
Dynamic Mixture Ratio Model
Marko Ruman

Department of Adaptive Systems
The Czech Academy of Sciences, ÚTIA

18208 Prague 8, Czech Republic
marko.ruman@gmail.com

Miroslav Kárný
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Abstract—Finite mixtures of probability densities with com-
ponents from exponential family serve as flexible parametric
models of high-dimensional systems. However, with a few special-
ized exceptions, these dynamic models assume data-independent
weights of mixture components. Their use is illogical and restricts
the modeling applicability. The requirement for closeness with
respect to conditioning, the basic learning operation, leads to a
novel class of models: the mixture ratios. The paper justified
them and shows their ability to model truly dynamic systems.

Keywords—Dynamic systems, Bayesian learning, mixture mod-
els, mixture ratio

I. INTRODUCTION

Decision making (DM) chooses actions for reaching a
specific aim. Many fields including machine learning, [23],
signal processing, [24], estimation and filtering, [17], hypoth-
esis testing, [14], classification and pattern recognition, [11],
knowledge sharing, [22], reinforcement learning, [27], control,
[13], etc., can all be seen as DM. This makes the amount of
relevant results excessive, [16], and volatile vocabularies. This
leads to the specific vocabulary used when formalising DM.

A solution of a DM problem leads to a strategy, a collection
of decision rules mapping the knowledge on actions, [26].
The chosen strategy should meet the DM aim in the best
possible way. The adopted Bayesian paradigm, [25], is a
powerful tool whenever DM faces incomplete knowledge and
uncertainty concerning the dynamic system to which actions
relate. Bayesian DM relates DM consequences to the acquired
knowledge and the used actions by conditional probabilities,
here given by conditional probability densities (pd).

Actions are generally chosen recursively while enriching the
available knowledge. This gives a chance to improve gradually
the system model. This learning redistributes probability of the
model adequacy within the set of used models, [9].

The need for learning arises if a good model is a priori
unknown and it is possible iff the learnt relations practically
do not change during the knowledge extraction. This makes
us to focus on a set of parametric models. Their constant
multivariate parameter serves as a “pointer“ to the set mem-
bers. The best model is a priori unknown. Bayesian learning
offers the unambiguous deductive way, Bayes’ rule, [10], of
redistributing the probability of (belief in) the model quality.
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It maps the knowledge on the posterior pd and provides the
predictive pd serving as the system model used by DM. The
achievable modeling and thus DM quality are determined by
the employed set of parametric models.

This work offers ratios of finite mixtures, [4], with com-
ponents from exponential family (EF), [7], as such black-box,
[12], universally approximating, [15], models. The recursive
learning of ratios of finite mixtures is inevitably approximate
and endangered by accumulation of approximation errors.
This paper provides a simulation study, which inspects the
approximative learning developed in [32] from this perspec-
tive. The reader gets the chance to consider this extremely
flexible but yet unconsidered model set for solving her/his
difficult DM task. The paper focuses on cases, which can
formally be covered by a high-order Markov chain, which
relates observations to a finite-dimensional regression vector
containing the past observations and explanatory variables.
Both are discrete or discretised.

Recursive Bayesian estimation the high-order Markov chain
[29], a lossless compression of the knowledge, simple counts
joint occurrences of the predicted variable and its regression
vector. The applicability of this formally universal way is,
however, strongly limited by the curse of dimensionality,
[8]. The size of the occurrence array blows up with the
number of possible data-vectors instances and the observations
insufficiently populate it. The advocated model counteracts
this curse of dimensionality. The presented simulation results
demonstrate improvement caused by the used mixture ratio
comparing to the standard mixture model addressing the same
dimensionality problem in [18].

The text uses the following notation:

• N, R, R+ stand for sets of natural, real and positive real
numbers, respectively,

• the bold symbols, for instance A, stands for the set of its
members A ∈ A,

• An stands for the n-ary Cartesian product of A,
• |A| denotes cardinality of A,
• (a1, ..., an) ∈ An stands for a n-dimensional vector,
•
〈
a | b

〉
denotes a dot product of two vectors a, b ∈ Rn,〈

a | b
〉

=
∑n
i=1 aibi, 00 is defined as 00 = 1.



