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Abstract: New similarity criteria capable of assessing spectral modelling plausibility of colour, bidirectional texture functions
(BTF), and hyperspectral textures are presented. The criteria credibly compare the multi-spectral pixel values of the textures.
They simultaneously consider the pixels of similar values and their mutual ratios. It allows support of the optimal modelling or
acquisition setup development by comparing the original data with its synthetic simulations. Analytical applications of the criteria
can be spectral based texture retrieval or classification. The suggested criteria together with existing alternatives are extensively
tested and compared on a wide variety of colour, BTF, and hyperspectral textures. The performance quality of the criteria is
examined in a long series of thousands specially designed monotonically degrading experiments, where proposed ones
outperform all tested alternatives.

1 Introduction
A fully automatic texture, or more generally image, quality
assessment, and mutual-similarity evaluation of two or more of
them present a fundamental but still unsolved complex problem.
The recent validation of the state-of-the-art image and texture
fidelity criteria [1] on the web-based benchmark (http://
tfa.utia.cas.cz) has demonstrated that none of published criteria
complex wavelet structural similarity metric (CW-SSIM) [2],
structural similarity metric 1 (SSIM-1), structural texture similarity
metric 2 (STSIM-2), mahalanobis structural similarity metric
(STSIM-M) [3], ζ [4]) can be reliably used for this task at all.
There is still a pressing need for a reliable criterion to support
texture model development, i.e. a comparison of the original
texture with a synthesised or reconstructed one for the evaluation
of optimal parameter settings of such a model. Such similarity
metrics also play an essential role in efficient content-based image
retrieval, e.g. from digital libraries, or multimedia databases.
Numerous texture analysis approaches based on various textural
features were developed and applied for texture categorisation.
However, such textural features (e.g. Haralick's features [5], run-
length features [6], Laws's filters [7], Gabor features [8], local
binary patterns (LBP) [9], and its various modifications.
Markovian features [10] etc.) cannot rank textures according to
their visual similarity. Except for Markovian features [10], they are
not descriptive; thus, they are useful only for binary decision if two
mono-spectral textures are identical or not. Surprisingly, already
many advanced approaches are limited to mono-spectral images,
which is a significant disadvantage as a colour is arguably the most
significant visual feature. Fig. 1 illustrates the case when all six

textures have the same all mono-spectral textural features but
distinct multi-spectral ones such as the Markovian features [10].
Hence, the multi-spectral texture similarity criteria can be naturally
applied for texture retrieval; the opposite does not hold because
any mono-spectral textural feature-based retrieval will retrieve all
Fig. 1 textures as identical. 

The psychophysical evaluations [11, 12], i.e. quality
assessments performed by humans, currently represent the only
reliable option. This approach requires time-demanding experiment
design setup, strictly controlled laboratory conditions, and
representative sets of testers, i.e. sufficient numbers of individuals,
ideally from the public, naive concerning the purpose, and design
of the experiment. Such assessing is thus extremely impractical,
expensive, generally demanding, and hence non-transferable into
daily routine practise, operable on demand, and ideally in real time.
Moreover, methods involving human perception are impracticable
for hyperspectral data due to the limited tri-chromatic nature of the
human vision.

In this paper, the textures or more general images are compared
as independent sets of pixels. The pixel values are compared as
vectors while the position of the pixels in the textures or images is
not considered. This restricted problem will be called in the rest of
this paper as a spectral similarity comparison. It deals with the
appearance and amount of pixels that occur in only one of the
compared images and also the ratio of occurrences of pixels
appearing in both images to express their spectral composition
difference.

The rest of this paper is organised as follows: Section 2 briefly
presents published alternatives to solve the problem of image
spectral composition comparison including some based on
modifications of techniques developed for slightly different
purposes. Section 3 explains in detail our new approach. Section 4
describes the performed criteria validation experiments and used
test data. Section 5 shows the achieved results. Section 6
summarises this paper with a discussion and compares our
proposed criteria with their existing alternatives.

2 Related work
In this section, we first briefly survey existing methods capable of
comparing image spectral composition, and then we show some
modifications of existing techniques, initially developed for
slightly different use. The symbols ↓ , ↑, or ↓  indicate the
increasing similarity direction for the corresponding criterion. Most

Fig. 1  Textile textures with distinct multi-spectral but identical mono-
spectral textural features
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methods deal with colour images, i.e. three spectral channels only.
The straightforward option is to use a three-dimensional (3D)
histogram or local histogram [13], which approximates the image
colour distribution. Let us denote by aϱ and bϱ the ϱth bin of the 3D
histogram of the images A and B, respectively, where A is the
template image and similarly B is the image to be compared. The
range of the histogram multi-index ϱ = i, j, k depends on a colour
space C, in which the image is represented, e.g. in case of the
standard 24 bit red, green, and blue (RGB) colour space, the range
of all three components of the multi-index is an integer from 0 to
255. The most intuitive way is to compute the 3D histograms
difference

↓ ΔH(A, B) = ∑
ϱ ∈ C

aϱ − bϱ ≥ 0, (1)

which is a special case called block distance, also known as
Manhattan distance, of the Minkowski distance

ΔqH(A, B) = ∑
ϱ ∈ C

aϱ − bϱ

q 1/q

. (2)

Furthermore, in practise, frequently used distances based on (2)
embrace the Euclidean distance (q = 2) or the maximum distance
also called Chebyshev distance and known as chessboard distance
(q = ∞)

Δ∞H(A, B) = ∑
ϱ ∈ C

max ai − bi , aj − bj , ak − bk , (3)

where ai, aj, ak represents first, second, and third components of
the vector aρ and similarly for bi, bj, bk. Let us mention that for
0 < q < 1 so-called fractional dissimilarity, the Minkowski
distance is not a metric because it violates the triangle inequality
[14].

