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Abstract. Tracking by Deblatting1 stands for solving an inverse problem of de-
blurring and image matting for tracking motion-blurred objects. We propose non-
causal Tracking by Deblatting which estimates continuous, complete and accu-
rate object trajectories. Energy minimization by dynamic programming is used
to detect abrupt changes of motion, called bounces. High-order polynomials are
fitted to segments, which are parts of the trajectory separated by bounces. The
output is a continuous trajectory function which assigns location for every real-
valued time stamp from zero to the number of frames. Additionally, we show that
from the trajectory function precise physical calculations are possible, such as ra-
dius, gravity or sub-frame object velocity. Velocity estimation is compared to the
high-speed camera measurements and radars. Results show high performance of
the proposed method in terms of Trajectory-IoU, recall and velocity estimation.

1 Introduction

The field of visual object tracking has received huge attention in recent years [20,6,7].
The developed techniques cover many problems and various methods were proposed,
such as single object tracking [9,1,19,17], long-term tracking [10], methods with re-
detection and learning [3,13,12,18], or multi-view [8] and multi-camera [14] methods.

Detection and tracking of fast moving objects is an underexplored area of tracking.
In a paper focusing on tracking objects that move very fast with respect to the camera,
Rozumnyi et al. [15] presented the first algorithm that tracks such objects, i.e. objects
that satisfy the Fast Moving Object (FMO) assumption – the object travels a distance
larger than its size during exposure time. The method [15] operates under restrictive
conditions – the motion-blurred object should be visible in the difference image and
trajectories in each frame should be approximately linear.

Recently, a method called Tracking by Deblatting1 (TbD) has been introduced by
Kotera et al. [5] to alleviate some of these restrictions. TbD performs significantly better
than [15] and for a larger range of scenarios. The method solves two inverse problems of
deblurring and image matting, and estimates object trajectories as piece-wise parabolic
curves in each frame individually.

In its core, TbD assumes causal processing of video frames, i.e. the trajectory re-
ported in the current frame is estimated using only information from previous frames.

1 Deblatting = deblurring and matting
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Fig. 1. Trajectory reconstruction using the proposed non-causal Tracking by Deblatting (middle)
compared to the causal TbD [5] (left). Color denotes the trajectory accuracy, from red (complete
failure) to green (high accuracy). Ground truth trajectory (yellow) from high-speed camera is
shown under the estimated trajectory. Speed estimation is shown on the right. Ground truth speeds
(olive) are noisy due to discretization and TbD speed estimation (lightgray) is inaccurate, which
is fixed by the proposed TbD-NC (purple).

Applications of detection and tracking of fast moving objects do not usually require
online and causal processing. Moreover, non-causal trajectory estimation brings many
advantages, such as complete and accurate trajectories, which were among TbD limita-
tions, e.g. failures at contact with a player or missing detection.

We study non-causal Tracking by Deblatting and show that global analysis of FMOs
leads to accurate estimation of FMO properties, such as nearly uninterrupted trajectory,
velocity and shape. The paper makes the following contributions:

– We introduce global non-causal method, referred here as TbD-NC, for estimating
continuous object trajectories by optimizing a global criterion on the whole se-
quence. Segments without bounces are found by an algorithm based on dynamic
programming, followed by fitting of polynomials using a least squares linear pro-
gram. Recovered trajectories give object location in every real-valued time stamp.

– Compared to the causal tracker, TbD-NC reduces by a factor of 10 the number of
frames where the trajectory estimation completely fails.

– We show that TbD-NC increases the precision of the recovered trajectory to a level
that allows good estimates of object velocity and size. Fig. 1 shows an example.

2 Related Work

Tracking methods that consider motion blur have been proposed in [21,16,11], yet there
is an important distinction between models therein and the problem considered here.
Unlike in case of object motion, the blur is assumed to be caused by camera motion,
which results in blur affecting the whole image and in the absence of alpha blending of
the tracked object with the background.

To our knowledge, there are only a few published methods that tackle the problem of
detection and tracking of motion-blurred objects. The first publication was the work by
Rozumnyi et al. [15]. The method assumes linear motion and trajectories are calculated
by morphological thinning of the difference image between the given frame and the es-
timated background. In this paper, the first dataset with FMOs was introduced, however
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it contains only ground truth masks without trajectories and it cannot be used to eval-
uate trajectory accuracy. Deblurring of FMOs also appeared in the paper by Kotera et
al. [4], focusing only on deblurring without taking into account tracking or detection.

