieve z∗ by using x∗ and y∗. Consequently, we cannot achieve z∗ when
B∗ > B.

This method assumes that the system Cx∗ = z∗ has a nonnegative solution,
which is not guaranteed in general. To correct it, Shi [1] proposed to replace
problem (7) by problem

minimize (pA)x subject to Cx ≥ z∗ and x ≥ 0. (8)

To distinguish it from Zeleny’s meta-optimization problem (7) we refer to (8) as
Shi’s meta-optimization problem. It is of worth mentioning that even if (7) has a
solution, we can sometimes obtain different optimal solution by solving (8) because
optimal solutions of (7) are feasible but not necessarily optimal solutions of (8).

2.2.2 Shi’s method

Analogously to Zeleny’s aproach, Shi [1] first solves the individual problems

maximize cαx+ 0y
subject to Ax− Ey ≤ 0, py ≤ B, x ≥ 0, y ≥ 0

by reducing them to the continuous knapsack problems. However, then the ob-
tained solutions x̄α are used to construct another solution x∗∗, which he calls
synthetic optimal solution. The description how to construct the synthetic solution
allows two interpretations.

In one of them we construct x∗∗ as simple combination of nonzero components
of all different solutions xα, α = 1, 2, . . . , q̄. If we arrange the objective functiosn
approprietly, then we can easily see that q̄ ≤ q and q̄ ≤ n. We define the synthetic
solution as the sum of these solutions; that is, x∗∗ =

∑q̄
α=1 x

α.
In another one we obtain x∗∗ as the sum of all solutions xα, α = 1, 2, . . . , q;

that is, we define the synthetic solution by x∗∗ =
∑q
α=1 x

α. Here each individual
solution is considered as many times as it maximizes the objective functions. So the
synthetic solution actually includes different preference values for each objective
functions. These weights of the individual objective functions are given by the
multiplicity of occurrence of the respective optimal solutions xα.

By using x∗∗ we obtain as the optimal system design with respect B the ordered
triple

(x̂, ŷ, ẑ) =

(
B

B∗∗x
∗∗,

B

B∗∗ y
∗∗,

B

B∗∗ z
∗∗
)

where y∗∗ = Ax∗∗, z∗∗ = Cx∗∗, B∗∗ = (pA)x∗∗.
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3 De Novo and Cooperative Bargaining

To explain how the de novo programming problems are related to problems of
cooperative bargaining, we begin with recalling the basic framework established by
Nash [7] for studying bargaining situations.

In Nash’s model the term bargaining refers to a situation in which n individ-
uals (bargainers, players) either reach an agreement in a given set A of possible
agreements, or fail to reach agreement. If no agreement is reached, then a given
disagreement event D occurs. Each individual has a preference relation (a complete
transitive relation) on the set A ∪ {D}, and it is required that each individual’s
preferences be defined not only on A∪{D} but also on the set of lotteries, and that
the assumptions of the von Neumann and Morgenstern utility theory are satisfied.
Consequently, for each player i, there exists a utility function ui. Given the set of
possible agreements, the disagreement event, and utility functions for players’ pref-
erences, we can construct the set of all utility n-tuples that can be the outcomes of
bargaining. As a result we obtain a subset S of Rn and a point d in S whose com-
ponents represent players’ utilities for the disagreement event D. It is important
to notice that no restrictions are put directly on the set of possible agreements and
that the same utility n-tuples may result from several combinations of agreements
and utilities. Thus two different bargaining situations that induce the same pair
(S, d) are not distinguished and are treated equally.

Using this framework, we can formulate the n-player bargaining problem as a
nonempty collection B of pairs (S, d) where S is a nonempty subset of n-dimensional
real linear space Rn and d is a point in S, see the Chapter 2 in [11] for details.
Then a solution function on B (or simply a solution on B) is a function f from B
to Rn such that, for each instance (S, d) of B, the value f(S, d) of f belongs to S.
A solution outcome for an instance (S, d) from B is the value f(S, d) of f at (S, d).

