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Perceptual Attributes Analysis of Real-world Materials

JIŘÍ FILIP and MARTINA KOLAFOVÁ, The Czech Academy of Sciences, Institute of Information

Theory and Automation, Czech Republic

Material appearance is often represented by a bidirectional reflectance distribution function (BRDF). Although the concept of
the BRDF is widely used in computer graphics and related applications, the number of actual captured BRDFs is limited due
to a time and resources demanding measurement process. Several BRDF databases have already been provided publicly, yet
subjective properties of underlying captured material samples, apart from single photographs, remain unavailable for users.
In this article, we analyzed material samples, used in the creation of the UTIA BRDF database, in a psychophysical study
with nine subjects and assessed its 12 visual, tactile, and subjective attributes. Further, we evaluated the relationship between
the attributes and six material categories. We consider the presented perceptual analysis as valuable and complementary
information to the database; that could aid users to select appropriate materials for their applications.
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1 INTRODUCTION

Textureless reflectance is a basic means of material appearance representation used in computer graphics and
related disciplines. A formal representation using a bidirectional reflectance function (BRDF) [25] represents
appearance as a distribution function of ratios of outgoing radiance to incoming reflectance for any pair of
incoming and outgoing directions. An anisotropic BRDF for a fixed color channel is a four-dimensional function
fr (θi ,φi ,θv ,φv ) of illumination and viewing directions specified by spherical angles, and a spatial extension of
a BRDF is a bidirectional texture function (BTF) fr (x ,y,θi ,φi ,θv ,φv ). As the sampling process of bidirectional
pairs requires the independent positioning of light and camera over a hemisphere defined by a normal of a
material’s surface, the acquisition process can be very slow. Although the measurement process can be sped up
using mirrors and taking images of multiple viewing directions simultaneously, or by making assumptions of a
known material object’s geometry [21], the number of available BRDF datasets remains limited.
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The first public BRDF database of isotropic measurements was introduced in Reference [21] and additional
BRDFs in References [8, 19]. Regarding anisotropic measurements, four detailed datasets are available [24], three
probes of fabric materials [4], and an additional 150 in the UTIA BRDF database [3].

These important resources provide comprehensive information about the angularly dependent visual behavior
of measured material samples captured as a BRDF; however, little is known about the subjective visual and tactile
impression of human subjects apart from a single snapshot of the measured surface. Additional knowledge of
such perceptual attributes would benefit users of such data in a variety of applications. For instance, a user
from the gaming industry can select a BRDF that has the highest glossiness or leather of the highest perceived
quality, and so on. Also, designers could select, for example, a BRDF of wood representing the highest perceived
roughness in the visualization of a particular product. Using a psychophysical study, this article analyzes subjects’
impressions of actual materials captured in the UTIA BRDF database1 [3]. We further studied the correlations
between perceived attributes and between the attributes and material classes and their properties.

The article is organized as follows. Section 2 overviews a prior work on the topic. Section 3 describes the user
study performed, while Section 4 analyses and discuses subjects’ responses and relationship of attributes and
material categories. Section 5 discusses the results limitations and applications. Section 6 concludes the article.

2 RELATED WORK

Our work relates to the analysis of perceptual features of (1) gray-scale/color textures, (2) complex spatially
and angularly dependent properties of material appearance, and (3) real specimens possibly using additional
multi-modal features.

Perception of Materials Properties from Photographs

Analysis of human visual perception of texture has been studied extensively in the past [16], and consequently
this research evolved in two major directions. The first represents statistical approaches that tend to represent
a texture’s visual properties by a set of statistical measures. The second group of approaches is based on the
identification of major visual features, often called textons, and represents texture by combinations from a texton
vocabulary.

Tamura et al. [34] suggested a computational form of six basic texture properties and evaluated their perfor-
mance in a psychophysical experiment on 56 gray-scaled textures of Brodatz’s catalogue [1]. The features were
as follows. Coarseness—the bigger is structure element size and/or less its elements are repeated, the coarser it is
felt to be. Contrast—is based on four factors: (1) dynamic range of gray-levels, (2) polarization of the distribution
of black and white on the gray-level histogram or ratio of black and white areas, (3) sharpness of edges, (4) period
of repeating patterns. Directionality—intensity of monodirectional/bidirectional features. Line-likeness—whether
has prevailing lines or blobs. Regularity—is related to variations of placement rule, where fine textures are often
perceived as regular. Roughness—expressing imaginary tactile sense.