Several other possibilities for 3D histogram comparison have
been suggested such as the histogram intersection [15]

↓ ∩ H(A, B) = 1 − ∑ϱ ∈ C min aρ, bρ
∑ϱ ∈ C bρ

≥ 0, (4)

the squared chord [16]

↓ dsc(A, B) = ∑
ϱ ∈ C

aϱ − bϱ
2 ≥ 0, (5)

and the Canberra metric [16]

↓ dcan = ∑
C0

aϱ − bϱ
aϱ + bϱ

≥ 0, (6)

where C0 = ϱ:aϱ + bϱ ≠ 0 ⊂ C.
The information theoretic measures can also be considered for

evaluating the histogram difference. One possible option is the

symmetric modification of the Kullback–Leibler divergence – a
variant of the empirical Jeffrey divergence

↓ J(A, B) = ∑
C0

aϱ log 2aϱ
aϱ + bϱ

+ bϱ log 2bϱ
aϱ + bϱ

≥ 0, (7)

where C0 = {ϱ:aϱbϱ ≠ 0} ⊂ C. The Jeffrey divergence is
numerically stable, symmetric, and robust concerning noise and the
size of histogram bins [17]. Another measure, based on the χ2

statistic was suggested in [18]

↓ χ2(A, B) = ∑
C0

2 aϱ − ((aϱ + bϱ)/2) 2

aϱ + bϱ
≥ 0. (8)

Earth Mover's distance (EMD) or Wasserstein [19] is a method to
evaluate dissimilarity between two multi-dimensional distributions
in some feature space. It is based on the minimal cost that must be
paid to transform one distribution into another, where the cost for
moving a single feature unit in the feature space is defined by the
Euclidean distance, and the total cost is the sum of such single
feature moving costs. The measure is formalised as a linear
optimisation problem, which makes this method very memorable
and especially time-demanding. It turned out that the EMD is
inapplicable for the needs of our experiments described and
explained in detail in Section 4 as well as for the solution of the
problem described in Section 1 as it is limited to unhandily small
images (see the comparison of average computing times of
individual methods in Table 1). Even its smoothed dual solution
[20] is too time-consuming for any practical application which
requires the comparison of a more massive amount of pixels. 

The generalised colour moments (GCM) [21] suits well to the
image spectral composition comparison problem. The GCM of the
(p + q)th order and the (α + β + γ)th degree is defined as [21]

↓ ΔGCMpq
αβγ(A, B)

= ∫ ∫
⟨A⟩

r1
pr2

q[Yr1, r2, 1
A ]α [Yr1, r2, 2

A ]β [Yr1, r2, 3
A ]γ dr1 dr2

−∫ ∫
⟨B⟩

r1
pr2

q[Yr1, r2, 1
B ]α [Yr1, r2, 2

B ]β [Yr1, r2, 3
B ]γ dr1 dr2,

(9)

where r1, r2 ∈ ⟨A⟩ represents planar coordinates of the image pixel
Yr

A, Yr1, r2, i
A  denotes a pixel intensity in the ith spectral plane of the

image A; similarly, Yr1, r2, r3 = i
B , where r1, r2 ∈ ⟨B⟩. In the case of

using GCM for spectral composition comparison, neither of the
terms r1

p and r2
q is useful, and therefore both might be put equal to

one, using those GCMs for which p = q = 0 holds. Moreover, it
has been observed that the best results are achieved if α = β = γ,
specifically using GCMs for α = β = γ < 4. Thus, GCM directly
compares image pixels not using their 3D histograms such as
methods (1), (4)– (8), similar to the cosine-function-based
dissimilarity, which computes an angle between two vectors. Both
images A, B must have an identical number of pixels which is a
significant drawback of this criterion. This criterion is the only one
mentioned in this paper suffering from this. All values of
corresponding image spectral channels are arranged into vectors VA
and VB and the difference is computed as [18, 22]

↑ dcos(A, B) = VA
T VB

∥ VA ∥ ∥ VB ∥ ∈ ⟨0; 1⟩, (10)

where ∥ ∥ denotes the vector magnitude.
Different set-theoretic measures can serve as criteria as well.