These definitions are too general for having a meaningful theory. Therefore, the
instances (S, d) forming a bargaining problem B, and solution functions should have
some reasonable properties. For example, in the Nash basic model, it is assumed
that each instance (S, d) satisfies the following conditions: (i) Bargaining set S
is compact and convex. (ii) Disagreement point d belongs to S. (iii) There is at
least one point in S that is better than d for every player. There is an extensive
game-theoretic literature on bargaining in which a multitude of solution functions
are proposed and analyzed; see, for example, surveys [12] and [10].

The most interesting bargaining solutions for our purpose are those that depend
essentially on the ideal point of bargaining set S. From among them, the Raiffa-
Kalai-Smorodinsky (R-K-S) solution seems to be closely related to the de novo
solutions proposed by Zeleny and Shi. The R-K-S solution [15] is defined as the
function that assigns to every instance (S, d) the point of intersection of weakly
Pareto points of S with the straight line joining the disagreement point and ideal
point of S.

We can see this relationship clearly when we realize that: (i) For each nonneg-
ative y satisfying py ≤ B, the set S(y) = {z : z = Cx,Ax ≤ y, x ≥ 0} together

Optimal design of production system under limited budget

222



with d = 0 form an instance of a bargaining problem. (ii) The vector z∗ of the
right-hand sides of equations or inequalities in the meta-optimization problem (7)
or (8) are components of the ideal point of the set S(y∗) where y∗ = Ax∗. (iii) The
point B

B∗ z
∗ is the point of intersection of the set of weekly Pareto optimal points

in S with the straight line connecting z∗ and d = 0.
Originally, the Nash model was studied mainly for the case of two players where

the situation is often simpler. This is also true for relationship between de novo
and bargaining. As an illustration we present several examples. These examples
are concerned with various different bargaining situations where we define A(y) by

A(y) = {x ∈ R3 : x1 + x3 − y1 ≤ 0, x2 − y2 ≤ 0, x ≥ 0}

for certain nonnegative y satisfying 2y1 + 3y2 ≤ 12; that is, p = [2, 3] and B =
12. When we need to distinguish points resulting from Zeleny’s and Shi’s meta-
problems, we use the notation Z(x∗), S(x∗), Z(z∗), S(z∗) and so on.

Example 1. In this example we have two objective functions u1, u2 to be
maximized which are defined by

u1(x) = 2x1 + x2 + x3, u2(x) = 2x1 + 4x2 + 5x3.

By solving the corresponding knapsack problems, we obtain as the ideal values
z∗1 = 12, z∗2 = 30, and the solution of the corresponding meta-problem (7) is
x∗1 = 3.75, x∗2 = 0, x∗3 = 4.5. It follows that y∗1 = 8.25, y∗2 = 0, and B∗ = 16.5,
which exceeds the available budget B = 12. Thus Zeleny’s method delivers as
optimal the system x1 + x3 ≤ 6, x2 ≤ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, from which it
selects the following Pareto optimal solution x̂1 = 2.73, x̂2 = 0, x̂3 = 3.27. Here
the de novo solution is the same as R-K-S solution, see Figure 1.

x1

x2

x3

Ideal
De Novo

(a) decisions

z1

z2

Ideal

RKS        De novo

(b) criteria

Figure 1: solutions

Notice that Shi’s approach with x∗∗ as the sum of both solutions will deliver
solution x̂1 = 3, x̂2 = 0, x̂3 = 3.

Example 2. We wish to maximize the functions u1(x) = 3x1+x2+x3, u2(x) =
x1 +4x2 +2x3, u3(x) = 2x1 +x2 +4x3. Here, as previously the de novo and R-K-S
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deliver the same results. The ideal point is z∗ = (18, 16, 24), the corresponding
solution of both Zeleny’s and Shi’s meta-models is x∗ = (4.46, 1.14, 3.49), and
B∗ = 19.31, which exceeds the available budget B = 12. The intersection of
the set of weakly Pareto points of S with the straight line joining the disagreement
point 0 and ideal point is x̂ = (2.77, 0.71, 2.17) with utilities ẑ = (11.18, 9.94, 14.91).
The corresponding components of ŷ are ŷ1 = 4.94, ŷ2 = 0.71 and the prescribed
budget 12 is respected.

