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Abstract— This paper introduces specific extension of model
predictive control (MPC) with reference anisotropic control
(Ha control) for a robot motion with disturbed measured
outputs. The purpose is to exploit advance of flexible multi-step
MPC and stabilizing (robust) properties of Ha control serving
for disturbance attenuation of disturbed measured outputs.
The linking of MPC and Ha control is derived as both a simple
improvement of MPC by Ha control providing disturbance
attenuation only and a modification of a cost function in MPC
design by an additional tunable term weighting the proximity
of MPC design to Ha control. Considered novel Ha control
represents adjustable transition between H2 and H∞ control
i.e. between excited (trusting) and too conservative design.
The proposed control design is based on state-space formula-
tion that run in output feedback configuration complemented
by state estimation based on anisotropic theory again. The theo-
retical achievements are demonstrated by simulations using
a state-space model describing dynamics of one specific over-
actuated planar parallel kinematic machine, robot-manipulator.

I. INTRODUCTION

Efficient, accurate and safe motion control in various
applications is the present issue for increasing robotisation
in industrial enterprises. Exploitation of industrial robots in-
fluences all branches of production from automotive to every
day life products. The robotic appliances are still predomi-
nantly controlled by various PID controllers and their modi-
fications, usually implemented as a set of local controllers
of drives. This concept does not consider dynamic linkages
through the robot construction caused by inertia and gravity
effects or friction. This drawback is overcome by surplus
of input energy.

Advanced model based control strategies, such as model
predictive control (MPC) [1], [2], [3], [4],H2 orH∞ [5], [6],
offers attractive properties. However, the strategies are not
considerably robust against surrounding disturbances or they
are able to reduce only energy consumption without increas-
ing the production quality, specifically increasing of the mo-
tion accuracy.

The robustness property of MPC respecting imprecisely
known model parameters and stochastic disturbances is not
fully solved for real-time control of industrial machines [7].
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Problems of an insufficient disturbance attenuation of H2

or excessive conservatism of H∞ can be solved by a specific
control design based on anisotropic control theory which
measures statistic disturbance uncertainty in terms of a rel-
ative entropy rate. The disturbance attenuation capabilities
of the feedback control for specific controlled system are
quantified by a specific anisotropic norm [8], firstly studied
by I. G. Vladimirov [9], which represents a stochastic coun-
terpart of the H∞ norm. Minimisation of such norm leads
to the control, which is less conservative and efficient in dis-
turbance attenuation than H∞ and H2 norms respectively.

The paper aims at compact introduction of specific inter-
connection ways of MPC and anisotropic control (Ha con-
trol). The reason for exploration of such interconnection
is to improve robustness of MPC but without increase
of computational complexity and to avoid inadequate be-
haviour Ha control in an abrupt transitions of reference sig-
nals, which is caused by one-ahead character of Ha control.
Due to the flexibility of MPC design, the Ha control may
be incorporated as a robust reference control or as a spe-
cific disturbance attenuation component in the MPC design.
The basic properties of MPC and Ha control in motion con-
trol were described in [10]. The control proposed here will
be demonstrated with a dynamic model of the parallel kine-
matic machine, robot-manipulator, depicted in Fig. 1.

The paper is organized as follows. In section II, there is
a formulation of dual goal problem that consists in the effort
to meet reference signals simultaneously with the solution
of the disturbance attenuation. Sections III, IV and V in-
troduce anisotropic control and anisotropic estimation. Sec-
tion VI deals with MPC design concept and its modifications
using reference anisotropic control. Section VII demonstrates
proposed control ways by simulation examples. Finally, sec-
tion VIII summarizes the proposed ways and their practical
use in motion control.

Fig. 1. Over-actuated planar parallel kinematic machine [11].

2020 European Control Conference (ECC)
May 12-15, 2020. Saint Petersburg, Russia

Copyright ©2020 EUCA 1111



II. DUAL GOAL PROBLEM
Let us consider the control task formulated as a dual goal

problem. Specifically, the meeting desired reference trajec-
tories and the disturbance attenuation in the state, used
in control design, should be ensured simultaneously. This
problem can be solved starting with the tracking control
along a given reference trajectory, and then using the dis-
turbance attenuation via a specific state estimation.