Let sets SA and SB denote the sets of unique multi-dimensional
vectors representing pixels occurring in the images A and B,
respectively. Spectral composition comparison criteria can be
based on methods developed for comparing the similarity and
diversity of the sample sets such as the Jaccard index (JI) [23]

Table 1 Average evaluation time, on Pentium-2.8 GHz-
equivalent CPU, depending on the size of compared images
for individual criteria

8 × 8 16 × 16 32 × 32 64 × 64
ΔH, ∩ H, dsc, dcan, J, χ2 0.7 s 0.7 s 0.7 s 0.7 s
EMD 1.8 ms 85.6 ms 5.7 s 7.6 min
ΔGCM00

111 67.0 μs 0.1 ms 0.2 ms 0.5 ms
dcos 32.0 μs 88.0 μs 93.0 μs 0.6 ms
JI, SDI 0.3 ms 4.0 ms 9.0 ms 48.0 ms
rSSIM 31.0 μs 0.1 ms 0.2 ms 1.4 ms
ζ 0.1 ms 2.0 ms 18.0 ms 0.2 s
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↑ JI(A, B) = SA ∩ SB
SA ∪ SB

∈ ⟨0; 1⟩, (11)

or the Sørensen–Dice index (SDI) [24]

↑ SDI(A, B) = 2 SA ∩ SB
SA + SB

∈ ⟨0; 1⟩, (12)

where .  denotes the cardinality of the set. JI and SDI are
equivalents in the sense that given a value for SDI, one can
calculate the respective JI value and vice versa, using the equations
below:

JI = SDI
2 − SDI , (13)

SDI = 2JI
1 + JI . (14)

Since SDI does not satisfy the triangle inequality, it can be
considered a semi-metric version of JI.

Another alternative may be a modified criterion developed for
texture comparison as the texture spectral composition comparison

might be considered a very special case of this task. It is possible to
modify the SSIM [25], for example. SSIM compares local statistics
in corresponding sliding windows in two images in either the
spatial or wavelet domain. Its form consists of three terms that
reflect luminance, contrast, and structure of the textures. In the case
of the spectral composition comparison, the structure term is
irrelevant so that we define a reduced SSIM

↓ rSSIM(A, B) = 1
#{r3} ∑

∀r3

2μA, r3μB, r3

μA, r3
2 + μB, r3

2
2σA, r3σB, r3

σA, r3
2 + σB, r3

2 , (15)

where #{r3} is the spectral index cardinality, i.e. the number of
spectral channels μA, r3 is the mean of r3th spectral plane of A and
σA, r3 is the standard deviation of r3th spectral plane of A; similarly,
for μB, r3 and σB, r3. rSSIM(A, B) = 1 for spectrally equal textures.
The contrast part of (15) is also used in the contrast assessment
metric in [26].

The 3D histogram-based criteria (1), (4)–(8) cannot be easily
generalised to hyperspectral data, i.e. the data having more than
three spectral channels, due to the impossibility of reliably
estimating such histograms from limited sample data. GCM (9)
could be used for hyperspectral image comparison but the number
of multiplication terms to be integrated into (9) significantly
increases and so does the range of possible values of the criterion.
Set-theoretic measures (11), (12), rSSIM (15), and dcos (10) criteria
can handle the hyperspectral data with no restriction; similarly, as
our proposed criterion described in detail in the following section.

3 Proposed approach
We propose a new criterion for image spectral composition
comparison. We define the mean exhaustive minimum distance
(MEMD)

↓ ζ(A, B) = 1
M ∑

(r1, r2) ∈ ⟨A⟩
min

(s1, s2) ∈ U
ρ Yr1, r2, ∙

A , Ys1, s2, ∙
B ≥ 0, (16)

where Yr1, r2, ∙
A  represents the pixel at a location (r1, r2) in the image

A and ∙ denotes all the corresponding spectral indices, and
similarly for Ys1, s2, ∙

B . Furthermore, ρ is an arbitrary vector metric.
We tested, namely Manhattan, Euclidean, and maximum metrics
with the last mentioned used obtaining the results in Section 5. U is
the set of unprocessed pixel indices of B (illustrated in Fig. 2 and
explained in detail below); M = min #{A}, #{B} ; and #{A} is
the number of pixels in A, and similarly for #{B}. We define
min ∅ = 0. 

The term ζ(A, B) is evaluated using raster scanning of A. The
algorithm scans the pixels of A, from the upper left corner. For
each pixel, it searches for the index in the set U for which the
corresponding pixel is the closest one, in the sense of the used
metric ρ. U contains all spatial indices in the image B at the
beginning of the process. When such a pixel is identified at
(s1, s2) ∈ U, the distance between this pixel and the scanned one
from A, measured by ρ, is added to the sum and the index (s1, s2) is
removed from the set U. The algorithm proceeds to the right
bottom of the image A and stops when either all pixels of A are
scanned or U becomes an empty set.

The criterion ζ(A, B) is not symmetrical (Fig. 3) but can be
easily symmetrised ζS(A, B) = 12(ζ(A, B) + ζ(B, A)) if needed.
Other analytical properties of (16) are ζ(A, B) = 0 ↔ A = B
(equality), ζ(A, A) = 0 (reflexivity), ζ(A, B) ≤ ζ(A, B′) for B′ ⊂ B
(set cardinality dependence). 