II. FORMALISATION OF A DYNAMIC SYSTEM MODEL AND
ITS APPROXIMATE LEARNING

A model of a dynamic system in the decision-making (DM)
theory is formalized in Bayesian way as follows: observations
Ot ∈ O, stimulated by actions At ∈ A, are observed
at the discrete-time moments t ∈ t = {1, 2, ..., |t|}. A
data sequence Dt ∈ D is formed by data records: Dt =
{Dt, Dt−1, ..., D1, D0}, where a data record Dt = {Ot, At},
t ∈ t, is formed by an observation Ot and an action At, D0

means the prior knowledge.
Definition 1 (Parametric system model): The parametric

system model is a pd of the observation Ot ∈ O conditioned
on the data sequence Dt−1 ∈ D, the action At ∈ A and on an
unknown parameter Θ ∈ Θ:

M(Ot|At, Dt−1,Θ), (1)

where Θ is a parametric space. It is a subset of a real
d-dimensional vector space, i.e. Θ ⊂ Rd, d ∈ N. The
notation Mt(Θ) = M(Ot|At, Dt−1,Θ) will be used whenever
realization of At, Dt−1 is inserted into the parametric system
model, i.e. when it is treated as the likelihood function. �

The goal of DM theory is to influence the dynamic system
by taking appropriate actions to achieve desired observations
(generally, states) of the modeled system. To predict the next
observation of the system, the pd F(Ot|At,t−1 ) is used. Using
chain rule, marginalisation and incorporating the parametric
system model (1), it can be expressed as follows:

F(Ot|At, Dt−1) =

∫
Θ

M(Ot|At, Dt−1,Θ)P(Θ|Dt−1)dΘ, (2)

where P(Θ|Dt−1) is the posterior pd storing actual knowl-
edge about the parameter Θ ∈ Θ. The short-hand version
Pt−1(Θ) = P(Θ|Dt−1) is used. Formula (2) is valid under
adopted natural conditions of control, [31], expressing that
the parameter is unknown to the randomised action generator,
i.e. the pd describing it meets S(At|Dt−1,Θ) = S(At|Dt−1)
⇔ P(Θ|At, Dt−1) = P(Θ|Dt−1).

After the interaction with the dynamic system, a new data
record Dt = {Ot, At} is created and Pt−1(Θ) is updated via
Bayes’ rule, ∀Θ ∈ Θ, as follows:

P̃t(Θ) =
Mt(Θ)S(At|Dt−1)Pt−1(Θ)∫

Θ
Mt(Θ)S(At|Dt−1)Pt−1(Θ)dΘ

(3)

=
Mt(Θ)Pt−1(Θ)∫

Θ
Mt(Θ)Pt−1(Θ)dΘ

∝ Mt(Θ)Pt−1(Θ).

To ensure the computational feasibility of updating the pd
Pt−1(Θ) during the whole interaction with a dynamic system,
the set of feasible pds P needs to be considered. Generally, the
posterior pd P̃t(Θ) obtained by (3) does not belong to the set
of feasible pds P and with growing t ∈ t it can become more
and more complex function of Θ. Therefore, a projection of
P̃t(Θ) on pd P̂t(Θ) ∈ P from this set of feasible pds has to
be made. [1] and [2] suggest, that the projection P̂t(Θ) is the
minimizer of Kerridge inaccuracy:

P̂t(Θ) = K
P∈P

(P̃t||P) = argmin
P∈P

∫
Θ

−P̃t(Θ)ln(P(Θ))dΘ (4)

The updating from Pt−1(Θ) to P̂t(Θ) can be interpreted
as the application of Bayes’ rule on Pt−1(Θ) but using
an unknown, different model than Mt(Θ). Therefore, using
P̂t(Θ) as a prior pd for the next learning step may, in general,
cause divergence P̂t(Θ) from P̃t(Θ) obtained via (3) without
projection (4). The solution preventing from the divergence is
to include a data-depending forgetting factor λt ∈ [0, 1]. [3]
implies the most plausible choice of the forgetting factor λt.

Remark 1 (Learning algorithm): One learning step of the
learning algorithm is summarized as follows:

P̃t(Θ) ∝ Mt(Θ)Pt−1(Θ), P̂t = argmin
P∈P

K(P̃t||P),

Pt(Θ) ∝ P̂λtt (Θ)P1−λt
t−1 (Θ), λt =

(∫
Θ

Mt(Θ)Pt−1(Θ)dΘ
)2∫

Θ
M2
t (Θ)Pt−1(Θ)dΘ

.

Pt−1(Θ) is the prior pd, K(P̃t||P ) is Kerridge’s inaccuracy
(4) and Pt(Θ) serves as a prior pd for the next learning step.

III. FINITE MIXTURE RATIO MODEL

To achieve computational feasibility of the recursive learn-
ing summarized in Remark 1., the following simplifying
assumption is made about the model (1):

Assumption 1 (Markov property of the system model): The
system model (1) is assumed to be time-invariant n-order
Markov model (n ∈ N), i.e.