TbD [5] is the only method that uses motion blur and deblurring to improve tracking
results and performs parametric fit to estimate intra-frame trajectories. The TbD dataset
presented therein is another dataset with FMOs which contains ground truth trajectories
and can be used for evaluating trajectory accuracy. A brief overview of TbD follows.
The acquisition model with fast moving objects proposed in [15,5] is defined as

I = H ∗ F + (1−H ∗M)B, (1)

where I: D → R3 is the current image frame defined in image domain D ⊂ R2, which
is modelled by two terms. The first term is the motion-blurred object model F along the
trajectory given by the blur kernelH:D → R. The second term represents the influence
of the backgroundB and it depends on the indicator functionM of object model F . The
blur is then modelled by convolution and the background is estimated as a median of
previous 3 to 5 frames. The camera is assumed to be static. We consider color images in
this work and the median operator as well as convolutions are performed on each color
channel separately. TbD introduces a prior on the blur kernel H and it is represented
in each frame t by a continuous trajectory function Ct: [0, 1] → R2. The TbD outputs
are individual trajectories Ct and blur kernels Ht in every frame. The outputs serve as
inputs to the proposed TbD-NC method.

3 Non-Causal Tracking by Deblatting

TbD-NC is based on post-processing of individual trajectories from TbD. The final
output of TbD-NC consists of a single trajectory Cf (t): [0, N ] ⊂ R → R2, where N
is a number of frames in the given sequence. The function Cf (t) outputs precise object
location for any real number between zero and N . Each frame has unit duration and the
object in each frame is visible only for duration of exposure fraction ε ≤ 1. Function
Cf (t) is continuous and piecewise polynomial

Cf (t) =

ds∑
k=0

c̄s,kt
k t ∈ [ts−1, ts], s = 1..S, (2)

with S polynomials, where polynomial with index s has degree ds and it is represented
by its coefficient matrix c̄s ∈ R2,ds . Columns of the matrix, denoted as c̄s,k ∈ R2,
correspond to coefficients of two polynomials for x and y axis. The degree depends on
the size of time-frame in which the polynomial is fitted to. Variables ts form a splitting
of the whole interval between 0 and N , i.e. that 0 = t0 < t1 < ... < tS−1 < tS = N .

Polynomials of degree 2 (parabolic functions) can model only free falling objects
under the gravitational force. In many cases forces, such as air resistance or wind, also
influence the object. They are difficult to model mathematically by additional terms.
Furthermore, we would like to keep the function linear with respect to the weights.
Taylor expansion will lead to a polynomial of higher degree, which means that these
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forces can be approximated by adding degrees to the fitted polynomials. We validated
experimentally that 3rd and 4th degrees are essential to explain object motion in stan-
dard scenarios. Degrees 5 and 6 provide just a small improvement, whereas degrees
higher than 6 tend to overfit. Circular motion can also be approximated by (2).

A rough overview of the structure of the proposed method follows. The whole ap-
proach to estimate the piecewise polynomial function (2) is based on three main steps.
In the first step, the sequence is decomposed into non-intersecting parts. Each part is
converted into a discrete trajectory by minimizing using dynamic programming an en-
ergy function which combines information from partial trajectories estimated by the
causal TbD, curvature penalizer to force smooth trajectories and constraints on start
and end points. In the second step, the discrete trajectory is further decomposed into
segments by detecting bounces. Then, segments define frames which are used for fit-
ting each polynomial. In the third step, polynomials of orders up to six are fitted into
segments without bounces, which define the final trajectory function Cf (t).

Splitting into segments. When tracking fast moving objects in long-term scenarios, ob-
jects commonly move back and forth, especially in rallies. During their motion, FMOs
abruptly change direction due to contact with players or when they bounce off static
rigid bodies. We start with splitting the sequence into differentiable parts, i.e. detect-
ing bounces – abrupt changes of object motion due to contact with other stationary or
moving objects. Parts of the sequence between bounces are called segments. Segments
do not contain abrupt changes of motion and can be approximated by polynomial func-
tions. Theoretically, causal TbD could detect bounces by fitting piecewise linear func-
tions in one frame, but usually blur kernels are noisy and detecting bounces in just one
frame is unstable. This inherent TbD instability can be fixed by non-causal processing.