Rao and Lohse [29] identified a perceptual texture space also by grouping Brodatz’s textures. The resulting
data were analyzed using hierarchical cluster analysis, non-parametric multi-dimensional scaling (MDS), clas-
sification and regression tree analysis, discriminant analysis, and principal component analysis. The authors
concluded that the perceptual texture space can be represented by a three-dimensional space with axes describ-
ing repetitiveness, contrast/directionality, and coarseness/complexity. The tested attributes were: granular tex-

tures, marble-like, lace-like, random, repetitive, and directional. Another image grouping experiment by Heaps and
Handel [10] obtained the following basic texture attributes: complexity, connectedness, depth, hardness, linearity,
naturalness, orientation, repetitiveness, roughness, shape, shape, size, and structure.

Reference [22] performed an experiment with human subjects to obtain a pattern vocabulary governed
by grammar rules accounting for: overall color, directionality and orientation, regularity and placement, color

1http://btf.utia.cas.cz.
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purity, complexity, and heaviness. Although this approach utilized a different perceptual mechanism as it extended
the scope to color textures, it generally proved Rao and Lohse’s conclusions [29] concerning the perceptual
dimensions.

Malik and Perona [18] presented a model of human preattentive texture perception based on low-level human
perception. Vanrell and Vitria [39] suggested a texton-based four-dimensional texture space with perceptual tex-
tons’ attributes along each of the dimensions. In follow-up work, they [40] performed dimensionality reduction
of the texton representations to create a low- dimensional behavioral texture space where distances between
points represent texture distances.

Long and Leow [17] presented an approach attempting to solve the missing link between the perceptual tex-
ture space and the space of computational texture features, by reduction of Gabor features represented by a
convolutional neural network a four-dimensional texture space.

Researchers studied also human perception of specific attributes. Padilla et al. [26] developed a model of
perceived roughness in fractal surfaces. Pont et al. [27] found that observers use the texture as a cue for relief-
depth and that surface roughness can be exploited for increasing realism of the standard 2D texture mapping.
Ho et al. [11] found that roughness perception is correlated with texture contrast. Motoyoshi et al. [23] suggest
that skewness of the texture’s luminance histogram and of sub-band filter output are correlated with the original
surface gloss and inversely correlated with the surface albedo. Wills et al. [41] ran an extensive experiment with
75 subjects assessing glossiness of 55 BRDFs from MERL BRDF database [21]. They further used the MDS to
construct a low-dimensional embedding allowing perceptual parameterization of an analytical BRDF model.

Fleming et al. [7] presented an extensive analysis of human perception of materials. In the first study nine sub-
ject judged nine perceptual qualities: glossiness, transparency, colorfulness, roughness, hardness, coldness, fragility,
naturalness, and prettiness of 13 exemplars of 10 material classes. The stimuli images featuring materials on
various shapes were taken from MIT-Flickr database. In the second study, 65 subjects assigned 42 adjectives
describing material qualities to six classes of materials. Authors revealed that distribution of material classes
in visual and semantic domain are similar and conclude that perceptual qualities are systematically related to
material class membership.

In a follow-up study, Tanaka et al. [35] analyzed subject rating of the same perceptual qualities as a function of
visual information degradation. They assessed the qualities of 34 low-chroma specimens divided into 10 material
categories. Ten subjects judged real examples, their images in the same environment, and their gray-scale and
down-sampled versions. Authors concluded that general perceptual quality decreased by image-based repro-
duction, also perceptual qualities of images decreased by using their gray-scale variant, and finally, perceptual
qualities of hardness and coldness increased when image resolution was reduced.

A related research in material recognition identifies local material properties, so-called visual material traits
[30], encoding appearance of characteristic material properties by means of convolutional features of train
patches. In follow-up work, researchers discovered space of locally recognizable material attributes from per-
ceptual material distances by training classifiers to reproduce this space from image patches [31, 33].

Perception of Angularly Dependent Material Appearance

An important aspect of material perception is its variation due to interactions between lighting and object geom-
etry and object geometry [5]. Fleming et al. [6] pointed out the importance of real-world illumination for correct
matching of surface roughness and specularity. Limited work has been carried out on the perceptual aspects of
real BRDF measurements. te Pas and Pont [36] showed that changes in surface BRDF and illumination are often
confounded, but that adding complex illumination or 3D texture improves the visual matching. Dependency of
the perception of a light source direction on surface BRDF and its 3D shape was shown in References [15, 37].
Matusik et al. [21] psychophysically evaluated large sets of BRDF samples and showed that there are consis-
tent transitions in perceived properties between different BRDFs. They analyzed whether they possess any of
the perceptual attributes: redness, greenness, blueness, specularness, diffuseness, glossiness,metallic-like, plastic-like,
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roughness, silverness, gold-like, fabric-like, acrylic-like, greasiness, dustiness, and rubber-like. They used the sub-
ject’s characterizations to build a model in both the linear and non-linear embedding spaces. Such a manifold is
then used for interpolation between attributes.

