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ABSTRACT

We study out-of-sample returns on 153 anomalies in equities documented in the

academic literature. We show that machine learning techniques that aggregate

all the anomalies into one mispricing signal are profitable around the globe and

survive on a liquid universe of stocks. We investigate the value of international

evidence for selection of quantitative strategies that outperform out-of-sample.

Past performance of quantitative strategies in regions other than the United

States does not help to pick out-of-sample winning strategies in the U.S. Past

evidence from the U.S., however, captures most of the return predictability

outside the U.S.
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The empirical asset pricing literature is predominantly built on evidence from

the financial markets in the United States. This phenomenon is termed "aca-

demic home bias puzzle" by Andrew Karolyi (2016), who documents that only

16% of the empirical papers published in the four leading finance journals inves-

tigate markets outside the United States. Yet essential research questions can be

answered very differently when looking at the international evidence. One such

question is the post-publication decline in the returns of anomalies. McLean and

Pontiff (2016) document a 58% decrease in post-publication profitability relative

to the in-sample profitability of portfolios based on the underlying anomalies.

Jacobs and Müller (2020), however, show that the U.S. is the only country with

a reliable post-publication decline in the returns of anomalies, emphasizing the

importance of international evidence in asset pricing. On the other hand, in case

of predictive regression for stock returns, evidence from the U.S. and around the

globe is more similar. Green et al. (2017) in the U.S., and Jacobs and Müller

(2018) internationally, find that combining anomalies into one mispricing signal

using the least squares approach leads to superior out-of-sample risk-adjusted

returns relative to focusing on individual anomalies. The benefit of combining

individual anomalies through predictive regressions is further amplified by Gu

et al. (2020), who conclude that more sophisticated machine learning methods

offer higher out-of-sample predictability in the U.S. compared to the traditional

methods in Jacobs and Müller (2018).

In this study, we examine international evidence in machine learning-based

predictive regressions for stock returns using anomalies as predictors (mispric-

ing strategy hereafter). We offer two main contributions. Firstly, using machine

learning models instead of traditional linear models leads to substantial and su-

perior out-of-sample long/short returns on the mispricing strategy both globally

as well as in all the individual regions. This profitability is documented among

large-cap stocks, after accounting for transaction costs, as well as short-selling

constraints, and provides strong support to the findings of Gu et al. (2020). Sec-

ondly, unexpectedly, extending the estimation sample with observations from
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outside the U.S. does not benefit U.S. investor leveraging predictive-regression-

based strategies using firm characteristics. The benefits of a larger estimation

sample is offset by the region-specific differences. The differences across regions

are visible in a heterogeneity of marginal importance of variables, which however

does not translate into profitability differences in the mispricing strategy.

The mispricing strategy is based on the estimated historical relation be-

tween the past characteristics and future returns of individual stocks in the

U.S., Japan, Europe, and Asia Pacific. We use 153 anomalies documented in

the literature. Anomaly describes an individual stock characteristic that was

shown to predict future returns in cross-section. These anomalies are, for ex-

ample, earnings over price of Basu (1977), accruals of Sloan (1996), R&D over

market equity of Chan et al. (2001), and composite equity issuance of Daniel

and Titman (2006).

The historical relationships are typically linearly approximated using Fama

and MacBeth (1973) least squares regressions in the literature, as in Lewellen

et al. (2015), Green et al. (2017), or Jacobs and Müller (2018). The topic

of this study is the closest to Jacobs and Müller (2018, 2020), who analyze

returns on anomalies outside the U.S. Our study is, however, different in many

aspects. Firstly, it focuses on a liquid universe of stocks that contains stocks with

capitalization in the top 95% of the overall market’s capitalization and dollar

trading volume over the previous year in the top 95% of the overall market’s

volume in the individual regions. Only about 1000 of the most liquid stocks pass

the criteria in the 2010s in a given month in the U.S. Excluding small-cap stocks

leads to results more relevant to investors and limits the effect of microstructure

noise.1

Secondly, we investigate the role of international evidence in the strategies.

Jacobs and Müller (2018, 2020) focus solely on strategies that use data in the

respective regions without evaluating the possible benefits of using global data

to predict future returns.
1See Asparouhova et al. (2010) for a description of the effect of microstructure noise.
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Thirdly, the prediction methods differ among the studies. Our study is the

closest in methodology and application of machine learning techniques to Gu

et al. (2020), who show that machine learning methods significantly outperform

the linear approximation in the U.S. We extend the use of machine learning

methods from the U.S. to international markets. Specifically, we compare the

baseline least squares regressions to more complex gradient boosting regression

trees, random forests, and neural networks. We find that the machine learning

methods lead to significant gains in performance of the mispricing strategy in

all the regions, which provide support for the conclusions of Gu et al. (2020) in

true out-of-sample fashion.

A large difference with respect to Gu et al. (2020) is that we allow only

anomalies documented in the previously published studies to enter predictions

in each year. That is, the information set of anomalies available to investors

at the time they make an investment decision. Ignoring this assumption can

lead to illusory profits that cannot be obtained in practice. Another difference

is their focus on the full universe of stocks, which has profound effects on their

conclusions. The most important anomalies in their estimations are liquidity,

size, and return over the past month (short-term return reversal). Asparouhova

et al. (2010) argue that these variables are connected to future returns mainly

through microstructure biases and have nothing to do with the true predictabil-

ity of stock returns that is of interest to investors.2

An alternative potential explanation for the profitability of the mispricing

strategy could be the well-documented limits to arbitrage from the anomalies

literature (e.g., Stambaugh et al., 2012; Avramov et al., 2013; Chordia et al.,

2014; Hou et al., 2018).

The importance of imposing economic restrictions on the results of machine

learning models in the asset pricing is emphasized by Avramov et al. (2019).

Generative adversarial networks and recurrent neural network with long short-

term memory architecture of Chen et al. (2019), instrumented principal compo-
2See Roll (1984) for a simple model decomposing stock returns into microstructure noise

and changes in true prices.
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nent analysis of Kelly et al. (2019), conditional autoencoders of Gu et al. (2019),

as well as Gu et al. (2020) offer weaker returns predictability under the economic

restrictions. We address these concerns primarily by focusing on the large cap

universe. Hou et al. (2018) show that most of the individual anomalies are much

weaker when microcaps are eliminated from the U.S. investment universe. How-

ever, we find that the profitability of the mispricing strategy is substantial, even

though it is studied on the liquid universe of stocks. Additionally, we examine

short-selling constraints and transaction costs.

It is often impossible to short-sell certain stocks due to an insufficient supply

of borrowable shares, but Stambaugh et al. (2012) describe how the profitability

of anomalies often comes precisely from the short leg of the portfolios. Therefore,

we decompose the returns on the long-short portfolios into long-only and short-

only components. Short-selling constraints however cannot fully explain the

profitability as both the long-only and short-only legs of the mispricing strategy

offer a profitable investment opportunity with respect to market returns.

Moreover, we estimate the transaction costs associated with machine learning-

based strategies leveraging predictive power of anomalies internationally for the

first time. Novy-Marx and Velikov (2015) study transaction costs on a range

of anomalies in the U.S. and conclude that the transaction costs are important

mainly for high-turnover anomalies whose returns net of transaction costs often

turn negative.3 Our mispricing strategy remains profitable across the regions

even after accounting for the transaction costs. The profitability of the strategy

is therefore not illusory and can be capitalized by the investors.

Finally, we examine the value of international evidence for the prediction of

out-of-sample returns on the anomalies. Harvey et al. (2016) and Hou et al.

(2018) show that many anomalies cannot be replicated and many others are

significant only due to the in-sample data snooping. New anomalies identified

in the literature are based on the same historical datasets in the U.S., which can
3Frazzini et al. (2012) demonstrated that real-life transaction costs for large portfolio man-

agers are much lower than assumed by academics. The transaction costs can be further lowered
by appropriately optimized portfolio rebalancing.
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lead to false positive discoveries. International data provide new information

with respect to the U.S. and it could, therefore, limit the number of false dis-

coveries.4 Using international data could also simply lead to different insights

compared to the results from the U.S. as is the case with the stability of return

predictability of anomalies over time, see Schwert (2003), Chordia et al. (2014),

or McLean and Pontiff (2016) for the U.S. evidence and Lu et al. (2017) or

Ilmanen et al. (2019) for international evidence.

Another reason we use international data is to increase sample size, which

in turn leads to more precise estimates under certain conditions. Central limit

theorem establishes that the confidence interval around a point estimate shrinks

with the square root of a number of observations. In the simplest version of cen-

tral limit theorem, it is assumed that the data are identically and independently

distributed. There could be a problem in that some anomalies are specific to

the U.S. as they depend on the local institutional setting. For example, accruals

depend on country-specific accounting rules. The institutional uniqueness then

limits the value of data outside the U.S. for predictions in the U.S. as it breaks

the assumption on the identical distribution. In short, the usefulness of interna-

tional data depends on the structure of drivers of stock returns around the globe.

If the drivers are primarily global then the larger international sample should

be beneficial. On the other hand, if the drivers are primarily local then the

larger international sample should have little benefit. The role of international

evidence for the mispricing signal is related to a variety of risk-factor structures

outside the U.S. The international evidence is likely to add little value if there

is no proximity of risk-factor structures across the regions. For investigations of

the risk-factor structure of international stock returns, see Rouwenhorst (1999),

Griffin (2002), Griffin et al. (2010), Hou et al. (2011), Fama and French (2012),
4Note that many anomalies have been individually studied in the international markets.

For examples of studies investigating cross-sectional predictability of individual signals outside
the U.S. see Rouwenhorst (1998), McLean et al. (2009), Chui et al. (2010), Lam and Wei
(2011), Barber et al. (2013), Titman et al. (2013), and Watanabe et al. (2013). The goal here
is not the study of performance of the anomalies outside of the U.S., but rather the use of
international historical performance of the anomalies to better select anomalies that are likely
to outperform in the future.
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Fama and French (2017), and Bartram and Grinblatt (2018).

We find that there is only a little gain in performance of the mispricing

strategy in the U.S. when the strategy’s estimation sample is extended from the

U.S. stocks to international stocks. The profitability of the mispricing strategy

in the other regions, however, improves when we extend the estimation sample

from the U.S. stocks to stocks in the respective regions. The mispricing of stocks

estimated on historical data in the U.S. captures most of the predictability of

stock returns outside the U.S. Taken together, our results imply that both local

and global drivers of stock returns are important.

Our paper is structured as follows. We start with the data and methodology

description in Section 1. The profitability of the mispricing strategy estimated

in the U.S. is examined in Section 2 and the value of international evidence in

Section 3. Finally, in Section 4, we examine the effect of transaction costs on

the profitability of the mispricing strategy.

1 Data and methodology

1.1 Data

Our source of the accounting and market data for the U.S. is the Merged

CRSP/Compustat database from the Wharton Research Data Service (WRDS).

The sample spans from 1963 to 2018 period and contains all NYSE, AMEX, and

NASDAQ common stocks (CRSP share code 10 or 11). The returns are adjusted

for delisting following guidance as in Hou et al. (2018).5

The international data are sourced from Reuters Datastream. They are fil-

tered following Ince and Porter (2006), Griffin et al. (2010) and Lee (2011).

We manually check the names of the shares in the database for over 100 ex-
5If the delisting is on the last day of the month, returns over the month are used. The

relevant delisting return is then added as a return over the next month. Delisting return
(DLRET) from monthly file is used if it is not missing. (1 + retcum) ∗ (1 +DLRETd)− 1 is
used if it is missing, where retcum is the cumulative return in the given month of delisting and
DLRETd is delisting return from the daily file. Lastly, the gaps are filled with (1+ retcum) ∗
(1 + DLRETavg) − 1, where DLRETavg is the average delisting return for stocks with the
same first digit of delisting code (DLSTCD).
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pressions describing their share class. Only the primary quotes of the ordinary

shares of the companies are retained, with few exceptions where fundamental

data in Datastream are linked to other share classes.6 Real estate investment

trusts (REITs) are excluded from the sample. All the international returns and

financial statements are converted to U.S. dollars. The daily returns are deleted

for days when the stock market is closed in a given country. The quality of

data is further improved with procedures described in Tobek and Hronec (2018)

and covered in Appendix A. Tobek and Hronec (2018) study the implications of

the choice of the fundamental database on the measurement of performance of

individual fundamental anomalies. They show that the statistical significance

of the individual anomalies varies across Datastream and Compustat. The re-

search inference can therefore change when a different fundamental database

is used. The differences across the databases are mainly due to imperfect his-

torical fundamental coverage. Studies of the aggregated performance of the

anomalies, however, do not suffer from these problems. Therefore, our analysis

is not impacted.

The sample includes 23 developed countries. The countries are sorted into

four regions: the U.S.; Europe (E) — Austria, Belgium, Denmark, Finland,

France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Norway,

Portugal, Spain, Sweden, Switzerland, and the United Kingdom; Japan (J); and

Asia Pacific (AP) - Australia, New Zealand, Hong Kong, and Singapore.