M(Ot|At, Dt−1,Θ) = M(Ot|ψt,Θ) , where (5)

ψt =

{
At, Dt−1, ..., Dt−n n ≥ 1,
At n = 0. is a regression vector.

As stated in Introduction, this work focuses on modelling the
dynamic system via mixtures of pds. There are many works
on this topic, e.g. [4], however, most of them assume data-
independence of the weights of the mixture components. The
following approach overcomes this limitation by introducing
a ratio of finite mixtures. The model (5) can be expressed as
follows (using chain rule and marginalisation):

M(Ot|ψt,Θ) =
J(Ot, ψt|Θ)∫

O J(Ot, ψt|Θ)dO
. (6)

Almost any practically met time-invariant joint pd
J(Ot, ψt|Θ) can be approximated by a finite mixture of
Gaussian pds, [19], to an arbitraty precision, [4]. A Gaussian
pd belongs to the exponential family (EF), thus, following EF
mixture form of J(Ot, ψt|Θ) can be considered:

Definition 2 (Joint pd as a mixture): The joint pd
J(Ot, ψt|Θ) is modeled via a mixture of pds from EF:

J(Ot, ψt|Θ) = J(φt|Θ) =
∑
c∈c

αcJc(φt|Θc) (7)

=
∑
c∈c

αc exp 〈Bc(φt;c) |Cc(Θc)〉Gc(φ
c
t;c), where



• φt ∈ φ is the data vector φt = (Ot, ψt).
• Jc(φt|Θc) = Jc(Ot, ψt|Θc) is the c-th mixture compo-

nent, it is a member of EF and it is a pd on φ. Its
assumed form is: Jc(φt|Θc) = exp 〈Bc(φt) |Cc(Θc)〉 =
exp 〈Bc(φt;c) |Cc(Θc)〉Gc(φ

c
t;c) with φt;c being a

component-specific subvector of φt;c and Gc(φ
c
t;c)

is a non-parametrized pd on its complement φc
t;c

with respect to φt; Bc(φt), Cc(Θc) and Bc(φt;c)
are known, real-valued vector functions, Cc(ωc) =
(Cc1(Θc), . . .Ccmc(Θc))

• c = {1, ..., |c|} , |c| is the number of components
• the parameter vector Θ has the following form:

Θ =
(
αc, (Θcj)

mc
j=1

)
c∈c
∈
{
α ×
c∈c

Θc

}
= Θ, where:

X α = (α1, ..., α|c|) ∈ α is the weight vector,
α =

{
(α1, ..., α|c|) | αc ≥ 0,

∑
c∈c αc = 1

}
X Θc = (Θc1, ...,Θcmc) ∈ Θc is the component-

specific parameter vector and mc stands for the
number of parameters of the c-th mixture component.

�
The general learning algorithm proposed in Section II uses
the system model M(Ot|ψt,Θ). By inserting right-hand side
of (7) to (6), the desired parametric system model is obtained:

M(Ot|ψt,Θ) =
∑
c∈c

αcJc(Ot, ψt|Θc)∑
d∈c αd

∫
O

Jd(Ot, ψt|Θd)dOt︸ ︷︷ ︸
Wd(ψt,Θd)

(8)

=
∑
c∈c

αcWc(ψt,Θc)∑
d∈c αdWd(ψt,Θd)︸ ︷︷ ︸

wc(ψt,Θc)

Jc(Ot, ψt|Θc)

Wc(ψt,Θc)︸ ︷︷ ︸
Mc(Ot|ψt,Θc)

=
∑
c∈c

wc(ψt,Θc)Mc(Ot|ψt,Θc), where

• Wc(ψt,Θc) =
∫

O Jc(Ot, ψt|Θc)dOt
• wc(ψt,Θc) = αc Wc(ψt,Θc)∑

d∈c αdWd(ψt,Θd)

• Mc(Ot|ψt,Θc) = Jc(Ot,ψt|Θc)
Wc(ψt,Θc)

Equation (8) shows, that the model can be interpreted as
the mixture with data-dependent weights, while the data-
dependence is not arbitrary and does not introduce new pa-
rameters.

Learning algorithm described by Remark 1 has been elab-
orated for (8). All details can be found in [32].

IV. MIXTURE OF MARKOV CHAIN COMPONENTS

One of the most important mixtures with the components
from the exponential family are Markov chain mixtures, [18].
A Markov chain operates with discrete valued observations
O ∈ O ⊂ N as well as discrete valued regression vectors
ψt ∈ ψ ⊂ Nn, the joint pds Jc(ψt|Θc), J(ψt|Θ) as well
as the parametric system model M(Ot|ψt,Θ) are probability
functions.