Vangorp et al. [38] found that object shape considerably influences the perception of BRDF samples. Filip
et al. [2] ran a psychophysical study and demonstrated that a reduction of BTF data without compromising
visual quality is directly related to the complexity of illumination and object geometry.

Ramanarayanan et al. [28] presented a concept of visual equivalence. In a series of psychophysical experiments,
the authors characterized conditions under which warping and blurring of the illumination maps and warping
of the object’s surface yield rendered images that are visually equivalent to the reference solutions. Jarabo et al.
[13] ran perceptual experiments to investigate the visual equivalence [28] of rendered images for different levels
of BTF filtering, and found that blur in a spatial domain is less tolerable than in its angular counterpart. They
analyzed whether BTF datasets possess following properties: high-contrast, granular, structured, rough, feature-

dense, complex-structure, flat, relief, sharp-relief, smooth-relief, glossy, color, light, soft, and hard.
Finally, Serrano et al. [32] psychophysically analyzed isotropic BRDFs from the MERL database [21] to identify

smooth and intuitive material appearance transition between different visual attributes: plastic-like, rubber-like,

metallic-like, fabric-like, ceramic-like, soft, hard, matte, glossy, bright, rough, tint of reflections, strength of reflec-

tions, and sharpness of reflections.

Perception of Physical Material Specimens

Psychophysical analysis of physical materials received relatively low attention. Reference [20] analyzed the
visual, aural, and tactile attributes of materials and their mutual contribution to perception of characteristic
material parameters. Authors used tactile features: rough–smooth, hard–oft, warm–cold; visual features: shiny–

matte, simple–complex, colorful–colorless; and subjective features: expensive–cheap, old–new, natural–synthetic,

beautiful–ugly. Tanaka et al. [35] ran a user study assessing nine visual attributes of 34 planar material specimens
observed in strictly controlled settings. The study further analyzed impact of degraded image representations of
real specimens on judging of attributes intensity.

Inspired by the multi-modal analysis of real material specimens, we provided subjects with real material sam-
ples used in the creation of the UTIA BRDF database [3], and evaluated not only their visual but also tactile
and subjective properties. To our knowledge, this is one of the first attempts to thoroughly analyze perceptual
properties of a large BRDF database, not merely based on the visualization of captured or even fitted BRDF data,
but using real material specimens.

3 PSYCHOPHYSICAL EXPERIMENT

This section overviews the analyzed materials, tested attributes, and experimental procedure.

3.1 Tested Materials and Their Categories

The UTIA BRDF database [3] is composed of 150 anisotropic BRDFs (see Figure 1).
To reduce time demands of the study, out of this database, we selected 93 material specimens by removing

those that had the same structure yet differ only in a color. The resulting subset consists of 51 fabric, 15 leather,
4 plastic, 16 wood, and 7 other specimens comprising: retro-reflective material, metallic car paint with acrylic
coating, glittering glass paint, plaster, black paper, and two specimens of polyester foam as shown in Figure 2.

3.2 Material Attributes

Our motivation was to analyze as many aspects of the tested materials as possible. However, as the number of
assessed materials was relatively high, we aimed at comparatively low number of attributes to make the study
feasible for human subjects. We intentionally avoided using high-level class predictors, e.g., plastic-like, as used
in References [21, 32], and focused on important low-level attributes identified in the prior work.

ACM Transactions on Applied Perception, Vol. 16, No. 1, Article 1. Publication date: January 2019.
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Fig. 1. The images of 150 original materials used for capturing UTIA BRDF database.

Fig. 2. A tabletop with 93 material specimens used in the experiment. Individual material categories are highlighted by color.

Our goal was a comprehensive multi-modal analysis of the materials. From the visual characteristics, we
focused on the general texture attributes [22, 29, 34] and selected six of them spanning reflectance, color, and
structural properties of materials: glossiness, colorfulness, directionality, diversity, graininess, and regularity. As our
study uses a physical material specimen, we also extended our attributes to the tactile and subjective domain,
similar to Reference [20]. In the tactile domain, we focused on attributes having a clear physical interpretation:
hardness, roughness, and height. In the subjective domain, we found it interesting to assess the authenticity and
quality of materials and selected genuineness, quality, and attractiveness.