Example 3. Here we have the maximization of functions u1(x) = 2x1 +
x2 + x3, u2(x) = x1 + 4x2 + 5x3, u3(x) = 3x1 + x2 + 2x3. The ideal point
Z(z∗) = (12, 30, 18) and the solution of Zeleny’s meta-model is Z(x∗) = (3, 3, 3),
while Shi’s meta-model has S(z∗) = (12, 30, 20.67) as ideal point and S(x∗) =
(3.33, 0, 5.33) as solution of meta-problem. The intersection of S with the straight
line joining the 0 and ideal point Z(z∗) is Z(x̂) = (1.71, 1.71, 1.71) and Z(ẑ) =
(6.86, 17.14, 10.29), Z(ŷ) = (3.43, 1.71), which is not a weakly Pareto point of S.
With Shi’s ideal point S(z∗) = (12, 30, 20.67), we receive S(x∗) = (2.31, 0, 3.69),
and S(ẑ) = (8.31, 20.77, 14.31), S(ŷ) = (6, 0). Shi’s meta-model solution is an el-
ement of weakly Pareto points and dominates the previous solution. This result
describes the behavior of R-K-S solutions between the situation where the R-K-S
solution is a Pareto solution, and the situation where the R-K-S solution is equal
to the disagreement point.

Example 4. Here we have the maximization of functions u1(x) = 2x1 +
x2 + x3, u2(x) = x1 + 4x2 + 5x3, u3(x) = 3x1 + 6x2 + 3x3. The ideal point is
Z(z∗) = (12, 30, 24). The Zeleny’s meta-model has no solution. For Shi’s meta-
model we have S(z∗) = (12, 30, 26) and S(x∗) = (3.33, 0, 5.33). The intersection
of set S with the straight line joining the disagreement point and ideal point is
x = (0, 0, 0) and z = (0, 0, 0). With point S(z∗), we receive x = (2.31, 0, 3.69) and
z = (8.31, 20.77, 18), y = (6, 0).

We see from these examples that Zeleny’s de novo solutions and R-K-S solutions
coincides on two criteria instances but they can differ on instances with three
criteria. Moreover, in the three criteria cases de novo provides reasonable results
also in the cases where the R-K-S fails. This is caused by the well known fact
that the R-K-S solutions requires that the instances (S, d) of bargaining problem B
be comprehensive in the sense that y is necessarily in S whenever there is x in S
such that x ≥ y. We believe that the further analysis of this relationship is worth
studying.

4 Remarks

Remark 1. The main advantage of de novo programming in single criterion
problems is that we obtain explicit dependence of solution on the input data.
It makes it possible to redesign easily the optimal design when the budget is
changed, or to solve easily some inverse optimization problems. For example,
to determine the minimal budget for reaching a prescribed value of given
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criterion.

Remark 2. As pointed out by Zeleny in [5], in a competitive economy it would be
more appropriate to maximize the difference (cx−pb)2 than simply cx. Since
the resources have prices in this model, they are not freely disposable. We
can not only purchase them but also sell them. Thus we could sell the unused
amount b−Ax. Then, it may be reasonable to maximize (cx−pb)+p(b−Ax);
that is, (c− pA)x, which does not require any change of method.

Remark 3. The basic de novo model assumes that demand for production is
unlimited. If there are bounds on values some or all variables xi, then the
reduction to the knapsack is again possible. Now the corresponding knapsack
problem has the form

maximize cx
subject to ax ≤ B, 0 ≤ x ≤ u

where a = pA. If au > B, then we set x̂ = u. If au ≤ B, then we obtain x̂
by the following procedure. Assume that c1

a1
≥ c2

a2
· · · ≥ cn

an
and let k be such

that
k−1∑

j=1

ajuj < B and

k∑

j=1

ajuj ≥ B.