This part specifies the general mixture ratio model (Section
III) and its learning for the mixture ratio of Markov chain
components with conjugated Dirichlet pd Pt(Θc), c ∈ c.

Definition 3 (Joint probability of Markov chain mixture
model): The joint probability of a mixture of Markov chain
models is defined as follows:

J(Ot, ψt|Θ) = J(φt|Θ) =
∑
c∈c

αcJc(Ot, ψt;c|Θc) (9)

=
∑
c∈c

αc
1

|ψc
c|

mc∏
j=1

(
Θcj

K̃cj

)∆cj

where

• c is the set of component indexes c ∈ c, the symbol |c|
stands for its cardinality, c = {1, 2, .., |c|},

• let φ be a set of all possible values of the data-vector
φ ∈ φ, then φc is the subset of φ modeled by the c-
th component in the mixture model (9); the set φc can
be rewritten as φc = O × ψc, where O and ψc are the
sets of all possible values of the observation O and the
component-specific regression vector ψc respectively, the
ψc
c denotes the complement of the set ψc with respect to

the set ψ,
• αc is the weight of the c-th component; the set of all

possible values of the weight-vectors
α =

(
α1, α2, ..., α|c|

)
∈ α is defined as follows - α ={

α ⊂ [0, 1]|c| |
∑
c∈c αc = 1

}
,

• Jc(Ot, ψt;c|Θc) = Gc(ψ
c
c)

mc∏
j=1

(
Θcj
K̃cj

)∆cj

= 1
|ψc
c|

mc∏
j=1

(
Θcj
K̃cj

)∆cj

is the c-th component in the mixture

model (9), mc ∈ N denotes the number of parameters
of the c-th component; the non-parametric probability
Gc(ψ

c
c) (7) is chosen as uniform on ψc

c, i.e. Gc(ψ
c
c) =

1
|ψc
c|

,
• Θ denotes the parameter vector, Θ is the set of all

possible values of Θ and they have the form:

Θ = (α, (Θc)c∈c) Θ = α ×
c∈c

Θc, (10)

where Θc = (Θc1,Θc2, ...,Θcmc) is the parameter
vector specific for the c-th component of the mix-
ture and Θc the set of all its possible values, Θc ={

Θc ∈ [0, 1]mc |
∑mc
j=1 Θcj = 1

}
,

• ∆cj = ∆cj(Ot, ψt;c) is the indicator function1 for
the parameter Θcj , generally it has the form of a
combination (sums, multiplications and compositions)
of the Kronecker delta functions on subparts of the
vector (Ot, ψt;c); the indicator outputs 0 or 1 for each
vector (Ot, ψt;c); the indicator vector ∆c(Ot, ψt;c) =
(∆c1,∆c2, ...,∆cmc) outputs 1 on at most one position,
0 on all remaining positions.

1The use of ∆cj instead of Bcj (as in Definition 2) stresses that observa-
tions O and regression vectors ψ are discrete valued.



• K̃cj is the normalizing constant belonging to the param-
eter Θcj , generally, K̃cj is the number of values of the
vector (Ot, ψt;c) for which ∆cj(Ot, ψt;c) outputs 1, i.e.

K̃cj =
∑

(Ot,ψt;c)∈O×ψc

∆cj(Ot, ψt;c). (11)

The notation Kcj = |ψC
c |K̃cj will be used. �

Remark 2: The corresponding parametric model of the
observation Ot ∈ O (cf. Definition 1) has the following
mixture ratio form:

M(Ot|ψt,Θ) = Mt(Θ) = Ht(Θ)
∑
c∈c

αc

mc∏
j=1

(
Θcj

Kcj

)∆cj

,

(12)

where Ht(Θ) =
1∑

Ot∈O

∑
c∈c
αc
∏mc
j=1

(
Θcj
Kcj

)∆cj

V. MONTE CARLO COMPARISON

The simulation comparison of the Markov chain mixture
ratio model discussed in Section IV and the standard Markov
chain mixture model, where the parametric conditional pd
MC(Ot|ψt, Θ̄) (compared to the joint pd J(Ot, ψt|Θ)) is
modeled, see [18], was made. The comparison was made as
follows:
• A sequence of observations (Ot)

n
t=1 was generated by the

pd (12) with known parameters ΘR (i.e. MR(Ot|ψt) =
M(Ot|ψt,ΘR); MR(Ot|ψt) is referred as the real model),
actions were generated from the pd S(At|ψt−1), where
ψt−1 = Ot−1, At−1, ..., Ot−n−1, At−n−1 (see (5)),

• both, the mixture ratio model and the standard mixture
model were learnt recursively,

• the quality of both models during the simulation was
compared using KullbackLeibler divergence of pairs2 of
joint pds P(O1, ..., Ot, A1, ..., At|ψ0), t ∈ t.