Thus our final list of attributes includes six visual, three tactile, and three subjective attributes as shown in
Table 1.

3.3 Participants and Experimental Procedure

Nine paid subjects performed the experiment in one session. Their ages ranged from 20 to 59, four were male and
five were female. All subjects had normal or corrected-to-normal vision, and all were uninformed with respect
to the purpose and design of the experiment.

ACM Transactions on Applied Perception, Vol. 16, No. 1, Article 1. Publication date: January 2019.
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Table 1. The 12 Material Attributes Evaluated within the User Study

ID Attribute Ranges [1–9]
Visual

L glossiness matte glossy
B colorfulness single-color multiple-colours
S directionality no-directionality directional
R diversity simple complex
H graininess smooth rough
P regularity random regular
Tactile

T hardness soft stiff
D roughness smooth rough
V height flat deep
Subjective

O genuineness man-made natural
K quality ordinary luxurious
A attractiveness usual attractive

Fig. 3. A table with the samples (a) and design of the experiment setup (b).

All samples of a typical size 5 × 5 cm were laid down on the table as shown in Figure 2. The table was positioned
near a window avoiding direct sunlight as shown in Figure 3(b).

The subject’s task was to assess intensity of the attributes shown in Table 1. Prior to the testing session, there
was a short training session where individual attributes were explained to the subject and she/he could freely
review all samples. At this stage, the subject should have established her/his personal scales for each attribute, as
they could see all material at a glance, especially the cases representing extreme values of the attributes. Due to
this step, we did not further normalize the subjects’ scales in any way. Note that each subject had an opportunity
to glance around all the material throughout the experiment. In the testing session, the subject sequentially
evaluated individual attributes while observing one material at a time. All materials were presented to subjects
at once (see Figure 2), and they could evaluate them in any order. In all cases, subjects evaluated the materials
as they were numbered on the table and finished each attribute for all materials, before moving to the next one.

ACM Transactions on Applied Perception, Vol. 16, No. 1, Article 1. Publication date: January 2019.
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Fig. 4. Subjects agreement assessment using Krippensdorff alpha: (a) for individual attributes, (b) for individual materials.

To provide sufficient options for the subjects, we used a nine-point Likert-like rating scale, where 1 corre-
sponds to the lowest and 9 to the highest intensity of the queried attribute. This range should represent only the
span of materials within the study, i.e., the highest rating of, e.g., glossiness should correspond to the glossiest
material from the study and not from the real world. We adapted this design as it is dominant in image and video
experiments [14].

To avoid confusion between visual and tactile attributes, subjects were not allowed to touch the sample when
assessing visual attributes. Also, subjects were not allowed to turn samples over at any time as this could help
them to identify the authenticity of materials. The task was clear for all subjects, and as there were no strict
time limits, the subjects finished the experiment in between 55 and 160min. During debriefing, the majority of
subjects found the experiment interesting yet demanding.

4 RESULTS AND DISCUSSION

We divided our analysis to raw data aggregated from the observers, statistical analysis of attributes, in general,
and statistical analysis of attributes across material categories.

4.1 Raw Data Analysis

Prior to data analysis, we checked on the presence of outliers and assessed agreement across subjects. First, we
performed outliers rejection by removal of values differing from mean subject response for more than 5 points. A
total of 249 outliers were found representing 2.5% of 10,044 values recorded in the study. By far, most outliers (99)
were recoded for the attribute P–regularity. Next, we checked subjects’ responses agreement using Krippensdorff
alpha [9]—a statistical measure of the agreement generalizing several known statistics. The key requirement is
agreement observed among independent observers. Output αK = 1 represents unambiguous indicator of reliabil-
ity, while 0 does not. The αK values computed for individual attributes are shown in Figure 4(a). The values mean
was αK = 0.37, the intuitive attributes (L–glossiness, V–height) featured the highest agreement (over 0.5), while
the lowest agreement values were obtained for subjective features K–quality, A–attractiveness, and, surprisingly,
also for T–hardness. The αK values for all 93 materials are shown in Figure 4(b).

We have also analyzed normality of the data to select appropriate method for statistical hypothesis testing.
The Shapiro-Wilk normality test revealed that the data do not comply with normality assumption at signifi-
cance level 0.05. As the data normality is one of the basic assumptions of ANOVA analysis, we used for any
further hypotheses testing non-parametric Kruskal-Wallis tests instead. Hypotheses testing of attributes means
using Kruskal-Wallis, repeated measures ANOVA, and Friedman tests confirmed significant differences between
attributes means with p-values below 1e-149.