Then

x̂i = ui for i ≤ k − 1, x̂i =
B−∑k−1

j=1 ajuj

ak
for i = k, and x̂i = 0 otherwise.

Remark 4. The De Novo methodology can be also adapted for models with
capacity, requirement, and balance constraints [3]. The transformation to
continuous knapsack problem is not possible in this case because the existence
of a solution of the criteria constraints as equalities or inequalities is not
guaranteed. Instead the knapsack problem the goal model is solved firstly
and than the model minimizing the budget B for reachable criterion values
is solved.
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Appendix

Table 1: approach (i)
Cl

Rule dataset A dataset B 　
R_id. l Supp. Recall Prec. Recall F 値

0-2 R0−2
1 5 0.46 0.47 0.824 0.163 0.660

R0−2
2 3 0.22 0.23 0.882 0.366 0.840

R0−2
3 4 0.35 0.35 0.750 0.005 0.039

R0−2
4 5 0.31 0.31 0.909 0.414 0.842

R0−2
5 4 0.30 0.30 0.917 0.360 0.811

R0−2
6 1 0.05 0.06 0.950 0.1506 0.576

1-3 R1−3
1 23 0.03 0.08 0.667 0.018 0.016

R1−3
2 11 0.03 0.09 0.475 0.056 0.0521

R1−3
3 16 0.03 0.08 0.611 0.032 0.0300

R1−3
4 21 0.03 0.08 0.438 0.021 0.019

R1−3
5 19 0.03 0.07 — 0.000 0.000

R1−3
6 18 0.03 0.06 0.300 0.009 0.008

R1−3
7 28 0.06 0.14 — 0.000 0.000

R1−3
8 14 0.03 0.09 1.000 0.006 0.005

R1−3
9 29 0.04 0.11 0.357 0.015 0.014

R1−3
10 24 0.04 0.11 0.529 0.027 0.025

R1−3
11 25 0.03 0.08 0.375 0.027 0.025

R1−3
12 15 0.03 0.08 0.539 0.021 0.019

R1−3
13 22 0.05 0.13 0.636 0.021 0.019

2-4 R2−4
1 22 0.01 0.13 0.333 0.014 0.004

R2−4
2 26 0.02 0.15 0.000 0.000 0.000

R2−4
3 29 0.02 0.19 0.333 0.014 0.004

R2−4
4 29 0.02 0.16 0.500 0.007 0.003

R2−4
5 27 0.02 0.22 0.273 0.022 0.005

R2−4
6 27 0.02 0.22 0.200 0.007 0.002

R2−4
7 　 7 0.001 0.04 — 0.000 0.000

3-5 R3−5
1 19 0.01 0.54 — 0.000 0.000

R3−5
2 19 0.01 0.46 0.500 0.015 0.002

4-6 R4−6
1 7 0.001 1.00 — 0.000 0.000

14-18 R14−18
1 2 0.001 1.00 — 0.000 0.000



Table 2: approach (ii)
Cl

Rule dataset A dataset B 　
R_id. l Supp. Recall Prec. Recall F 値

0-10 R0−10
1 3 0.070 1.000 0.800 0.741 0.769

5-15 R5−15
1 2 0.009 0.059 0.846 0.458 0.595

R5−15
2 2 0.143 0.929 0.370 0.917 0.527

R5−15
3 2 0.013 0.082 0.000 0.000 0.000

10-20 R10−20
1 5 0.157 1.000 0.194 0.778 0.311

20-30 R20−30
1 5 0.063 0.593 0.145 0.468 0.221

R20−30
2 2 0.043 0.407 — 0.000 0.000

30-40 R30−40
1 6 0.099 0.917 0.191 0.354 0.248

R30−40
2 3 0.009 0.083 — 0.000 0.000

40-50 R40−50