Another important source of our data for the anomalies is the Institutional

Brokers’ Estimate System (I/B/E/S), which is obtained from WRDS. I/B/E/S

is merged on Datastream directly as it is one of the databases provided by

Thompson Reuters and Datastream includes the respective tickers in its static

file. The merger with CRSP is done indirectly through CUSIPs. The databases

are merged on eight-digit CUSIP and then on six-digit CUSIP if unsuccessful.

The success of the merger is checked manually by comparing the quoted tickers

on the exchanges with the actual names of the companies. All the variables in
6We follow the description in Griffin et al. (2010) on the classification of common shares.
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I/B/E/S are transformed to U.S. dollars with original Reuters exchange rates,

which are provided by WRDS.

We focus on a very liquid universe of stocks. This universe covers only stocks

that are both (a) within the top 95% of the overall capitalization of all stocks

in each region at the end of previous month and (b) within the top 95% of the

overall dollar trading volume over the previous 12 months of all stocks in each

region.7 All the stocks are required to have a price larger than $1 ($0.1 for

Asia Pacific) at the end of the previous month. We select the size of the stock

universe to provide an as liquid universe as possible while retaining a reasonable

number of stocks for the estimation.

Our focus on the liquid universe of stocks makes the findings more realistic.

The stocks with small capitalization (micro-caps) account for only a small frac-

tion of the overall capitalization of the market and often cannot be traded at

significant volumes due to their high illiquidity.

Table 1 shows the average, minimum, and the maximum number of stocks

in the cross-section of the individual regions. There are on average about 1,100

stocks in the U.S. that satisfy the inclusion criteria for the liquid universe. The

average number of stocks satisfying the criteria is even smaller in the other

regions. The average capitalization of stocks in the liquid universe after July

1995 is $12 billion in the U.S., $12 billion in Europe, $5 billion in Japan, and $5

billion in Asia Pacific. The average size of the stocks in the sample is therefore

quite balanced over the regions.

1.2 Anomalies

The sample includes 153 anomalies published in the literature. There are 93

fundamental, 11 I/B/E/S, and 49 market friction anomalies in the sample. The

anomalies come almost exclusively from the top finance and accounting journals.

Figure 1 shows the number of the published anomalies over time. It also shows
7Trading volume data are often not available before year 2000 for international stocks and

before 1980 for NASDAQ stocks . A stricter condition on capitalization being within the top
90% of the overall capitalization of all stocks is used instead.
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the number of anomalies whose in-sample period in their respective studies has

ended. The number of anomalies gradually increases over time without any

apparent jumps. The full list of the anomalies is provided in Appendix B.

We primarily include anomalies described in Harvey et al. (2016), McLean and

Pontiff (2016) and Hou et al. (2018). We focus on anomalies that are valid in the

cross-section of stocks to be able to form long-short portfolios out of them. Any

anomaly that is specific to the U.S., and which therefore cannot be constructed

outside the U.S., are excluded.8

We update the fundamental signals for each month with financial statement

information from financial years ending at least six months prior. For trading

information-based signals, such as market cap, we use the latest data available.9

Some anomalies, such as the Herfindahl Index of Hou and Robinson (2006),

require classification of industries for individual firms. The choice in the original

papers is mostly with respect to the Standard Industrial Classification (SIC).

We sort industries into 19 groups according to the third level Datastream classi-

fication. The broader industry groups should make the results more robust and

consistent across the data vendors. The industry classification in Datastream

is available only from the static file, which means that only the latest values

are available. Data vendors may slightly differ in the classification of individual

firms over time because the differences between individual SIC categories are

often subtle.
8Examples of excluded are anomalies are those that are:
• based on quarterly fundamental data (since there is only short and problematic coverage

internationally)
• connected to hand-collected data in the U.S. such as IPOs, SPOs, and mergers.
• requiring segment information and NBER data.
• institutionally specific, such as, share turnover or effective tax rate.

Some fundamental anomalies could not be implemented in Datastream as the required items
are missing.

9We test the impact of the monthly updating of fundamental signals. Annual updating of
the fundamental signals leads to identical conclusions.
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1.3 Mispricing strategy

In this subsection, we discuss the strategy that shrinks all the anomalies into

a single mispricing signal ("mispricing strategy"). Lewellen et al. (2015) define

the prediction problem as follows: the goal is to devise a forecasting method that

predicts which stocks are likely to have the highest returns in the next month

and which have the lowest based on stock characteristics (the cross-sectional

anomalies). To do this, we regress monthly returns on individual stocks on

their past characteristics. The future returns are then predicted from the latest

available characteristics. We estimate the regressions by pooling all the available

stock returns up to the date of portfolio formation. The past characteristics

have to be available before the start of the measurement period of the returns.

The characteristics are normalized to their cross-sectional quantiles within each

region to reduce problems with outliers.

To summarize, we estimate the following equation

rit = f(xi,t−1,1, xi,t−1,2, ..., xi,t−1,M ) + εit, (1)

where rit is return on stock i in month t and xi,t−1,1 is the cross-sectional

quantile of a given anomaly (characteristic) for stock i available before the start

of month t. The returns are demeaned by subtracting average cross-sectional

returns in every region-month. We first discuss a simpler case with linear f().

It is then extended to a more general structure using machine learning. The

machine learning exercise follows Gu et al. (2020), who apply a suite of standard

machine learning algorithms and show that they outperform the linear models

in the U.S. Readers are referred to Gu et al. (2020) or any advanced machine

learning textbook for a detailed theoretical description of the machine learning

methods and only basic definitions are covered here.10

The machine learning methods have some benefits and some negatives. They

provide better out-of-sample forecasts through a limitation of in-sample over-
10See, for example, Friedman et al. (2001) for the textbook treatment.
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fitting. They also allow for a very general interaction between the explanatory

variables. This general form, however, makes the fitted models hard to esti-

mate and the estimates hard to interpret due to the black-box approach. The

intractability of the estimates is not a large concern in this study since even the

linear method becomes intractable given the number of exogenous variables.

Variable importance is examined in Subsections 3.3 and 3.4.

A crucial part of the application of the machine learning methods is hyper-

parameter optimization or "tuning." Standard k-fold cross-validation does not

respect temporal ordering, i.e., in k−1 out of k folds predictability evaluation on

validation sample is done using observations from the future in training. There-

fore we split the historical sample into subsequent mutually exclusive training

and validation samples each time models are retrained. The validation sample

consists of the most recent 11-year period at the point-in-time when the model

is retrained each December. The training sample always starts with the begin-

ning of the dataset and ends one month before the validation sample starts. It

is therefore expanding over time.

We estimate the model using the training sample with various hyperparam-

eters, and we measure its predictive performance using the root-mean-square

error via the hyperparameter grid search on the validation sample. Hyperpa-

rameters with the best predictive performance are then selected for the esti-

mation. As an example, the initial historical sample period is January 1963 to

December 1994 and it is split into a training sample of 21 years (1963-1983)

and validation sample of 11 years (1984-1994). All models are re-estimated at

the end of each year. The training sample is expanded by one year and the

length of the validation sample is kept the same.11 The set of possible hyper-

parameters for individual machine learning methods is provided at the end of

the specific model descriptions in the following subsections. The evolution of

selected hyperparameters for individual models is in Appendix C.
11The second historical sample period starts in January 1963, ends in December 1995 and

it is split into a training sample of 22 years (1963-1984) and a validation sample of 11 years
(1985-1995).
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1.3.1 Weighted least squares

In the benchmark model, we use weighted least square estimation to de-

termine a linear approximation of the relationship in equation (1). That is, we

estimate a weighted least squares regressions of the stock returns on the rescaled

characteristics,

rit = β0 + β1xi,t−1,1 + β2xi,t−1,2 + ...+ βMxi,t−1,M + εit, (2)

where the weight on individual observations is the inverse of the number of

stocks in each time period and region. The weights are introduced to give equal

importance to each time period. The weighting makes the moment conditions

equivalent to the Fama and MacBeth (1973) regressions in Lewellen et al. (2015).

The linear specification has already been applied in an international context in

Jacobs and Müller (2018, 2020). It is therefore selected as a benchmark for the

more complicated machine learning methods.12

1.3.2 Penalized weighted least squares

The linear regression model with many explanatory variables can overfit the

realization of past data since it has many degrees of freedom. One way to reduce

the overfitting is to introduce L1 and L2 penalties on the coefficients during the

estimation. There are two hyperparameters involved: α and λ. α ∈ [0, 1]

is used to assign relative weights to the L1 and L2 penalties and λ controls

the magnitude of penalization. The case with α = 1, i.e., just L1 penalty,

is denoted as the least absolute shrinkage and selection operator (LASSO) and

was introduced in Tibshirani (1996). Tuned hyperparameters are α, considering

values in {0, 0.1, . . ., 0.9, 1} and λ, considering values in {0.001, 0.0001}.

The regression tree family of methods is easy to estimate and requires a few
12Capitalization-weighted regressions as in Green et al. (2017) have also been tried. The

capitalization-weighting puts lower weight on small cap stocks and is more suited for value-
weighted portfolios. The weighting did not outperform the selected method and the results
are therefore not reported here.
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specified hyperparameters. One such tree is depicted in Figure 2. The deci-

sion tree consists of nodes (the round-edged boxes) and outcomes (sharp-edged

boxes). The outcomes are in percentage return per month.13 The tree starts

with a decision on whether a given stock is within the smallest 40% of stocks

in the cross-section. The decision can then continue to the split based on the

book-to-market ratio. The depicted tree is of depth 3, which is the maximum

number of nodes in the longest branch. The tree allows for arbitrary cross-

effects between the variables up to the (depth - 1) degree. We deal mainly with

relatively shallow trees. The shallow trees are nonetheless able to capture var-

ious important interactions between the explanatory variables. random forest

and gradient boosting regression trees are based on a combination of the indi-

vidual trees. These methods cannot be easily visualized but they lead to better

out-of-sample forecasting performance relative to simpler regression trees.

1.3.3 Random forest

Random forest is one of the most widely used ensemble tree methods. It com-

bines forecasts from the individual decision trees that are based on subsamples

of the training data. Explanatory variables are also subsampled in the individ-

ual trees to increase variety among the individual forecasts. Random forest is

frequently among the top 10% of best-performing machine learning methods in

various competitions and it is therefore a very robust method that is powerful

in most of the settings. It requires only a few specified hyperparameters. The

specification of the hyperparameters is not very important for its performance.

It can therefore be used almost out-of-box. This is a large benefit with respect to

neural networks where performance heavily depends on the model specification.

The largest downside is that its estimations are time-consuming.

Tuned hyperparameters are Number of trees, considering values in {200, 300,

400, 500, 600} and Max depth of the tree, considering values in {1, . . ., 8, None},

where None means unlimited depth of the tree.
13The numbers are arbitrary and do not reflect real data.
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Other hyperparameters are fixed. The trees use randomly selected 50% of

the overall training observations and the square root of the overall available

explanatory variables. We employ a minimum node size of 0.1%, which is large

enough to limit over-fitting but small enough to allow the method to approxi-

mate the true expected returns on stocks.14

1.3.4 Gradient boosting regression trees

The gradient boosting regression trees (GBRT) of Friedman (2001) rely on

a different way of combining the regression trees than random forest. All the

trees in a random forest are chosen independently, whereas they are selected in

a dependent fashion in GBRT. The idea is to estimate a tree and use only a

fraction of its fit for forecasts. The next iterations we conduct proceed on resid-

uals of the dependent variable after we remove the fraction of the fitted values

in the previous iteration. Shrinkage of the individual predictions guarantees

that the learning can correct itself if the fitted values are selected suboptimally

in some iterations. The fraction of individual predictions that is retained for

the forecast is called a learning rate. The number of the learning iterations,

given the learning rate, then determines how closely the particular realization

of the sample from the whole population (the training sample) is over-fitted.

A selection of fewer iterations reduces the risk of over-fitting (estimation error)

but decreases the overall fit of the estimation (i.e., introduces an approximation

error). It is therefore important to select the number of iterations with optimal

estimation and approximation error trade-off. One way to do this is to rely

on cross-validation. The method requires a specification of the learning rate,

number of iterations (trees), and the maximum depth of the trees.

We conduct our analysis with a fast version of the gradient boosting — ex-

treme gradient boosting (XGBOOST) of Chen and He (2017). The reason for

this is that it is ten times faster to estimate and thus requires far less com-

putational power. Gu et al. (2020) benchmark the different machine learning
14Ignoring this parameter completely, and leaving unlimited node size, leads to almost

identical results. It is thus not an important assumption.
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methods and only neural networks provide significantly better forecasts than

GBRT. GBRT is therefore a good candidate for our empirical application and it

captures most of the gains from the machine learning methods over the standard

finance methods.

Tuned hyperparameters are Number of trees, considering values in {50, 100,

200, 300, 400, 500}, Maximum depth of the trees, considering values in {1, . . .,

9} and learning rate, considering values in {1%, 2.5%, 5%, 10%}.