We additionally tested significance of data of each material across different subjects using repeated mea-
sures ANOVA and Friedman’s tests at significance levels 0.01 and 0.05. We concluded that for repeated
measures ANOVA 8 and 7 materials, respectively, and for Friedman test only 2 and 3 materials, respectively,

ACM Transactions on Applied Perception, Vol. 16, No. 1, Article 1. Publication date: January 2019.
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Fig. 5. The mean opinion scores for individual perceptual attributes and all materials. Colors represent individual material
categories as shown in the legend (bottom). Errorbars represent standard deviation across subjects and the black horizontal
line is a mean value of the attribute across materials.

had p-values above these significance levels. These tests confirmed significant differences between means of
attributes values across all observers for majority of materials.

To get insight to typical subjects’ responses, we computed the mean opinion score (MOS) obtained as average
rating across all subjects. This is standard methodology for subjective quality assessment used especially in the
audio and video industries, and recommended by standard international organizations such as ITU [12] or ISO
[14]. The mean opinion scores in range 1-9 for individual perceptual attributes and tested materials are shown in
Figure 5. The errorbars in the graphs represent the standard error values. Average values of attributes are shown
as a black outline in Figure 5. All statistical analyses further on were carried out on all user ratings and not using
MOS.

For the sake of our analysis, materials are grouped into six categories: fabric, carpet, leather, plastic, wood,
and other as shown in Figure 2, which are color-coded in the same way also in Figure 5. We will discuss each of
the attributes briefly while their values are located in the supplementary material.

Glossiness—a limited number of glossy materials in the database was reflected by typically low perceptual
scores. Exceptions were car_paint01, some highly anisotropic fabric materials, glitter, and plastics.

Colorfulness—subjects generally did not find materials colorful with the exception of glitter. Leather materi-
als were viewed as the least colorful, while the most colorful considered were wood, upholstery fabric and carpet

ACM Transactions on Applied Perception, Vol. 16, No. 1, Article 1. Publication date: January 2019.



Perceptual Attributes Analysis of Real-world Materials • 1:9

Fig. 6. A Pearson correlation matrix between the tested attributes. Colors toward red represent positive correlation while
those toward blue represent negative ones. The white values report significant difference between the attributes.

(the first half of columns in red). Presumably, this was due to texture contrast. This attribute had a low standard
deviation across subjects and materials.

Directionality—similar to the previous attribute, the category of materials with the least directional structure
was leather, while the most were categories: wood, upholstery fabric, and carpet.

Diversity—was also related to the richness of visual features and texture contrast. However, contrary to di-
rectionality, diversity was less prominent in wood while more apparent in structured fabrics.

Graininess—results were, as expected, highly similar to the diversity attribute.
Regularity—subjects were quite inconsistent when evaluating this attribute as the standard deviation was

the highest, while their responses were low and balanced across groups of materials. An exception was knitted
fabric due to its large and regular pattern.

Hardness—the first of the tactile properties received relatively high responses, especially in the wood cate-
gory. The highest response was obtained for the plaster material, which was treated as stone.

Roughness—this tactile property was highly related to the visual attributes of diversity and graininess with
the highest responses being for wood and structured fabric categories.

Height—was one of the attributes that can be assessed objectively and thus had the lowest standard deviation
across subjects. The samples with the highest height were carpet, crocheted fabric, plaster, and polyester foam.

Genuineness—this subjective attribute was assigned especially to wood, plaster, and some fabric materials.
Quality and Attractiveness—were subjective perceptual attributes that were highly correlated and for all

of the tested materials obtained relatively low scores. An exception was glitter material that was considered
attractive. In general, all three subjective attributes had relatively high standard deviations.

4.2 Attributes Relationship Analysis

To obtain correlation values between attributes, we computed Pearson and Spearman correlation coefficients
between individual pairs of attributes across all subjects ratings of 93 tested materials. The results were very
similar, and thus we report only the Pearson correlation values as shown color-coded together with the actual
correlation value in Figure 6. Colors toward red represent positive correlation while those toward blue represent

ACM Transactions on Applied Perception, Vol. 16, No. 1, Article 1. Publication date: January 2019.
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Fig. 7. Multivariate analysis – dendrogram illustrating proximity of attributes.

negative ones. Each pair of attributes in the figure show correlation coefficient (−1, 1) at the top of the cell and
corresponding p-values at its bottom. To identify the attributes combinations having high correlations but not
being statistically significant, we performed a one-way Kruskal-Wallis test followed by a multiple comparison
procedure of attributes’ means. This is designed to provide an upper bound on the probability that any compari-
son will be incorrectly found significant. The differences that are significant at the 0.05 level, i.e., 95% confidence
interval, are colored in Figure 6 in white.