Let MJ(Ot|ψt, Dt−1) and MC(Ot|ψt, Dt−1) be learnt predic-
tors for the mixture ratio model and standard mixture model,
respectively. The predictors depends on particular data real-
izations Dt−1 = (Oτ , Aτ )t−1

τ=1 and are computed as follows:

MN (Ot|ψt, Dt−1) =

∫
Θ

MN (Ot|ψt,Θ, Dt−1)P(Θ|Dt−1)dΘ,

N ∈ {J,C}.

To simplify the notation, the dependence on particular data
realization Dt−1 will not be stressed, i.e. MJ(Ot|ψt, Dt−1) =
MJ(Ot|ψt) , MC(Ot|ψt, Dt−1) = MC(Ot|ψt).

Furthermore, let PR(O1, ..., Ot, A1, ..., At|ψ0),
PJ(O1, ..., Ot, A1, ..., At|ψ0), PC(O1, ..., Ot, A1, ..., At|ψ0),

2In particular, KullbackLeibler divergence was computed for two pairs of
the “real“ and “learnt“ pds (one learnt with mixture ratio model and the other
with standard mixture model), the details follow.

t ∈ t, be joint pds for the real model, the mixture ratio model
and the standard mixture model respectively. They equal:

PN (O1, ..., Ot, A1, ..., At|ψ0) =

t∏
τ=1

MN (Oτ |ψτ )S(Aτ |ψτ−1)

(13)
N ∈ {R, J,C}.

KullbackLeibler divergences of the joint pds then equal3:

KLt(PR||PN ) =
∑

O1,...Ot∈O
A1,...,At∈A

t∏
τ=1

MR(Oτ |ψτ )S(Aτ |ψτ−1)

(14)

× ln

(
t∏

τ=1

MR(Oτ |ψτ )S(Aτ |ψτ−1)

MN (Oτ |ψτ )S(Aτ |ψτ−1)

)
,

N ∈ {J,C}, t ∈ t.

(14) can be rewritten as follows, N ∈ {J,C}:

KLt(PR||PL) =

t∑
τ=1

∑
O1,...Ot∈O
A1,...,At∈A

t∏
τ=1

MR(Oτ |ψτ )S(Aτ |ψτ−1)

× ln

(
MR(Oτ |ψτ )

MN (Oτ |ψτ )

)
=

t∑
τ=1

∑
Oτ∈O
ψτ∈ψ

MR(Oτ |ψτ )P(ψτ )× ln

(
MR(Oτ |ψτ )

MN (Oτ |ψτ )

)
. (15)

The joint pd P(ψt) is computed recursively, starting with the
known P(ψ0), as follows:

P(ψt) =
∑

Ot−n−1∈O
At−n−1∈A

P(ψt, Ot−n−1, At−n−1)

=
∑

Ot−n−1∈O
At−n−1∈A

P(At, Ot−1, ψt−1)

=
∑

Ot−n−1∈O
At−n−1∈A

S(At|ψt−1)P(Ot−1|ψt−1)P(ψt−1)

with ψt = At, Ot−1, At−1, ..., Ot−n, At−n,

ψt−1 = Ot−1, At−1, ..., Ot−n, At−n,

ψt−1 = At−1, Ot−2, At−2, ..., Ot−n−1, At−n−1.

As stated above, the quality of both models is compared by
comparing the values of KLt(PR||PJ) and
KLt(PR||PC) computed via (15), where the smaller value of
the Kullback-Leibler divergence indicates better predicting and
modeling quality of the respective model.

The learnt predictors MJ(Ot|ψt) and MC(Ot|ψt) depend
on the particular data realizations. Thus, to make a reliable
comparison of the mentioned variables, it is necessary to make
a Monte Carlo (MC) study of them.

3The time index t ∈ t in KLt(PR||PN ) denotes Kullback-Leibler
divergence after the t-th observation.