1.3.5 Neural networks

Arguably the most powerful machine learning method of today is (deep)

neural networks. Gu et al. (2020) show that they outperform any other method

if they are optimally specified. The neural networks are a very flexible tool

that encompasses many specifications.15 The flexibility is also their largest

disadvantage as it requires long experimentation and possible over-fitting of the

sample.

Sequential neural networks consist of layers of neurons with information

flowing between the layers in only one direction, from the input layer to the

output layer. The information is fed in batches consisting of n sample points.

Processing of the full training sample is called an epoch. The speed of change

in the estimated parameters with new processed batches is determined through

the learning rate. It is often an advantage to slow the learning rate over time

to allow for the capture of finer details. We estimate the neural networks with

back-propagation, along with a stochastic gradient descent version with adaptive

moment estimation called Adam.16

In figure 3, we plot one of the neural network specifications corresponding

to two architectures: NN1_wide or NN1_narrow. They are based on three

layers. The initial layer has 150 neurons. The second hidden layer also has

150 neurons. Overall, six architectures are considered during the tuning of the

hyperparameters and all of them have only one neuron in the last output layer.
15A linear regression is the simplest specification.
16See Kingma and Ba (2014).
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• NN1_wide: One hidden layer with 150 neurons each.

• NN1_narrow : One hidden layer with 32 neurons respectively.

• NN2_wide: Two hidden layers with 150 neurons each

• NN2_narrow : Two hidden layers with 32 and 16 neurons respectively

• NN3_wide: Three hidden layers with 150, 150, and 100 neurons in the

1st, 2nd, and 3rd hidden layer.

• NN3_narrow : Three hidden layers with 32, 16, and 8 neurons in the 1st,

2nd, and 3rd hidden layer.

Narrow architectures are three out of the five neural network specifications used

by Gu et al. (2020) and wide architectures are alternatives with a greater number

of neurons offering higher model capacity. The input layer and all hidden layers

use a rectified linear unit (ReLU) activation function while the last layer uses a

linear activation. Input into each layer is batch normalized.

Additional fixed hyperparameters are a batch size of 256, maximum number

of epochs equal to 25, and betas of 0.9 and 0.999 used in the Adam optimization.

Given the high model capacity of neural networks, regularization is of paramount

importance. We employ dropout, early stopping, and ensembles for the purpose

of regularization. For the dropout rate, we consider values of 0.001, 0.01, and 0.1.

Meta-parameter in early stopping callback is called patience and it determines

when to stop the learning process conditional on the lack of the validation-based

mean squared loss improvement in consecutive epochs. It is fixed at four. Fi-

nally, another callback called reduce learning rate on plateau is used to reduce

the learning rate by a factor of two when the validation-based mean squared

loss stops decreasing from one epoch to another. We produce the final fore-

cast from an ensemble of five estimated neural networks with different initial

random seeds. The combination forecast leads to a great improvement in the

performance of the mispricing strategy based on the neural networks.

17



1.4 Portfolio construction

The portfolios are constructed from the sorts of the predicted returns in

the individual regions. They are constructed as long-short and self-financing.

In the long leg of the strategy, stocks are purchased in the upper quintile of

the predicted next month’s returns. In the short leg of the strategy, stocks

short sold in the bottom quintile of the predicted next month’s returns. The

quintile breakpoints are selected to provide more robust results relative to decile

breakpoints. The portfolios are rebalanced every month based on signals from

the end of the previous month. The portfolio returns correspond to an investable

strategy that holds $1 in cash, invests $1 in the stocks that are likely to have the

largest return in the next month, and shorts $1 worth of stocks that are likely

to have the smallest return in the next month. The portfolios start in January

1995, unless stated otherwise.

A global strategy invests in stocks from all four regions. The global strategy

is again based on stocks in the extreme quintiles of the predicted returns in the

individual regions.

1.5 Liquidity measures

We use liquidity proxies to estimate transaction costs associated with invest-

ing into the mispricing strategy portfolios. The proxies are the Gibbs proxy of

Hasbrouck (2009), the closing quoted spread proxy of Chung and Zhang (2014),

and the VoV(% Spread) of Fong et al. (2017). They are defined in Appendix D.

We select these proxies to capture a fixed component of transaction costs

and ignore the variable component that measures the price impact of larger

orders. The variable component is very volatile and depends on the precise trade

execution algorithm of each asset manager. The large capitalization universe of

stocks reduces concerns about the variable component and it should be possible

to avoid any execution costs altogether through the use of limit orders.

All of the proxies have some missing observations. The missing observations
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are backfilled from other proxies. The quoted spread is used first for the backfill-

ing, followed by the VoV(% Spread), and the remaining missing observations are

backfilled with the Gibbs proxy. Less than 0.02% of the observations are missing

in all the three proxies and these observations are filled by 5% transaction costs.

2 Profitability of the mispricing strategy

estimated in the U.S.

In this section, we examine the performance of the mispricing strategy world-

wide. Jacobs and Müller (2018) show that the mispricing strategy estimated

with least squares leads to higher returns in both absolute terms and on a risk-

adjusted basis relative to the mixing of portfolios on individual anomalies. Gu

et al. (2020) document that the more sophisticated machine learning methods

provide higher out-of-sample predictability relative to the least squares method

in the U.S. We extend the machine learning methods to the international sample

to determine whether their benefits persist outside the U.S.

Table 2 presents the mean returns on portfolios created based on the mis-

pricing strategy. The regressions of stock returns on their characteristics are

fit on data available up to December each year and the future stock returns

are then predicted with the latest available characteristics for each of the next

12 months. The regressions are estimated with weighted least squares (WLS),

penalized least squares (PWLS), gradient boosting regression trees (GBRT),

random forests (RF), and neural networks (NN). The estimates in Table 2 are

based on the U.S. data going back to January 1963. Panel A in Table 2 shows the

characteristics of returns on self-financing long-short portfolios. The long-short

quintile portfolios invest in stocks in the top quintile of the predicted future

returns and short-sell stocks in the bottom decile of the predicted returns. The

reported portfolio returns are in percent per month and are from January 1995

to December 2018.

Panel A in Table 2 documents the striking profitability of the mispricing
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strategy across all regions. Diversification over the four regions (in the global

columns) further reduces the maximum drawdowns and increases the Sharpe

ratios for the mispricing strategy.

The t-stat wrt WLS, t-stat wrt PWLS, t-stat wrt GBRT, and t-stat wrt RF

rows provide t-statistics for difference in mean returns for the given two esti-

mation methods. Both the tree-based methods and neural networks outperform

simple least squares. In particular, neural networks outperform least squares in

all the regions for both mean returns and risk-adjusted Sharpe ratios. Neural

networks also have the smallest maximum drawdowns and investing in them is

therefore the least risky. Neural networks and random forest also significantly

outperform penalized least squares.

To understand the source of outperformance it is important to focus on

the differences between these methods. The key differences between the most

successful methods and more traditional methods are penalization, the inter-

action of predictive variables, and non-linearity. Penalization is used to solve

multi-collinearity and overfitting problems. The benefit of penalization is best

observed when comparing results from penalized least squares compared to the

simple least squares. Gradient boosting regression trees, random forests, and

neural networks further benefit from the non-linearity and possible interaction

of predictive variables. The results in Panel A in Table 2 provide some sup-

port for the benefits of adding penalization to least squares and introducing

non-linearity and variable interactions in the more complex methods.

The anomalies we use are different from anomalies used by Gu et al. (2020).

Furthermore, there are no macroeconomic predictors, industry dummies, or ex-

plicit interactions between stock-level characteristics and factors. The maximum

number of variables17 we us is 153, which is smaller than the 920 variables used

by Gu et al. (2020). Their variables are not filtered over time based on the pub-

lication date. Even though there is a different setup in both of these studies, the

profitability of the mispricing strategy in the U.S. region is comparable with the
17Only anomalies published before the time of estimation are considered.
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profitability of the machine learning portfolios constructed by Gu et al. (2020).

Our results, which are obtained in different empirical setting provide support

for Gu et al.’s (2020) findings.

In Figure 4, we plot the cumulative returns on the neural network estimation

method of the mispricing strategy in Panel A in Table 2. We find that there

is a small drop in return profitability around 2003 in the U.S. The mispricing

strategy is the least profitable in the European region on an equal-weighted

basis.

2.1 Long-only and short-only components of the strategy

Short-selling can be connected to large costs and sometimes even outright

impossible. That is why it might not be possible to replicate the returns on the

mispricing strategy in practice.18 In order to determine the role of short-selling

for the strategy’s y, we decompose the results of the long-short portfolios in Panel

A in Table 2 into the long-only and short-only components in Panel B and C.

We also decompose the long-short returns separately for the individual machine

learning methods. The long-only component can be compared to equal-weighted

and value-weighted returns on the whole market comprised of the liquid stocks,

as described in Subsection 1.1.

Panel B in Table 2 documents that the mispricing strategy is more profitable

than the whole market in all regions. The long-only component is responsible

for most of the returns on the mispricing strategy. The short-only component

then mainly serves as a hedge that increases the Sharpe ratio and lowers the

maximum drawdown. The annualized returns on the long-only component of the

mispricing strategy employing neural networks are about 5% a year larger than

returns on the market. The other machine learning methods also outperform

the market.
18Short-selling constrains should not be a large issue on our liquid universe of stocks. An-

drikopoulos et al. (2013) show that although some stocks cannot be short-sold in practice,
focusing only on those that can be short-sold does not statistically diminish returns on eight
quantitative strategies in the United Kingdom. They also show that short-selling costs are
small at about 1% annually in the United Kingdom.
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The more advanced machine learning methods outperform simple least squares

both on the long-side of the portfolio and on the short-side. To conclude, the

out-performance of the mispricing strategy is robust to short-selling constraints.

Even short-selling-constrained investors can therefore benefit from the strategy.

2.2 Risk-adjusted performance of the strategy

Thus far, our focus has been on the raw returns on the mispricing strat-

egy without accounting for any risk factors. Panel D in Table 2 presents the

performance of the long-short strategy as presented in Panel A in Table 2 af-

ter accounting for market returns and five Fama-French factors. The results in

Panel D in Table 2 show that accounting for market returns have little impact

on the performance of the strategy as the capital asset pricing model (CAPM)

alpha is close to the mean returns for all the estimation methods. This is ex-

pected, since the portfolios are long-short and thus close to market neutral by

construction.

The results are, however, very different when adjusting for the the five Fama-

French factors. Across the regions, the alphas are mostly insignificant for the

weighted least squares portfolio but become significant at 5% level for penalized

weighted least squares portfolio for all regions except Europe for the equal-

weighted portfolios. Since penalization is the only difference, it clearly shows

one part of the difference with respect to the traditional risk factors.

The difference between the mean returns and alphas is substantially smaller

for the machine learning methods than for the linear estimation methods. This

is true for the U.S. as well as internationally. The linear estimation methods

therefore lead to the mispricing signal that is close to the traditional risk factors.

On the other hand, due to the non-linear interactions between the predictive

variables, the gradient boosting regression trees, random forests and neural

networks are able to capture the predictive relationships that linear methods

are not able to.

To conclude, the profitability of the mispricing strategy is significant even on
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a risk-factor-adjusted basis and this holds true in all the regions. Looking at the

risk-adjusted performance of the mispricing strategy when employing different

underlying models further clarifies the reasons for the superiority of the machine

learning methods. Penalization and the non-linear interaction of the variables

lead to returns that are unrelated to the traditional risk factors.

3 The role of international evidence

The evidence thus far documents that the mispricing strategy trained on

the past data in the U.S. is profitable out-of-sample in all the regions. Can

international data outside the U.S. be used to better train the strategy?

There are some arguments for the usefulness of international data. The

international data increases sample size and therefore limits the possibility for

data-mining and in-sample overfitting. The larger sample size also generally

provides larger power to statistical tests, which should lead to the more precise

selection of truly significant strategies. One crucial requirement for the tangible

benefit of the new observations is that they are independent from the original

observations. The international evidence extends the sample size mainly in the

year 2000. The most recent data are also the most useful as financial markets

change rapidly and the older data may not be relevant anymore.

There are, however, also some problems with the suitability of international

evidence. The individual global regions have very different institutional settings.

Bankruptcy laws, tax laws, investor protection, and accounting standards vary

widely across the regions. The institutional differences can lower the usefulness

of historical data outside the respective regions. The larger estimation sample

improves forecasts through consistency. The consistency, however, works only if

the underlying true drivers of stock returns are uniform over the regions, which

is in no way guaranteed.

23



3.1 Locally-trained mispricing strategy

Previous machine learning evidence is based on predictive regressions es-

timated solely on data from the U.S. In this subsection, we first investigate

whether estimating the predictive regressions in the respective regions is more

suitable than estimating them only on data from the U.S. In the next subsection,

we explore whether combining estimation samples from the individual regions

can improve the profitability of the mispricing strategy.