Two modifications of the proposed criterion (16), which take
into account colour differences just notable by colour psychometric
methods in the CIE Lab space, are suggested

↓ ζ2(A, B) = 1
M ∑

(r1, r2) ∈ ⟨A⟩
κ(r1, r2) ≥ 0, (17)

Fig. 2  Example of the ζ(A, B) criterion computation comparing two 4 px
images. During the evaluation, for every left image pixel the most similar
pixel in the right image is found (indicated by arrow) used for the criterion
upgrade and labelled as processed

 

Fig. 3  Texture retrieval example. The retrieval results are based on the
proposed spectral criterion (16) (× 104)
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κ(r1, r2) = 1, ρ∗ > 2.3,
0, otherwise,

(18)

ρ∗ = min
(s1, s2) ∈ N

ρCIE Yr1, r2, ∙
A , Ys1, s2, ∙

B , (19)

where threshold 2.3 was determined in [27] and ρCIE is the
Euclidean distance from the pixel Yr1, r2, ∙

A  to pixel Ys1, s2, ∙
B  in the

CIE Lab colour space [28]. Finally, the last suggested criterion is
the weighted average of the just-notable differences

↓ ζ3(A, B) = 1
M ∑

(r1, r2) ∈ A
κ(r1, r2)ρ∗ ≥ 0. (20)

The terms ζ2 and ζ3 are evaluated the same way as the term ζ. Note
that the proposed criterion ζ applies to any number of spectral
bands, not only for the usual three spectral bands of the standard
colour images, while ζ2 and ζ3 are derived for the CIE Lab colour
space.

4 Comparison
The proposed spectral criteria (16)–(20) together with the
previously published alternatives (1), (4)–(15) have been
extensively tested on the set of nine controllable degradation
experiments described in detail below. The main goal of the
performed experiments is to investigate how the individual criteria
are affected by the spectral composition changes comparing the
image with its modified versions. In the following sections, we
describe performed experiments as well as used test data.

4.1 Controlled degradation of the test data

A sequence of gradually degraded textural images is generated
from the original test one. The original image serves as the first
member of the sequence, i.e. A1

X = A and each member, except for
the first one, is generated from its predecessor in the sequence as:
At

X = f X At − 1
X , t = 1, …, l, where l equals the length of the

sequence and X is the label identifying the experiment (individual
experiments described below). Further Yr, t

A  denotes the multi-
spectral pixel from the experimental image At

X at r = r1, r2, r3

which is a multi-index with image row, column, and spectral
components, respectively. X is the corresponding label of one of
the following nine degradation experiments we established for
validation tests:

A. Replacing pixel's spectral intensities with the maximal value
in the used colour space with the probability p = (1/l)

Yr, t
A p ↔ [255, 255, 255]T (21)

Adding a constant c = (255/l) to all pixel's spectral intensities

Yr, t
B = Yr, t − 1

B + [c, c, c]T (22)
Adding a value depending on the order of the image in the
sequence (o) to pixel's spectral intensities

Yr, t
C = Yr, t − 1

C + [v, v, v]T, v = 255
l sin π o

l (23)

Adding a constant c = (255/l) to pixel's spectral intensities and
random mutual interchanging with probability p = 0.5 with four-
connected pixels from Ir

(4):

i. Yr, t
D = Yr, t − 1

D + [c, c, c]T.
ii. Yr, t

D p ↔ Ys, t
D , s ∈ Ir

(4), p = 0.5.
Adding a constant c = (255/l) to pixel's spectral intensities and
randomly driven propagating with probability p = 0.5 with eight-
connected pixels from Ir

(8):

i. Yr, t
E = Yr, t − 1

E + [c, c, c]T

ii. Ys, t
E p = Yr, t

E , s ∈ Ir
(8), p = 0.5

Adding a value depending on the order of the image in the
sequence (o) to pixel's spectral intensities

Yr, t
F = Yr, t − 1

F + [o, o, o]T (24)
Adding a pseudo-random vector to each pixel

Yr, t
G = Yr, t − 1

G + [p1, p2, p3]T,
p1 ≃ N(0, 255), p2 ≃ N(0, 255), p3 ≃ N(0, 255)

(25)

Blurring the images using the convolution with the 3 × 3 Gaussian
filter

Yt
H = Yt − 1

H × G G =

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

(26)

Adjusting pixel's spectral intensities so as to approach average over
spectral channels

Yr, t
I = Yr, t − 1

I + [k1, k2, k3]T (27)

ki =
1, if η > Yr1, r2, i, t

−1, if η < Yr1, r2, i, t

0, otherwise
(28)

η = 1
3 ∑

r3 = 1

3
Y(r1, r2, r3), t, (29)

Several selected members of the degradation sequences
generated during the experiments are shown in Fig. 4. 

4.2 Evaluation meta-criterion

The tested criteria are applied to quantify spectral composition
differences between the template image, i.e. the first member of the
degradation sequence and the remaining members. As all those
sequences are constructed so that monotone degradation of the
original image is guaranteed, i.e. the similarity of the members of
the sequence and the original image is decreasing with the order.
Good criterion should be able to follow this trend.

The meta-criterion is the number of monotonicity violations of
the criterion τ in the experiment X

ΞX, τ = ∑
i = 1

l
1 − δ oi

X − oi
X, τ , (30)

where τ is a tested criterion; oi
X is the rank of a degraded image;

oi
X, τ is its corresponding correct ordering of the τ-criterion-based

ranking; and δ is the Kronecker delta function.

