

Czech Academy of Sciences

Institute of Information Theory and Automation

DISCRETE

COMPOSITIONAL MODELS

FOR DATA MINING

Radim Jiroušek, Václav Kratochvíl, et al.

Prague, 2019

text B5.indd 1text B5.indd 1 23.10.2019 14:40:3323.10.2019 14:40:33

Published by:
MatfyzPress,
Publishing House of the Faculty of Mathematics and Physics Charles University
Sokolovská 83, 186 75 Praha 8, Czech Republic, as the 598. publication.
Printed by Reprostředisko MFF UK.

The text hasn’t passed the review or lecturer control of the publishing company
MatfyzPress. The publication has been issued for the purposes of the Grant
MOST-18-04. The publishing house Matfyzpress is not responsible for the quality
and content of the text.

Printed in Prague — October 2019

Supported by:
Grant MOST-18-04 by the Czech Academy of Sciences

Credits:
Editors: Radim Jiroušek, Václav Kratochvíl
LATEXeditors: Radim Jiroušek, Václav Kratochvíl
Cover design: Jiří Přibil – designed using resources from Freepik.com.

Project team:
Vladislav Bína
Chien Chun-Yu
Radim Jiroušek (Part I Editor)
Václav Kratochvíl (Part II Editor)
Tzong-Ru (Jiun-Shen) Lee
Martin Rod
Jan Švorc
Lucie Váchová
Wang Ching-Yi

© R. Jiroušek, V. Kratochvíl (Eds.), 2019
© MatfyzPress, Publishing House of the Faculty of Mathematics and Physics

Charles University, 2019

ISBN: 978-80-7378-404-1

text B5.indd 2text B5.indd 2 23.10.2019 14:40:4623.10.2019 14:40:46

Contents

I THEORETICAL FOUNDATIONS 1

1 Finite probability theory 3
1.1 Discrete random variables . 4
1.2 Structures of conditional independence 6
1.3 Decomposability . 12
1.4 Information-theoretic notions 16
1.5 Survey of symbols . 22

2 Operator of composition 25
2.1 Basic properties . 25
2.2 Anticipating operator . 29
2.3 Projection . 32
2.4 Iterative Proportional Fitting 33

3 Compositional models 37
3.1 Perfect models . 38
3.2 Decomposable models . 43
3.3 Marginalization . 47
3.4 Conditioning . 52
3.5 Causal models . 57

4 Independence structure of models 63
4.1 Persegrams . 64
4.2 Simple trails . 65
4.3 Avoiding trails . 67

5 Avoiding model overfitting 69
5.1 Information and complexity 70
5.2 Huffman code . 72
5.3 Coding Data . 74
5.4 Coding Models . 78
5.5 Model Simplification . 81

iii

text B5.indd 3text B5.indd 3 23.10.2019 14:40:4623.10.2019 14:40:46

6 Data mining example 85

II SYSTEM MANUAL 95

7 Starting with MUDIM 97
7.1 Install R . 97
7.2 Install MUDIM . 98

8 Probability distribution 99
8.1 R object . 99

8.1.1 Probability table . 100
8.1.2 Names of random variables 104
8.1.3 Additional information 105

8.2 Manipulations with probability distributions 105
8.2.1 Marginal distribution 105
8.2.2 Product . 106
8.2.3 Composition . 107
8.2.4 Anticipating operator 108

8.3 Information-theoretic notions 108
8.3.1 Shannon entropy . 108
8.3.2 Kullback-Leibler divergence 109
8.3.3 Mutual information 110
8.3.4 Conditional mutual information 110
8.3.5 Multi-information . 110
8.3.6 Conditional multiinformation 111

9 Compositional model 113
9.1 R Object . 113
9.2 Insert distribution . 114
9.3 Model properties . 115

9.3.1 Basic overview . 115
9.3.2 Name and information 115
9.3.3 Length . 116
9.3.4 Dimension . 116
9.3.5 Structure . 116
9.3.6 Random variables . 116
9.3.7 Decomposability . 117

9.4 Manipulations with model . 117
9.4.1 Marginalization . 117
9.4.2 Perfectization . 119
9.4.3 Conditioning . 119
9.4.4 Decomposibility . 120

iv

text B5.indd 4text B5.indd 4 23.10.2019 14:40:4623.10.2019 14:40:46

9.4.5 Convert to distribution 121

10 Others 123
10.1 Save and load . 123
10.2 Referencing . 123

Appendix: List of functions 129

v

text B5.indd 5text B5.indd 5 23.10.2019 14:40:4623.10.2019 14:40:46

vi

text B5.indd 6text B5.indd 6 23.10.2019 14:40:4623.10.2019 14:40:46

Preface

This brochure has been written with the support of the bilateral Czech-
Taiwanese project Compositional models for data mining financially
supported by the Ministry of Science and Technology, Taiwan, and by
the Czech Academy of Sciences under Grant No. MOST-18-04. The
main output of the project, realized in 2018 and 2019, is a new supervised
web system enabling researchers to learn probabilistic (compositional)
models (both causal and stochastic) from data. We have opted for the
web architecture for two reasons. First, we assume the system will be
expanded in subsequent years, and the web application means that the
system administrator only has to keep updated one version of program
codes. Second, the system is accessible from any place in the world, so it
can be applied not only by the members of research teams collaborating
within the above-mentioned project but also by all interested researchers
from anywhere inthe world.

This booklet should serve as a manual for users of the data mining system.
Nevertheless, since the system is based on the theory of compositional
models, and no comprehensive text on this theory exists, we decided to
set up this text from two parts. The first one describes the theoretical
background on which the models constructed from data are based. It
also includes chapters showing how the compositional models can be
applied to data mining tasks. For this reason, the first part summarizes
results scattered in a number of research journal and conference papers,
mainly by R. Jiroušek and his coauthors Vl. Bína and V. Kratochvíl
[9, 15, 10, 11, 12, 19, 3, 4, 17]. This part, after introducing the notation
from general probability theory, puts a special emphasis on the notion of
stochastic (conditional) independence, without which one cannot distill
knowledge from probability models. Chapters 2-5 sum up excerpts from the
original research conference and journal papers. The importance of this part
can be seen not only in the fact that it is the first time when these results
are surveyed in one comprehensive text but also that it is presented using a
new unifying notation, without which it might be difficult to see the links

vii

text B5.indd 7text B5.indd 7 23.10.2019 14:40:4623.10.2019 14:40:46

interconnecting individual parts of this theoretical approach.

The text is primarily intended for a user of the web system, who should
get familiar with the theory of compositional models. To this end, presenting
the proofs of theorems, which are in great majority rather technical, would
be unnecessarily boring; we omit them. On the other hand, to avoid the
necessity of referring to basic textbooks on probability theory, we include
a brief introduction into its main notions and explain thoroughly all the
used symbols. Though it might seem admissible, we strongly discourage
the reader from using the system without properly studying the underlying
theory of compositional systems in Part I.

Part II of this text is a system manual; it advises the reader how to use
the system for model construction, how to control the process of model
construction, and how to verify the achieved results.

This text is under permanent development. Therefore, the readers are
kindly asked to refer all mistakes, errors, and/or suggestions for improve-
ment (e.g. the passages difficult to understand, or notions that should be
illustrated by examples) by e-mail to radim@utia.cas.cz (concerning Part I)
and velorex@utia.cas.cz (concerning Part II).

viii

text B5.indd 8text B5.indd 8 23.10.2019 14:40:4723.10.2019 14:40:47

Part I

THEORETICAL
FOUNDATIONS

1

text B5.indd 9text B5.indd 9 23.10.2019 14:40:4723.10.2019 14:40:47

text B5.indd 10text B5.indd 10 23.10.2019 14:40:4723.10.2019 14:40:47

Chapter 1

Brief introduction to finite
probability theory

The basic idea of compositional models is very simple: it is beyond human
capabilities to describe global knowledge from an application area – one
always works with mere pieces of local knowledge. Such local knowledge can,
within probability theory, be easily represented by low-dimensional distri-
butions. The multidimensional distribution is (in a special way) composed
from these local pieces. This analogy also explains why the compositional
models are (relatively) easily understandable to specialists from the area
of application – non-mathematicians. And it is also the reason why this
technique is, like Bayesian networks, included among the methods of data-
mining. For example, constructing compositional models from two data
files collected in different cultural environments (in our case in Taiwan and
the Czech Republic) enables the user to compare the structures of the two
models, thus revealing qualitative differences between the studied societies.
Analogously, the comparison of the respective probability tables enables the
researchers to describe the quantitative differences.

The goal of a data mining process is not a model itself but its inter-
pretation in the form of distilled knowledge. Nevertheless, as it will be
shown in Chapter 6, a greater part of knowledge is already gained during
the process of model construction, and only the rest during the model ver-
ification – explanation. The supervised approach to model construction
enables the researchers to influence the resulting models so that these models
are easily comprehensible and interpretable. Both of the above-mentioned
processes (model construction and model verification) are supported by the
information-theoretic tools introduced in Section 1.4.

The goal of this first Chapter is to introduce basic (and generally well-
known) notions from probability theory as well as the above-mentioned
concepts from information theory.

3

text B5.indd 11text B5.indd 11 23.10.2019 14:40:4723.10.2019 14:40:47

4 CHAPTER 1. FINITE PROBABILITY THEORY

1.1 Discrete random variables

Upper-case characters of Latin alphabet (like X, Y , Z, V , W) denote finite
valued variables. Finite sets of values of these variables are denoted by XX ,
XY , XZ , XV , XW . Thus, for example, if variable Y denotes a ’gender’ of
a respondent, then XY contains just two values corresponding to ’female’
and ’male’. Most of the time we will deal with sets of variables denoted by
bold-face characters K, L, M, N. Thus, K may be {X, Y, W}. By a state
of variables K we understand any combination of values of the respective
variables, i.e., in the mentioned case K = {X, Y, W}, a state is an element
of the Cartesian product XX × XY × XW . For the sake of simplicity, this
Cartesian product is denoted XK. For a state y ∈ XK and L ⊂ K, we denote
by y↓L the projection of y ∈ XK into XL, i.e., y↓L is the state from XL that
is obtained from y by disregarding all the values of variables from K \ L.