A. Compared Models

In simulation, the system with 5 possible observations
Ot ∈ O = {1, 2, ..., |O|}, where |O| = 5 was modeled. Both
mixture ratio model (denoted as MJ(Ot|ψt,Θ)) and standard
mixture model (denoted as MC(Ot|ψt, Θ̄)) were 2-component
and used the same parametric space Θ, regression vector
ψt and respective components operated on the same subsets
of data-vector φ (φ1 and φ2, see Definition 9), which are
specified as follows:
• Θ = α×Θ1 ×Θ2,
• α = Θ1 = Θ2 = {(a, b) ∈ [0, 1]2 | a+ b = 1},
• ψt = (Ot−1, Ot−2) ∈ ψ = O×O,
• φt = (Ot, ψt) ∈ φ = O×O×O,
• φ1 = φ2 = O×O,
• φt;1 = (Ot, Ot−1) φt;2 = (Ot, Ot−2).

a) Mixture ratio model: The joint pd of the mixture ratio
model equals (cf. (9)):

J(φt|Θ) = J(Ot, ψt|Θ)

= αJ(Ot, Ot−1|Θ) + (1− α)J(Ot, Ot−2|Θ)

= α
1

25

25∏
i=1

Θ∆1i
1i + (1− α)

1

25

25∏
i=1

Θ∆2i
2i , where

• Θ =
(
α, (Θ1i)

25
i=1 , (Θ2i)

25
i=1

)
∈ Θ,

∑25
i=1 Θ1i =∑25

i=1 Θ2i = 1,
• ∆1i and ∆2i are indicators for all combinations (Ot,
Ot−1) and (Ot, Ot−2), respectively.

The corresponding parametric system model then reads (cf.
(8), (12)):

MJ(Ot|ψt,Θ) =
α
∏25
i=1 Θ∆1i

1i + (1− α)
∏25
i=1 Θ∆2i

2i

α
∑
Ot∈O

25∏
i=1

Θ∆1i
1i︸ ︷︷ ︸

W1(ψt,Θ1)

+(1− α)
∑
Ot∈O

25∏
i=1

Θ∆2i
2i︸ ︷︷ ︸

W2(ψt,Θ2)

= w1(ψt,Θ)

∏25
i=1 Θ∆1i

1i

W1(ψt,Θ1)

+ w2(ψt,Θ)

∏25
i=1 Θ∆2i

2i

W2(ψt,Θ2)
, (16)

• w1(ψt,Θ) = αW1(ψt,Θ1)
αW1(ψt,Θ1)+(1−α)W2(ψt,Θ2) ,

• w2(ψt,Θ) = (1−α) W2(ψt,Θ2)
αW1(ψt,Θ1)+(1−α)W2(ψt,Θ2) .

b) Standard mixture model: The standard mixture model
had the following form:

MC(Ot|ψt, Θ̄) = ᾱ

25∏
i=1

Θ̄∆1i
1i + (1− ᾱ)

25∏
i=1

Θ̄∆2i
2i , (17)

• Θ̄ =
(
ᾱ,
(
Θ̄1i

)25

i=1
,
(
Θ̄2i

)25

i=1

)
∈ Θ̄,

•
∑5
j=1 Θ1(5i+j) =

∑5
j=1 Θ2(5i+j) = 1,

i ∈ {0, 1, 2, 3, 4},
• ∆1i and ∆2i are indicators for all combinations (Ot,
Ot−1) and (Ot, Ot−2), respectively.

B. Results of Comparison

a) Compared quality of models: The quality of models
was compared by a MC study. Three sets of 200 stochastic
simulations (with identical initial conditions) of the dynamic
system were made. In each simulation, both, the mixture ratio
and the standard mixture models were learnt recursively on
500 observations. Those were generated by the real model
MR(Ot|ψt), which was different for each set of simulations:

1) The real model was the mixture ratio model with param-
eters ΘR ∈ Θ generated randomly for each simulation,
i.e. MR(Ot|ψt) = MJ(Ot|ψt,ΘR) (16).

2) The real model was the standard mixture model with
parameters ΘS ∈ Θ̄ generated randomly for each
simulation, i.e. MR(Ot|ψt) = MC(Ot|ψt,ΘS) (17).

3) The real model was the mixture ratio model with pa-
rameters ΘF ∈ Θ, which were fixed for all simulations
giving true dynamic weights wc(ψt) , i.e. MR(Ot|ψt) =
MJ(Ot|ψt,ΘF ) (16).

The initial statistics V0 = (v0, (V0;c)c∈c) describing prior
information about the parameters were set to

v0 = 1 V0;c = 1 c ∈ c (18)

for both models, which express no prior information about the
parameters. The initial regression vector ψ0 was set to

ψ0 = (O0, O−1, O−2) = (|O|, |O|, |O|). (19)

The values of Kullback-Leibler divergence for both mod-
els (at the end of the simulation), KL200(PR||PJ) and
KL200(PR||PC), were studied (see (15)). They were compared
by their differences

∆ = KL200(PR||PJ)−KL200(PR||PC). (20)

PR(O1, ..., Ot, A1, ..., At|ψ0), PJ(O1, ..., Ot, A1, ..., At|ψ0)
and PC(O1, ..., Ot, A1, ..., At|ψ0) denote the joint pds for the
real model, the mixture ratio model and the standard mixture
model respectively (cf. (13)).