4.3 Test data

Our spectral similarity criteria were validated and compared with
the alternative measures on three types of visual data – colour,
bidirectional texture function (BTF), and hyperspectral textures.

4.3.1 Colour textures: The tested criteria were validated using
250 colour textures of 64 × 64 px2 saved as 24 bit RGB portable
network graphics (PNG) files (Fig. 5). We selected a wide range of
both natural and man-made materials and investigated the
applicability of individual criteria. There were several examples for
each class of material. All used textures were downloaded from
free Internet texture databases [http://texturer.com/.] [http://
www.mayang.com/textures/.]. We performed experiments using

4 IET Image Process.
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both original RGB data and their version converted into CIE Lab
colour space. The obtained results are presented in Tables 2 and 3
for RGB and in Tables 4 and 5 for CIE Lab. 

4.3.2 Bidirectional texture functions: For realistic virtual reality
scenes, requiring objects covered with synthetic textures visually as
close as possible to real surface materials’ appearance are single
colour textured mentioned in the previous section unacceptable.
Recent most advanced visual representation of such surfaces, BTF
[29], which is a 7D function describing the surface appearance
variations due to varying spatial position and illumination and
viewing angles are the state-of-the-art replacement of static colour
textures. A static BTF texture representation requires complex 7D
models, which have not yet been developed [11]. Thus, their
measurement or mathematical modelling use a BTF space
factorisation into a large set of less-dimensional factors. The
measured BTF data usually consists of several thousand colour
images per material which are analysed for their intrinsic
dimensionality [11] and then subsequently approximated by a
smaller number of BTF subspaces. It is not possible to run all
experiments for all infinite number images, i.e. for any
combination of the continuous spherical illumination and viewing
angles, of synthetic BTF space texture components. Tested BTF
measurements are represented by 20 subspace clusters, which
subsequently can serve for building the BTF mathematical model.
Subspace cluster were images of 32 × 32 px2 saved as 24 bit RGB
PNG files. We used ten BTF data sets (one example of the
subspace is shown in Fig. 6), and therefore 200 textures were
obtained from the University of Bonn database [http://cg.cs.uni-
bonn.de/en/projects/btfdbb/download/ubo2003/.] [30]. The
achieved results are presented in Tables 6 and 7 for RGB and in
Tables 8 and 9 for CIE Lab. 

4.3.3 Hyperspectral textures: The hyperspectral textures used
for the experiments (Fig. 7) were obtained by taking pictures of the
material in 33 different spectral bands spanning from 400 to 720 
nm uniformly sampled with a 10 nm step. Each obtained texture of
487 × 325 px2 was saved as 33 mono-spectral 16 bit floating-point
precision files in OpenEXR format [http://www.openexr.com/.].
We used our measurement of three different materials (plastic foil,
fabric, and white foam). Achieved results are presented in
Tables 10 and 11 and summarised in section 5.3. 

5 Results
In this section, we present and summarise all achieved results
during the experiments described in Section 4.1 performed on
colour, BTF, and hyperspectral textures and compared and
commented on the performance of the criteria. The proposed
criterion works well even on non-aligned cutouts from textures as
it is illustrated in Fig. 8. Table 12 contains criterion values for all
pairs from Fig. 8. The similarity values for texture pairs from

Fig. 4  Selected degradation sequence members generated during the
experiments, A–I top-down. The leftmost column represents the original
image, and the degradation intensifies in the rightward direction, where the
column number indicates the order of the image in the sequence

 

Fig. 5  Examples of the colour textures used in our experiments
 

Table 2 Maximal strict monotonicity violation (in per cent) for 250 test colour texture sequences per experiment performed in
the RGB colour space, maximum over all experiments, and the rank for the tested criteria

A B C D E F G H I Maximum Rank
ΔH 0 20 17 14 13 6 23 25 19 25 2
∩ H 0 20 17 14 13 6 23 25 19 25 2
dsc 0 20 18 19 17 5 23 26 25 26 3
dcan 0 47 42 47 47 19 23 35 41 47 7
J 17 33 30 24 25 10 28 35 32 35 5
χ2 0 22 18 18 17 5 23 26 24 26 3

ΔGCM00
111 0 0 0 4 4 0 29 31 25 31 4

dcos 47 47 46 47 47 21 47 47 47 47 7
JI 22 47 44 46 44 21 38 30 34 47 7
SDI 28 41 40 38 38 19 38 33 33 41 6
rSSIM 47 47 46 47 47 21 47 47 47 47 7
ζ 0 0 1 3 3 0 1 8 5 8 1
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different textures are the order of magnitude larger than for cutout
pairs from the same texture. 