One can find higher positive correlations especially between directionality–diversity (0.58), directionality–

regularity (0.52), diversity–graininess (0.57), and diversity–regularity (0.51). There are also higher positive cor-
relations between tactile roughness and graininess (0.50). As already mentioned, the attributes of quality and
attractiveness have also similar perceptual responses with a correlation 0.61.

To further investigate attributes relationship, we performed a one-way Multivariate Analysis of Variance
(MANOVA) for comparing the multivariate means of the subjects responses grouped by attributes. This analysis
tests the null hypothesis that the means of each attribute are the same n-dimensional multivariate vector, and
that any difference observed in the data is due to random chance. As the estimated dimensionality is d = 9, we
can reject the null hypothesis at significance level 0.05, and we expect the data means lie in a nine-dimensional
manifold. As a product of the multivariate analysis, a dendrogram depicting attributes proximity is also obtained,
as shown in Figure 7. The clusters are computed by applying the single linkage method to the matrix of Maha-
lanobis distances between group means. Here, we can observe large differences in attributes O–originality, T–

hardness, V–height, and L–glossiness as opposed to other attributes especially H–graininess to D—roughness, S–

directionality to R—diversity. These results together with closeness of K–quality to A–attractiveness support the
findings of correlation analysis in Figure 6. The dimensionality d = 9 and the dendrogram reveals that one can
group attributes (S, R) and (B, H, D).

Finally, multivariate analysis provides us with so-called canonical vectors, which are linear combinations of
the original variables chosen to maximize the separation between groups. Figure 8 depicts dependencies of the
first three canonical vectors. Here, one can see the clear separation of individual color-coded attributes, as well
as the coherence of subjects’ responses demonstrated by the narrow distribution of points for each attribute.

4.3 Material Categories Relationship Analysis

For the sake of better understanding of perceived differences between individual materials, we focused our fur-
ther analysis on the six material categories: fabric, carpet, leather, plastic, wood, and other.

Basic statistical analysis of median data statistic across materials in individual groups for averaged subjects’
responses is given in Figure 9. The red line represents median value (50th percentile) across all materials in the
group, blue bars represent 25th and 75th percentiles, data variance is depicted as a black bar, and outliers are
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Fig. 8. Multivariate analysis of attributes showing separation of the first three canonical components.

Fig. 9. Attributes median statistics across materials compared to a mean opinion score (green) for individual material cate-
gories. The red line represents median value (50th percentile) across all materials in the group and blue bars represent 25th
and 75th percentiles.

depicted as red crosses. The figure also comprises corresponding MOS scores as green lines. From the comparison
of the median (red) and mean values (green) and from errorbars, we can analyze how well MOS represent the data.
Included are also results of Kruscall-Wallis testing of attributes means underlining a high statistical significance
with p-values below 0.05 (with exception of group plastic).

The attributes values obtained for individual material groups are quite intuitive. Groups plastic and other have
higher glossiness due to the inclusion of car-paint and glitter samples. Also, carpet has higher height and diversity,

graininess, roughness. Group wood has the highest ranking in hardness and genuineness. Also, it has together with
the group carpet the highest directionality. High standard errors for category fabric are due to a high variability

ACM Transactions on Applied Perception, Vol. 16, No. 1, Article 1. Publication date: January 2019.
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Fig. 10. Multivariate analysis—a dendrogram illustrating the proximity of material categories.

Fig. 11. Multivariate analysis of material groups showing separation of the first three canonical components.

of materials caused by combination of thread materials and weaving patterns (see Figure 2). Also, we noticed
considerably higher standard errors for groups plastic and other, which is due to diversity and the low number
of materials in these groups (four and five, respectively). For this reason, we restrict part of our further analysis
only to categories fabric, leather, and wood.

Similar to attributes analysis, we performed the Multivariate Analysis of Variance (MANOVA) to compare the
multivariate means of the subjects responses grouped by attributes. The estimated dimensionality d = 4 suggests
that the six material categories can be in our case reduced to a four-dimensional manifold. The dendrogram plot
shown in Figure 10 analyses the proximity of individual groups. The analysis sets class carpet apart from all the
others, while the closest ones are classes exhibiting relatively smooth structure fabric, leather, and plastic.

When we look at the first three canonical vectors resulting from the multivariate analysis (shown in Figure 11),
we can see relatively good separation, especially of the material categories fabric and wood shown in red and
blue, respectively. However, fabric, leather, and plastic were the most mutually confounded categories.