In this paper, the model is considered as general discrete
linear-like state-space model (simplifying notation: A(x∗k)→
Ak, B(x∗k)→ Bk, considering ideal deterministic state x∗k )

x∗k+1 = Ak x
∗
k +Bk ur, k

z∗k = Cz x
∗
k +Dzr rk +Dzu ur, k

y∗k = C x∗k

(1)

where Ak, Bk, C, y∗k, rk and ur, k are state, input and output
matrices, and vectors of system outputs, reference inputs
and control actions (system control inputs) respectively. Note
that the matrices are obtained, in case of robotic systems,
e.g. by specific decompositions of nonlinear dynamic models
based on mathematical-physical analysis [12], [13]. Finally,
Cz , Dzr and Dzu and z∗k are matrices of controlled out-
put, reference and input and vector of controlled outputs
respectively. The vector of control actions ur, k corresponds
to the required vector z∗k .

In the real environment, a corrective control ua, k should
be considered to minimise the effects of the disturbances
to the output deviation. Then, the system with a real stochas-
tic state xk can be generally defined as follows

xk+1 = Ak xk +Bw wk +Bk uk

zk = Cz xk +Dzw wk +Dzuuk

+ Dzr rk

yk = C xk +Dywwk, uk = f(ur, k, ua, k)

(2)

III. BASIC ANISOTROPIC CONTROL LAW
A control task of the robot motion can be specified such

that a given robot should perform the desired user motion
trajectories represented by reference signals. The tracking
of the reference signals is provided by a controller that takes
into account feedback from the system, reference signals
and the available mathematical model in the real (stochastic)
environment. A suitable controller set can generally be ex-
pressed as follows

uHa, k = f(ur, k, ua, k) = KxHaxk +KrHark (3)

To describe the whole closed-loop system, let us consider
the following matrix transfer function

Tzw(z) = C(zI −A)−1B + D (4)

that will be used in further explanation. It represents
the closed-loop system from the external disturbance input
W to the controlled output Z. Involved matrices in (4) are
defined by the following way[

A B

C D

]
=

[
Ã+ B̃K B̃x

C̃z +DzuK 0

]
(5)

Individual submatrices arise from the generalized state-
space model description (2) with parameters in the context
of the motion control. They are defined as follows

Ã :=

[
A 0
0 Imr

]
, B̃w :=

[
Bw
0

]
, B̃ :=

[
B
0

]
,

C̃z :=
[
Cz Dzr

]
, C̃ :=

[
C 0

]
(6)

where means Ak → A and Bk → B and K := [Kx Kr ]
represents the gain with respect to the control law (3) [10].

IV. ANISOTROPIC CONTROL (DUAL PROBLEM)
At first, let us define deviation system:
xk+1 − x∗k+1= δxk+1 = A δxk +Bw wk +Bua,k

zk − z∗k = δzk = Czδxk +Dzwwk +Dzuua,k

yk − y∗k = δyk = C δxk +Dywwk

ek = Ceδxk +Dewwk +Deuua,k

(7)

Thus, a linear discrete time invariant system (LDTI), valid
for specific time interval, is considered: A(xk) ' A(x∗k)→
Ak → A and B(xk) ' B(x∗k)→ Bk → B. Here, k denotes
the discrete time instances, k = 0, 1, . . . , N ; xk denotes
the Rnx -valued state; wk denotes the Rmw -valued input
disturbances (more on this later); ua,k denotes the Rmu -
valued control input; zk denotes the Rpz -valued controlled
output; ek denotes the Rpe -valued output to be estimated;
yk denotes the Rpy -valued measurements. All the matrices
are known and have appropriate dimensions. In addition, we
suppose that the input disturbances wk are random direc-
tionally generic vectors, i.e. P(wk = 0) = 0 ∀ k; moreover,
the finite fragment w0, w1, . . . , wN of the sequence {wk}k>0

forms the extended vector W0:N = (wT
0 , . . . , w

T
N )T which

is supposed to be square integrable vector distributed abso-
lutely continuously with respect to l-dimensional Lebesgue
measure mesl where l = mw(N + 1), i.e. W0:N ∈ Ll2.
The simple, yet pretty fair way one can treat the vector W0:N

is to assume that it is a Gaussian distributed random vector
with zero mean and nonsingular covariance matrix. Finally,
we assume for this vector that the inequality A(W0:N ) ≤ a
is fulfilled with some number a > 0.