Panel in Table 3 presents statistics on the portfolio returns of mispricing

strategy introduced in Subsection 1.3 that is estimated on local samples of

stocks. That is, for example, the portfolios in Japan are formed based on pre-

dicted next month returns from predictive regressions fitted on historical data

from Japan. The Table 3 also shows the differences in portfolio returns when

using the predictive regressions estimated on data from the U.S. versus locally.

There is surprisingly only a small difference between the returns on strategies

that are estimated using data from the U.S. in Table 2 and those that are

estimated using data in the respective regions in Panel A in Table 3. One

explanation for the similarity is that the sample size in the U.S. is already large

enough to capture the true drivers of stock returns that are globally valid.

The performance of the mispricing strategy in Asia Pacific improves when

the predictive regressions are estimated in Asia Pacific for all the machine learn-

ing methods apart from neural networks. However, there are only a few liquid

stocks in Asia Pacific region historically. The local estimation sample is there-

fore composed of stocks with relatively a smaller market cap than in the U.S.

sample. This different stock universe composition might help in tailoring the

fitted relationships.

The performance of the mispricing strategy in Japan is notably worse than

when estimated using the U.S. data. The explanation is again simple. Japan

experienced a slow eruption of an asset price bubble at the beginning of the

estimation sample, in the early 1990s. The estimated relationships that are
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valid for this specific period fare badly out-of-sample where the stock market

dynamics go back to their normal state.

3.2 Globally-trained mispricing strategy

Panel B in Table 3 shows the mean returns and other performance statistics

for the mispricing strategy when the future individual stock returns are pre-

dicted from regressions estimated on historical data that are not solely from

the U.S. but from the global training sample comprised of stocks from the U.S.,

Japan, Europe, and Asia Pacific.

We find that there is no gain from adding international stocks to the local

training sample in the U.S. Historical data in the U.S. is therefore completely

sufficient for future predictions in the U.S. Profitability of the mispricing strat-

egy in Europe improves with predictions based on the global training sample

relative to the training sample from the U.S. The profitability in Japan also

improves with the global training sample instead of from the U.S. only sample.

The largest gains in profitability from extending the training sample outside the

U.S. are in the Asia Pacific region.

To conclude, table 3 provides mixed results on the value of international

evidence. The region-specific settings are indeed an important determinant of

stock return drivers. There is no gain for the U.S. investor seeking international

evidence for the quantitative strategy. The larger statistical power, due to a

larger sample, seems to be completely offset by the region-specific differences.

3.3 Variable importance

One of the disadvantages of the more complex machine learning methods is

the difficulty in interpreting the resulting models due to the potentially high-

dimensional and nonlinear interactions among variables. Our main goal is the

superior out-of-sample performance even at the cost of the inability to fully

interpret all the variable interactions in the resulting models. That being said,

inspired by Sirignano et al. (2016), Chen et al. (2019), and Horel and Giesecke
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(2019), we next examine the importance of individual variables. We define the

variable importance V Ij for variable j as the elasticity of predicted (region-

wise demeaned) returns to changes in the individual characteristics used as

predictors, as follows:

V Ij =
∑
t∈T

∑
i∈Nt

∣∣∣∣∂r̂it(xi,t−1,1, xi,t−1,2, ..., xi,t−1,M )

∂xj

∣∣∣∣ , (3)

We calculate the variable importance V Ij for each characteristic in various

settings. Figure 5 shows the variable importance across regions for the twenty

five most important variables globally for the mispricing strategy as described

in Subsection 1.3. The most important predictors are all connected to high

portfolio rebalancing costs. The most important fundamental signal is sales

over price, which is a measure of the value of the stocks. The second most

important fundamental signal, a measure of R&D spendings, is important only

in the U.S. where it was identified.

Table 4 shows the Spearman’s rank correlation of variable importance scores

across the regions under various forecasting methods. we find that there is great

heterogeneity in the ranks of variable importance across the regions. This results

provide insight on the limited value of extending the estimation sample from the

U.S. to international stocks. More importantly, the predictions from the U.S.

perform as well as the predictions from the other regions despite having only

loosely connected variable importance.

We also find that there are pronounced differences in variable importance

under different forecasting methods. The Spearman’s rank correlation coefficient

between variable importance scores using neural networks and gradient boosting

regression trees is only 0.498. The dispersion of variable importance across

the estimation methods does not translate to out-of-sample profitability. This

suggests that there is a lot of noise behind the estimation.
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3.4 Marginal predictive contributions of signals

Another option when interpreting results from the machine learning models

is to look at the marginal relationships. The marginal predictive relationship

MRj between individual signal j and (region-wise demeaned) expected returns

is determined as follows:

MRj(xj) =
1

T

∑
t∈T

∑
i∈Nt

f̂i,t(xi,t−1,1, ..., xi,t−1,j , ..., xi,t−1,M )

Nt
for xj ∈ (0, 1),

(4)

where f̂i,t(xi,t−1,1, ..., xi,t−1,j , ..., xi,t−1,M ) is a model prediction. The value

of signal xj is evaluated on a grid ranging from 0 to 1 with a step of 0.01. The

values for xj range from 0 to 1 since variables are region-month cross-sectional

quantiles of an underlying characteristic. Values of all signals other than xj

are taken at their true historical realizations. Models are trained on the same

regions where forecasts are generated. A set of 100 forecasts corresponding to

different values of xj is obtained by averaging over the cross-section and over

time.

Marginal predictive relationships for size, momentum, book-to-market, asset

growth, operating profitability, and short-term reversal characteristics can be

seen in Figures 6 and 7.

They show that that machine learning models capture the well known empiri-

cal asset pricing relationships. Our results are similar to the variable importance

results of Gu et al. (2020). We find that the monotonicity of the relationship

varies from model to model but the marginal relationships are similar to the

relationships documented in the literature for all six reported characteristics

but asset growth (AGr). In case of asset growth, as shown in Figure 7, we

find its association with expected returns is missing for more complex models

as can be seen by comparing the slopes for weighted least squares and penal-

ized least squares. The zero slope for penalized least squares is due to the
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penalization, which is one of the two core features responsible for the superi-

ority of machine learning methods. The second feature is non-linearity. It can

be seen by comparing the marginal relationship for penalized weighted least

squares model with those for gradient boosted trees, random forests or neural

networks. Differences in forecasting performance after introduction of penal-

ization and non-linearity answers how machine learning techniques outperform

more standard approaches.

Figures 6 and 7 also show the effects of non-linearity and penalization in-

ternationally as well as in individual regions. These effects are however more

diverse across the regions. We also document some of the well known empirical

observations like the lack of a momentum anomaly or presence of book-to-market

anomaly in Japan (e.g.,Fama and French, 2012). Other relationships are miss-

ing at the marginal level, like the momentum anomaly in Europe (e.g., Asness

et al., 2013). One of the traditionally strongest signals, short-term momentum,

shows a strong relationship in the U.S. as well as in all the other regions except

for Asia Pacific. Despite the international diversity of the marginal relationships

for anomalies, out-of-sample profitability is not fundamentally impacted. This

supports the notion of a high level of noise in estimation as mentioned at the

end of the Section 2.

4 Transaction costs

In this section, we describe the out-of-sample performance of the strategies

after accounting for their transaction costs.

4.1 Transaction costs on the strategy

Panel A in Table 5 presents the average transaction costs on the mispric-

ing strategy introduced in Subsection 1.3 using neural networks. We estimate

transaction costs using the three liquidity proxies introduced in Subsection 1.5.

All the proxies provide similar estimates of the transaction costs outside the US.
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Estimates from the Gibbs proxy are significantly higher in the U.S. than for the

two other proxies. The Gibbs proxy is, however, also the noisiest proxy since

it is constructed at an annual frequency. Thus, it is not very suitable for mea-

suring the transaction costs for the most liquid stocks due to its construction

relying on the auto-correlation of daily stock returns.

Panel A in Table 5 also shows the turnover of the mispricing strategy. The

turnover is given as:

Turnovert =
∑
i

abs(wi,t − wi,t−1ri,t−1)/2, (5)

where wi,t is the weight of stock i in the investment portfolio at the start of

period t− 1 and ri,t−1 is stock return over period t− 1 to t. The sum of all the

absolute weights wi,t is equal to 2 since the portfolio is long-short. We find that

the turnover is close to 100% monthly in all the regions, which means that over

50% of all the held stocks have to be sold and new purchased for both the short

and long leg of the strategy. The turnover can be easily reduced by staggered

portfolio rebalancing but it is not a source of serious worries here due to the

small average transaction costs on the liquid universe of stocks.

We select the sample of stocks to be liquid ex ante. Only about 1,000 of

the most liquid U.S. stocks fulfil this criterion. These stocks should command

virtually no fixed transaction costs after year 2010. The depicted costs there-

fore correspond to unfavourable trade executions through aggressive marketable

orders. Sophisticated trade execution systems using limit orders are able to ex-

ecute the strategies with much smaller transaction costs.

In figure 8, we map transaction costs on the mispricing strategy we estimate

using neural networks in the U.S. The transaction costs are measured by using

VoV(% Spread) proxy introduced in Fong et al. (2017). The figure shows that

the trading costs are similar across the regions. The highest transaction costs

tend to be in the Asia Pacific region and the lowest tend to be in the U.S.

The transaction costs decrease significantly over time due to the advent of an
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electronic trading in 2000s. There are several historical episodes where the costs

are heavily elevated. Two such major episodes are the Global Financial Crisis of

2007-2009 and dot-com bubble of the early 1995-2001. The costs are smaller on

value-weighted portfolios relative to equal-weighted portfolios. The difference is

expected because value-weighting puts a larger emphasis on more liquid stocks.

4.2 Performance of the strategy after transaction costs

Panel B in Table 5 presents the transaction costs adjusted performance of

the mispricing strategy. We find that the mean returns on the strategy remain

significantly positive at the 5% level. The net mean annualized returns in the

U.S. are around 10% for the machine learning strategies. Sharpe ratios remain

high, especially for the global strategy using neural networks, where they are

close to one.

The mean returns after transaction costs for the weighted least squares

method are again smaller than for the more advanced machine learning meth-

ods. The difference is even larger on a risk-adjusted basis. This difference in

performance documents that the choice of appropriate forecasting method is

very important for the success of investing based on the anomalies.

To conclude, the mispricing strategy remains profitable even after accounting

for the transaction costs. The profitability of the strategy can therefore be

capitalized by investors.

5 Conclusion

We study the profitability of quantitative strategies based on previously

documented anomalies around the globe. We show that synthesizing anomalies

into one mispricing signal using machine learning leads to profitable investment

strategy which survives on the liquid universe of stocks and after accounting

for the transaction costs. The machine learning methods lead to higher (risk-

adjusted) returns relative to standard methods applied in the finance literature.
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We examine the role of international evidence on the precision of predictions

of future stock returns. We find that out-of-sample performance in the U.S. is

not improved by the inclusion of international evidence in the training sample for

the mispricing strategy. Most of the predictability of the expected stock returns

in all the regions can be captured solely with the U.S. training sample as the

benefits of a larger estimation sample is offset by the region-specific differences.
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Appendix A Adjustments of returns in

datastream

We apply a series of adjustments is applied on the raw returns to improve

their quality. The return index (RI) is required to be larger than 0.001 on the

first day of the month for precision reasons. RI is set to missing if the daily

return is larger than 500% or if the price on the first day of the month is larger

than $1 million. Any monthly return larger than 2000% is also set to missing.

Datastream provides stale prices when there is no trade during the day or when

the stock is no longer traded so that the price of the last trade is repeated until

new information arrives. We therefore delete the latest observations of price with

no trading. Daily returns are fixed following Tobek and Hronec (2018) when

there are stale price quotes around corporate events. Monthly returns larger

than 300% that revert back over the next month are set to missing following

Ince and Porter (2006).19 We winsorize 0.01% of returns in each region and

years before 2000 to limit the role of outliers in returns.