The results are summarized in Table I and in Figure
1. For the illustration, Figure 2 displays time-evolution of
Kullback-Leibler divergence for both models, KLt(PR||PJ)
and KLt(PR||PC) (15), in one of the simulations.

To illustrate the truly dynamic property of the mixture ratio
model, the Figure 3 shows the time-evolution of the weight
of the first component w1(ψt,ΘR), (16), of the real model
during one simulation.

b) Compared effects of forgetting: During each of the
simulations, the effects of forgetting factor were also com-
pared. The learning with the mixture ratio model was done
with dynamic forgetting factor, see in Section II, as well as
with fixed forgetting factors λt = 1, λt;1 = 1, λt;2 = 1 (which
implies no forgetting). Let PJ(O1, ..., Ot, A1, ..., At) denote
the joint pd for the model with fixed forgetting factor.
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Fig. 1. Histograms of KL200(PR||PL) (15), N ∈ {J,C} = {blue, red}. The
rows corresponds to the sets of three simulations introduced in the beginning
of this section: the 1-st column stands for the mixture ratio model with random
parameters ΘR for each simulation; the 2-nd column stands for the standard
mixture model with random parameters ΘS for each simulation; the 3-rd
stands for the mixture ratio model with fixed parameters ΘF having truly
dynamic weights wc(ψt).

TABLE I
SAMPLE STATISTICS OF ∆ (20).

Simulated Case 1) 2) 3)

Mean -0.7001 -0.6029 -9.1191
Median -0.7818 -0.5957 -9.0598
Minimum -3.2138 -4.0519 -16.1047
Maximum 4.9534 1.9341 -4.5774
Standard Deviation 1.0583 0.9377 2.0317

The columns belongs to the simulations carried with different real models
discussed in the beginning of this section: the 1-st column stands for the
mixture ratio model with random parameters ΘR for each simulation; the
2-nd column stands for the standard mixture model with random parameters
ΘS for each simulation; the 3-rd stands for the mixture ratio model with fixed
parameters ΘF having truly dynamic weights wc(ψt).
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Fig. 2. The figure shows the time-evolution of the Kullback-Leibler diver-
gence of the ratio mixture model (16) KLt(PR||PJ ) (dashed line) and the
standard mixture model (17) KLt(PR||PC) (solid line) (see (15)) in one of
the simulations of the MC study for the third type of simulation - the mixture
ratio model with fixed parameters ΘF having truly dynamic weights wc(ψt).

The Kullback-Leibler divergences KL200(PR||PJ) and
KL200(PR||PJ), as well as the increments 4

KL(PR||PJ) = KL200(PR||PJ)−KL199(PR||PJ), (21)

KL(PR||PJ) = KL200(PR||PJ)−KL199(PR||PJ), (22)

were studied and the results are summarized in Table II.

4The increments KL(PR||PJ )) = KL200(PR||PJ ) − KL199(PR||PJ )
and KL(PR||PJ )) = KL200(PR||PJ ) − KL199(PR||PJ ) describe the
quality of the learnt predictors for the last observation.
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Fig. 3. The figure shows the time-evolution of the first dynamic component
weight w1(ψt,ΘR) (16) of the real model in one of the simulations of the
MC study.



TABLE II
MC STUDY

KL200(PR||PJ ) KL(PR||PJ ))

−KL200(PR||PJ ) −KL(PR||PJ ))

mean 0.5733 0.000773
median 0.4800 0.000714

minimum -0.8155 -0.0035
maximum 3.6706 0.0077

standard deviation 0.7026 0.0024

The table shows outcomes of the MC study comparing the quality of the
mixture ratio (16) model with dynamic forgetting and the mixture ratio
model with no forgetting. The comparison is made by the values of the
differences of the respective Kullback-Leibler divergences KL200(PR||PJ )−
KL200(PR||P̄J ), as well as the the differences of the Kullback-Leibler
divergences for the last observation (see (15), (21) and (22)). The mean,
median, minimum, maximum and standard deviation were computed from
the outcomes of 100 simulations.