Example 1.1 Consider a group of students described by three variables:
X – gender, Y – study results, and Z – nationality. Let XX = {f, m}
(female, and male, respectively), XY = {e, g, a} (excellent, good, and average,
respectively), XZ = {t, c} (Taiwanese, and Czech, respectively). Denot-
ing K = {X, Y, W}, XK is the set of all twelve triplets (states): (f, e, t),
(f, e, c), . . . , (m, a, c). In this case, for example, (m, g, c)↓{X,Z} = (m, c)
and X{X,Z} = {(f, t), (f, c), (m, t), (m, c)}.

Probability distributions are denoted by characters of Greek alphabet
(κ, λ, μ, ν, π). Recall that it means that κ(K) : XK −→ [0, 1], for which1∑

x∈XK κ(x) = 1.

Having a probability distribution κ(K), and a subset of variables L ⊂ K,
we denote by κ↓L a marginal distribution of κ defined for each x ∈ XL by
the formula

κ↓L(x) =
∑

y∈XK:y↓L=x

κ(y).

Note that we do not exclude situations when L = ∅, for which we get κ↓∅ = 1.
For a probability distribution κ(K), we introduce a conditional dis-

tribution in a standard way. For disjoint L, M ⊆ K, by a conditional
distribution of variables L given variables M, we understand any function
κL|M : XL∪M −→ [0, 1] meeting the following two conditions:

• ∀x ∈ XL∪M κ↓L∪M(x) = κL|M(x) · κ↓M(x↓M),

1Notice that symbol κ(K) is used to express the fact that probability distribution κ is
defined for variables K. κ(x) for x ∈ XK is the probability of state x ∈ XK.

text B5.indd 12text B5.indd 12 23.10.2019 14:40:4723.10.2019 14:40:47

1.1. DISCRETE RANDOM VARIABLES 5

• ∀ fixed x ∈ XM function κL|M as a function of variables L is a
probability distribution, i.e.,

∑
y∈XL∪M;y↓M=x κL|M(y) = 1.

Due to the latter condition, the argument y of the function κL|M is often
split into two complementary pieces y↓L and y↓M, and its value is written
as κL|M(y↓L|y↓M).

Example 1.2 Consider three variables M = {X, Y, Z} representing three
fair coins, i.e., |XX | = |XY | = |XZ | = 2. Denote XX = XY = XZ = {0, 1},
and consider the following random experiment: two coins are randomly tossed
and the third one is laid on the table so that the number of ’ 1s’ is odd. This
experiment is fully described by probability distribution μ, values of which
are shown in Table 1.1

Table 1.1: Probability distribution describing the 3-coin example.

X 0 0 0 0 1 1 1 1
Y 0 0 1 1 0 0 1 1
Z 0 1 0 1 0 1 0 1
μ 0 1

4
1
4 0 1

4 0 0 1
4

The reader has certainly noticed that distribution μ shows a kind of
symmetry with respect to the considered variables. From Table 1.1, there is
no way to say which two coins are tossed randomly and which one is the
third one manipulated to have an odd number of ’ 1s’. Namely, it is easy to
show that all of its three two-dimensional marginal distributions μ↓{X,Y },
μ↓{X,Z},μ↓{Y,Z} are uniform, i.e.,

μ↓{X,Y }(x, y) = μ↓{X,Z}(x, z) = μ↓{Y,Z}(y, z) = 1
4

holds for all (x, y, z) ∈ X{X,Y,Z}. Later we will mention other interesting
properties of this distribution. At this moment, we just want to invite the
reader to see that2

μX|Y (x|y) = μX|Z(x|z) = μY |X(y|x) = μY |Z(y|z)
= μZ|X(z|x) = μZ|Y (z|y) = 1

2

holds for all (x, y, z) ∈ X{X,Y,Z}, and that

μX|{Y,Z}(0|0, 0) = μX|{Y,Z}(0|1, 1) = μX|{Y,Z}(1|0, 1) = μX|{Y,Z}(1|1, 0) = 0,

2When considering a singleton set, we often omit the curly parentheses denoting it as a
set, i.e., we use just X instead of more precise (but clumsy) {X}.

text B5.indd 13text B5.indd 13 23.10.2019 14:40:4723.10.2019 14:40:47

6 CHAPTER 1. FINITE PROBABILITY THEORY

as well as

μX|{Y,Z}(0|0, 1) = μX|{Y,Z}(0|1, 0) = μX|{Y,Z}(1|0, 0) = μX|{Y,Z}(1|1, 1) = 1.

For two probability distributions defined on the same group of variables,
say, π(K), κ(K), we say that κ dominates π (writing π � κ) if

∀ x ∈ XK (κ(x) = 0 =⇒ π(x) = 0) .

Notice that this relationship is not too restrictive; e.g., every distribution is
dominated by all positive distributions.

Consider two distributions κ(K) and λ(L). This time we do not assume
any restriction on the sets of variables K and L. They may be disjoint or
overlapping. It may even happen that one is a subset of the other. We say
that κ and λ are consistent if there exists a distribution π(K ∪ L)) such that
κ and λ are its marginals: π↓K = κ and simultaneously π↓L = λ. In this
case we also say that π is a joint extension of κ and λ. Notice that it is easy
to show that κ and λ are consistent if and only if π↓K∩L = κ↓K∩L.

1.2 Structures of conditional independence

It is clearly impossible to represent a necessary probability distribution by a
multidimensional table in a way similar to Table 1.1 when the number of
the considered variables exceeds a certain (rather small) limit. However, in
problems of practice, one mustconsider collections of features represented
by tens or even hundreds of variables. Handling probability distributions
of such high dimensionality is made possible by decomposition, which is to
be studied in the next Section. Here we are about to introduce a notion of
conditional independence, without which such decompositions would not be
possible.

Everybody knows that two variables X and Y are independent with
respect to probability distribution π(X, Y) if π(X, Y) = π(X) · π(Y). This
is because, in this case3:

π(X|Y) = π(X, Y)
π(Y) = π(X) · π(Y)

π(Y) = π(X).

This formula expresses the fact that the knowledge of the value of variable
Y does not bear any new information about the value of variable X. The
following notion just generalizes this simple idea.

3Naturally, the following computation is valid for positive π(Y).

text B5.indd 14text B5.indd 14 23.10.2019 14:40:4723.10.2019 14:40:47

1.2. STRUCTURES OF CONDITIONAL INDEPENDENCE 7

Definition 1.3 Consider a probability distribution π(N), and three disjoint
subsets of variables K, L, M (K ∪ L ∪ M ⊆ N). Let K and L be nonempty.
We say that groups of variables K and L are conditionally independent given
M for distribution π if4

π↓K∪L∪M · π↓M = π↓K∪M · π↓L∪M. (1.1)

In symbols, this property is expressed by K⊥⊥L|M [π].

Notice that, in the case of M = ∅, we only use K⊥⊥L [π] and speak about
unconditional independence (some authors call it marginal independence).

Example 1.4 Consider, again, distribution μ from Example 1.2. Its
marginal distributions μ↓X , μ↓Y and μ↓{X,Y } are shown in Table 1.2.
Comparing product of μ↓X and μ↓Y with μ↓{X,Y } in this Table, one can
immediately see that X⊥⊥Y [μ]. In the same way one can show that also

Table 1.2: Marginals of probability distribution μ from Example 1.2.

X Y μ↓X μ↓Y μ↓{X,Y }

0 0 1
2

1
2

1
4

0 1 1
2

1
2

1
4

1 0 1
2

1
2

1
4

1 1 1
2

1
2

1
4

X⊥⊥Z [μ], and Y ⊥⊥Z [μ]. On the other hand, X�⊥⊥Y |Z [μ] because

μ↓{X,Y,Z}({0, 0, 0})μ↓Z(0) = 0 · 1
2 ,

and
μ↓{X,Z}({0, 0})μ↓{Y,Z}({0, 0}) = 1

4 · 1
4 .

Similar equalities show that X�⊥⊥Z|Y [μ], and Y �⊥⊥Z|X [μ].

To get intuitive insight into the meaning of the conditional independence
relationship, it is apposite to realize that

X⊥⊥Y |Z [π] ⇐⇒ π(X|Z) = π(X|Y, Z),
4This expression means that for all x ∈ XK∪L∪M

π↓K∪L∪M(x) · π↓M(x↓M) = π↓K∪M(x↓K∪M) · π↓L∪M(x↓L∪M).

text B5.indd 15text B5.indd 15 23.10.2019 14:40:4823.10.2019 14:40:48

8 CHAPTER 1. FINITE PROBABILITY THEORY

and, because X⊥⊥Y |Z [π] ⇔ Y ⊥⊥X|Z [π],

X⊥⊥Y |Z [π] ⇐⇒ π(Y |Z) = π(Y |X, Z).

These formulae hold because, in this case (for a positive distribution π),

π(Y |X, Z) = π(X, Y, Z)
π(X, Z) = π(X, Y, Z) · π(X)

π(X) · π(X, Z) = π(Y, Z) · π(X, Z)
π(X) · π(X, Z)

= π(Y, Z)
π(X) = π(Y |X, Z).