19Specifically, returns in two consecutive months are set as missing if the return in the first
month is larger than 300% and the overall return over the two months is lower than 50%.
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Appendix B List of the anomalies

Table 6 List of anomalies

Fundamental

Accruals

Accruals Sloan (1996)

Change in Common Equity Richardson et al. (2006)

Change in Current Operating Assets Richardson et al. (2006)

Change in Current Operating Liabilities Richardson et al. (2006)

Change in Financial Liabilities Richardson et al. (2006)

Change in Long-Term Investments Richardson et al. (2006)

Change in Net Financial Assets Richardson et al. (2006)

Change in Net Non-Cash Working Capital Richardson et al. (2006)

Change in Net Non-Current Operating Assets Richardson et al. (2006)

Change in Non-Current Operating Assets Richardson et al. (2006)

Change in Non-Current Operating Liabilities Richardson et al. (2006)

Change in Short-Term Investments Richardson et al. (2006)

Discretionary Accruals Dechow et al. (1995)

Growth in Inventory Thomas and Zhang (2002)

Inventory Change Thomas and Zhang (2002)

Inventory Growth Belo and Lin (2011)

M/B and Accruals Bartov and Kim (2004)

Net Working Capital Changes Soliman (2008)

Percent Operating Accrual Hafzalla et al. (2011)

Percent Total Accrual Hafzalla et al. (2011)

Total Accruals Richardson et al. (2006)

Intangibles

4 Gross Margin - 4 Sales Abarbanell and Bushee (1998)

4 Sales - 4 Accounts Receivable Abarbanell and Bushee (1998)

4 Sales - 4 Inventory Abarbanell and Bushee (1998)

4 Sales - 4 SG and A Abarbanell and Bushee (1998)

Asset Liquidity Ortiz-Molina and Phillips (2014)

Asset Liquidity II Ortiz-Molina and Phillips (2014)

Cash-to-assets Palazzo (2012)

Earnings Conservatism Francis et al. (2004)
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Earnings Persistence Francis et al. (2004)

Earnings Predictability Francis et al. (2004)

Earnings Smoothness Francis et al. (2004)

Earnings Timeliness Francis et al. (2004)

Herfindahl Index Hou and Robinson (2006)

Hiring rate Belo et al. (2014)

Industry Concentration Assets Hou and Robinson (2006)

Industry Concentration Book Equity Hou and Robinson (2006)

Industry-adjusted Organizational Capital-to-

Assets

Eisfeldt and Papanikolaou (2013)

Industry-adjusted Real Estate Ratio Tuzel (2010)

Org. Capital Eisfeldt and Papanikolaou (2013)

RD / Market Equity Chan et al. (2001)

RD Capital-to-assets Li (2011)

RD Expenses-to-sales Chan et al. (2001)

Tangibility Hahn and Lee (2009)

Unexpected RD Increases Eberhart et al. (2004)

Whited-Wu Index Whited and Wu (2006)

Investment

4 CAPEX - 4 Industry CAPEX Abarbanell and Bushee (1998)

Asset Growth Cooper et al. (2008)

Change Net Operating Assets Hirshleifer et al. (2004)

Changes in PPE and Inventory-to-Assets Lyandres et al. (2007)

Composite Debt Issuance Lyandres et al. (2007)

Composite Equity Issuance (5-Year) Daniel and Titman (2006)

Debt Issuance Spiess and Affleck-Graves (1995)

Growth in LTNOA Fairfield et al. (2003)

Investment Titman et al. (2004)

Net Debt Finance Bradshaw et al. (2006)

Net Equity Finance Bradshaw et al. (2006)

Net Operating Assets Hirshleifer et al. (2004)

Noncurrent Operating Assets Changes Soliman (2008)

Share Repurchases Ikenberry et al. (1995)

Total XFIN Bradshaw et al. (2006)

Profitability

Asset Turnover Soliman (2008)

Capital Turnover Haugen and Baker (1996)

Cash-based Operating Profitability Ball et al. (2016)
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Change in Asset Turnover Soliman (2008)

Change in Profit Margin Soliman (2008)

Earnings / Price Basu (1977)

Earnings Consistency Alwathainani (2009)

F-Score Piotroski (2000)

Gross Profitability Novy-Marx (2013)

Labor Force Efficiency Abarbanell and Bushee (1998)

Leverage Bhandari (1988)

O-Score (More Financial Distress) Dichev (1998)

Operating Profits to Assets Ball et al. (2016)

Operating Profits to Equity Fama and French (2015)

Profit Margin Soliman (2008)

Return on Net Operating Assets Soliman (2008)

Return-on-Equity Haugen and Baker (1996)

Z-Score (Less Financial Distress) Dichev (1998)

Value

Assets-to-Market Fama and French (1992)

Book Equity / Market Equity Fama and French (1992)

Cash Flow / Market Equity Lakonishok et al. (1994)

Duration of Equity Dechow et al. (2004)

Enterprise Component of Book/Price Penman et al. (2007)

Enterprise Multiple Loughran and Wellman (2011)

Intangible Return Daniel and Titman (2006)

Leverage Component of Book/Price Penman et al. (2007)

Net Payout Yield Boudoukh et al. (2007)

Operating Leverage Novy-Marx (2010)

Payout Yield Boudoukh et al. (2007)

Sales Growth Lakonishok et al. (1994)

Sales/Price Barbee Jr et al. (1996)

Sustainable Growth Lockwood and Prombutr (2010)

Market Friction

11-Month Residual Momentum Blitz et al. (2011)

52-Week High George and Hwang (2004)

Amihud’s Measure (Illiquidity) Amihud (2002)

Beta Fama and MacBeth (1973)

Betting against Beta Frazzini and Pedersen (2014)

Bid-Ask Spread Amihud and Mendelson (1986)
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Cash Flow Variance Haugen and Baker (1996)

Coefficient of Variation of Share Turnover Chordia et al. (2001)

Coskewness Harvey and Siddique (2000)

Downside Beta Ang et al. (2006)

Earnings Forecast-to-Price Elgers et al. (2001)

Firm Age Barry and Brown (1984)

Firm Age-Momentum Zhang (2006)

Idiosyncratic Risk Ang et al. (2006)

Industry Momentum Moskowitz and Grinblatt (1999)

Lagged Momentum Novy-Marx (2012)

Liquidity Beta 1 Acharya and Pedersen (2005)

Liquidity Beta 2 Acharya and Pedersen (2005)

Liquidity Beta 3 Acharya and Pedersen (2005)

Liquidity Beta 4 Acharya and Pedersen (2005)

Liquidity Beta 5 Acharya and Pedersen (2005)

Liquidity Shocks Bali et al. (2013)

Long-Term Reversal Bondt and Thaler (1985)

Max Bali et al. (2011)

Momentum Jegadeesh and Titman (1993)

Momentum and LT Reversal Kot and Chan (2006)

Momentum-Reversal Jegadeesh and Titman (1993)

Momentum-Volume Lee and Swaminathan (2000)

Price Blume and Husic (1973)

Seasonality Heston and Sadka (2008)

Seasonality 1 A Heston and Sadka (2008)

Seasonality 1 N Heston and Sadka (2008)

Seasonality 11-15 A Heston and Sadka (2008)

Seasonality 11-15 N Heston and Sadka (2008)

Seasonality 16-20 A Heston and Sadka (2008)

Seasonality 16-20 N Heston and Sadka (2008)

Seasonality 2-5 A Heston and Sadka (2008)

Seasonality 2-5 N Heston and Sadka (2008)

Seasonality 6-10 A Heston and Sadka (2008)

Seasonality 6-10 N Heston and Sadka (2008)

Share Issuance (1-Year) Pontiff and Woodgate (2008)

Share Turnover Datar et al. (1998)

Short-Term Reversal Jegadeesh (1990)

Size Banz (1981)
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Tail Risk Kelly and Jiang (2014)

Total Volatility Ang et al. (2006)

Volume / Market Value of Equity Haugen and Baker (1996)

Volume Trend Haugen and Baker (1996)

Volume Variance Chordia et al. (2001)

I/B/E/S

Analyst Value Frankel and Lee (1998)

Analysts Coverage Elgers et al. (2001)

Change in Forecast + Accrual Barth and Hutton (2004)

Change in Recommendation Jegadeesh et al. (2004)

Changes in Analyst Earnings Forecasts Hawkins et al. (1984)

Disparity between LT and ST Earnings Growth

Forecasts

Da and Warachka (2011)

Dispersion in Analyst LT Growth Forecasts Anderson et al. (2005)

Down Forecast Barber et al. (2001)

Forecast Dispersion Diether et al. (2002)

Long-Term Growth Forecasts La Porta (1996)

Up Forecast Barber et al. (2001)
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Appendix C Optimal hyperparameters

Every time a model is trained, we perform hyperparameter optimization

as described in Subsection 1.3. In the models we employ for the mispricing

strategy, we combine signals through predictive regressions of individual stock

returns on transformed characteristics. The mispricing strategy is described in

detail in Subsection 1.3. Underlying predictive regressions are estimated using

penalized weighted least squares, gradient boosted trees, random forests and

neural networks. Optimal hyperparameters vary over time and their compari-

son for models trained and validated on the U.S. data only versus globally20,

can be seen in Figures C.1, C.2, C.3, and C.4.

Figure C.2 shows the evolution of selected number of trees, as one of the hy-

perparameters for gradient boosted trees. The selected number of trees is very

similar for the U.S. only sample and the global sample.

Optimal hyperparameters in case of penalized weighted least squares and

random forests, i.e. l1 and l2 mixing parameter in Figure C.1 and the num-

ber of tree in Figure C.3, are also similar between the U.S. only sample and

the global sample. This holds strongly especially before 2010. Looking at the

architecture of the neural networks and dropout shown in Figure C.4, selected

hyperparameters differ substantially across the regions and over the time.

20Includes the U.S. data as well.
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Figure C.1. L1 and L2 mixing parameter for penalized weighted least
square. The figure shows the evolution of optimal selected L1 and L2 mixing
parameter as a hyperparameter for penalized weighted least squares during each
tuning phase as described in Subsection 1.3. Penalized weighted least square
are trained and cross-validated either only in the U.S. or in all the regions, i.e.
globally. Training-validation-test splits are described in Subsection 1.3. The
estimation sample is from January 1963 to December 2018 in the U.S. and from
January 1990 to December 2018 elsewhere.
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Figure C.2. Number of trees for gradient boosting trees. The figure
shows the evolution of selected optimal number of trees as a hyperparameter for
gradient boosting trees during each tuning phase as described in Subsection 1.3.
Gradient boosting trees are trained and cross-validated either only in the U.S.
or in all the regions, i.e. globally. Training-validation-test splits are described
in Subsection 1.3. The estimation sample is from January 1963 to December
2018 in the U.S. and from January 1990 to December 2018 elsewhere.
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Figure C.3. Maximum depth of the tree for random forests. The
figure shows the evolution of selected optimal maximum depth of the tree as
a hyperparameter for random forests during each tuning phase as described in
Subsection 1.3. Random forests are trained and cross-validated either only in
the U.S. or in all the regions, i.e. globally. Training-validation-test splits are
described in Subsection 1.3. The estimation sample is from January 1963 to
December 2018 in the U.S. and from January 1990 to December 2018 elsewhere.
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Figure C.4. Dropout and the architecture for neural networkds. The
figure shows the evolution of selected optimal dropout and the architecture as
hyperparameters for neural networks during each tuning phase as described in
Subsection 1.3. Neural networks are trained and cross-validated either only in
the U.S. or in all the regions, i.e. globally. Training-validation-test splits are
described in Subsection 1.3. The estimation sample is from January 1963 to
December 2018 in the U.S. and from January 1990 to December 2018 elsewhere.

42



Appendix D Definition of Liquidity Proxies

D.1 VoV(% Spread) Proxy

The fixed transaction costs are approximated with the VoV(% Spread) proxy

introduced in Fong et al. (2017). It is defined as:

8
σ2/3

avg vol1/3
, (6)

where σ is the standard deviation of daily returns and avg vol is the average daily

trading volume in USD within a given month. The trading volume is in USD

and deflated to 2000 prices. The proxy roughly measures the fixed component

of the trading costs and excludes the price impact. Including the price impact

would further increase the transaction costs. Fong et al. (2017) show that the

price impact component is very hard to measure. It is volatile over regions,

and therefore, very dependent on the execution strategy of individual asset

managers. The focus is therefore solely on the fixed component of transaction

costs (effective spread).

Kyle and Obizhaeva (2016) estimate a relationship between transaction costs

and the size of large institutional portfolio transfers depending on the average

daily trading volume and the volatility of the stocks. Their analysis is conducted

on a proprietary dataset covering the 2002-2005 period. VoV(% Spread) roughly

corresponds to the fixed component of their estimated transaction cost function.

Fong et al. (2017) benchmark the proxy to other proxies and find that it

can be outperformed only by the closing quoted spread. The quoted spread is,

however, not available for all the regions over the whole sample period.
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D.2 Closing Quoted Spread

The closing quoted spread for a given month is as follows:

QS =
1

T

T∑
t=1

2(ask − bid)
ask + bid

, (7)

where ask and bid are observed at the end of the trading day on each stock

exchange and T is the number of days in the given month. Observations with

missing or negative daily values of QS are excluded from the average. CRSP

lists the best quote of bid and ask for NASDAQ stocks and the last representa-

tive quotes before the market close for NYSE and AMEX stocks. The precise

definition of QS can therefore vary over the exchanges.

Chung and Zhang (2014) first benchmark the QS by comparing it to high

frequency effective spread estimates from the Trade and Quote (TAQ) database.

They show that QS has about a 95% average cross-sectional correlation with the

TAQ effective spread over the 1998 to 2009 period. Fong et al. (2017) document

that it is also the best spread proxy in an international setting. One problem

with QS is that it is often missing in earlier periods and therefore has to be

backfilled with other proxies.

D.3 Gibbs Proxy

Roll (1984) introduces one of the first spread proxies in the literature. He

assumes that the true price of a stock follows a random walk with bid-ask jumps.