To find segments and bounces, we split the sequence into non-intersecting parts
where the object does not intersect its own trajectory, i.e. either horizontal or vertical
component of motion direction has the same polarity. Between non-intersecting parts
we always report bounces. Energy minimization by dynamic programming is used to
convert blur kernels Ht from all frames in the given non-intersecting part into a sin-
gle discrete trajectory. The proposed dynamic programming approach finds the global
minimum of the following energy function

E(P ) = −
xe∑

x=xb

ts∑
t=ts−1

Ht(x, Px) + κ1

xe∑
x=xb+2

∣∣∣(Px − Px−1)− (Px−1 − Px−2)
∣∣∣

+κ2(Cxts−1
(0)− xb) + κ3(xe − Cxts(1)) ,

(3)

where variable P is a discrete version of trajectory C and it is a mapping which assigns
y coordinate to each corresponding x coordinate. P is restricted to the image domain.
The first term is a data term of estimated blur kernels in all frames with the negative
sign in front of the sum which accumulates more values from blur kernels while our en-
ergy function is being minimized. The second term penalizes direction changes and it is
defined as the difference between directions of two following points and it is an approx-
imation of the second order derivative of P . This term makes trajectories smoother and
κ1 serves as a smoothing parameter. The last two terms enforce that the starting point
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Fig. 2. Example of dynamic programming. Estimated discrete trajectory P is marked in red, start-
ing point Cts−1(0) by green cross, and ending point Cts(1) by yellow cross. These points were
deliberately moved further away to show robustness of the approach. Left image: accumulated
blur kernels from two consecutive frames Hts−1 and Hts in joint coordinate system. Middle
image: value of the energy function at each pixel from black (lowest) to white (highest). Right
image: pixels where moving down by 1 is optimal are marked in dark green, down by 2 in bright
green, up by 1 in dark red, up by 2 in bright red and moving straight in grey. Pixels, where re-
porting a starting point xb is optimal, are white. The minimal value of the energy function is at
the most right red pixel xe in the left image. The whole trajectory is then estimated from right to
left by backtracking until the next minimizing pixel is reported as a starting point (white space).

and the ending point are not far from the ones in the non-intersecting part. Cxts−1
(0)

and Cxts(1) denote x coordinate of the starting point at frame ts−1 and the ending point
at frame ts of causal TbD output. Note that in the last two terms there is no absolute
value function and the sign is different, because they try to make trajectories shorter
and they compete with the first term which prefers longer trajectories, e.g. either mak-
ing trajectory longer is worth it in terms of values in blur kernels. Without the first term,
the optimal trajectory would be of zero length, i.e. just a point. Discrete trajectory P is
defined from xb until xe and these two variables are also being estimated. The ending
point Cts(1) is assumed to be on the right side from the starting point Cts−1

(0), and the
image is flipped otherwise. All κi parameters were set to 0.1.

The energy E (3) is minimized by a dynamic programming (DP) approach. Accu-
mulated blur kernels Ht are sorted column-wise (Ht) or row-wise (Ht transpose) to
account for camera rotation or objects travelling from top to bottom. For both options
we find the global minimum of E and the one with lower energy is chosen. Let us il-
lustrate the approach for the column-wise sorting. The row-wise case is analogous. DP
starts with the second column and processes columns from left to right. We compute
energy E for each pixel by comparing six options and choosing the one with the lowest
E: either adding to the trajectory one pixel out of five nearest pixels in the previous
column with y coordinate difference between +2 and −2, or choosing the current pixel
as the starting point. Both the minimum energy (Fig. 2 middle) and the decision option
(Fig. 2 right) in every pixel is stored. When all columns are checked, the minimum in
(Fig. 2 middle) is selected as the end point and the trajectory is estimated by backtrack-
ing following decisions in (Fig. 2 right). Backtracking finishes when a pixel is reached
with the starting-point decision (white in Fig. 2 right).