We will thus keep in mind that, generally,

K⊥⊥L|M [π] ⇐⇒ π↓K|M = π↓K|L∪M. (1.2)

For a probability distribution π, by its independence structure we un-
derstand the list of all conditional independence relationships holding for π.
To describe it in an economical way, the following properties of the notion
of conditional independence (for their proofs see, e.g., [35]) may come in
handy. For example, using the following Block Independence Property, one
can show that the conditional independence structure of distribution π is
fully specified by the list of conditional independence relationships of the
form X⊥⊥Y |K [π] (by the list of conditional independence relationships for
singletons).

Theorem 1.5 Factorization property. Consider a probability distribu-
tion π(J), and three disjoint subsets of variables K, L, M (K ∪ L ∪ M ⊆ J).
Let K and L be nonempty. Then K⊥⊥L|M [π] if and only if there exist
functions

ψ1 : XK∪M −→ [0,+∞)
ψ2 : XL∪M −→ [0,+∞)

such that, for all x ∈ XK∪L∪M,

π↓K∪L∪M(x) = ψ1(x↓K∪M) · ψ2(x↓L∪M) (1.3)

holds.

Though this assertion looks rather abstract, it is just a generalization of
the fact that

K⊥⊥L|M [π] ⇐⇒ π↓K∪L∪M = π↓K∪M · π↓L|M.

text B5.indd 16text B5.indd 16 23.10.2019 14:40:4823.10.2019 14:40:48

1.2. STRUCTURES OF CONDITIONAL INDEPENDENCE 9

The reader can see it immediately after computing the respective marginals
from the expression given by Equation 1.3 (for x ∈ XK∪L∪M):

π↓K∪M(x↓K∪M) = ψ1(x↓K∪M) ·
∑

y∈XL

ψ2(y, x↓M),

π↓L∪M(x↓L∪M) = ψ2(x↓L∪M) ·
∑

z∈XK

ψ1(z, x↓M),

π↓M(x↓M) =

⎛
⎝ ∑

z∈XK

ψ1(z, x↓M)

⎞
⎠ ·

⎛
⎝ ∑

y∈XL

ψ2(y, x↓M)

⎞
⎠ .

Theorem 1.6 Block independence property. For any probability distri-
bution π(J), and four disjoint subsets of variables K, L, M, N (K ∪ L ∪ M ∪
N ⊆ J, and K, L, M are nonempty) the following two expressions (A) and
(B) are equivalent

(A) K⊥⊥L ∪ M|N [π],

(B) K⊥⊥M|N [π] and K⊥⊥L|N ∪ M [π].

Theorem 1.7 Block independence property for positive distribu-
tions. For any strictly positive probability distribution π(J), and four
disjoint subsets of variables K, L, M, N (K ∪ L ∪ M ∪ N ⊆ J, and K, L, M
are nonempty) the following two expressions (A′) and (B′) are equivalent

(A′) K⊥⊥L ∪ M|N [π],

(B′) K⊥⊥M|N ∪ L [π] and K⊥⊥L|N ∪ M [π].

Example 1.8 This example is included to provide the reader with an illus-
tration of the terms introduced in the previous Sections and to get accustomed
to the notation that is commonly used in the field of probabilistic artificial
intelligence. Let us point out that the latter may be rather unusual, for
example, for statisticians.

Table 1.3: Four-dimensional probability distribution.

X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Y 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Z 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
V 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
μ 0 0 0 1

4
1
4 0 0 0 1

4 0 0 0 0 0 0 1
4

Consider four binary variables N = {X.Y.Z, V }, again with XX =
XY = XZ = XV = {0, 1}, and a four-dimensional probability distribution

text B5.indd 17text B5.indd 17 23.10.2019 14:40:4823.10.2019 14:40:48

10 CHAPTER 1. FINITE PROBABILITY THEORY

μ(N) from Table 1.3. The observant reader has certainly noticed that its
marginal distribution for M = {X.Y.Z} coincides with the distribution from
Example 1.2. Moreover, marginalizing the distribution μ for variables Z
and V , one can easily show that the added variable V is just a “copy” of
the variable Z (the coin corresponding to variable V is laid on the table
showing the same face as the coin corresponding to variable Z). Therefore
μ↓{Z,V }(0, 0) = μ↓{Z,V }(1, 1) = 1

2 and μ↓{Z,V }(0, 1) = μ↓{Z,V }(1, 0) = 0.
Let us find the independence structure of this distribution. From Ex-

ample 1.4 we already know that any couple of variables from X, Y, Z are
(unconditionally) independent. Therefore also X⊥⊥V [μ], Y ⊥⊥V [μ]. Intu-
itively, it is clear that Z�⊥⊥V [μ]; one can see it formally from Table 1.4.

Table 1.4: Marginals of probability distribution μ from Example 1.8.

Z V μ↓Z μ↓V μ↓{Z,V }

0 0 1
2

1
2

1
2

0 1 1
2

1
2 0

1 0 1
2

1
2 0

1 1 1
2

1
2

1
2

What about conditional independence relationships? For each pair of
variables, one should consider three conditional independence relation-
ships. For X and Y , one should consider X⊥⊥Y |Z [μ], X⊥⊥Y |V [μ] and
X⊥⊥Y |{Z, V } [μ]. None of these three relationships holds true. Regarding
the first two of them, it follows from Example 1.4; and it is easy to show it
for the last of them as well. Namely, it is a trivial consequence of the fact
that V is a “copy” of Z; we leave it to the reader to show it formally (hint:
consider state (0, 0, 0, 0) ∈ XN).

For the pair X and Z, one should consider X⊥⊥Z|Y [μ], X⊥⊥Z|V [μ]
and X⊥⊥Z|{Y, V } [μ]. From Example 1.4 we know that X�⊥⊥Z|Y [μ]. Con-
trary to this, X⊥⊥Z|V [μ] and X⊥⊥Z|{Y, V } [μ]. The validity of the former
relationship can be seen from Table 1.5, or from Equivalence (1.2) because it
is easy to show that μ(X|V) = μ(X|Z, V). The validity of X⊥⊥Z|{Y, V } [μ]
can be shown in an analogous way, and therefore it is, again, left to the
reader.

It remains to consider conditional independence relationships Z⊥⊥V |X [μ],
Z⊥⊥V |Y [μ], and Z⊥⊥V |{X, Y } [μ]. Neither of the first two relationships
holds because μ(X, Z) · μ(X, V) (μ(Y, Z) · μ(Y, V)) is positive for all states
from X{X,Z,V } (X{Y,Z,V }), which does not hold for μ(X, Z, V) (μ(Y, Z, V)).

text B5.indd 18text B5.indd 18 23.10.2019 14:40:4823.10.2019 14:40:48

1.2. STRUCTURES OF CONDITIONAL INDEPENDENCE 11

Table 1.5: Marginals of probability distribution μ from Example 1.8.

X Z V μ↓V μ↓{X,Z,V } μ↓{X,V } μ↓{Z,V }

0 0 0 1
2

1
4

1
4

1
2

0 0 1 1
2 0 1

4 0

0 1 0 1
2 0 1

4 0

0 1 1 1
2

1
4

1
4

1
2

1 0 0 1
2

1
4

1
4

1
2

1 0 1 1
2 0 1

4 0

1 1 0 1
2 0 1

4 0

1 1 1 1
2

1
4

1
4

1
2

Thus, the only remaining question is that of the validity of Z⊥⊥V |{X, Y } [μ].
It may be a surprise but this conditional independence relationship holds.
To show it, the reader can create a table, in a way analogous to Table 1.5,
with 16 rows corresponding to the states from X{X,Y,Z,V }, and the columns
containing μ↓{X,Y,Z,V }, μ↓{X,Y }, μ↓{X,Y,Z}, μ↓{X,Y,Z}. At this place, we do
not present such a table; our reasoning will be based on the equivalence from
Expression (1.2). We know that the values of variables X and Y uniquely
determine the value of variable Z. It means that, when knowing the values
of these two variables, we know both values of variables Z and V . Therefore
μ(V |{X, Y, Z}) = μ(V |{X, Y }).

We can now summarize the preceding paragraphs by presenting the con-
ditional independence structure of the considered probability distribution μ
from Table 1.3:

X⊥⊥Y [π], X⊥⊥Z|V [π], X⊥⊥Z|{Y, V } [π],
X⊥⊥Z [π], X⊥⊥V |Z [π], X⊥⊥V |{Y, Z} [π],
X⊥⊥V [π], Y ⊥⊥Z|V [π], Y ⊥⊥Z|{X, V } [π],
Y ⊥⊥Z [π], Y ⊥⊥V |Z [π], Y ⊥⊥V |{X, Z} [π],
Y ⊥⊥V [π], Z⊥⊥V |{X, Y } [π].

Recall that, from this list, one can deduce all other conditional indepen-
dence relationships holding for the considered probability distribution. For
example, from X⊥⊥Z [π] and X⊥⊥V |Z [π] one can deduce, using the Block
Independence Property (Theorem 1.6) that X⊥⊥{Z, V } [π].

text B5.indd 19text B5.indd 19 23.10.2019 14:40:4923.10.2019 14:40:49

12 CHAPTER 1. FINITE PROBABILITY THEORY

1.3 Decomposability

By decomposition, we usually understand the result of a process that, with
the goal of simplification, divides an original object into its sub-objects.
Thus, for example, a problem is decomposed into two (or more) simpler
sub-problems. General properties of such decompositions can be viewed on
an example familiar to everybody: decomposition of a positive integer into
prime numbers. In this case, an elementary decomposition is a decomposition
of an integer into two factors, the product of which gives the original integer.
In this example, we can see that

• two objects are the result of the decomposition; both the resulting
objects are of the same type as the decomposed object – an integer is
decomposed into two integers;

• both these sub-objects are simpler (smaller) than the original object –
both factors are smaller than the original integer (we do not consider
1 × n to be a decomposition of n);

• not all objects can be decomposed – prime numbers cannot be decom-
posed;

• there exists an inverse operation (we call it a composition) yielding
the original object from its decomposed parts – the composition of two
integers is their product.