1 5 0.047 0.605 0.062 0.500 0.110

R40−50
2 3 0.031 0.395 — 0.000 0.000

50-60 R50−60
1 4 0.047 0.619 0.000 0.000 0.000

R50−60
2 2 0.029 0.381 0.000 0.000 0.000

60-80 R60−80
1 4 0.119 0.667 0.018 0.027 0.022

R60−80
2 2 0.060 0.333 0.516 0.219 0.308

80-100 R80−100
1 4 0.063 0.833 0.243 0.920 0.385

R80−100
2 3 0.013 0.167 1.000 0.160 0.276

100-120R100−120
1 4 0.125 0.986 0.516 0.500 0.508

R100−120
2 2 0.027 0.214 — 0.000 0.000

120- R≥120
1 1 0.106 0.983 — 0.000 0.000

R≥120
2 3 0.002 0.017 — 0.000 0.000



Table 3: approach (iii)
Cl

Rule dataset A dataset B 　
R_id. l Supp. Recall Prec. Recall F 値

≤ 10 R≤10
1 3 0.070 1.000 0.800 0.741 0.769

≤ 20 R≤20
1 3 0.206 1.000 0.333 1.000 0.500

≤ 40 R≤40
1 3 0.399 1.000 0.667 0.937 0.779

≤ 60 R≤60
1 2 0.532 0.983 0.462 1.000 0.632

R≤60
2 4 0.294 0.543 0.355 0.187 0.245

≤ 80 R≤80
1 3 0.708 0.997 0.635 0.912 0.749

R≤80
2 2 0.258 0.364 0.476 0.293 0.363

≤ 120 R≤120
1 2 0.892 1.000 0.743 1.000 0.852

≥ 10 R≥10
1 2 0.951 1.000 0.986 0.979 0.983

≥ 20 R≥20
1 2 0.783 0.979 1.000 0.819 0.900

R≥20
1 2 0.0469 0.059 1.000 0.115 0.206

≥ 40 R≥40
1 2 0.605 0.994 1.000 0.736 0.848

R≥40
2 3 0.0830 0.136 — 0.000 —

≥ 60 R≥60
1 2 0.469 1.000 1.000 0.649 0.788

≥ 80 R≥80
1 4 0.299 1.000 0.681 0.260 0.376

≥ 120 R≥120
1 1 0.106 0.983 — 0.000 —

R≥120
2 3 0.002 0.017 — 0.000 —



Table 4: approach (iv)
Cl

Rule dataset A dataset B 　
R_id. l Supp. Recall Prec. Recall F 値

≤ 10 R≤10
1 3 0.070 1.000 0.800 0.741 0.769

≤ 20 R≤20
1 3 0.206 1.000 0.333 1.000 0.500

≤ 40 R≤40
1 3 0.399 1.000 0.667 0.937 0.779

≤ 60 R≤60
1 2 0.532 0.983 0.462 1.000 0.632

R≤60
2 1 0.487 0.900 0.634 1.000 0.776

≤ 80 R≤80
1 3 0.708 0.997 0.635 0.912 0.749

R≤80
2 2 0.428 0.603 0.986 0.788 0.876

≤ 120 R≤120
1 2 0.892 1.000 0.743 1.000 0.852

≥ 10 R≥10
1 2 0.951 1.000 0.986 0.979 0.983

≥ 20 R≥20
1 2 0.783 0.979 1.000 0.819 0.900

R≥20
1 2 0.545 0.682 0.971 0.662 0.787

≥ 40 R≥40
1 2 0.605 0.994 1.000 0.737 0.848

R≥40
1 2 0.594 0.976 0.935 0.870 0.901

≥ 60 R≥60
1 2 0.469 1.000 1.000 0.650 0.788

≥ 80 R≥80
1 4 0.299 1.000 0.681 0.260 0.376

≥ 120 R≥120
1 1 0.106 0.983 — 0.000 —

R≥120
1 2 0.002 0.017 0.935 0.210 0.343



Programme and Conference Chairs:

Radim Jirou²ek (Czech Academy of Sciences)
Masahiro Inuiguchi (Osaka University)

Programme and Conference Committee:

Ond°ej �epek (Charles University in Prague)
Martin Gavalec (University of Hradec Králové)