When each non-intersecting part is converted into 1D signal, it becomes easier to
find bounces. We are looking for points with abrupt changes of direction. Whenw pixels
to the left and w pixels to the right of the given point have a change of direction higher
than some threshold, then this point is considered a bounce. In case of circular motion
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Fig. 3. TbD-NC processing steps. From left to right, top to bottom: causal TbD [5] output, split-
ting into segments, fitting polynomials to segments, final TbD-NC output. Top row: trajectories
for all frames overlaid on the first frame, Trajectory-IoU accuracy measure color coded from red
(failure) to green (success) by scale (top left corner). Bottom row: bounces between segments
(magenta, red), fitted polynomials (green), extrapolation to the first and second frame (yellow).
Arrows indicate motion direction. Best viewed when zoomed in a reader.

with no hard bounces, the approach finds a most suitable point to split the circle. After
this step, the sequence is split into segments which are separated by bounces.

Fitting polynomials. The output discrete trajectory P has a two-fold purpose. First, it
is used to estimate bounces and define segments, and second to estimate which frames
belong to the segment and should be considered for fitting polynomials. To this end,
we assign starting and ending points of each frame, i.e. Ct(0) and Ct(1), to the closest
segment. For fitting we use only frames that completely belong to the segment, i.e.
Ct(0) and Ct(1) are closer to this segment than to any other. The degree of a polynomial
is a function of the number of frames (Ns = ts − ts−1 + 1) belonging to the segment

ds = min(6, dNs/3e). (4)

The polynomial coefficients are found by solving a linear least-squares problem

minc̄s

∑ts
t=ts−1

‖Cf (t)− Ct(0)‖2 + ‖Cf (t+ ε)− Ct(1)‖2
s. t. Cf (ts−1) = Cts−1(0) and Cf (ts + ε) = Cts(1),

(5)
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Fig. 4. Trajectory recovery for selected sequences from the TbD dataset. Top row: trajectories
estimated by the causal TbD [5] overlaid on the first frame. TIoU (7) with ground truth trajectories
from a high-speed camera is color coded by scale in Fig. 3. Bottom row: trajectory estimates by
the proposed TbD-NC which outputs continuous trajectory for the whole sequence. The yellow
curves underneath denote ground truth. Arrows indicate the direction of motion.

where s denotes the segment index. Equality constraints force continuity of the curve
throughout the whole sequence, i.e. we get curves of differentiability class C0. The
least-squares objective enforces similarity to the trajectories estimated during the causal
TbD pipeline. The final trajectory Cf is defined over the whole sequence and the last
visible point in the frame t which is Ct(1) corresponds to Cf (t + ε) in the sequence
time-frame, where the exposure fraction ε is assumed to be constant in the sequence.
The exposure fraction is estimated as an average ratio of the length of trajectories Ct in
each frame and the distance between adjacent starting points

ε =
1

N − 1

N−1∑
t=1

‖Ct(1)− Ct(0)‖
‖Ct+1(0)− Ct(0)‖

. (6)

Frames which are only partially in segments contain bounces. We replace them with
a piecewise linear polynomial which connects the last point from the previous segment,
bounce point found by dynamic programming and the first point from the following seg-
ment. Frames between non-intersecting parts are also interpolated by piecewise linear
polynomial which connects the last point of the previous segment, point of intersection
of these two segments and the first point of the following segment. Frames which are
before the first detection or after the last non-empty Ct are extrapolated by the closest
segment. Fig. 3 shows an example of splitting a sequence into segments which are used
for fitting polynomials. More examples of full trajectory estimation are in Fig. 4.

4 Experiments

Experiments are done on the TbD dataset [5] with the ground truth trajectories from
a high-speed camera. We use Trajectory Intersection over Union (TIoU) proposed by
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Table 1. TIoU (7) and recall (Rcl) on the TbD dataset – comparison of TbD, FuCoLoT, FMO
methods and the proposed TbD-NC. FuCoLoT is a standard, well-performing [7], near real-time
tracker. For each sequence, the highest TIoU is highlighted in blue and recall in cyan.