The first (control) problem is to find the unknown matrices
Ac, Bc, Cc, Dc of the control law{

ξk+1 = Ac ξk + Bc δyk, ξ0 = 0

ua, k = Cc ξk + Dc δyk
(8)

in order to minimise the upper bound γc of anisotropic norm
of the input-to-output matrix of the corresponding closed
loop system

δxk+1 = Axxδxk + Axξξk + Bxwk, δx0 = 0

ξk+1 = Aξxδxk + Aξξξk + Bξwk, ξ0 = 0

δzk = Czxδxk + Czξξk + Dzwk

(9)

i.e. to ensure |||F ccl|||a ≤ γc → min. Here, Axx = A+BDcC ,
Axξ = BCc, Aξx = BcC , Aξξ = Ac, Bx = Bw+BDcDyw,
Bξ = BcDyw, Czx = Cz +DzuDcC , Czξ = DzuCc, Dz =
Dzw +DzuDcDyw.
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The details of the dynamical output feedback controller
design can be found in [14, Theorem 2], the similar one
for static output controller is described in [15]. Although
the design has been done for time invariant systems on in-
finite time horizon, the same can be obtained for the case
under the study. It leads to the following convex optimisation
problem:

γ2
c → min

η,γ2
c ,Φ,X,Y,A,B,C,D

subject to (10)

X � 0, Y � 0, η > γ2
c ,

(det Φ)1/mw > e2a/l(η − γ2
c ),

[
X ∗
Inx Y

]
� 0,


ηImw

− Φ ∗ ∗ ∗
Bw +BDDyw Y ∗ ∗
XB1 + BDyw Inx

X ∗
D1 +DzuDDyw 0 0 Ipz

 � 0,


Y ∗ ∗ ∗ ∗ ∗
Inx X ∗ ∗ ∗ ∗
0 0 ηImw ∗ ∗ ∗

AY+BC A+BDC Bw+BDDyw Y ∗ ∗
A XA+BC XB1+BDyw Inx X ∗

CzY+DzuC Cz+DzuDDyw Dzw+DzuDDyw 0 0 Ipz

�0

where unknown matrices A, B, C, D contain the controller
matrices.

If the solution of the problem (10) is feasible, then the con-
troller is to be set according to the expression[

Ac Bc
Cc Dc

]
=

[
U−1 0

0 Ipy

] [
Π1 Π2

Π3 Π4

] [
V −T 0

0 Ipy

]
(11)

where Π4 = D, Π3 = C−DcC3Y , Π2 = B−XBDc, Π1 =
A−UBcCY −XBCcV T−X(A+BDcC )Y . Nonsingular
Rnx×nx -valued matrices U and V can be chosen arbitrarily
but the equality V UT = Inx

− Y X has to be fulfilled.
Once the controller has been found, the estimation prob-

lem can be stated as follows.

V. ANISOTROPIC ESTIMATION (DUAL PROBLEM)
Given the dynamic part of the system (9) and additional

output ek from the system (7)
δxk+1 = Axxδxk + Axξξk + Bxwk, δxk = 0

ξk+1 = Aξxδxk + Aξξξk + Bξwk, ξk = 0

ek = Cexδxk + Ceξξk + Dewk

(12)

where Cex = Ce +DeuDc C , Ceξ = DeuCc, De = Dew +
DeuDcDyw, the estimation problem is to find the matrices
H , G of the estimatorδ̂xk+1 =Axxδ̂xk +Axξξk+H(yk − Cδ̂xk), δ̂x0 = 0

êk = Cexδ̂xk + Ceξξk +G(yk − Cδ̂xk)
(13)

in order to minimise the upper bound γe of anisotropic
norm of the input-to-output matrix of the corresponding error
system {

δ̃xk+1 = Aδ̃xk + Bwk, δ̃x0 = 0

ẽk = Cδ̃xk +Dwk
(14)

i.e. to ensure |||F ecl|||a ≤ γe → min. Here, δ̃xk = δxk− δ̂xk is
the state estimation error, ẽk = ek − êk is output estimation
error, and matrices A, B, C, D are defined as follows: A =
Axx − HC3, B = Bx − HDyw, C = Cex − GC and D =
De −GDyw.

A convex optimization approach was considered to solve
the filtration problem, e.g. in [16], [17]. The anisotropy
based bounded real lemma guaranties that if exist posi-
tive defined matrices R, S and L and scalar parameter
q ∈

[
0, ‖F ecl‖

−2
∞

)
satisfying

R � ATRA + qCTC + LTS−1L (15)

S =
(
Imw
− qDTD − qBTRB

)−1
(16)

L = S
(
BTRA+ qDTC

)
(17)

ln detS−1 ≥ 2a+ l ln(1− qγ2
e ) (18)

then anisotropic norm is bounded by γe. To reduce the filtra-
tion problem to convex optimisation problem, let us define
new matrix variable Ψ � 0 and change variables as follows:
ζ = q−1 � 0, R = ζR. It allows to avoid nonlinearity
in (15) - (18) after applying Schur complement formula.
The final inequalities receive the following form:

R ∗ ∗ ∗
0 ζImw

∗ ∗
RAxx −XC −RBx + XD1 R ∗

C −D 0 Ipe

 � 0, (19)

 ζImw −Ψ ∗ ∗
RBx −XDyw R ∗

D 0 Ipe

 � 0, (20)

(det Ψ)1/mw > e2a/l(ζ − γ2
e ), (21)

where X = RH , matrices R, Ψ are positive definite
and inequality ζ−γ2

e > 0 holds true. The convex optimisation
filtering problem takes the following form:

γ2
e → min

ζ,γ2
e ,R,Ψ,X ,G,H

(22)

under conditions (19) - (21). After solving the system of con-
vex inequalities, the matrix H in (13) is defined accordingly
the inverse change of variable H = R−1X .

VI. MODIFICATION OF MPC DESIGN
BY Ha CONTROL

This section introduces two ways how to take advantages
of multi-step property of online MPC and robustness prop-
erty of one-off Ha control designs. The first one considers
usual MPC design with disturbance attenuation complement
by Ha control and the second way takes Ha control law
including reference directly into multi-step MPC design.

1113



A. MPC with Anisotropic Disturbance Attenuation

MPC design [1] represents multi-step control concept that
can be performed online. Optimisation of control actions
takes into account future reference signals and varying
state-space matrices that can respect e.g. nonlinear dynam-
ics of industrial robots [18]. The optimisation is performed
within a finite time horizon ahead. In each discrete time in-
stant, a specific quadratic function is minimised considering
regularly updated equations of predictions. These equations
express future outputs in relation to searched control actions.

Let us start with brief overview of MPC design suitable
for its interconnection with Ha control that serves for dis-
turbance attenuation only. MPC design shapes the control
actions with respect to reference signals, i.e. it represents
powerful feed-forward and complementary feed-back part.
Specifically, the quadratic cost function is defined as follows

J =

N∑
j=1

{
||Qyr(ŷk+j − rk+j)||22 + ||Quur, k+j−1||22

}
= ||QY R(Ŷk+1 −Rk+1)||22 + ||QUUr, k||22 (23)

where predictions Ŷk+1 with respect to unknown control
actions Ur, k are the following

Ŷk+1 = [ ŷTk+1, · · ·, ŷTk+N ]T = Fx̂k +GUr, k (24)

F =


CA

...
CAN−1

CAN

, G =


CB 0 · · · 0

...
. . . . . .

...
CAN−2B · · · CB 0
CAN−1B · · · CAB CB

 (25)

Rk+1 = [ rTk+1, · · ·, rTk+N ]T (26)

Ur, k = [uTr, k, · · ·, uTr, k+N−1]T (27)

and QY R and QU represent square-roots of weights – control
parameters, selected e.g. as diagonal matrices with identical
scalar parameters relating to Y , R and U in the cost function
(23), respectively.

Then, according to [10], a deterministic part of control
actions for prediction horizon N can usually be given as fol-
lows

ur, k = M Ur, k = M
(
GTQTY RQY RG +QTUQU

)−1

×GTQTY RQY R (Rk+1 − Fx̂k) (28)

where matrix M is defined as follows

M = [Imu, 0mu, · · · , 0mu] (29)

and it serves for selection of appropriate control actions
in relation to the corresponding discrete time instant k.

Sequentially, the resultant control law is given as follows

uk = ur, k + ua, k (30)

where ur, k is given by (28) and ua, k by (8). This modifica-
tion represents fixed interconnection of MPC and Ha control
for reference tracking and attenuation problem, respectively.

B. Modified MPC Design with Reference Ha Control

This subsection introduces a specific modification of MPC
design as an extension of the cost function by one additional
term including weighted difference between computed MPC
control actions and robust reference actions from off-line
Ha control design. Such a modification enables user tun-
ing proximity of MPC actions towards Ha control actions
following from the control law (3). This ideas is propa-
gated through the cost function or equations of predictions
respectively. Hence, the quadratic cost function is expressed
in compliance with this tuning as follows

J =

N∑
j=1

{
||Qyr(ŷk+j − rk+j)||22

+ ||Q∆u(uk+j−1 − uHa, k+j−1)||22

+ ||Quuk+j−1||22
}

= ||QY R(Ŷk+1 −Rk+1)||22
+ ||Q∆U (Uk −KXHa

X̂k −KRHa
Rk)||22

+ ||QUUk||22 (31)

where
X̂k = [x̂Tk , · · ·, x̂Tk+N−1]T (32)

Rk = [rTk , · · ·, rTk+N−1]T (33)

KXHa X̂k = L x̂k +MUk (34)

L =


KxHaI

...
KxHaA

N−2

KxHa
AN−1

, M=


0 0 · · · 0
...