That is,

PA
t = PA

t−1 + ut, PO
t = PA

t + sqt (8)

4 P o
t = s4 qt + ut, ut ∼ N(0, σ2

u), (9)

where P o
t is the observed log price, PA

t is the price of the underlying Brownian

motion, and s is a half spread. Indicator qt is equal to one if the last trade in

the day is a buy, minus one if it is a sell, and zero if no prices are available
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during the day. Serial correlation of the price changes 4P o
t should be negative

and related to the spread through the following relationship:

Sroll = 2
√
−cov(4P o

t ,4P o
t+1). (10)

This can be contributed to the fact that

cov(4P o
t ,4P o

t+1) = cov(s(qt−qt−1)+ut, s(qt+1−qt)+ut+1) = E[−s2q2t ] = −s2.

(11)

The covariance can be positive in practice. In which case the estimate of spread

is set equal to zero.

Hasbrouck (2009) proposes to extend the Roll model by estimating it with

the Gibbs sampler. The idea is to estimate the equation (9) augmented with an-

other dependent variable (market return) via Bayesian regression. The variables

qt are generated from the data using a Gibbs sampler.21

We estimate the proxy at annual frequency for each stock and calendar

year. Lower frequency than annual leads to severe deterioration of the proxy’s

performance.

21Note that there is an error in the original paper in the Journal of Finance. The correct

posterior distribution for σ2
u is IG(αprior + n

2
, βprior +

∑
u2
t

2
).
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mean min max

U.S. 1100 647 1734
Japan 750 534 1079
Asia Pacific 431 226 712
Europe 691 413 1044
Global 2069 647 4058

Table 1. Number of stocks in cross-section
Regional decomposition the number of stocks in the sample from January 1995
to December 2018. The sample consists of stocks within the top 95% of the
overall capitalization of all stocks in each region at the end of the previous
month and within the top 95% of the overall dollar trading volume over the
previous 12 months of all stocks in each region. All the stocks are further
required to have a price larger than $1 ($0.1 for Asia Pacific) at the end of the
previous month.
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Equal-weighted Value-weighted

U.S. Europe Japan AP Global U.S. Europe Japan AP Global

Panel A: Long-short Portfolios

Weighted Least Squares
Mean 0.513 0.694 0.563 0.434 0.560 0.328 0.728 0.518 0.515 0.476
t-stat 1.868 2.680 2.855 1.998 2.487 1.530 3.408 2.818 1.824 2.427
Sharpe Ratio 0.429 0.814 0.724 0.431 0.725 0.314 0.821 0.526 0.441 0.573
Max Drawdown -33.84 -29.30 -22.61 -30.96 -23.21 -34.81 -24.16 -25.74 -54.95 -22.73

Penalized Weighted Least Squares
Mean 0.651 0.798 0.809 1.048 0.807 0.496 0.630 0.614 0.761 0.623
t-stat 2.538 2.751 3.632 4.483 3.652 2.253 2.646 2.452 2.455 2.957
Sharpe Ratio 0.495 0.788 0.877 0.932 0.929 0.397 0.629 0.553 0.581 0.679
Max Drawdown -36.13 -31.91 -25.33 -36.27 -26.05 -30.09 -28.56 -34.03 -60.19 -26.28
t-stat wrt WLS 1.104 0.785 1.317 2.888 2.184 1.283 -0.713 0.495 1.394 1.147

Gradient Boosting Regression Trees
Mean 1.074 1.024 0.950 0.907 1.020 0.920 0.766 0.882 0.170 0.739
t-stat 3.728 3.616 4.542 4.126 4.657 3.201 3.100 3.336 0.837 3.732
Sharpe Ratio 0.870 1.100 1.108 0.974 1.415 0.728 0.749 0.754 0.175 0.954
Max Drawdown -42.42 -31.07 -18.11 -19.11 -25.72 -45.22 -32.55 -21.42 -42.23 -25.61
t-stat wrt WLS 2.021 1.931 2.013 2.258 2.710 1.979 0.198 1.341 -1.197 1.305
t-stat wrt PWLS 1.663 1.818 0.718 -0.656 1.419 1.458 0.872 0.879 -2.004 0.636

Random Forest
Mean 1.034 1.103 0.994 1.036 1.049 0.995 0.629 0.888 0.270 0.791
t-stat 3.387 4.017 4.096 4.534 4.590 3.349 2.374 3.455 1.126 3.663
Sharpe Ratio 0.875 1.247 1.182 1.109 1.440 0.894 0.632 0.773 0.252 1.030
Max Drawdown -36.77 -27.01 -32.20 -20.63 -20.34 -39.88 -35.09 -21.57 -49.01 -19.23
t-stat wrt WLS 2.566 2.417 1.880 2.601 3.405 2.563 -0.459 1.292 -0.805 1.768
t-stat wrt PWLS 2.031 2.728 0.620 -0.048 1.803 1.917 -0.006 0.737 -1.454 0.944
t-stat wrt GBRT -0.253 1.193 0.262 1.522 0.355 0.463 -1.608 0.030 0.742 0.610

Neural Networks
Mean 1.128 0.994 1.107 1.367 1.149 1.185 0.734 0.702 0.828 1.012
t-stat 4.345 3.529 5.687 6.160 5.383 5.136 3.294 3.411 3.296 5.697
Sharpe Ratio 0.952 1.084 1.372 1.356 1.480 1.093 0.738 0.650 0.681 1.280
Max Drawdown -25.69 -26.27 -14.78 -26.61 -17.56 -16.50 -31.48 -34.55 -44.99 -16.19
t-stat wrt WLS 5.205 2.260 2.945 4.510 6.100 4.986 0.039 0.733 1.588 3.665
t-stat wrt PWLS 5.450 2.938 3.526 1.830 5.591 4.425 0.875 0.401 0.321 3.118
t-stat wrt GBRT 0.231 -0.274 0.906 3.531 1.117 0.992 -0.260 -0.708 2.254 2.017
t-stat wrt RF 0.590 -1.242 0.405 2.148 1.022 0.839 0.780 -0.658 1.865 1.788

Table 2. Performance of the mispricing strategy estimated in the
U.S.

The table shows returns on quintile portfolios from mispricing strategy
described in Subection 1.3. The estimation methods are weighted least squares
(WLS), penalized weighted least squares (PWLS), gradient boosting regression
trees (GBRT), random forests (RF), or neural networks (NN). The regressions
are rerun at the end of each December using only anomalies that have been
documented by that time and using hyperparameters selected based on the
most recent 11-year validation sample available. The regressions are estimated
only on the past U.S. data and the future returns are predicted in all the
regions. Long portfolios are constructed by buying stocks in the top quintile of
the predicted next month returns and short portfolios are constructed by
short-selling stocks in the bottom quintile of the predicted next month returns.
The portfolios are either value-weighted or equal-weighted. Panel A presents
returns on long-short portfolios. The returns on the long-short portfolios are
decomposed to long-only component in Panel B and short-only component in
Panel C. Panel D presents the performance of the long-short portfolio adjusted
for capital asset pricing model (CAPM) market risk factor and five
Fama-French factors (FF5). The out-of-sample performance is observed in the
U.S., Europe, Japan, and Asia Pacific. Estimation samples are expanding
annually and correspond to periods (Jan 1963 - Dec 1994) up to the period of
(Jan 1963 - Dec 2018). The reported returns are for January 1995 to
December 2018 period and are in percentage points. The standard errors in
t-statistics are adjusted for heteroskedasticity and autocorrelation with
Newey-West adjustment for up to 12 lags. t-stat wrt WLS, PWLS, GBRT, RF
rows provide t-statistics for difference in mean returns between the two
corresponding estimation methods.
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Equal-weighted Value-weighted

U.S. Europe Japan AP Global U.S. Europe Japan AP Global

Panel B: Long-only Component of the Mispricing Strategy

Whole Market
Mean 0.827 0.746 0.204 0.654 0.604 0.901 0.707 0.158 0.774 0.646
t-stat 2.265 1.929 0.472 1.314 1.766 2.892 2.037 0.360 1.743 2.022
Sharpe Ratio 0.459 0.466 0.121 0.298 0.408 0.599 0.463 0.098 0.425 0.479
Max Drawdown -68.91 -63.60 -68.18 -69.02 -55.28 -62.60 -59.59 -72.67 -60.77 -57.51

Weighted Least Squares
Mean 1.087 1.097 0.565 0.923 0.909 1.005 1.054 0.546 1.235 0.870
t-stat 3.648 2.986 1.505 1.986 3.011 3.714 3.125 1.608 3.066 3.058
Sharpe Ratio 0.717 0.701 0.344 0.438 0.667 0.761 0.708 0.364 0.681 0.680
Max Drawdown -52.57 -63.60 -55.28 -64.28 -54.52 -45.02 -59.59 -53.92 -56.44 -52.98
t-stat wrt Mkt 1.454 2.619 2.755 1.913 2.322 0.851 2.477 2.087 2.340 2.112

Penalized Weighted Least Squares
Mean 1.125 1.107 0.640 1.268 1.006 0.999 0.989 0.499 1.314 0.889
t-stat 3.589 2.942 1.612 2.641 3.130 3.402 2.947 1.477 3.617 3.122
Sharpe Ratio 0.747 0.715 0.379 0.564 0.729 0.750 0.690 0.325 0.682 0.720
Max Drawdown -55.83 -62.68 -54.71 -68.24 -57.56 -51.21 -57.86 -51.97 -50.75 -53.01
t-stat wrt Mkt 1.667 2.410 2.915 3.674 3.032 0.741 1.887 1.387 2.288 1.909
t-stat wrt WLS 0.588 0.145 0.770 2.666 1.503 -0.080 -1.050 -0.388 0.538 0.263

Gradient Boosting Regression Trees
Mean 1.405 1.136 0.712 1.096 1.108 1.328 1.044 0.714 0.892 0.991
t-stat 3.912 2.642 1.603 2.692 3.258 3.515 2.560 1.543 2.563 2.973
Sharpe Ratio 0.808 0.681 0.384 0.581 0.763 0.809 0.673 0.399 0.516 0.702
Max Drawdown -53.46 -71.64 -58.85 -59.40 -57.99 -56.28 -68.87 -53.53 -57.08 -59.88
t-stat wrt Mkt 3.055 2.808 3.739 2.520 4.075 2.018 2.174 2.490 0.640 2.348
t-stat wrt WLS 2.070 0.353 1.160 1.205 2.064 1.589 -0.083 0.803 -1.809 0.934
t-stat wrt PWLS 1.808 0.316 0.595 -1.157 1.185 1.576 0.441 0.908 -2.334 0.784

Random Forest
Mean 1.327 1.207 0.667 1.100 1.079 1.315 0.897 0.740 0.873 1.000
t-stat 3.900 2.877 1.510 2.709 3.309 3.674 2.095 1.528 2.493 3.008
Sharpe Ratio 0.820 0.731 0.354 0.574 0.757 0.858 0.548 0.403 0.506 0.713
Max Drawdown -53.40 -68.86 -59.98 -59.46 -56.01 -57.71 -72.33 -59.92 -57.25 -60.16
t-stat wrt Mkt 2.668 3.308 2.796 2.449 3.748 2.087 1.059 2.601 0.540 2.399
t-stat wrt WLS 2.012 1.151 0.631 1.184 2.055 1.827 -1.157 0.835 -2.006 1.093
t-stat wrt PWLS 1.711 1.316 0.154 -1.075 0.973 1.747 -0.698 0.880 -2.394 0.837
t-stat wrt GBRT -0.888 1.628 -0.420 0.099 -0.616 -0.104 -1.841 0.176 -0.479 0.162

Neural Networks
Mean 1.361 1.150 0.733 1.278 1.124 1.397 1.005 0.624 1.287 1.138
t-stat 4.285 2.941 1.767 2.669 3.409 4.644 2.594 1.354 3.069 3.670
Sharpe Ratio 0.867 0.703 0.424 0.557 0.786 0.962 0.637 0.360 0.618 0.835
Max Drawdown -51.78 -65.05 -56.26 -68.94 -56.40 -47.44 -62.53 -56.90 -63.85 -52.61
t-stat wrt Mkt 3.325 3.004 4.051 3.529 4.440 3.134 1.783 2.273 2.832 3.820
t-stat wrt WLS 4.014 0.768 1.804 2.859 3.881 3.599 -0.446 0.376 0.435 2.708
t-stat wrt PWLS 3.837 0.919 1.458 0.106 2.830 3.025 0.135 0.609 -0.162 2.293
t-stat wrt GBRT -0.357 0.190 0.186 1.481 0.255 0.430 -0.384 -0.460 2.045 1.728
t-stat wrt RF 0.377 -1.080 0.400 1.347 0.809 0.655 0.927 -0.566 2.231 1.823

Table 2 Continued
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Equal-weighted Value-weighted