The Figure 4 shows the time-evolution of the Kullback-
Leibler divergence KLt(PR||PJ) and
KLt(PR||PJ) as well as the time-evolution of the dynamic
forgetting factors λt, λt;1 and λt;2 in one of the simulations.

c) Discussion: The carried MC study shows several
results. If the modelled system is truly dynamic with dynamic
weights of the mixture components, the standard mixture
model (described in detail in [18]) is not sufficient to model
such a system. The results in Table I shows, that even the
“minimum“ row (corresponding to the best simulation in the
MC study for the standard model) suggests significantly higher
quality of the mixture ratio model over the standard mixture
model. Figure 2 illustrates this result.

Figure 3 demonstrates, that even for relatively simple two-
component model, the dynamic weights can vary significantly
during a simulation. This property of the ratio mixture model is
potentially suitable for modeling non-linear stochastic systems.

The MC comparison of the dynamic forgetting factors
proposed in Section II with fixed forgetting factors λt =
λt;c = 1, c ∈ c (i.e. without forgetting), summarized in Table
II, indicates decreased quality of the model with dynamic
forgetting. Thus, the use of proposed dynamic forgetting
factors remains as an open problem.

VI. CONCLUSION

In this work, a very flexible, but yet uncosindered model set
of mixture ratios with components from exponential family,
was build. The approximate Bayesian learning, presented in
[3] and summarized in Section II, was tested for the mixture
ratios models.

The mixture ratio models with Markov chain components,
as one of the important members of EF, were closely ex-
amined. The system model for the Markov chain with the
Dirichlet conjugated prior pds with the learning algorithm
from [32] was considered.

In Section V, the MC study comparing the mixture ratio
model with the standard mixture model, built in [18], was
made. The results of the study show that:
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Fig. 4. The first row shows the time-evolution of the Kullback-Leibler
divergence of the ratio mixture model with dynamic forgetting, KLt(PR||PJ )
(dashed line), the ratio mixture model with no forgetting KLt(PR||PJ ) (solid
line) (16), the second row shows the time-evolution of the dynamic forgetting
factors λt, λt;1, λt;2, respectively. Both illustrates one of the simulations of
the MC study.

• the numerical approximations included in learning, suf-
fice for an effective learning of the simulated system
model (at least for low-dimensional systems),

• the standard mixture model is dominated by the proposed
mixture ratio model when applied on truly dynamic
system with dynamic component weights,

• the time-evolution of the component weights of the
ratio mixture model can be significant even for low-
dimensional models, which indicates the potential suit-
ability for modeling of non-linear stochastic systems,

• the proposed dynamic forgetting factors, as a counter
measure to the accumulation of approximation errors, did
not provide better model and needs to be improved in the
future.

The Section V also provides a general way how to compare
quality of prediction of probabilistic models which is not



limited only to the mixture models.
Many challenging tasks remains to be studied, in particular:

i) studying other important members of EF, such as Gaussian
mixtures, ii) examining the suitability of the proposed numer-
ical approximations for high-dimensional models, iii) testing
dynamic forgetting factors for simulations with more obser-
vations and possibly modifying it, iv) testing the proposed
ratio mixture model with real data in some real-world scenario,
including active interaction with the system and optimization
of the strategy of a decision maker.
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L. Tesař. Optimized Bayesian Dynamic Advising: Theory and Algo-
rithms. Springer, 2006.

[20] D.F. Kerridge. Inaccuracy and inference. J. of the Royal Statistical
Society, B 23:284–294, 1961.

[21] R. Koopman. On distributions admitting a sufficient statistic. Trans. of
Am. Math. Society, 39:399, 1936.

[22] W. Mason, J.W. Vaughan, and H. Wallach. Special issue: Computational
social science and social computing. Machine Learning, 96:257–469,
2014.

[23] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[24] P. Sadghi, R.A. Kennedy, P.B. Rapajic, and R. Shams. Finite-state

Markov modeling of fading channels. IEEE Signal Processing Mag-
azine, 57, 2008.

[25] L.J. Savage. Foundations of Statistics. Wiley, NY, 1954.

[26] A. Wald. Statistical Decision Functions. John Wiley, New York, London,
1950.

[27] M. Wiering and M. van Otterlo, editors. Reinforcement Learning: State-
of-the-Art. Springer-Verlag, 2012.

[28] I. Mez. Some infinite sums arising from the Weierstrass Product
Theorem. Applied Mathematics and Computation. 219: 98389846, 2013.

[29] A.A. Markov. Extension of the limit theorems of probability theory to
a sum of variables connected in a chain. reprinted in Appendix B of:
R. Howard. Dynamic Probabilistic Systems, volume 1: Markov Chains.
John Wiley and Sons, 1971.
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