. . . . . .
...

CAN−2B · · · CB 0
CAN−1B · · · CAB CB

(35)

This quadratic cost function can be written as a product of its
square-roots:

J = JT J (36)

where square-root J of the cost function J is as follows

J =

QY R 0 0
0 Q∆U 0
0 0 QU

 Ŷk+1 −Rk+1

Uk −KXHaX̂k −KRHaRk
Uk


=

 QY RFx̂k +QY RGUk −QY RRk+1

Q∆U (I −M)Uk −Q∆U L x̂k −Q∆U KRHa Rk
QUUk

 (37)

Considering minimisation of the square-root J as a specific
solution of least-squares problem [19] then, let us take into
account the following algebraic equation: QY R G
Q∆U (I −M)

QU

Uk =

 QY R (Rk+1 − Fx̂k)
Q∆U (KRHa

Rk + L x̂k)
0

 (38)

or QY R G QY R (Rk+1 − Fx̂k)
Q∆U (I −M) Q∆U (KRHaRk + L x̂k)

QU 0

[Uk−I
]

= 0
(39)
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Fig. 2. Time histories [s] of errors of system outputs and realized control actions for H2, H∞ and Ha controls.

                   MPC  

Fig. 3. Time histories [s] of errors of system outputs and control actions for conventional MPC.

tuned

Fig. 4. Time histories [s] of errors of system outputs and control actions for tuned MPC [10].

Fig. 5. Time histories [s] of errors of system outputs and control actions for proposed interconnection of MPC and Ha control.
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The over-determined system (38) or (39) respectively can be
written in condensed general form (40). It can be transformed
to another form (41) by orthogonal-triangular decomposition
[20] and solved for unknown Uk

AUk = b (40)

QTAUk = QT b assuming that A = Q R

R1Uk = c1 (41)

where QT is an orthogonal matrix that transforms ma-
trix A into upper triangle R1 as it is indicated by the fol-
lowing equation diagram

A Uk = b

⇒

@
@
@@

R1

0

Uk = c1

cz

(42)

Vector cz represents a loss vector, Euclidean norm ||cz||
of which equals to the square-root of the optimal cost func-
tion minimum, i.e. scalar value

√
J , where J = cTz cz . Only

the first elements corresponding to uk are used from com-
puted vector Uk, i.e. uk = MUk = M×f(Ur, k, UHa, k),
where matrix M is defined as in previous subsection by (29).

VII. SIMULATIONS

Simulations in Fig. 2 – Fig. 5 demonstrate behavior of indi-
vidual control approaches H2, H∞, Ha, conventional MPC,
tuned MPC and proposed interconnection: modified MPC
with reference Ha control. All these control approaches were
applied to the model of the robot shown in Fig. 1, considering
reference motion trajectory depicted in Fig. 6.

The differences both in control errors and in control
actions are noticeable for all shown control approaches.
The proposed interconnection depicted in Fig. 5 reaches
the smallest control actions at the smoothest trends of control
actions. The abrupt increase in errors and in control action
chattering is caused by artificial increase in disturbance
signal, see Fig. 7.

drive 1

drive 2

drive 3

drive 4
movable
platform

-0.3 -0.2 -0.1   0   0.1  0.2  0.3 [m]

[m]

0.3 

0.2 

0.1    

0    

-0.1

-0.2

-0.3

[m]

0.04

0.02

0

-0.02

-0.04

-0.04 -0.02   0    0.02 0.04  [m]

turning
point
vt = 0

turning
point
vt = 0

initial, final points
vt = 0
running point
vt  0

1s

2s

3s

4s

5s
6s

7s

0s

Fig. 6. Wireframe robot model, testing ’S’-shape trajectory.

Fig. 7. Time histories [s] of the disturbance signals wk .

VIII. CONCLUSION

The paper introduces the novel promising interconnection
of online flexible multi-step MPC design for reference signal
tracking and off-line robust Ha control for disturbance atten-
uation. State-space estimation based on anisotropic theory
is explained as well. The complexity of the design or com-
putation is reasonable for real-time use and does not increase
compared to the individual design approaches used.
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