Sequence Frames
FuCoLoT [10] FMO [15] TbD [5] TbD-NC
TIoU Rcl TIoU Rcl TIoU Rcl TIoU Rcl

badminton white 40 .286 0.39 .242 0.34 .694 0.97 .783 1.00
badminton yellow 57 .123 0.22 .236 0.31 .677 0.91 .780 1.00
pingpong 58 .065 0.14 .064 0.12 .523 0.91 .643 1.00
tennis 38 .294 0.89 .596 0.78 .673 0.97 .750 1.00
volleyball 41 .496 0.79 .537 0.72 .795 0.97 .857 1.00
throw floor 40 .275 0.63 .272 0.37 .810 1.00 .855 1.00
throw soft 60 .463 0.95 .377 0.57 .652 0.97 .761 1.00
throw tennis 45 .239 0.98 .507 0.65 .850 1.00 .878 1.00
roll golf 16 .360 1.00 .187 0.71 .873 1.00 .894 1.00
fall cube 20 .324 0.67 .408 0.78 .721 1.00 .757 1.00
hit tennis 30 .330 0.93 .381 0.68 .667 0.93 .714 1.00
hit tennis2 26 .226 0.79 .414 0.71 .616 0.83 .682 0.92
Average 39 .290 0.70 .352 0.56 .713 0.96 .779 0.99

Table 2. Comparison of TbD-NC with TbD [5]. TbD failure is defined as frames where TIoU (7)
equals to zero. TbD-NC decreases the number of frames with failure by a factor of 10.

TbD [TIoU] TbD-NC [TIoU] TbD [%] TbD-NC [%]
TbD Fails 0.000 0.382 4.7 0.4

TbD TIoU> 0 0.744 0.800 95.3 99.6

Kotera et al. [5] to measure the accuracy of estimated trajectories, which is defined as

TIoU(C, C∗) =

∫
t

IoU
(
M∗C(t), M

∗
C∗(t)

)
dt, (7)

where the estimated trajectory C is compared to the ground-truth trajectory C∗. The
ground truth object appearance mask M∗ is used to measure IoU at different points
x on the trajectory, denoted by M∗x . Time t is discretized into 10 evenly spaced time-
stamps to approximate integral.

Comparison to baselines on the TbD dataset is presented in Table 1. We use the
recently introduced long-term tracker FuCoLoT [10] as a baseline standard tracker, the
FMO method [15] as a baseline for a tracker specialized on fast moving objects and
Tracking by Deblatting [5] (causal TbD with a template) as a well-performing method
for establishing trajectories in each frame. The proposed TbD-NC outperforms all base-
lines in both recall and TIoU. Recall is 100% in all cases except one, where the first de-
tection appeared only on the seventh frame and extrapolation to the first six frames was
not successful. Table 2 shows that TbD-NC corrects complete failures of causal TbD
when TIoU is zero, e.g. due to wrong predictions or other moving objects. TbD-NC
also improves TIoU of successful detection by fixing small local errors, e.g. when the
blur is misleading or fitting in one frame is not precise.
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Fig. 5. Speed estimation using TbD-NC on selected sequences from the TbD dataset. Trajecto-
ries estimated by TbD-NC are overlaid on the first frame of each sequence. Graphs contain the
speed estimation by TbD [5] (lightgray) and TbD-NC (purple) in radii per exposure compared to
“ground truth” speeds (olive) calculated from high speed camera. The noise and oscillations in
GT are caused by discretization. Mean differences to GT for all sequences are shown in Table 4.

Speed estimation. Tbd-NC provides the trajectory function Cf (t), which is defined for
each real-valued time stamp t between 0 and the number of frames. Taking the norm
of the derivative of Cf (t) gives a real-valued function of object velocity, measured in
pixels per exposure. To normalize it with respect to the object, we divide it by the
radius and report speed in radii per exposure. The results are visualized in Fig. 5 where
sequences are shown together with their speed functions. The ground-truth speed was
estimated from a high-speed camera footage having 8 times higher frame rate. The
object center was detected in every frame and the GT speed was then calculated from
the distance between the object centers in adjacent frames. Deliberately, we used no
prior information (regularization) to smooth the GT speed and therefore it is noisy as
can be seen in Fig. 5. We also report average absolute differences between GT and the
estimated speed in Table 4. The error is mostly due to the noise in GT.