It can easily be deduced from the above-presented properties that the process
of repeatedly performed decomposition of an arbitrary (finite) object into
elementary sub-objects (i.e., sub-objects that cannot be further decomposed)
is always finite.

What is a decomposition of a finite probability distribution? Consider
a two-dimensional distribution π(X, Y). Simpler sub-objects are just one-
dimensional distributions: a distribution of a variable X and a distribution
of a variable Y . Under what conditions do we have a chance to reconstruct
the original two-dimensional distribution π from its one-dimensional dis-
tributins π↓X and π↓Y ? Generally, the process of marginalization is unique,
but, with the exception of a degenerate distribution, we cannot unambigu-
ously reconstruct the original two-dimensional distribution from its one-
dimensional marginals. To bypass this fact, we restrict the decomposition of
two-dimensional distributions π(X, Y) into their one-dimensional marginals
only for the case of independence: X⊥⊥Y [π]. In this case, π(X, Y) can easily
be reconstructed from its marginals π↓X and π↓Y : π(X, Y) = π↓X · π↓Y ,
where “·” denotes pointwise multiplication, i.e., π(x, y) = π↓X(x) · π↓Y (y)
for all states (x, y) ∈ X{X,Y }.

text B5.indd 20text B5.indd 20 23.10.2019 14:40:4923.10.2019 14:40:49

1.3. DECOMPOSABILITY 13

Analogously, three-dimensional distribution π(X, Y, Z) can be decom-
posed into two simpler probability distributions (marginals of π(X, Y, Z))
only if either a couple of variables (say, X, Y) are independent of the remain-
ing third variable (in this case Z), or if two variables (say, X and Z) are
conditionally independent given the remaining third variable (in this case
Y):

• {X, Y }⊥⊥Z [π], then π(X, Y, Z) can be reconstructed from π↓{X,Y } and
π↓Z ,

• X⊥⊥Z|Y [π], then π(X, Y, Z) can be reconstructed from π↓{X,Y } and
π↓{Y,Z} using Equation (1.1).

This consideration leads us to the following general definition.

Definition 1.9 We say that a probability distribution π(M) is decomposed
into its marginals π↓K and π↓L if

1. K ∪ L = M;

2. K �= M, L �= M;

3. π(M) · π↓K∩L = π↓K · π↓L.

Notice that the third condition is nothing other than

K \ L⊥⊥L \ K|K ∩ L [π],

and that the original distribution π(M) can be uniquely reconstructed from
the marginals π↓K and π↓L.

Analogously to the decomposition of integers to prime numbers, even
probability distributions can be hierarchically decomposed into a system
of distributions that cannot be further decomposed. An example of such
a hierarchical process represented by the corresponding tree structure can
be seen in Figure 1.1, where distribution π(X, Y, Z, V, W) is decomposed
into a system of its marginal distributions: π↓X , π↓Y , π↓{Y,Z,V }, π↓{Z,V },
and π↓{V,W }. Each decomposition has been made possible by the fact that
the respective conditional independence relationship holds for distribution
π. The decomposition process from Figure 1.1 has been made possible
by the assumption that the following system of conditional independence
relationships holds for distribution π (or, in other words, the independence
structure of distribution π contains the following relationships):

• X⊥⊥{Z, V, W}|Y [π];

• X⊥⊥Y [π];

text B5.indd 21text B5.indd 21 23.10.2019 14:40:4923.10.2019 14:40:49

14 CHAPTER 1. FINITE PROBABILITY THEORY

π(X, Y, Z, V, W)

π(X, Y) π(Y, Z, V, W)

π(X) π(Y) π(Y, Z, V) π(Z, V, W)

π(Z, V) π(V, W)

�
�

�
���

�
�
�
���

�
�
��

�
�
�	

�
�
��

�
�
�	

�
�
��

�
�
�	

Figure 1.1: Hierarchical decomposition of π(X, Y, Z, V, W).

• Y ⊥⊥W |{Z, V } [π];

• Z⊥⊥W |V [π].

Let us close this Section with a warning about a terminological paradox
concerning the notion of decomposability. Namely, when speaking about
a probability distribution that can be decomposed, we cannot say that it
is decomposable. This term is, as we will see below in Definition 1.12,
designated to another property. So, the reader will see that there are
distributions that are decomposable but cannot be decomposed, as well as
there are distributions that can be decomposed, and simultaneously, they
are not decomposable5.

To define the term of decomposability we need a property that may be
met by any sequence of sets.

Definition 1.10 We say a sequence of variable sets M1, M2, . . . , Mm meets
the Running Intersection Property (RIP) if

∀j = 2, 3, . . . , m ∃k(1 ≤ k < j) for which Mj ∩ (M1 ∪ . . . ∪ Mj−1) ⊆ Mk.

At first sight, this property may seem rather technical. However, it has
a simple interpretation. Imagine that you are constructing a union of all of
the considered sets

⋃m
i=1 Mi step by step. If the sets are ordered to meet the

RIP, it means that in the k-th step you are adding set Mk, the intersection
of which with all the previously unified sets (i.e. Mk ∩ ⋃k−1

i=1 Mi) is covered
by one of the previously added sets. In other words, we can say that the
newly added set is added “through” one of the preceding sets.

5The same paradox also appears in graph theory; decomposable graphs are not those
that can be decomposed.

text B5.indd 22text B5.indd 22 23.10.2019 14:40:4923.10.2019 14:40:49

1.3. DECOMPOSABILITY 15

M1

M2
M3

M4

M5

M6

Figure 1.2: Six-dimensional-dimensional flexible model.

Thus, for example, the sequence M1, M2, M3, M4, M5, M6 shown in
Figure 1.2 meets the RIP. Contrary to this fact, the sequence M6, M5, M4,
M3, M2, M1 does not meet this property because M3∩⋃

i=6,5,4 Mi is covered
by none of M4, M5, M6.

In what follows we will need the following property.

Theorem 1.11 If M1, M2, . . . , Mm meet the RIP then for every j =
1, 2, . . . , m there exists its permutation Mk1 , Mk2 , . . . , Mkm meeting the
RIP such that Mk1 = Mj.

This assertion guarantees that if a system M1, M2, . . . , Mm can be
reordered to meet the RIP, then it can be ordered in many ways to meet this
property; there exist at least m such orderings, because each set Mi may be
placed at the beginning of a RIP ordering. Going back to Figure 1.2, the
sequence M3, M4, M5, M2, M6, M1 meets the RIP. We recommend that
the reader should find a RIP ordering that also starts with other sets from
this example.

Now, we can define what we understand under the terms of a decompos-
able distribution.

Definition 1.12 A probability distribution π(N) is said to be decomposable
if it can be decomposed into a system of its marginals π↓M1 , π↓M2 , . . . , π↓Mm ,
such that the variable sets M1, M2, . . . , Mm can be ordered so that they meet
RIP.

text B5.indd 23text B5.indd 23 23.10.2019 14:40:4923.10.2019 14:40:49

16 CHAPTER 1. FINITE PROBABILITY THEORY

1.4 Information-theoretic notions

Most of the machine learning methods for probabilistic model construction
(whether it is about Bayesian networks or compositional models) are, in a
way, supported by notions and theoretical results from information theory.
The value of a mutual information helps to find pairs of variables that are
tightly connected to each other. The value of a multi-information may be
used to select the best model from a considered group of models. Therefore,
the user of a supervised system should properly understand these notions
and their properties.

In the whole section we consider a probability distribution π(N), and
three disjoint subsets K, L, M ⊂ N, such that K ∪ L ∪ M = N. Moreover,
we assume that K and L are nonempty.

The basic notion, from which all the remaining ones are derived, is the
famous Shannon entropy defined

H(π) = −
∑

x∈XN:π(x)>0
π(x) log2 π(x).

This concept measures the uncertainty connected with a probability distri-
bution. Its value is always nonnegative, less or equal log2 |XN|. It equals
zero if and only if the distribution is degenerated and expresses certainty. In
other words, H(π) equals zero if and only if there exists a state x∗ ∈ XN,
for which π(x∗) = 1. The entropy achieves its maximum value only for a
uniform distribution, i.e.,

H(π) = log2 |XN| ⇐⇒ π(x) = 1
|XN| for all x ∈ XN.

To measure the strength of dependence between two groups of random
variables we employ a notion of mutual information defined by the formula6

MIπ(K;L) =
∑

x∈XK∪L:π↓K∪L(x)>0
π↓K∪L(x) log2

(
π↓K∪L(x)

π↓K(x↓K) · π↓L(x↓L)

)
.

The higher this value, the stronger the dependence between two disjoint
groups of variables: K and L. If the reader likes, this property can also
be expressed in another way. The higher this value, the more information
about variables K we get when learning values of variables L (or equivalently,
because MIπ(K;L) = MIπ(L;K), the more information about variables L
we get when learning values of variables K).

6The reader has certainly realized that if π↓K∪L(x) > 0 then also π↓K(x↓K) > 0 and
π↓L(x↓L) > 0.

text B5.indd 24text B5.indd 24 23.10.2019 14:40:5023.10.2019 14:40:50

1.4. INFORMATION-THEORETIC NOTIONS 17

Let us summarize the most important properties of mutual information
supporting the fact that it is used as the measure of the strength of the
dependence:

• 0 ≤ MIπ(K;L) ≤ min(H(π↓K), H(π↓L)).

• MIπ(K;L) = 0 ⇐⇒ K⊥⊥L [π].