5.1 Colour textures

Achieved results of experiments with colour textures in the RGB
space are summarised in Tables 2 and 3. It is apparent that both dcos
(10) and rSSIM (15) criteria reached the highest average and
maximal error rate, i.e. the percentage of strict monotonicity

violation of image differences. With minimal average error of 19%
for dcos 20% for rSSIM during experiment F, those criteria proved
to be considerably unreliable and thus inapplicable for colour
texture comparison. The criteria JI (11), SDI (12) and J (7)
achieved similar results which were expected due to their similar
definition but they proved to be only slightly more successful than
rSSIM and dcos. 3D histogram-based criteria ΔH (1) and ∩ H (4)
demonstrated the same behaviour, and they scored quite well on
average but they failed in experiments G–I. Moreover, their

Table 3 Average strict monotonicity violation (in per cent) for 250 test colour texture sequences per experiment performed in
the RGB colour space, the average over all experiments, and the rank for the tested criteria

A B C D E F G H I ⊘ Rank
ΔH 0 3 5 3 3 1 13 16 8 6 3
∩ H 0 3 5 3 3 1 13 16 8 6 3
dsc 0 3 5 4 4 1 14 17 9 6 3
dcan 0 34 29 40 40 12 17 20 31 25 7
J 7 5 9 7 7 3 14 24 14 10 4
χ2 0 3 5 4 4 1 14 16 9 6 3

ΔGCM00
111 0 0 0 0 0 0 11 9 3 3 2

dcos 29 44 45 31 31 19 47 47 47 38 8
JI 10 8 26 7 7 4 28 24 26 16 5
SDI 16 10 23 9 9 4 28 24 26 17 6
rSSIM 43 44 46 42 42 20 47 25 47 39 9
ζ 0 0 0 0 0 0 0 2 0 0 1
 

Table 4 Maximal strict monotonicity violation (in per cent) for 250 test colour texture sequences per experiment performed in
the CIE Lab colour space, maximum over all experiments, and the rank for the tested criteria

A B C D E F G H I Maximum Rank
ΔH 0 2 4 2 2 2 17 20 16 20 4
∩ H 0 2 4 2 2 2 17 20 16 20 4
dsc 0 3 4 3 2 2 19 22 21 22 5
dcan 0 20 8 47 47 8 17 23 45 47 9
J 14 3 7 3 3 3 35 42 34 42 7
χ2 0 3 4 2 2 2 20 22 19 22 5

ΔGCM00
111 0 0 0 0 0 0 16 19 27 27 6

dcos 25 47 46 47 47 21 47 47 47 47 9
JI 6 5 8 5 6 4 43 38 36 43 8
SDI 8 5 7 6 5 3 43 37 35 43 8
rSSIM 47 47 46 47 47 21 47 47 47 47 9
ζ 0 0 0 0 0 0 0 2 0 2 2
ζ2 0 2 3 2 2 1 15 12 4 15 3
ζ3 0 0 0 0 0 0 0 1 1 1 1
 

Table 5 Average strict monotonicity violation (in per cent) for 250 test colour texture sequences per experiment performed in
the CIE Lab colour space, the average over all experiments, and the rank for the tested criteria

A B C D E F G H I ⊘ Rank
ΔH 0 0 0 0 0 0 10 6 2 2 3
∩ H 0 0 0 0 0 0 10 6 2 2 3
dsc 0 0 0 0 0 0 12 5 3 2 3
dcan 0 14 1 45 45 5 9 4 32 17 7
J 1 1 2 1 1 1 25 25 12 7 4
χ2 0 0 0 0 0 0 11 5 3 2 3

ΔGCM00
111 0 0 0 0 0 0 5 5 7 2 3

dcos 8 46 45 46 46 21 43 46 46 39 8
JI 1 1 2 1 1 1 37 29 16 10 5
SDI 3 1 2 2 2 1 37 29 18 11 6
rSSIM 46 46 45 46 46 21 46 40 46 42 9
ζ 0 0 0 0 0 0 0 0 0 0 1
ζ2 0 0 0 0 0 0 8 2 0 1 2
ζ3 0 0 0 0 0 0 0 0 0 0 1
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maximal error rate which reflects a total failure in certain
evaluation is too high in all performed experiments, except for
experiment A. The criteria dsc (5), dcan (6), and χ2 (8) achieved
similar results as the criterion ΔH and the deviation from the
results might be caused by rounding errors. The GCM-based
criterion (9) failed only in experiments G–I. Our criterion ζ (16)
achieved zero average error rate over all experiments as the only
tested method with only minor failure in the experiment H scoring
with only 2% average, 8% maximal error rate, and zero average
and few per cents maximal error rate in the remaining experiments.
Tables 4 and 5 present results achieved with the same data
transformed from RGB to CIE Lab colour space. It is obvious that
the colour space transformation significantly affects the results. 3D

histogram-based criteria (except for dcan) achieved both lower
average and maximal errors in all experiments. Average errors of
the remaining criteria are similar to the results obtained using data
in the RGB colour space, except for JI and SDI decreasing the
average error of about 6%. Criterion ζ achieved zero average error
over all experiments again, while decreasing maximal error of
about 6% too. This indicates correctness use of ζ for comparison in
the sense of colour psychometric methods. The same holds for ζ3
which was proposed taking into account colour differences just
notable by such methods in the CIE Lab space. On the other hand,
ζ2 designed for the same purpose seems to be not so robust
resulting with both higher average and maximal error.