Speed estimation compared to radar guns. In sports, such as tennis, radar guns are
commonly used to estimate the speed of serves. In this case, only the maximum speed
is measured and the strongest signal usually happens immediately after the racquet
hits the ball. Hrabalı́k [2] gathered the last 10 serves of the final match of 2010 ATP
World Tour. The serves were found on YouTube from a spectator’s viewpoint. Ground
truth was available from another footage which showed the measured speeds from radar
guns (example in Fig. 6). A real-time version of FMO detector in [2] achieved precise
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Table 3. Speed estimation compared to the radar gun (GT). We used the last 10 serves of the final
match of 2010 ATP World Tour. The lowest error for each serve is marked in blue.

Serve
Duration GT Hrabalı́k [2] TbD-NC
[frames] [mph] Speed [mph] Error [%] Speed [mph] Error [%]

1 23 108 105.6 2.2 108.0 0.0
2 32 101 103.8 2.8 101.6 0.6
3 62 104 106.5 2.4 110.4 6.1
4 75 113 101.7 10.0 115.8 2.5
5 82 104 91.9 11.6 106.9 2.8
6 30 127 127.4 0.3 126.3 0.6
7 34 112 116.1 3.7 107.5 4.0
8 78 125 123.2 1.4 130.3 4.2
9 67 99 88.3 10.8 89.7 9.4

10 90 108 110.2 2.0 106.2 1.6
Mean 57 110.1 107.5 4.7 110.3 3.2

Spectator’s view Front view (speed in top left) Cropped

Fig. 6. Radar gun measurements. Speed was automatically estimated by TbD-NC method from
the video on the left. Ground truth acquisition from YouTube video is shown in the middle and
the right images. Table 3 compares estimates to the ground truth.

estimates of the speeds with the average error of 4.7 %, where the error is computed as
an absolute difference to the ground truth velocity divided by the ground truth velocity.

Unfortunately, the ATP footage from spectator’s viewpoint is of a very poor qual-
ity and the tennis ball is visible only as several pixels. Deblurring does not perform
well when a video has low resolution or the object of interest is poorly visible. To test
only the performance of full trajectory estimation (TbD-NC), we manually simulated
FMO detector by annotating only start and end points of the ball trajectory in several
frames after the hit for every serve. Then the time-stamp thit is found, such that the fi-
nal trajectory Cf (thit) at this point is the closest to the hit point. Then ‖C′f (thit)‖ is the
speed measured by TbD-NC. The pixel-to-miles transformation was computed by mea-
suring the court size in the video (1519 pixels) and dividing it by the tennis standards
(78 feet). The camera frame rate was set to the standard 29.97 fps. Additionally, due to
severe camera motion, the video was stabilized by computing an affine transformation
between consecutive frames using feature matching as in [15]. Table 3 compares the
speed estimated by TBD-NC and FMO methods to the ground truth from the radar. The
proposed TbD-NC method is more precise than the FMO method and in several cases
the speed is estimated with GT error close to zero.
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Fig. 7. Estimating the object velocity from blur kernels. In four consecutive frames (top row),
object trajectories were estimated with TbD. The bottom plot shows the velocity calculated from
the blur kernels (solid red) and the ground-truth (dashed blue line) obtained by a high-speed
camera. Black crosses show the average velocity per frame calculated from the trajectory length.

Speed from the blur kernel. Apart from estimating speed by taking the norm of the
derivative of Cf (t), we can also directly estimate speed from the blur kernel H . The
values in the blur kernel are directly proportional to time the object spent in that loca-
tion. For example, if half of the exposure time the object was moving with a constant
velocity and than it stopped and stayed still, the blur kernel will have constant intensity
values terminated with a bright spot that will be equal to the sum of intensities of all
other pixels. Estimating speed from blur intensity values is however not very reliable
due to noise in H . Fig. 7 illustrates a case where this approach works. All pixels in the
blur kernel H which lay on the trajectory C are used for calculating the object velocity.

Shape and gravity estimation. In many situations, gravity is the only force that has
non-negligible influence. Then, fitting polynomials of second order is sufficient. If pa-
rameters of the polynomial are estimated correctly, and the real gravity is given, then
transforming pixels to meters in the region of motion is feasible. Gravity is represented
by a parameter a, which has units [px( 1

f s)
−2], where the frame rate is denoted by f .