• MIπ(K;L) = H(π↓K) if and only if variables K are functionally
dependent on variables L. It means that, in this case, it holds for the
conditional distribution πK|L that

∀y ∈ XL ∃x ∈ XK such that πK|L(x|y) = 1.

In other words, for each y ∈ XL there exists one and only one x ∈ XK,
for which π↓K∪L(x) > 0.

In many practical situations, it is useful to normalize the measure of
mutual information to get a measure achieving values from the interval [0, 1].
This value suggested by A. Perez [31], who called it information measure of
dependence, is denoted by ID in this text:

IDπ(K;L) = MIπ(K;L)
min(H(π↓K), H(π↓L)) .

It may help the reader to understand the notion of mutual information if
we show that it is actually the measure of similarity between two distributions.
In probability theory, several measures of distribution similarity have been
introduced. One of them, having its origin in information theory, is the
Kullback-Leibler divergence defined for π(N) and ν(N) by the formula

Div(π � ν) =

⎧⎨
⎩

∑
x∈XN

π(x) log2
(

π(x)
ν(x)

)
, if π � ν

+∞, otherwise.

It is known that the Kullback-Leibler divergence is always nonnegative and
equals 0 if and only if π = ν (see [25, 24]). Its only disadvantage is that it is
not symmetric, i.e., generally Div(π � ν) �= Div(ν � π). Nevertheless, since
it is very easy to show that π↓K∪L � π↓K · π↓L, we can see that

MIπ(K;L) = Div(π↓K∪L � π↓K · π↓L)

is always finite, and, as we have already said above, it equals zero if and
only if π↓K∪L = π↓K · π↓L, which is nothing other than K⊥⊥L [π].

text B5.indd 25text B5.indd 25 23.10.2019 14:40:5023.10.2019 14:40:50

18 CHAPTER 1. FINITE PROBABILITY THEORY

As the reader can expect, not only is there a relationship between inde-
pendence and mutual information, but there is also an analogous relationship
between the conditional independence and conditional mutual information,
defined by

MIπ(K;L|M) =
∑

x∈XN:π(x)>0
π(x) log2

(
πK∪L|M(x)

πK|M(x↓K∪M) · πL|M(x↓L∪M)

)
.

(Notice that MIπ(K;L|∅) = MIπ(K;L).)
Again, the higher the value of conditional mutual information the stronger

the conditional dependence between the respective groups of variables. Since
we have not introduced the notion of conditional entropy, in this case we can
precisely formulate only a part of the properties holding for the conditional
mutual information.

• MIπ(K;L|M) ≥ 0.

• MIπ(K;L|M) = 0 ⇐⇒ K⊥⊥L|M [π].

Example 1.13 The notion of conditional mutual information is often em-
ployed to control the process of model learning from data. Therefore, it
is important to realize that expanding the set of variables contained in the
condition may either increase or decrease the value of conditional mutual
information. More precisely, for M* ⊆ M,

MIπ(K;L|M*) � MIπ(K;L|M).

To illustrate this fact, let us consider three variables X, Y, Z from Example 1.2.
For the distribution μ from Table 1.1 it holds:

MIμ(X;Y) = 0 < MIμ(X;Y |Z) = 1.

For another distribution of the same variables: distribution π, values of
which are given in Table 1.6, we get

MIπ(X;Y) .= 0.046 > MIπ(X;Y |Z) = 0.

The last notion to be introduced in this introductory chapter is another
generalization of mutual information, for which we will use the term advo-
cated by Studený [35]. By a multi-information of a probability distribution
π(N) we understand the value

IC(π) =
∑

x∈XN:π(x)>0
π(x) log2

⎛
⎜⎝ π(x)∏

X∈N
π↓{X}(x↓{X})

⎞
⎟⎠ .

text B5.indd 26text B5.indd 26 23.10.2019 14:40:5023.10.2019 14:40:50

1.4. INFORMATION-THEORETIC NOTIONS 19

Table 1.6: Probability distribution, for which X⊥⊥Y |Z [π].

X 0 0 0 0 1 1 1 1
Y 0 0 1 1 0 0 1 1
Z 0 1 0 1 0 1 0 1
π 1

32
9
32

3
32

3
32

3
32

3
32

9
32

1
32

We see that the multi-information is again the Kullback-Leibler divergence
between the distribution and a product of all of its one-dimensional marginals.
Therefore, for two-dimensional distributions, the value of mutual information
coincides with the corresponding value of mutual information. Just from
the definition, one can also immediately deduce that it is a nonnegative and
finite (because π � ∏

X∈N
π↓{X}), and equals 0 if and only if all variables from

N are mutually independent for distribution π. However, notice that this
independence is much stronger than pairwise independence between variables.
Recall the distribution μ from Example 1.2 (see Table 1.1), for which we have
shown that all three variables are pairwise independent, but these variables
are not mutually independent (e.g., X�⊥⊥Y |Z [μ] – see Example 1.4). The
reader can easily show that

IC(μ) = 4 ·
(

1
4 log2

(1
4

1
2 · 1

2 · 1
2

))
= 1.

Naturally, the value of multi-information is designed to measure the amount
of information represented by multidimensional probability distributions.
However, in some computational formulas it can happen that the value of
multi-information should be computed from a one-dimensional marginal (or
even from π↓∅); let us point ut that, in this case, the multi-information value
equals zero directly from the definition.

Example 1.14 This example shows how the introduced information-
theoretic characteristics are computed from data. Consider four random
variables B, R, T, W with XB = {1, 2, 3} and XR = XT = XW = {0, 1}. In
this example, we consider a data file with 1, 003 records; the frequencies of
individual states of X{B,R,T,W } are given in Table 1.7.

After collecting the data, we usually compute the frequencies of values for
all variables. An example of such simple statistics is presented in Figure 1.3.
From this, we can easily get the entropies of one dimensional marginal tables
for all variables (denoted by a slightly nonstandard symbol in this example),

text B5.indd 27text B5.indd 27 23.10.2019 14:40:5023.10.2019 14:40:50

20 CHAPTER 1. FINITE PROBABILITY THEORY

Table 1.7: Frequencies of states from X{B,R,T,W }.

R = 0 R = 1
T = 0 T = 1 T = 0 T = 1

W = 0 W = 1 W = 0 W = 1 W = 0 W = 1 W = 0 W = 1
B = 1 0 168 9 101 11 23 22 1
B = 2 0 81 3 49 44 96 89 2
B = 3 0 19 1 11 53 109 106 5

B = 1 B = 2 B = 3

335 364
304

R = 0 R = 1

442

561

T = 0 T = 1

604

399

W = 0 W = 1

338

665

Figure 1.3: Frequencies of values of variables B, R, T, W .

e.g.,

H(B) = −1
1003

⎡
⎣ ∑

b∈{1,2,3}
f(b) log2

(
f(b)
1003

)⎤
⎦

= −1
1003

[
335 log2

(335
1003

)
+ 364 log2

(364
1003

)
+ 304 log2

(304
1003

)]
= 0.476.

Analogously, H(R) = 0.298, H(T) = 0.292, H(W) = 0.278.

Table 1.8: Two dimensional marginals computed from Table 1.7.

R = 0 R = 1

T = 0 268 336

T = 1 174 225

B = 1 B = 2 B = 3

W = 0 42 136 160

W = 1 293 228 144

text B5.indd 28text B5.indd 28 23.10.2019 14:40:5023.10.2019 14:40:50

1.4. INFORMATION-THEORETIC NOTIONS 21

Now, let us compute the mutual information for variables R and T .
Computing the respective two-dimensional marginals (see Table 1.8), we get

MI(R;T) = 1
1003

∑
(r,t)∈X{R,T }

f(r, t) log2

(1003 · f(r, t)
f(r) · f(t)

)

= 1
1003

[
268 log2

(1003 × 268
603 × 442

)
+ 336 log2

(1003 × 336
604 × 561

)

+174 log2

(1003 × 174
399 × 442

)
+ 225 log2

(1003 × 225
399 × 561

)]
= 0.00004,

which, being close to zero, suggests that variables R and T may be considered
independent. Let us point out that the information measure of dependence
between variables R and T equals

ID(R;T) = MI(R;T)
min(H(π(R)), (π(T))) = 0.00004

min(0.298, 0.292) = 0.00014.

In a similar way, we can compute mutual information and information
measure of dependence for variables B and W . From Table 1.8, the reader
can check that MI(B;W) = 0.625, ID(B;W) = 2.249.

What about the conditional mutual information MI(R;T |W)? For this
value, it is useful to create a three-dimensional frequency table for variables
R, T, W) – see Table 1.9

Table 1.9: Frequencies of states from X{R,T,W }.

R = 0 R = 1
T = 0 T = 1 T = 0 T = 1

W = 0 0 0.025 0, 629 0.346
W = 1 0.377 0.070 0.547 0.006

text B5.indd 29text B5.indd 29 23.10.2019 14:40:5123.10.2019 14:40:51

22 CHAPTER 1. FINITE PROBABILITY THEORY

Let us compute7

MI(R;T |W) = 1
1003

∑
(r,t,w)∈X{R,T,W }

f(r, t, w) log2

(
f(w) · f(r, t, w)
f(r, w) · f(t.w)

)

= 1
1003

[
268 log2

(665 × 268
0.447 × 0.924

)
+ 13 log2

(338 × 13
0.025 × 0.371

)

+161 log2

(665 × 161
0.447 × 0.076

)
+ 108 log2

(338 × 108
0.975 × 0.629

)

+228 log2

(665 × 228
0.553 × 0.924

)
+ 217 log2

(338 × 217
0.975 × 0.371

)

+8 log2

(665 × 8
0.553 × 0.076

)]
= 0.091.