U.S. Europe Japan AP Global U.S. Europe Japan AP Global

Panel C: Short-only Component of the Mispricing Strategy

Weighted Least Squares
Mean 0.574 0.404 0.002 0.489 0.349 0.677 0.327 0.028 0.720 0.394
t-stat 1.365 0.898 0.004 0.940 0.881 1.766 0.776 0.067 1.497 1.097
Sharpe Ratio 0.298 0.227 0.001 0.210 0.216 0.427 0.194 0.017 0.339 0.271
Max Drawdown -79.10 -76.00 -80.26 -74.83 -71.01 -73.01 -71.02 -75.00 -65.55 -69.68

Penalized Weighted Least Squares
Mean 0.474 0.308 -0.169 0.220 0.199 0.503 0.359 -0.115 0.553 0.266
t-stat 1.143 0.687 -0.367 0.399 0.500 1.316 0.904 -0.268 1.141 0.731
Sharpe Ratio 0.234 0.165 -0.094 0.095 0.119 0.304 0.211 -0.070 0.260 0.177
Max Drawdown -77.60 -77.13 -84.23 -72.45 -69.58 -75.86 -71.94 -73.83 -64.68 -71.39
t-stat wrt WLS -1.320 -1.204 -1.552 -2.346 -2.478 -2.214 0.354 -1.410 -1.754 -1.746

Gradient Boosting Regression Trees
Mean 0.331 0.113 -0.238 0.189 0.088 0.408 0.278 -0.168 0.722 0.252
t-stat 0.812 0.238 -0.519 0.347 0.218 1.152 0.692 -0.401 1.561 0.725
Sharpe Ratio 0.168 0.059 -0.132 0.083 0.053 0.259 0.161 -0.105 0.365 0.177
Max Drawdown -76.71 -79.98 -87.35 -80.18 -71.48 -71.54 -73.19 -81.03 -64.23 -67.36
t-stat wrt WLS -1.757 -3.043 -2.028 -2.872 -3.064 -2.181 -0.475 -1.633 0.015 -1.509
t-stat wrt PWLS -1.254 -2.625 -0.677 -0.275 -1.518 -0.841 -1.209 -0.540 1.034 -0.218

Random Forest
Mean 0.292 0.104 -0.327 0.064 0.030 0.320 0.268 -0.148 0.603 0.209
t-stat 0.656 0.221 -0.724 0.116 0.071 0.874 0.664 -0.372 1.252 0.585
Sharpe Ratio 0.144 0.055 -0.190 0.028 0.018 0.200 0.158 -0.093 0.295 0.143
Max Drawdown -82.92 -77.15 -87.93 -81.12 -73.80 -77.32 -72.92 -80.36 -69.32 -70.95
t-stat wrt WLS -2.598 -2.867 -2.949 -3.772 -4.013 -2.974 -0.559 -1.599 -0.590 -2.213
t-stat wrt PWLS -1.899 -2.602 -1.153 -1.397 -2.364 -1.538 -1.199 -0.259 0.259 -0.937
t-stat wrt GBRT -0.459 -0.181 -1.165 -2.008 -1.324 -1.177 -0.179 0.232 -1.024 -0.904

Neural Networks
Mean 0.233 0.156 -0.373 -0.089 -0.025 0.212 0.271 -0.078 0.459 0.126
t-stat 0.515 0.328 -0.840 -0.154 -0.059 0.558 0.676 -0.190 0.939 0.355
Sharpe Ratio 0.109 0.083 -0.202 -0.037 -0.014 0.126 0.158 -0.046 0.218 0.084
Max Drawdown -85.74 -79.71 -89.61 -82.61 -78.68 -80.52 -72.92 -73.10 -68.13 -71.24
t-stat wrt WLS -4.445 -2.926 -2.965 -4.773 -5.782 -4.477 -0.607 -0.979 -1.753 -3.458
t-stat wrt PWLS -4.082 -2.992 -3.571 -3.141 -5.723 -3.753 -1.901 0.666 -0.765 -3.551
t-stat wrt GBRT -0.830 0.776 -1.681 -3.867 -1.991 -1.439 -0.100 1.081 -1.524 -1.925
t-stat wrt RF -0.760 0.884 -0.378 -2.060 -1.137 -0.806 0.047 0.606 -0.744 -1.289

Table 2 Continued
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Equal-weighted Value-weighted

U.S. Europe Japan AP Global U.S. Europe Japan AP Global

Panel D: Performance on Risk-adjusted Basis

Weighted Least Squares
Mean Return 0.513 0.694 0.563 0.434 0.560 0.328 0.728 0.518 0.515 0.476

1.868 2.680 2.855 1.998 2.487 1.530 3.408 2.818 1.824 2.427
CAPM Alpha 0.716 0.764 0.569 0.505 0.662 0.466 0.782 0.523 0.617 0.538

2.794 3.615 3.394 2.378 3.634 2.105 4.139 2.791 2.709 2.950
FF5 Alpha 0.256 0.180 0.448 0.380 0.166 0.120 0.294 0.418 0.299 0.133

1.303 1.278 2.877 2.178 1.278 0.701 1.861 2.267 1.340 0.898
Penalized Weighted Least Squares

Mean Return 0.651 0.798 0.809 1.048 0.807 0.496 0.630 0.614 0.761 0.623
2.538 2.751 3.632 4.483 3.652 2.253 2.646 2.452 2.455 2.957

CAPM Alpha 0.894 0.909 0.813 1.083 0.922 0.651 0.721 0.620 0.853 0.726
3.476 3.768 3.916 4.550 4.683 2.524 3.462 2.632 3.422 3.878

FF5 Alpha 0.489 0.266 0.603 0.873 0.458 0.370 0.185 0.401 0.531 0.330
2.465 1.660 3.110 3.820 3.042 1.961 1.179 1.806 1.900 2.095

Gradient Boosting Regression Trees
Mean Return 1.074 1.024 0.950 0.907 1.020 0.920 0.766 0.882 0.170 0.739

3.728 3.616 4.542 4.126 4.657 3.201 3.100 3.336 0.837 3.732
CAPM Alpha 1.194 1.105 0.949 0.988 1.094 0.917 0.820 0.877 0.204 0.748

4.504 4.600 5.058 4.973 5.970 3.394 3.559 3.685 0.983 4.186
FF5 Alpha 1.158 0.490 0.754 0.690 0.848 1.018 0.386 0.708 0.024 0.602

4.930 2.634 4.057 4.050 5.595 4.103 1.847 2.990 0.127 3.881
Random Forest

Mean Return 1.034 1.103 0.994 1.036 1.049 0.995 0.629 0.888 0.270 0.791
3.387 4.017 4.096 4.534 4.590 3.349 2.374 3.455 1.126 3.663

CAPM Alpha 1.199 1.180 0.993 1.119 1.136 1.034 0.645 0.883 0.307 0.810
4.288 5.229 5.119 5.688 6.096 3.724 2.669 4.034 1.316 4.243

FF5 Alpha 0.757 0.673 0.846 0.747 0.690 0.806 0.225 0.725 0.016 0.487
3.601 4.088 4.475 4.813 5.253 3.539 1.187 3.596 0.075 3.172

Neural Networks
Mean Return 1.128 0.994 1.107 1.367 1.149 1.185 0.734 0.702 0.828 1.012

4.345 3.529 5.687 6.160 5.383 5.136 3.294 3.411 3.296 5.697
CAPM Alpha 1.376 1.078 1.111 1.402 1.259 1.277 0.775 0.703 0.847 1.068

5.680 4.631 6.121 6.591 6.777 5.378 3.416 3.247 3.586 6.285
FF5 Alpha 0.907 0.547 0.913 1.201 0.802 1.106 0.405 0.531 0.842 0.843

5.305 3.620 5.657 6.597 6.323 5.941 2.062 2.812 3.124 5.668

Table 2 Continued
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Equal-weighted Value-weighted

U.S. Europe Japan AP Global U.S. Europe Japan AP Global

Panel A: Locally-trained Strategy

Weighted Least Squares
Mean 0.513 0.818 0.063 1.616 0.893 0.328 0.653 -0.113 0.714 0.584
t-stat 2.214 3.432 0.263 5.222 4.579 1.647 2.829 -0.403 2.473 3.111
Sharpe Ratio 0.429 0.787 0.060 1.073 1.024 0.314 0.573 -0.091 0.480 0.660
Max Drawdown -33.84 -35.60 -62.92 -55.74 -26.74 -34.81 -33.01 -77.18 -45.19 -32.89
Diff mean wrt U.S. 0.000 0.125 -0.500 1.182 0.333 0.000 -0.074 -0.630 0.199 0.107
Diff t-stat wrt U.S. 0.724 -1.687 3.710 2.626 -0.358 -1.979 0.598 0.683

Penalized Weighted Least Squares
Mean 0.651 0.819 0.466 1.640 0.889 0.496 0.651 0.135 0.880 0.658
t-stat 2.572 3.286 1.689 5.174 4.175 2.134 2.752 0.419 2.985 3.373
Sharpe Ratio 0.495 0.747 0.389 1.058 0.951 0.397 0.544 0.095 0.559 0.696
Max Drawdown -36.13 -37.03 -62.61 -55.91 -27.62 -30.09 -32.61 -79.34 -47.59 -27.53
Diff mean wrt U.S. 0.000 0.021 -0.342 0.593 0.082 0.000 0.021 -0.479 0.119 0.035
Diff t-stat wrt U.S. 0.180 -1.102 2.169 1.463 0.175 -1.304 0.422 0.484

Gradient Boosting Regression Trees
Mean 1.074 0.555 0.497 1.647 1.114 0.920 0.200 0.242 1.145 0.689
t-stat 4.464 2.429 1.830 7.497 6.523 3.731 0.934 0.822 4.289 3.890
Sharpe Ratio 0.870 0.489 0.420 1.535 1.404 0.728 0.174 0.176 0.837 0.772
Max Drawdown -42.42 -48.38 -66.08 -29.00 -22.07 -45.22 -36.71 -74.31 -37.48 -26.04
Diff mean wrt U.S. 0.000 -0.468 -0.453 0.740 0.094 0.000 -0.566 -0.640 0.976 -0.050
Diff t-stat wrt U.S. -1.697 -1.056 3.529 1.118 -2.364 -1.287 3.660 -0.404

Random Forest
Mean 1.034 0.668 0.367 1.581 1.206 0.995 0.396 0.166 1.169 0.850
t-stat 4.173 2.717 1.241 8.258 7.020 4.066 1.675 0.571 4.242 4.877
Sharpe Ratio 0.875 0.563 0.299 1.675 1.584 0.894 0.342 0.124 0.884 1.029
Max Drawdown -36.77 -47.62 -71.74 -21.65 -18.45 -39.88 -37.27 -72.45 -28.31 -21.92
Diff mean wrt USA 0.000 -0.435 -0.627 0.544 0.157 0.000 -0.234 -0.722 0.899 0.058
Diff t-stat wrt U.S. -1.735 -1.286 2.790 2.349 -0.919 -1.619 3.107 0.536

Neural Networks
Mean 1.128 0.925 0.755 1.315 1.321 1.185 0.700 0.418 0.711 1.101
t-stat 4.747 3.841 3.238 4.587 7.431 5.671 3.016 1.643 2.607 5.785
Sharpe Ratio 0.952 0.885 0.691 1.060 1.686 1.093 0.630 0.326 0.555 1.216
Max Drawdown -25.69 -39.26 -47.98 -45.66 -18.19 -16.50 -35.36 -61.58 -50.49 -18.63
Diff mean wrt USA 0.000 -0.069 -0.352 -0.051 0.172 0.000 -0.034 -0.284 -0.117 0.090
Diff t-stat wrt U.S. -0.479 -1.424 -0.151 3.674 -0.192 -1.008 -0.385 1.171

Table 3. Performance of the mispricing strategy estimated on the
international data

The table shows returns on quintile long-short portfolios from mispricing
strategy described in Subsection 1.3. The estimation methods are least
squares, penalized least squares, random forests, gradient boosting regression
trees, or neural networks. The regressions are rerun at the end of each January
using only anomalies that have been published by that time and using
hyperparameters selected based on the most recent 11-year validation sample
available. The historical predictive regressions are estimated on individual
stocks from all the four covered regions: the U.S., Japan, Europe, and Asia
Pacific. Predictive regressions in Panel A are estimated on data from region
where they are used for prediction. Predictive regressions in Panel B are
estimated globally on data from all the regions. The long-short portfolios are
constructed by buying stocks in the top quintile of the predicted next month
returns and short-selling stocks in the bottom quintile of the predicted next
month returns. Estimation samples are expanding annually and correspond to
periods (Jan 1963 - Dec 1994) in the U.S., or (Jan 1990 - Dec 1994) in other
regions, up to the period of Jan 1963 - Dec 2018). The reported returns are for
January 1995 to December 2018 period and are in percentage points. The
standard errors in t-statistics are adjusted for heteroskedasticity and
autocorrelation with Newey-West adjustment for up to 12 lags. Diff mean
rows present difference of average monthly long-short portfolio returns
between strategy estimated on the global data minus mean returns when it is
estimated only on the U.S. data as in Table 2. Diff t-stat presents t-statistic
for the significance of the difference in mean returns.