Next, similar to Figure 6, we analyzed relationships between attributes using Pearson correlations for three
groups of materials: fabric, leather, and wood as shown in Figure 12. Our analysis revealed that fabric has a higher
positive correlation between visual attributes, and visual–tactile attributes. This suggests that our perception and
representation of properties of fabric is highly related to tactile properties, which is different from leather and
wood classes. Also fabric class has neutral or slightly negative correlations between material structure related
attributes and subjective attributes K–quality and A–attractiveness. The attributes whose correlations were sig-
nificantly consistent across all three categories are pairs diversity–graininess, and quality–attractiveness.

We also evaluated the consistency of attributes across different material categories. To this end, for each at-
tribute, we tested a null hypothesis that its mean values are drawn from the same population regardless the
material class. We used an unbalanced Kruskal-Wallis test as the number of materials in individual groups dif-
fer. Table 2 shows that all p-values are below 0.002, thus favoring an alternative hypothesis that means for
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Fig. 12. A Pearson correlation matrix between the tested attributes for material categories fabric, leather, and wood. Col-
ors toward red represent positive correlation, while those toward blue represent negative ones. The white values report
significant difference between the attributes.

Table 2. Results from Kruskal-Wallis Hypothesis Testing Using Analysis of Variance
for Individual Attributes Across Different Material Groups

Visual Tactile Subjective
Attribute L B S R H P T D V O K A
p-value 2.3e-3 4.7e-6 7.0e-7 4.4e-4 2.3e-3 1.9e-3 1.2e-8 1.7e-5 3.1e-4 6.8e-8 2.8e-3 1.6e-3
F 18.12 32.52 36.67 22.42 18.57 19.00 45.43 29.72 23.16 41.70 18.09 19.41

individual materials are draw from statistically different populations at significance level 95%. The lowest sig-
nificance across material categories was obtained for attributes: glossiness, graininess, regularity, quality, and
attractiveness, while the highest significance was obtained for hardness, genuineness, and directionality. Table 2
comprises also values of F-statistic, which is a ratio of two quantities (variation between sample means/variation
within the samples) that are expected to be roughly equal under the null hypothesis, while increases with signif-
icance of the alternative hypothesis. Even though the condition of data normality was not fulfilled, we tested our
data also using a single-factor repeated measures ANOVA, and in all cases we obtained significantly different
values of attributes means (obtained p-values lower than 0.001 for significance level 0.05).

Finally, to relate our work to recent thorough studies of human perception of materials [7, 35], we performed
a principal component analysis (PCA) of all ratings across subjects. The importance of individual factors shown
in Figure 13 demonstrates high contribution of the first four principal components (PC). In fact, the first three
components amount to 56% of data variability and the first four of them to 65%. The factors loadings for the
first two components are shown in Table 3. While the PC1 is strongly related to structure attributes (direction-

ality, diversity, graininess, regularity), the PC2 is mainly related to subjective attributes genuineness, quality, and
attractiveness. PC3 positively represents hardness and genuineness and negatively represents glossiness.

We can compare to the previous studies only with the material categories fabric, leather, and wood, while
the rest of categories are either missing or are underrepresented in the UTIA database. Both previous studies
have shown that these three categories are perceptually very close each other. Our results show that while class
wood is well separated from the other two classes the class leather is hard to separate from class of fabric, where
the best discrimination is offered by PC3 dominant for genuineness and height. Although this behavior depends
on intraclass variance of samples, we find a similar pattern in PCA analysis of Tanaka et al. [35]. As to other

ACM Transactions on Applied Perception, Vol. 16, No. 1, Article 1. Publication date: January 2019.



1:14 • J. Filip and M. Kolafová

Fig. 13. Eigenvalues of PCA analysis.

Table 3. Loading of the First Two Principal
Components for Individual Attributes

PC 1 PC 2 PC 3
glossiness −0.0098 0.1759 −0.4302

colorfulness 0.1924 0.0019 −0.0802
directionality 0.4035 −0.1089 −0.0598
diversity 0.4187 −0.1056 −0.3123
graininess 0.3606 −0.1845 −0.0822
regularity 0.4164 −0.1294 −0.2344
hardness 0.2950 0.2923 0.5669

roughness 0.3310 −0.2219 0.2111
height 0.1721 −0.2125 0.1317
genuineness 0.2636 0.4623 0.3522

quality 0.0962 0.5135 −0.2505
attractiveness 0.1280 0.4880 −0.2749

materials tested, we have found that class of rough fabrics (denoted as carpet) is clearly separable in all PCs,
while class of plastic cannot be well discriminated using the three PCs. This might be due to the fact that this
class also contains samples imitating appearance of structured wood and leather.