This result is quite interesting from the viewpoint of knowledge discovery:
since the conditional mutual information MI(R;T |W) is much higher than
the unconditional one, there is a strong chance that variable W may be
influenced by both R and T .

1.5 Survey of symbols

Below we provide a list of notations that will be used throughout the entire
text and have been introduced in the first Chapter:

X, Y , Z, V , W – finite valued random variables (page 4);

XX , XY , XZ , XV , XW – – finite sets of values achieved by random variables
(page 4);

K, L, M, N – – sets of random variables (page 4);

XK, XL, XM, XN – sets of combinations of random variable values , set of
states (page 4);

κ, λ, μ, ν, π – probability distributions (page 4);

π � κ – distribution κ dominates π, (page 6);

κ(K) – probability distribution for a set of variables K (page 4);

κM|N – conditional probability distribution for variables M given variables
N (page 4);

κ↓L – marginal probability distribution for a set of variables L (page 4);
7Recall that we sum over the states with positive frequencies.

text B5.indd 30text B5.indd 30 23.10.2019 14:40:5123.10.2019 14:40:51

1.5. SURVEY OF SYMBOLS 23

K⊥⊥L [ν] – independence of variables K and L holding for distribution ν
(page 7);

K⊥⊥L|M [ν] – conditional independence of variables K and L given variables
M holding for distribution ν (Definition 1.3, page 7);

the RIP – Running Intersection Property (Definition 1.10, page 14);

H(ν) – Shannon entropy of distribution ν (page 16);

Div(ν � μ) – Kulback-Leibler divergence of distributions ν and μ (page 17);

MIπ(K; L) – mutual information between groups of variables K and L (for
distribution π) (page 16);

MIπ(K; L|M) – conditional mutual information between groups of variables
K and L given variables M (for distribution π) (page 18);

IDπ(K; L) – information dependence measure between groups of variables
K and L (for distribution π) (page 17);

IC(π) – multi-information (page 18).

text B5.indd 31text B5.indd 31 23.10.2019 14:40:5123.10.2019 14:40:51

24 CHAPTER 1. FINITE PROBABILITY THEORY

text B5.indd 32text B5.indd 32 23.10.2019 14:40:5123.10.2019 14:40:51

Chapter 2

Operator of composition

This chapter introduces and studies the properties of the most important
notion on which the entire theory of compositional models is based: the
operator of composition. Recall that this operator realizes a process that
is an inverse to the process of decomposition discussed in Section 1.3. The
first two Sections of this Chapter study the properties necessary for the
construction of compositional models and their application to inference,
Sections 2.3 and 2.4 are devoted to Csiszár’s results concerning what he calls
I-geometry of probability distributions. There are two good reasons for their
being included in this text. First, they can easily be explained with the
help of the operator of composition, second, the iterative process presented
in Section 2.4 may advantageously be employed in the process of model
learning.

2.1 Basic properties

Recall what we said in Section 1.3: π(N) can be decomposed into its
marginals π(K) and π(L) if K∪L = N and π(N) ·π↓K∩L = π↓K ·π↓L. From
this, one immediately gets that an inverse operation; namely, the operation
of composition is

π(N) = π↓K · π↓L

π↓K∩L .

This is trivial if we compose distributions π(K) and π(L) that are consistent.
The question is whether one can also compose inconsistent distributions, i.e.,
distributions κ(K) and λ(L) for which κ↓K∩L �= λ↓K∩L. For this instance,
we accept the following definition that was first introduced in [9].

Definition 2.1 For two arbitrary distributions κ(K) and λ(L), for which
κ↓K∩L � λ↓K∩L their composition is for each x ∈ XK∪L given by the

25

text B5.indd 33text B5.indd 33 23.10.2019 14:40:5123.10.2019 14:40:51

26 CHAPTER 2. OPERATOR OF COMPOSITION

Table 2.1: Probability distributions κ and λ

κ X = 0 X = 1

Y = 0 1
4

1
4

Y = 1 1
4

1
4

λ Z = 0 Z = 1

Y = 0 1
2

1
2

Y = 1 0 0

following formula1

(κ � λ)(x) =
κ(x↓K)λ(x↓L)
λ↓K∩L(x↓K∩L)

.

If κ↓K∩L �� λ↓K∩L, the composition remains undefined.

The presented definition is thus slightly more general than just an inverse
operation to decomposition discussed in Section 1.3. In addition to the fact
that we do not require the composed distributions to be consistent, we do
not require that both K and L should be proper subsets of K ∪ L. The main
reason is that this generalization makes the formulation of some theoretical
properties simpler. Moreover, abandoning the latter requirement appears
advantageous when constructing the compositional models and using the
resulting models for inference. For example, it enables the user to specify
the required relationships of conditional independence, which would not
otherwise be representable in a model.

Example 2.2 Let us illustrate difficulties which would occur if the formula
from Definition 2.1 were applied to situation with κ↓K∩L �� λ↓K∩L.

Consider distributions κ(X, Y) and λ(Y, Z) given in Table 2.1, for which
κ↓Y (1) > 0 and λ↓Y (1) = 0.

The reader can immediately see that while computation λ � κ according
to the definition makes no problems, the computation of κ � λ is impossi-
ble, because in this case we multiply a positive probability by an undefined
expression 0

0 – see Table 2.2.

The following assertion summarizes the basic properties of the operator of
composition (most of the rule names are due to Prakash Shenoy). To simplify
the following exposition, we will always assume that all the expressions in
which the operator of composition appears are well defined. That means that
the composed distributions meet the requirement on dominance required by
Definition 2.1.

1Define 0·0
0 = 0.

text B5.indd 34text B5.indd 34 23.10.2019 14:40:5123.10.2019 14:40:51

2.1. BASIC PROPERTIES 27

Table 2.2: Computation of λ � κ and κ � λ

X Y Z λ � κ κ � λ

0 0 0 1
2 · 1

2 = 1
4

1
4 · 1

2 = 1
8

0 0 1 1
2 · 1

2 = 1
4

1
4 · 1

2 = 1
8

0 1 0 0 · 1
2 = 0 1

4 · 0
0 = ?

0 1 1 0 · 1
2 = 0 1

4 · 0
0 = ?

1 0 0 1
2 · 1

2 = 1
4

1
4 · 1

2 = 1
8

1 0 1 1
2 · 1

2 = 1
4

1
4 · 1

2 = 1
8

1 1 0 0 · 1
2 = 0 1

4 · 0
0 = ?

1 1 1 0 · 1
2 = 0 1

4 · 0
0 = ?

Theorem 2.3 Consider three probability distributions κ(K), λ(L), and
μ(M), for which all the compositions appearing in the following statements
are defined. Then the following statements hold:

1. (Domain): κ � λ is a probability distribution for variables K ∪ L.

2. (Conditional independence): K \ L⊥⊥L \ K|K ∩ L [κ � λ].

3. (Composition preserves the first marginal): (κ � λ)↓K = κ.

4. (Reduction:) If L ⊆ K then, κ � λ = κ.

5. (Extension:) If L ⊆ K then, κ↓L � κ = κ.

6. (Non-commutativity): In general, κ � λ �= λ � κ.

7. (Commutativity under consistency): κ↓K∩L = λ↓K∩L if and only if
κ � λ = λ � κ.

8. (Non-associativity): In general, (κ � λ) � μ �= κ � (λ � μ).

9. (Associativity under the RIP): If K, L, M meet the RIP (i.e.,
if either K ⊃ (L ∩ M), or L ⊃ (K ∩ M)) then, (κ � λ) � μ =
κ � (λ � μ).

10. (Stepwise composition): If (K∩L) ⊆ M ⊆ L then, (κ�λ↓M)�λ = κ�λ.

11. (Exchangeability): If K ⊃ (L ∩ M) then, (κ � λ) � μ = (κ � μ) � λ.

text B5.indd 35text B5.indd 35 23.10.2019 14:40:5223.10.2019 14:40:52

28 CHAPTER 2. OPERATOR OF COMPOSITION

12. (Simple marginalization): If (K ∩ L) ⊆ M ⊆ K ∪ L then, (κ � λ)↓M =
κ↓K∩M � λ↓L∩M.

13. (Irrelevant composition): If M ⊆ K \ L then, κ � (λ � μ) = κ � λ.

The proofs of all the above-presented statements can be found in [15].
We do not repeat them in this text; nevertheless, in the rest of this Section,
we comment on some of these assertions and/or illustrate them on simple
(counter)examples.

1. (Domain) and 2. (Conditional independence): Recall that the com-
position is a process inverse to decomposition. The decomposition
yields, from a distribution, its marginals for smaller groups of vari-
ables. Therefore, the expansion of the groups of variables for which
the distributions κ and λ are defined is the basic expected property
of the composition. In this context, the reader has certainly noticed
that, for disjoint K and L, the composition κ � λ is degenerated to a
simple product of distributions: κ � λ = κ · λ. In a general case, the
composition may also be expressed in the following alternative way:
κ � λ = κ · λ(L\K)|(L∩K).

3. (Composition preserves the first marginal): When decomposing a distri-
bution into its marginals one gets, quite naturally, a pair of consistent
distributions. Since the operator is designed for the composition of
distributions regardless whether they are consistent or not, the re-
sulting composition must resolve the problem of coping with different
information in the case of inconsistent distributions. The introduced
operator takes all the information from the first argument and ne-
glects the information from the second distribution if it contradicts
the information from the first argument. For the properties of the
operator preferring the information from the second argument, the
reader is referred to [15]. The only problem remains in the case of
the distributions being in total conflict; namely, the first argument
equals zero and the second argument assumes a positive value of the
respective marginal distribution. This is why the composition remains
undefined in this case.

4. (Reduction:) Realize that this is the direct consequence of the previous
Property 3.