Fig. 6  Textures representing BTF subspace clusters approximating original BTF data acquired by measuring the wool material. Original data were taken
from the BTF database of the University of Bonn [30]. BTF subspace textures were used in our experiments

 
Table 6 Maximal strict monotonicity violation (in per cent) for 200 test BTF data sequences per experiment performed in the
RGB colour space, maximum over all experiments, and the rank for the tested criteria

A B C D E F G H I ⊘ Rank
ΔH 0 3 9 4 3 2 16 21 10 21 2
∩ H 0 3 9 4 3 2 16 21 10 21 2
dsc 0 3 8 5 5 2 20 23 16 23 3
dcan 0 47 41 44 45 18 22 24 40 47 8
J 17 7 8 11 9 5 31 38 27 38 5
χ2 0 3 8 5 4 2 20 23 15 23 3

ΔGCM00
111 0 0 0 1 0 0 31 33 27 33 4

dcos 47 47 46 47 47 21 47 47 47 47 8
JI 14 15 21 12 14 11 39 33 31 39 6
SDI 20 13 16 12 12 10 40 34 30 40 7
rSSIM 47 47 46 47 47 21 47 47 47 47 8
ζ 0 0 0 0 0 0 2 7 4 7 1
 

Table 7 Average strict monotonicity violation (in per cent) for 200 test BTF data sequences per experiment performed in RGB
colour space, the average over all experiments, and rank for tested criteria

A B C D E F G H I ⊘ Rank
ΔH 0 0 1 0 0 0 18 13 3 3 2
∩ H 0 0 1 0 0 0 18 13 3 3 2
dsc 0 0 1 1 1 0 9 13 4 3 2
dcan 0 19 14 34 34 7 14 12 30 18 6
J 7 2 4 2 2 2 9 26 7 7 3
χ2 0 0 1 1 1 0 9 13 3 3 2

ΔGCM00
111 0 0 0 0 0 0 13 13 3 3 2

dcos 19 40 43 30 30 18 44 46 46 35 7
JI 4 1 3 1 1 1 31 26 21 10 4
SDI 8 2 3 2 2 1 31 26 23 11 5
rSSIM 43 40 44 38 38 18 47 38 45 39 8
ζ 0 0 0 0 0 0 0 1 0 0 1
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5.2 Bidirectional texture functions

The achieved results are summarised in Tables 6 and 7. The
behaviours of all tested criteria are similar as in case of colour
texture test data (compared with Tables 2 and 3). On the other

hand, overall results look better as tested BTF textures were images
with lower contrast and overall colourfulness in comparison with
the used colour textures. Tables 8 and 9 present results achieved
with the same data transformed from RGB to the CIE Lab colour
space. The transformation affected the results in a similar way as in

Table 8 Maximal strict monotonicity violation (in per cent) for 200 test BTF texture sequences per experiment performed in CIE
Lab colour space, maximal over all experiments, and rank for tested criteria

A B C D E F G H I Maximum Rank
ΔH 0 0 0 0 0 0 18 13 6 18 4
∩ H 0 0 0 0 0 0 18 13 6 18 4
dsc 0 0 0 0 0 0 21 12 10 21 5
dcan 0 14 5 43 45 6 23 10 40 45 10
J 10 1 3 1 1 1 30 31 29 31 7
χ2 0 0 0 0 0 0 21 12 7 21 5

ΔGCM00
111 0 0 0 0 0 0 15 22 24 24 6

dcos 36 47 46 47 47 21 47 47 47 47 11
JI 3 2 3 2 2 3 41 35 32 41 8
SDI 5 1 3 2 2 2 42 36 24 42 9
rSSIM 47 47 46 47 47 21 47 47 47 47 11
ζ 0 0 0 0 0 0 0 1 1 1 1
ζ2 0 0 0 0 0 0 16 5 2 16 3
ζ3 0 0 0 0 0 0 0 1 2 2 2
 

Table 9 Average strict monotonicity violation (in per cent) for 200 test BTF texture sequences per experiment performed in CIE
Lab colour space, the average over all experiments, and rank for tested criteria

A B C D E F G H I ⊘ Rank
ΔH 0 0 0 0 0 0 10 2 1 1 2
∩ H 0 0 0 0 0 0 10 2 1 1 2
dsc 0 0 0 0 0 0 13 2 1 2 3
dcan 0 6 0 31 32 3 137 2 26 13 6
J 1 0 1 0 0 0 17 16 5 5 4
χ2 0 0 0 0 0 0 12 1 1 2 3

ΔGCM00
111 0 0 0 0 0 0 2 4 8 1 2

dcos 6 42 41 41 41 19 35 41 42 34 7
JI 0 1 1 1 1 1 32 27 7 8 5
SDI 1 1 1 1 1 1 32 27 9 8 5
rSSIM 42 42 41 41 41 18 42 41 40 39 8
ζ 0 0 0 0 0 0 0 0 0 0 1
ζ2 0 0 0 0 0 0 8 0 0 1 2
ζ3 0 0 0 0 0 0 0 0 0 0 1
 

Fig. 7  Data of the original 33 spectral bands of the hyperspectral texture of the foil grouped into triplets and visualised as RGB images so that individual
images represent the texture data acquired in the wavelength range (in nanometre) marked below them

 

Table 10 Maximal strict monotonicity violation (in per cent) for three test hyperspectral data sequences per experiment,
maximum over all experiments, and the rank for the tested criteria

A B C D E F G H I ⊘ Rank
ΔGCM00

111 0 0 0 0 0 0 0 0 0 0 1

dcos 34 41 42 26 26 17 47 47 47 47 4
JI 0 4 7 6 4 3 25 25 9 25 2
SDI 0 2 4 4 4 2 26 26 16 26 3
rSSIM 38 42 46 30 31 19 47 47 47 47 4
ζ 0 0 0 0 0 0 0 0 0 0 1
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the case of colour textures (Section 5.1), though the difference is
not so notable.