Distribution of the samples for the first three PCs in each experiment is shown in Figure 14. Circles for each ma-
terial represent projected positions of averaged rating scores for all nine participants. Both PCA and MANOVA
(also used in this section) provide low-dimensional descriptions of multivariate data. However, while PCA
searches for components describing data variability and describes the inter-entity variance structure, MANOVA
searches for components that optimize group differences, i.e., data separability, and thus describes the inter-
group variance structure. Therefore, one can find a more clear separation of individual classes using components
resulting from MANOVA experiment in Figure 11, though the conclusions on data dimensionality and classes
proximity remain the same as for the PCA.

We also show results of selected attributes on three main groups of materials (fabric, leather, wood) in compar-
ison with recent research [7, 35]. The selected attributes are those that are the same or have very close meaning,
i.e., naturalness≈genuineness and prettiness≈attractiveness. In all cases, we normalized the range of scores to an
interval [0,1]. In Figure 15 one can see that while our results have, in general, slightly lower absolute values, the
trends and relative distances across the material classes are well preserved and are consistent with the previous
work. Differences in colorfulness and roughness are possibly due to different types of materials used or to different
types of stimuli (real-world images, images of a planar specimen, real specimen).
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Fig. 14. Results analysis using PCA and distribution of the materials in the first three principal components. Lines join each
sample to the projected mean location of each cluster.

Fig. 15. A comparison of obtained results with state-of-the-art research [7, 35] on a subset of six attributes and three main
material classes: fabric, leather, wood.

5 DISCUSSION

The proposed psychophysical study has several limitations. The first of them is a relatively low number of par-
ticipants, which negatively impacts data variance and agreement. Next, the numbers of samples in individual
material classes was, due to original database, not balanced. While fabric materials have the highest number
of samples, some other categories have only several representatives. This makes a comparison of individual
material categories more challenging.

In spite of these limitations, our study of perceptual qualities of selected materials from UTIA BRDF database
has shown several interesting aspects. As expected, subjects’ agreement was the best across physical attributes
of materials (glossiness and height), while the worst for subjective attributes (quality, attractiveness). Our anal-
ysis also revealed a strong correlation of attributes related to visual and tactile structure of materials, such as
directionality, diversity, graininess, and roughness, especially for fabric. In contrast, fabrics were considered attrac-
tive and of high quality for soft, smooth samples without strong material structure. The leather materials were
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Fig. 16. A list of materials having maximal and minimal values of the visual attributes across (a) all materials, (b) fabric,
(c) leather, and (d) wood.

considered the more natural when they were more soft and smooth. Our study also shows that the closest ma-
terial categories are fabric and leather, while the most different material category is carpet.

Based on our results, follow-up researchers can adjust an appropriate portfolio of materials remaining to be
analyzed. Although the span of materials in the tested database is limited, we consider the presented study as an
additional convenient source of information to designers and virtual artists using the UTIA BRDF database. The
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Fig. 17. A list of materials having maximal and minimal values of the tactile and subjective attributes across (a) all materials,
(b) fabric, (c) leather, and (d) wood.

user ratings and their thorough analysis presented here can aid them in selection of appropriate corresponding
BRDFs for their application. As an example of such information, we show examples of materials having maximal
and minimal values of perceptual attributes for an entire tested dataset and for its subsets: fabric, leather, and
wood. Figure 16 shows results for visual attributes while Figure 17 shows results for tactile and subjective ones.
The figures include images of material structure, renderings BRDF on a sphere for a point light, numbers and
names of the materials in the BRDF database, and actual values of the attributes. Here the results are consistent
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with an intuitive expectation for most of the attributes. See the supplementary material for raw subject data and
MOS for individual attributes and all tested materials. To encourage complementary analysis of these materials,
specimens of a majority of them are available and can be distributed upon individual requests.

6 CONCLUSIONS

This article analyzed 12 perceptual attributes of a subset of 93 materials from the UTIA BRDF database con-
taining fabric, leather, wood, plastic, and other materials. Our user study with nine subjects revealed interesting
relationships between both perceptual attributes and categories of visual, tactile, and subjective attributes. We
also provide an insight as to how subjects’ perceptual attributes assignment differs for three major material
classes: fabric, leather, and wood. Due to the practical context of our work, we expect that practitioners in com-
puter graphics will use our data as an additional reference source when working with UTIA BRDF database.
In a future work, we plan to identify links between perceptual attributes and computational features of tested
materials.
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