6. (Non-commutativity): To illustrate it in the simplest way, consider
κ(X) �= λ(X). Then, due to Property 4, κ � λ = κ �= λ � κ = λ.

7. (Commutativity under consistency): This property is obvious from
the definition of the operator. Let us only note that since any pair

text B5.indd 36text B5.indd 36 23.10.2019 14:40:5223.10.2019 14:40:52

2.2. ANTICIPATING OPERATOR 29

of distributions defined for disjoint sets of variables are consistent
(κ↓∅ = λ↓∅ = 1), this property also covers the trivial case

K ∩ L = ∅ =⇒ κ � λ = κ · λ = λ � κ.

8. (Non-associativity): To illustrate the non-associativity, consider
μ(X, Y) for which X�⊥⊥Y [μ] and denote κ = μ↓X , λ = μ↓Y . For this
(κ � λ) � μ = μ↓X · μ↓Y , and κ � (λ � μ) = μ due to Properties 4 and 5.

9. (Associativity under the RIP): This property may be formulated as two
independent properties: Associativity I, under the condition that K ⊃
(L ∩ M), and Associativity II under the condition that L ⊃ (K ∩ M).
One should realize that these two rules are really independent, neither
of them can be proved from the other. Nevertheless, it is not a difficult
exercise for the reader to show that Associativity II can be proved
from Associativity I and the property of Stepwise composition.

10. (Stepwise composition): Notice that it is, in a way, a generalization of
Property 5. This property is also the direct consequence of Associativity
II mentioned a few lines above, and the Extension property. Namely

κ � λM � λ = κ �
(
λM � λ

)
= κ · λ.

11. (Exchangeability): To show that (κ � λ) � μ �= (κ � μ) � λ holds in
general, the reader can consider distributions κ, λ, μ used to show the
non-associativity of the operator of composition: κ = μ↓X , λ = μ↓Y ,
μ(X, Y) for which X�⊥⊥Y [μ]. In this case again (κ � λ) � μ = μ↓X · μ↓Y ,
and (κ � μ) � λ = μ.

12. (Simple marginalization): It is important to realize that the assertion
holds only if(K ∩ L) ⊆ M. We cannot marginalize out any variable
from this intersection because these variables are intermediators of
dependence between the variables from K \ L and the variables from
L \ K. Deleting any of these mediator variables could decrease the
dependence between K \ L and L \ K.

2.2 Anticipating operator

The associativity of the operator of composition would be desirable not only
to meet the demands of mathematical beauty, but also to make the design
of computational algorithms easier. Its lack is, in a way, compensated by
the existence of a generalized operator of composition, which is called an
anticipating operator and is studied in this Section.

text B5.indd 37text B5.indd 37 23.10.2019 14:40:5223.10.2019 14:40:52

30 CHAPTER 2. OPERATOR OF COMPOSITION

Definition 2.4 Consider an arbitrary set of variables M and two distribu-
tions κ(K), λ(L). Their anticipating composition is given by the formula

κ ©�Mλ = (λ↓(M\K)∩L · κ) � λ.

The operator ©�M is called an anticipating operator of composition.

Notice that it is a generalization of the operator introduced in Defini-
tion 2.1 in the sense that

κ ©�∅λ = κ � λ.

Therefore, it is clear that the result of composition may remain undefined.
However, it immediately follows from the respective definitions that if κ�λ is
defined then so is κ ©�Mλ. Both κ � λ and κ ©�Mλ are distributions defined
for the same set of variables.

Let us also note that the realization of these two operators is of the same
computational complexity. So, the main difference between the anticipating
operator and the operator � is that the generalized operator is parameterized
by an index set. In the following Theorem (proved in [15]) we articulate the
main purpose for which this operator is introduced. Namely, operator � can
be substituted by an anticipating operator while simultaneously changing
the ordering of the operations.

Theorem 2.5 If κ(K), λ(L) and μ(M) are such that μ�(κ ©�Mλ) is defined,
then

(μ � κ) � λ = μ � (κ ©�Mλ).

So, the purpose of this operator is to compose the distributions (in our
case, distributions κ and λ), but to simultaneously introduce the necessary
independence of variables (M \ K) ∩ L and K that would otherwise be
omitted. If we want to compose distributions κ and λ before μ is considered,
we have to “anticipate” the independence, which is originally introduced by
the realization of the operator when composing μ and κ. This also explains
why the operator ©�M is called an anticipating operator.

Example 2.6 As said above, the specific purpose of the anticipating op-
erator is to introduce the necessary conditional independence that would
otherwise be omitted. To illustrate this point, let us consider three distri-
butions μ(X), κ(Y), λ(X, Y) for which obviously (μ(X) � κ(Y)) � λ(X, Y) =
μ(X)κ(Y). If we used the operator � instead of ©�M, we would get

μ(X) �
(
κ(Y) � λ(X, Y)

)
= μ(X)(κ(Y)λ(X|Y))∑

x∈XX

κ(Y)λ(x|Y) ,

text B5.indd 38text B5.indd 38 23.10.2019 14:40:5223.10.2019 14:40:52

2.2. ANTICIPATING OPERATOR 31

which evidently differs from μ(X)κ(Y) because μ � (κ � λ) inherits the depen-
dence of variables X and Y from λ. Nevertheless, considering

μ(X) � (κ(Y) ©�Xλ(X, Y)) = μ(X) �
(
λ(X)κ(Y) � λ(X, Y)

)
= μ(X) � λ(X)κ(Y) = μ(X)κ(Y),

we get the desired result.
Perhaps it is also worth mentioning that in this example

κ(Y) ©�Xλ(X, Y) = λ(X)κ(Y) is not a marginal distribution of the
resulting (μ(X) � κ(Y)) � λ(X, Y) = μ(X) · κ(Y).

Example 2.7 Let us present another, slightly more complex, example illus-
trating an application of the anticipating operator. This time, we consider
distributions μ(X, Y, Z, U), κ(Y, Z, V), λ(Z, U, W). In this case, according to
Theorem 2.5,(

μ(X, Y, Z, U) � κ(Y, Z, V)
)

� λ(Z, U, W)

= μ(X, Y, Z, U) �
(
κ(Y, Z, V) ©�{X,Y,Z,U}λ(Z, U, W)

)
.

According to the definition of the anticipating operator

κ(Y, Z, V) ©�{X,Y,Z,U}λ(Z, U, W) = λ(U)κ(Y, Z, V) � λ(Z, U, W)
= λ(U)κ(Y, Z, V)λ(W |Z, U).

The reader has most likely noticed that, thanks to the anticipating operator,
λ(W |Z, U) appears in this formula, which is exactly the form in which λ
occurs in (

μ(X, Y, Z, U) � κ(Y, Z, V)
)

� λ(Z, U, W)
= μ(X, Y, Z, U)κ(V |Y, Z)λ(W |Z, U).

Moreover,(
κ(Y, Z, V) ©�{X,Y,Z,U}λ(Z, U, W)

)↓{Y,Z,U}

= (λ(U)κ(Y, Z, V)λ(W |Z, U))↓{Y,Z,U}

= λ(U)κ(Y, Z).

Therefore,

μ(X, Y, Z, U) �
(
κ(Y, Z, V) ©�{X,Y,Z,U}λ(Z, U, W)

)

= μ(X, Y, Z, U)λ(U)κ(Y, Z, V)λ(W |Z, U)
λ(U)κ(Y, Z)

= μ(X, Y, Z, U)κ(V |Y, Z)λ(W |Z, U).

text B5.indd 39text B5.indd 39 23.10.2019 14:40:5223.10.2019 14:40:52

32 CHAPTER 2. OPERATOR OF COMPOSITION

2.3 Projection

In this Section, we study the properties of the operator of composition con-
nected with information-theoretic characteristics of the composed probability
distributions. First, let us present an assertion having a close connection to
the property

MIπ(K;L|M) = 0 ⇐⇒ K⊥⊥L|M [π]

that was already presented on page 18.

Theorem 2.8 Consider a probability distribution ν(N), and three disjoint
subsets of variables K, L, and M, for which K ∪ L ∪ M ⊆ N, and both
K, L are nonempty. Then MIν(K;L|M) = 0 (which is equivalent with
K⊥⊥L|M [ν]) if and only if

ν↓K∪L∪M = ν↓K∪M � ν↓L∪M.

The rest of this Section describes the results achieved by Imre Csiszár (see
[5]), who introduced what he called an I-geometry of probability distributions.
In the cited paper he discovered an interesting property of the operator of
composition presented here in Theorem 2.11 below.

Definition 2.9 Consider a distribution λ(L) and an arbitrary subset of
distributions for the same set of variables; denote it by Θ(L). Distribution

κ = arg min
ν∈Θ(L)

Div(ν � λ)

is called a projection2 of λ into Θ(L).

According to this Definition, the projection is the distribution from Θ(L)
which is, in a sense, closest to λ. As a measure of distance the Kullback-
Leibler divergence introduced in Section 1.4 is considered. Recalling that
this divergence is not symmetric, one must pay attention to the positions
of distributions ν and λ in the Definition. If one minimized the value of
Div(λ � ν), the result of the projection could be different!

Generally, it may happen that, for given λ and Θ(L), this projection is
not determined uniquely. However, when considering Θ(L) to be a set of
distributions with the given marginal(s), which is always a convex compact
set of distributions, the existence of a unique projection is guaranteed just
by the existence of (at least) one ν ∈ Θ(L) for which Div(ν � λ) is finite. To
formulate this property precisely, let us introduce the following notation.