Equal-weighted Value-weighted

U.S. Europe Japan AP Global U.S. Europe Japan AP Global

Panel B: Globally-trained Strategy

Weighted Least Squares
Mean 0.677 0.870 0.794 1.386 0.893 0.425 0.683 0.424 0.753 0.584
t-stat 2.446 3.165 3.454 6.278 3.944 1.907 3.017 1.922 2.935 2.767
Sharpe Ratio 0.514 0.978 0.791 1.185 1.024 0.357 0.695 0.359 0.546 0.660
Max Drawdown -37.35 -26.27 -25.84 -26.54 -26.74 -40.62 -25.41 -48.21 -42.77 -32.89
Diff mean wrt U.S. 0.164 0.177 0.231 0.952 0.333 0.097 -0.045 -0.094 0.238 0.107
Diff t-stat wrt U.S. 1.225 1.319 1.040 4.187 2.626 0.525 -0.289 -0.417 1.124 0.683

Penalized Weighted Least Squares
Mean 0.623 0.937 0.799 1.377 0.889 0.521 0.752 0.379 0.886 0.658
t-stat 2.116 3.130 3.385 5.637 3.643 2.255 3.360 1.484 3.458 3.152
Sharpe Ratio 0.438 0.981 0.765 1.187 0.951 0.399 0.750 0.308 0.672 0.696
Max Drawdown -38.45 -29.32 -23.34 -27.87 -27.62 -31.57 -21.08 -49.26 -45.90 -27.53
Diff mean wrt USA -0.028 0.139 -0.009 0.330 0.082 0.025 0.122 -0.235 0.126 0.035
Diff t-stat wrt U.S. -0.376 2.189 -0.086 3.047 1.463 0.239 1.408 -1.655 0.740 0.484

Gradient Boosting Regression Trees
Mean 0.922 1.134 0.885 1.772 1.114 0.646 0.779 0.608 1.173 0.689
t-stat 3.224 4.027 4.625 7.879 5.326 2.470 3.336 2.477 3.776 3.723
Sharpe Ratio 0.722 1.201 1.054 1.944 1.404 0.478 0.772 0.529 0.919 0.772
Max Drawdown -36.12 -20.18 -23.82 -9.389 -22.07 -38.94 -28.14 -36.18 -40.84 -26.04
Diff mean wrt USA -0.152 0.110 -0.065 0.865 0.094 -0.275 0.013 -0.274 1.004 -0.050
Diff t-stat wrt U.S. -1.260 1.061 -0.419 5.048 1.118 -1.466 0.114 -1.239 3.678 -0.404

Random Forest
Mean 1.032 1.127 1.027 1.825 1.206 0.795 0.799 0.587 1.266 0.850
t-stat 3.321 4.446 5.375 9.468 5.508 2.840 3.231 2.593 4.840 4.126
Sharpe Ratio 0.889 1.212 1.217 1.925 1.584 0.699 0.787 0.514 0.969 1.029
Max Drawdown -30.95 -19.19 -21.56 -21.68 -18.45 -39.01 -23.14 -35.41 -31.47 -21.92
Diff mean wrt U.S. -0.002 0.024 0.032 0.788 0.157 -0.200 0.170 -0.301 0.996 0.058
Diff t-stat wrt U.S. -0.024 0.233 0.147 5.081 2.349 -1.735 1.264 -1.119 5.211 0.536

Neural Networks
Mean 1.123 1.205 1.272 1.848 1.321 1.161 0.835 0.818 1.405 1.101
t-stat 4.037 4.563 6.777 7.964 6.083 3.913 3.409 3.998 5.196 4.971
Sharpe Ratio 0.944 1.345 1.488 1.779 1.686 0.969 0.774 0.663 1.048 1.216
Max Drawdown -23.70 -23.12 -16.81 -23.71 -18.19 -23.71 28.61 -38.28 -33.07 -18.63
Diff mean wrt U.S. -0.005 0.211 0.165 0.482 0.172 -0.024 0.102 0.116 0.577 0.090
Diff t-stat wrt U.S. -0.069 2.973 2.017 5.717 3.674 -0.217 1.242 0.804 3.268 1.171

Table 3 Continued
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Weighted Least Squares Gradient Boosting Regression Trees Neural Networks

Global U.S. Europe Japan AP Global U.S. Europe Japan AP Global U.S. Europe Japan AP

Global 1.000 0.552 0.610 0.564 0.576 1.000 0.737 0.712 0.634 0.705 1.000 0.516 0.314 0.385 0.290
U.S. 0.552 1.000 0.406 0.363 0.397 0.737 1.000 0.611 0.490 0.512 0.516 1.000 0.378 0.278 0.309
Europe 0.610 0.406 1.000 0.482 0.443 0.712 0.611 1.000 0.548 0.603 0.314 0.378 1.000 0.222 0.299
Japan 0.564 0.363 0.482 1.000 0.541 0.634 0.490 0.548 1.000 0.590 0.385 0.278 0.222 1.000 0.171
AP 0.576 0.397 0.443 0.541 1.000 0.705 0.512 0.603 0.590 1.000 0.290 0.309 0.299 0.171 1.000

Table 4. Spearman’s correlation matrices for region-specific variable
importance

The table shows Spearman correlation matrices between region-specific ranks
of variable importance as in equation (3) for the mispricing strategy. The
mispricing strategy is described in Subsection 1.3. The strategy combines
signals through predictive regressions of individual stock returns on
transformed characteristics. The historical predictive regressions are estimated
on data from the individual regions using weighted least squares, gradient
boosting regression trees, or neural networks. Estimation sample consists of
period from January 1963 to December 2018 in the U.S. and January 1990 to
December 2018 in other regions.
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Equal-weighted Value-weighted

U.S. Europe Japan AP Global U.S. Europe Japan AP Global

Panel A: Transaction Costs on the Portfolios Using Neural Networks

VoV 0.248 0.346 0.468 0.590 0.413 0.163 0.259 0.314 0.365 0.275
Gibbs 0.663 0.529 0.694 0.725 0.653 0.595 0.481 0.628 0.553 0.564
Quoted Spread 0.495 0.548 0.498 0.859 0.600 0.424 0.390 0.405 0.578 0.449
Turnover 103.90 104.20 102.70 104.10 103.70 118.00 110.00 111.10 112.90 113.00

Panel B: Net Returns on the Portfolios

Weighted Least Squares
Mean 0.339 0.471 0.249 0.048 0.286 0.226 0.564 0.332 0.302 0.311
t-stat 1.296 1.905 1.508 0.260 1.407 1.077 2.741 1.988 1.124 1.680
Sharpe Ratio 0.284 0.556 0.326 0.049 0.376 0.216 0.637 0.339 0.260 0.375
Max Drawdown -39.42 -31.62 -26.14 -44.42 -29.86 -40.58 -25.45 -34.09 -59.97 -30.95

Penalized Weighted Least Squares
Mean 0.392 0.447 0.326 0.450 0.385 0.338 0.382 0.321 0.417 0.362
t-stat 1.549 1.546 1.535 1.856 1.767 1.541 1.637 1.329 1.337 1.749
Sharpe Ratio 0.298 0.440 0.354 0.399 0.442 0.271 0.382 0.290 0.317 0.394
Max Drawdown -41.57 -34.63 -31.94 -49.51 -34.01 -35.58 -31.52 -40.08 -64.30 -34.50

Gradient Boosting Regression Trees
Mean 0.809 0.636 0.426 0.475 0.618 0.751 0.473 0.543 -0.050 0.484
t-stat 2.890 2.249 2.368 2.291 2.999 2.646 1.939 2.174 -0.252 2.533
Sharpe Ratio 0.657 0.682 0.502 0.514 0.864 0.594 0.462 0.466 -0.052 0.626
Max Drawdown -45.11 -38.11 -29.50 -23.96 -30.16 -47.00 -37.68 -29.94 -50.99 -28.08

Random Forest
Mean 0.763 0.710 0.475 0.587 0.641 0.822 0.328 0.562 0.036 0.533
t-stat 2.558 2.592 2.239 2.684 2.972 2.809 1.245 2.294 0.157 2.576
Sharpe Ratio 0.647 0.800 0.574 0.631 0.887 0.740 0.330 0.490 0.033 0.697
Max Drawdown -39.67 -30.90 -39.47 -23.73 -25.08 -41.70 -40.69 -23.01 -56.66 -22.41

Neural Networks
Mean 0.880 0.648 0.639 0.776 0.736 1.022 0.475 0.388 0.463 0.736
t-stat 3.473 2.330 3.495 3.732 3.597 4.550 2.234 1.946 1.868 4.466
Sharpe Ratio 0.744 0.706 0.796 0.774 0.952 0.944 0.479 0.359 0.381 0.935
Max Drawdown -26.97 -28.83 -18.15 -29.90 -20.34 -17.17 -32.92 -35.65 -49.58 -18.93

Table 5. Performance of the strategies after transaction costs
The table shows returns after transaction costs, along with transaction costs
on quintile long-short portfolios from the mispricing strategy as described in
Subsection 1.3. The estimation methods are least squares, penalized least
squares, random forests, gradient boosting regression trees, or neural networks.
The regressions are rerun at the end of each January using only observations
from the past and only those anomalies that have been published by that time.
Hyperparameters in the estimation are also selected yearly and always based
on the most recent 11-year validation sample available. The historical
predictive regressions are estimated on individual stocks from the U.S. The
long-short portfolios are constructed by buying stocks in the top quintile of the
predicted next month returns and short-selling stocks in the bottom quintile of
the predicted next month returns. Estimation sample is expanding annually
and spans January 1963 to December 1994 up to January 1963 to December
2017 in the U.S. The reported returns are for January 1995 to December 2018
period and are in percentage points. The standard errors in t-statistics are
adjusted for heteroskedasticity and autocorrelation with Newey-West
adjustment for up to 12 lags. Panel A describes transaction costs and turnover
on the mispricing strategy estimated using neural networks. The transaction
costs are measured either with VoV(% Spread) proxy of Fong et al. (2017),
average daily closing quoted spread, or Gibbs proxy of Hasbrouck (2009). The
proxies are further described in Subsection 1.5 The transaction costs and
turnover are in percentage points per month. Panel B shows portfolio returns
after transaction costs on the mispricing strategy. The transaction costs in
Panel B are estimated with VoV(% Spread) proxy of Fong et al. (2017). The
returns are reported in percentage points per month.
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Figure 1. Number of the published anomalies over time. The anomalies
documented in Harvey et al. (2016), McLean and Pontiff (2016) and Hou et al.
(2018) are primarily selected. The solid line shows the cumulative number of the
published anomalies over time. The dashed line shows the number of anomalies
whose in-sample period in their respective studies ends before the given date.
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Figure 2. Decision tree.
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Figure 3. Neural network.
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Figure 4. Cumulative returns on the mispricing strategy using neural
networks. The figure shows cumulative returns for the mispricing strategy as
shown in Panel A in Table 2 that is estimated on the individual stocks from the
U.S. using neural networks. The returns are presented in decimal logarithms.
One on the vertical scale therefore corresponds to 1000% return on the initial
investment.
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Figure 5. Variable importance. The figure shows variable importance as
in equation (3) for the 25 globally most important variables in the mispricing
strategy. The mispricing strategy is described in detail in Subsection 1.3. The
strategy combines signals through predictive regressions of individual stock re-
turns on transformed characteristics. The historical predictive regressions are
estimated on data from the individual regions using neural networks. Estimation
sample spans 1963 to 2018 in the U.S. and 1990 to 2018 in the other regions.
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Figure 6. Marginal predictive contributions of Size, BM, and Mom.
The figure shows the marginal predictive relationship for the mispricing strat-
egy between size, book-to-market (BM), momentum (Mom) and (region-wise
demeaned) expected returns as defined in Equation (4). The mispricing strat-
egy is described in detail in Subsection 1.3. The methods used in the mispricing
strategy are weighted least squares, penalized weighted least squares, gradient
boosting regression trees, random forests, and neural networks. Predictions for
individual regions are obtained using models estimated on the respective regions
only. Estimation sample spans January 1963 to December 2018 in the U.S. and
January 1990 to December 2018 in the other regions.
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Figure 7. Marginal predictive contributions of AGr, OPoE, and STR.
The figure shows the marginal predictive relationship for the mispricing strategy
between asset growth (AGr), operating profitability (OPoE), short-term reversal
(STR) and (region-wise demeaned) expected returns as defined in Equation
(4). The mispricing strategy is described in detail in Subsection 1.3. The
methods used in the mispricing strategy are weighted least squares, penalized
weighted least squares, gradient boosting regression trees, random forests, and
neural networks. Predictions for individual regions are obtained using models
estimated on the respective regions only. Estimation sample spans January 1963
to December 2018 in the U.S. and January 1990 to December 2018 in the other
regions.
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Figure 8. Monthly transaction costs. The figure visualizes transaction
costs for the mispricing strategy using neural networks from the Panel A of
Table 5. The transaction costs are estimated with VoV(% Spread) proxy of
Fong et al. (2017).
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