Takeshi Itoh (Tohoku University)
Vilém Novák (University of Ostrava)
Irina Per�lieva (University of Ostrava)

Jaroslav Ramík (Silesian University in Opava)
Shogo Shiode (Kobe Gakuin University)

Shao Chin Sung (Aoyama Gakuin University)
Ji°ina Vejnarová (Czech Academy of Sciences)
Milan Vlach (Charles University in Prague)

978-80-7378-401-0
(electronic version)

2
2
n
d
C
Z
E
C
H
-J
A
P
A
N
S
E
M
IN
A
R
O
N
D
A
T
A
A
N
A
L
Y
S
IS

A
N
D
D
E
C
IS
IO
N
M
A
K
IN
G
(C
J
S
2
0
1
9
)

22
nd
CZECH-JAPAN SEMINAR

ON DATA ANALYSIS

AND DECISION MAKING

Nový Sv¥tlov, September 25-28, 2019

CJS 2019 cover


	Preamble
	Cover
	Publishing informations
	Committees
	Foreword

	List of Content
	On stability and interpretability of mixture models of wage distributions
	Petr Berka
	Michal Vrabec
	Luboš Marek

	Questions Concerning Composition of Discrete Multivariate Uncertain Measures in Liu's Uncertainty Theory
	Vladislav Bína
	Lucie Váchová

	Generative Adversial Networks, a 2019 review
	David Coufal

	A Step towards Upper-bound of Conflict of Belief Functions based on Non-conflicting Parts
	Milan Daniel
	Václav Kratochvíl

	On the crossing number of join of graph of order six with path
	Emília Draženská

	Normalized Interval Vectors are Divided into Two Classes in View of Belief Function
	Masahiro Inuiguchi

	Preliminary Results from Experiments on the Behavior under Ambiguity
	Radim Jiroušek
	Václav Kratochvíl

	How to make the Olympics: Tournament planning strategy using fuzzy inference system
	Šárka Krížková
	Martin Gavalec

	On exact algorithm for shortest path network interdiction
	Kosuke Kameda
	Natsumi Takahashi
	Shao Chin Sung

	On Experimental Part of Behavior under Ambiguity
	Václav Kratochvíl
	Radim Jiroušek

	Inconsistency Distribution in Saaty's Pairwise Comparison Matrices
	Karel Mls

	Proposal of probability risk Evaluation for System Development Project Based on Requirements Analysis and Bayesian estimation
	Shinji Mochida

	On Modelling of Syllogisms with ``A few'' and ``Several''
	Petra Murinová

	Firefly Algorithm for Hyper-Parameter Optimization of L2-Distance Estimation Models
	Tomoharu Nakashima
	Syo Nishihara

	On the optimal drawings of the products of special graphs
	Jana Petrillová

	Theory of SSB Representation of Preferences Revised
	Miroslav Pištek

	New Approach How to Generate Priority Vector to Pairwise Comparisons Matrix With Fuzzy Elements
	Jaroslav Ramík

	Inducing Useful If-Then Rules from Daily Data about Automatic Ticket Gate Machines by Cumulation and Monotonization
	Naoki Shimamura
	Masahiro Inuiguchi
	Masahumi Inoue
	Shinji Takagi
	Daigo Kishine

	Alternative proof on the crossing number of K1,4,n
	Michal Staš

	Bayesian Networks for the Analysis of Subjective Well-Being
	Jan S@Švorc
	Jirí Vomlel

	Optimal Design of Bi-objective Reliable Network Using Genetic Algorithm
	Natsumi Takahashi
	Shao Chin Sung
	Tomoaki Akiba
	Hisashi Yamamoto

	Inducing k-anonymus Binary Cassification Rules from Data Tables
	Yoshiharu Uchida
	Masahiro Inuiguchi

	An Overview of Approaches Evaluating Intelligence of Artificial Systems
	Ondrej Vadinský

	Optimal design of production system under limited budget
	Milan Vlach
	Helena Brožová


	List of Authors