5.3 Hyperspectral textures

The achieved results are presented in Tables 10 and 11. Again,
these results are similar to that achieved during experiments with
colour and BTF textures. Surprisingly, the criteria dcos and rSSIM
scored much better in the cases of D and F experiments compared
with the results achieved on both colour and BTF data. This might
be caused by the overall lower dispersion in hyperspectral data.
Similarly, the results of the JI and SDI criteria were better perhaps
because there were fewer unique multi-dimensional vectors
appearing in the sets. Both GCM and MEMD ζ performed with
zero maximal error rate in all experiments.

5.4 Texture and image colour-based retrieval

The last matching matrices Fig. 3 and 9 illustrate possible
utilisation of our spectral similarity criterion ζ in a colour-based
texture or image retrieval applications. The matrix Fig. 3 shows the
most similar textures to be 5, 7, 3, whereas the textures 4 and 6 are
distinct from others and slightly related to each other. The biggest
spectral difference has textures 4 and 8. Some relative differences,
which can be exploited for spectral clustering, are 5, 7–23, 5, 3–28,
5, 4–68, and 4,8–100%. The symmetrised criterion for texture pair
(5, 7) ζS(5, 7) = 13.77 has also the minimal value, whereas
ζS(4, 8) = 63.51 is the maximum. Fig. 9 shows the image retrieval
application, where images (2, 4) are the most similar and (1, 5) the
most distinct. Fig. 10 contains the symmetrised criterion version
ζS(A, B). These tables confirm that the criterion, as well as its
symmetrised version, lead to the same conclusion. 

6 Conclusions
We present new criteria for comparing the spectral similarity of the
colour, BTFs, and hyperspectral textures or images. This
comparison represents a partial solution for assessing the quality of
the multi-spectral textured images and also for the most advanced
visual representation of material surfaces – the BTF. The proposed
criteria simultaneously consider texture spectral similarity as well
as the mutual ratios of similar pixels.

Although the criteria do not consider the positions of the pixels
in the images, they can assist in numerous texture-analytic or
synthesis applications. The performance quality of the proposed
criteria is demonstrated on the extensive series of 407,700 specially
designed monotonically image degrading experiments, which also
serve for the comparison with the existing alternative methods.
Unlike many existing approaches (1), (4)– (8), the MEMD criterion
ζ (16) is not based on 3D histograms, instead of representing the
estimate of the image spectral distribution, and requiring a

Table 11 Average strict monotonicity violation (in per cent) for three test hyperspectral data sequences per experiment,
average over all experiments, and the rank for the tested criteria

A B C D E F G H I ⊘ Rank
ΔGCM00

111 0 0 0 0 0 0 0 0 0 0 1

dcos 30 35 41 21 22 15 47 47 47 34 3
JI 0 3 4 4 3 2 24 24 3 7 2
SDI 0 2 2 3 3 1 25 25 5 7 2
rSSIM 36 38 46 28 28 18 47 25 47 37 4
ζ 0 0 0 0 0 0 0 0 0 0 1
 

Fig. 8  Examples of two wood textures with selected cuts (W1-1, W1-2, W1-3, W2-1, W2-2, and W2-3 rightwards) to be compared
 

Table 12 Criterion values for all non-align cutout pairs from Fig. 8 (× 105)
W1-1 W1-2 W1-3 W2-1 W2-2 W2-3

W1-1 0 1.87 3.99 27.68 19.59 23.60
W1-2 1.65 0 3.86 28.74 20.63 24.66
W1-3 4.01 3.96 0 25.27 17.18 21.19
W2-1 27.73 28.75 25.35 0 8.27 5.36
W2-2 19.75 20.70 17.28 8.19 0 4.96
W2-3 23.74 24.69 21.27 4.87 5.49 0
 

Fig. 9  Image retrieval example. The retrieval results are based on the
proposed spectral criterion (16) (× 105)
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sufficiently large data set, which is seldom available. The criterion
(16) has no limit on the number of spectral bands. The proposed
criteria can be exploited in simple spectral based texture or image
retrieval or (un)supervised classification methods.

On the other hand, the MEMD criterion ζ and its perception
motivated variants (17) and (20) are slightly more time-demanding
than some alternative criteria, except for EMD, which is both more
time- and memory-demanding in such a way that it is practically
unusable for our purposes. The presented criteria propose a reliable
fully automatic alternative to psychophysical experiments, which
are, moreover, extremely impractical due to their cost and strict
demands on design setup, conditions control, human resources, and
time. Additionally, psychophysical experiments are restricted to
visualise maximally 3D data which is due to the limited tri-
chromatic nature of the human vision. The proposed criteria have
entirely outperformed all compared (11 and 5 in case of
hyperspectral data) tested alternative criteria in our nearly half a
million experiments.
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