If we assume the gravity of Earth g ≈ 9.8[ms−2], f is known and a is estimated by
curve fitting, the formula to convert pixels to meters becomes p = g/(2af2), where
p are meters in one pixel on the object in motion. The radius estimation by this ap-
proach is shown in Table 4. Only half of the TbD dataset is used, i.e. sequences where
the object was undergoing only motion given by the gravity (throw, fall, ping pong,
volleyball). In other cases such as roll and hit, the gravity has almost no influence and
this approach cannot be used. The badminton sequences have large air resistance and
the tennis sequence was recorded outside during strong wind. When gravity was indeed
the only strong force, the estimation has average error 4.1 %. The variation of grav-
ity on Earth is mostly neglectable, but knowing exact location where videos have been
recorded might even improve results. Alternatively, when the real object size is known,
we can estimate gravity, e.g. when throwing objects on another planet and trying to
guess which planet it is. In this case, the formula can be rewritten to estimate g. Results
are also shown in Table 4 and the average error is 5.3 % when compared to the gravity
on Earth. This shows robustness of the approach in both estimating radius and gravity.
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Table 4. Estimation of radius, speed and gravity by TbD-NC on the TbD dataset [5]. The speed
estimation is compared to GT from a high-speed camera. Radius is calculated when assuming
Earth gravity, or vice versa. Standard object sizes are taken as GT for radius.

Sequence
Speed Radius Gravity

Mean Diff. [r/ε] GT [cm] Est. [cm] Err. [%] Est. [ms−2] Err. [%]
badminton white 0.57 - - - - -
badminton yellow 0.65 - - - - -
pingpong 0.66 2.00 1.99 0.3 9.53 2.8
tennis 0.56 - - - - -
volleyball 0.45 10.65 10.47 1.7 10.50 7.2
throw floor 0.61 3.60 3.47 3.7 10.21 4.2
throw soft 0.42 3.60 3.72 3.3 9.52 2.9
throw tennis 1.31 3.43 3.69 7.6 9.19 6.2
roll golf 2.54 - - - - -
fall cube 2.24 2.86 2.63 8.0 10.66 8.8
hit tennis 0.43 - - - - -
hit tennis2 1.28 - - - - -
Average 0.98 - - 4.1 9.93 5.3

Temporal super-resolution. Among other applications of TbD-NC are fast moving
object removal and temporal super-resolution. The task of temporal super-resolution
stands for creating a high-speed camera footage out of a standard video and consists of
three steps. First, a video free of fast moving objects is produced which is called fast
moving object removal. For all FMOs which are found in every frame, we replace them
with the estimated background. Second, intermediate frames between adjacent frames
are calculated as their linear interpolation. Objects which are not FMOs will look natu-
ral after linear interpolation. Then, trajectory Cf (t) is split into the required number of
pieces, optionally with shortening to account for the desired exposure fraction. Third,
the object model (F,M) is estimated and used to synthesize the formation model with
FMOs (1). Examples of these applications are provided in the supplementary material.

5 Conclusion

We proposed a non-causal Tracking by Deblatting (TbD-NC) which estimates accurate
and complete trajectories of fast moving objects in videos. TbD-NC is based on globally
minimizing an optimality condition which is done by dynamic programming. High-
order polynomials are then fitted to trajectory segments without bounces. The method
performs well on the recently proposed TbD dataset and complete failures appear 10
times less often. From the estimated trajectories, we are able to calculate precise object
properties such as velocity or shape. The speed estimation is compared to the data
obtained from a high-speed camera and radar guns. Novel applications such as fast
moving objects removal and temporal super-resolution are shown.
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objects. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 4838–4846 (July 2017). https://doi.org/10.1109/CVPR.2017.514

16. Seibold, C., Hilsmann, A., Eisert, P.: Model-based motion blur estimation for the im-
provement of motion tracking. Computer Vision and Image Understanding 160, 45 –

https://doi.org/10.5244/C.28.65
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1109/ICIP.2018.8451661
https://doi.org/10.1007/978-3-319-48881-3
https://doi.org/10.1109/CVPR.2017.515
https://doi.org/10.1109/TIP.2016.2615812
https://doi.org/10.1109/CVPR.2018.00632
https://doi.org/10.1109/CVPR.2017.514


14 Denys Rozumnyi, Jan Kotera, Filip Šroubek, Jiřı́ Matas
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