2Csiszár calls it I-projection to emphasize the information-theoretic background of this
notion.

text B5.indd 40text B5.indd 40 23.10.2019 14:40:5323.10.2019 14:40:53

2.4. ITERATIVE PROPORTIONAL FITTING 33

λ

κ � λν

Div(ν � λ)

Div(κ � λ � λ)

Div(ν � κ � λ)

Π(L)(κ)
�

�

�

�

�

�

�

�

�

�

�

�������
����������������������

��

��

�������

���������

� �

Figure 2.1: Projection of λ into Π(L)(κ)

Definition 2.10 Consider distribution κ(K) and L ⊃ K. The set of all
extensions of κ for variables L is denoted

Π(L)(κ) =
{

ν(L) : ν↓K = κ
}

.

Instructions for finding a projection into the sets of extensions are given
by the following assertion of Csiszár, which is graphically represented in
Figure 2.1.

Theorem 2.11 Consider κ(K) and L ⊃ K. For an arbitrary probability
distribution λ(L) such that κ � λ↓K, κ�λ is the projection of λ into Π(L)(κ).
Moreover,

Div(ν � λ) = Div(ν � κ � λ) + Div(κ � λ � λ),

for any ν ∈ Π(L)(κ).

2.4 Iterative Proportional Fitting

Assume that κ1(K1), κ2(K2), . . . , κn(Kn) are probability distributions. By
the marginal problem we understand a task to find a multidimensional
probability distribution of variables N = K1 ∪ K2 ∪ . . . , ∪Kn such that all

text B5.indd 41text B5.indd 41 23.10.2019 14:40:5323.10.2019 14:40:53

34 CHAPTER 2. OPERATOR OF COMPOSITION

Table 2.3: Distributions π1(X, Y), π2(Y, Z), π3(X, Z).

π1(X, Y) π2(Y, Z) π3(X, Z)

0 1 0 1 0 1

0 ε 1
2 − −ε 0 ε 1

2 − −ε 0 ε 1
2 − −ε

1 1
2 − −ε ε 1 1

2 − −ε ε 1 1
2 − −ε ε

distributions κi(Ki) are its marginals. In other words, we are looking for a
joint extension of all distributions κ1(K1), κ2(K2), . . . , κn(Kn).

Generally, it is not an easy task even to decide whether such a solution
exists or not. Nevertheless, there are special situations in which one can
decide this question almost immediately. The simplest case occurs when
there is a couple of inconsistent distributions among the considered set of
distributions. Obviously, κi(Ki) and κj(Kj), such that κ

↓Ki∩Kj

i �= κ
↓Ki∩Kj

j ,
cannot have a joint extension. It means that a pairwise consistence of the
distributions κ1(K1), κ2(K2), . . . , κn(Kn) is a necessary condition for the
existence of a joint extension. Unfortunately, this condition is not sufficient,
as shown in the following Example. It is known that, in a general case,
answering the question whether there exists a solution of a given marginal
problem, is as difficult as finding a solution itself to that problem.

Example 2.12 To see that the pairwise consistency is just a necessary
and not a sufficient condition for the existence of a solution of the marginal
problem, consider three variables X, Y, Z and three distributions π1, π2 and π3
from Table 2.3. It is obvious that these distributions are pairwise consistent
for all ε ∈ [0, 1

2]. Taking ε = 1
4 , all three distributions π1, π2, π3 are uniform,

and the corresponding marginal problem has an infinite number of solutions;
a three-dimensional uniform distribution is among them. By contrast, the
corresponding marginal problem does not have a solution if we put ε = 0.
This can easily be shown in the following way: assuming that μ(X, Y, Z) is a
solution to this marginal problem, one can show that μ(x, y, z) = 0 for each
(x, y, z) ∈ X × Y × Z. . For (0, 0, 0) and (0, 0, 1), this equality follows from
the fact that μ(0, 0, 0) + μ(0, 0, 1) = π1(0, 0); for (0, 1, 0), it follows from
μ(0, 1, 0) ≤ π3(0, 0); and so on: μ(0, 1, 1) ≤ π2(1, 1), μ(1, 0, 0) ≤ π2(0, 0),
μ(1, 0, 1) ≤ π3(1, 1), μ(1, 1, 0) + μ(1, 1, 1) = π1(1, 1).

Moreover, the reader can verify that, for ε = 1
6 , the marginal problem

text B5.indd 42text B5.indd 42 23.10.2019 14:40:5323.10.2019 14:40:53

2.4. ITERATIVE PROPORTIONAL FITTING 35

has a unique solution

ν(x, y, z) =

⎧⎨
⎩

1
6 , if x = y = z;
1
3 , otherwise.

(Hint: first show that ν(x, y, z) ≤ 1
6 for all (x, y, z) ∈ X × Y × Z, and then

that ν(x, y, z) = 1
3 if not x = y = z.)

The Iterative Proportional Fitting (IPF) procedure studied in this Section
is a possible tool to solve the marginal problem. The procedure is ascribed
to W. E. Deming and F. F. Stephan [6], who published the cited paper in
1940. But it took until 1975 for Imre Csiszár to prove its convergence [5].

Using the operator of composition, the description of this procedure is
very simple. Start with a distribution π0(N) (as we will see later, there are
reasons to start with the uniform distribution). Then compute

π1 = κ1 � π0,
π2 = κ2 � π1,
π3 = κ3 � π2,

...
πn = κn � πn−1,
πn+1 = κ1 � πn,
πn+2 = κ1 � πn+1,

...
πk = κ(k−1 (mod) n)+1 � πk−1,

...

The behavior of this infinite sequence of probability distributions is
described by the following Csiszár’s theorem.

Theorem 2.13 Consider probability distributions κ1(K1), κ2(K2), . . . ,
κn(Kn) such that N = K1 ∪ K2 ∪ . . . , ∪Kn. Denote

Π(N)(κ1, . . . , κn) = {ν(N) : ν↓Ki = κi for all i = 1, . . . , n}.

Let π0(N), π1(N), π2(N), . . . be an infinite sequence of distributions computed
by IPF procedure from κ1, . . . , κn. Then there exists ν ∈ Π(N)(κ1, . . . , κn)
such that ν � π0 if and only if the sequence of probability distributions
π0, π1, π2, . . . converges. In this case this sequence converges to a probability
distribution π∗ ∈ Π(N)(κ1, . . . , κn), and the following equality holds for any
ν ∈ Π(N)(κ1, . . . , κn)

Div(ν � π0) = Div(ν � π∗) + Div(π∗ � π0).

text B5.indd 43text B5.indd 43 23.10.2019 14:40:5323.10.2019 14:40:53

36 CHAPTER 2. OPERATOR OF COMPOSITION

Corollary 2.14 Under the same assumptions as in Theorem 2.13 and with
the same notation, let π0(N) be a product of one-dimensional positive distri-
butions (i.e., π0(N) =

∏
X∈N π↓X

0). Then Π(N)(κ1, . . . , κn) �= ∅ if and only if
the sequence of probability distributions π0, π1, π2, . . . converges. In this case
this sequence converges to a probability distribution π∗ ∈ Π(N)(κ1, . . . , κn),
for which

H(π∗) = max
ν∈Π(N)(κ1,...,κn)

(H(ν)).

There are two consequences following from the Csiszár theorem and
its Corollary. First, if we choose for π0 the uniform distribution (which is
strictly positive, and it is a product of its one-dimensional marginals), then
IPFP converges if and only if the respective marginal problem has a solution,
and the process converges to the maximum entropy solution of the marginal
problem. Second, if the process with uniform π0 does not converge, then the
respective marginal problem does not have a solution.

text B5.indd 44text B5.indd 44 23.10.2019 14:40:5323.10.2019 14:40:53

Chapter 3

Compositional models

At this point, we start considering multidimensional compositional models,
i.e., multidimensional probability distributions assembled from sequences of
low-dimensional distributions with the help of the operators of composition.
The first two Sections, which are based on [15], study properties of two special
families of compositional models possessing advantageous properties that will
be employed when designing computational procedures for marginalization
(Section 3.3) and conditioning (Section 3.4).

To avoid certain technical problems and the necessity of repeating some
assumptions too many times, let us formulate the following three important
conventions.

• In this and the following Chapters, we consider systems of distributions
κ1(K1), κ2(K2), . . . , κn(Kn). Therefore, whenever we speak about a
distribution κk, if not explicitly specified otherwise (usually in exam-
ples), the distribution κk will always be assumed to be defined for
variables Kk.

• Based on the convention just stated, the formula κ1 � κ2 � . . . � κn, if
defined, is a distribution of variables K1 ∪ K2 ∪ . . . ∪ Kn. However,
because of the fact that the operator of composition is not associative,
the order in which the operators are performed in the expression
κ1 � κ2 � . . . � κn should be specified by parentheses. To simplify such
expressions, we will omit the parentheses if the operators are to be
performed from left to right. Therefore

κ1 � κ2 � . . . � κn = (. . . ((κ1 � κ2) � κ3) � . . . � κn−1) � κn.

• In what follows, we will always assume that the composition is defined
in all the formulas wherever the operator appears. This last convention
enables us to omit repeating the assumption regarding the required
dominance holding between the composed distributions.

37

text B5.indd 45text B5.indd 45 23.10.2019 14:40:5423.10.2019 14:40:54

38 CHAPTER 3. COMPOSITIONAL MODELS

Example 3.1 In agreement with what has just been said, the compositional
model

κ1(X, Z) � κ2(Z, V) � κ3(X, U, V, W) � κ4(Y, V, W)

is a distribution

(κ1 � κ2 � κ3 � κ4)(X, Y, Z, U, V, W)
= ((κ1(X, Z) � κ2(Z, V)) � κ3(X, U, V, W)) � κ4(Y, V, W)
= κ1(X, Z)κ2(V |Z)κ3(U, W |X, V)κ4(Y |V, W).

When speaking about the multidimensional compositional model κ1 �
κ2 � . . . � κn, we should realize that when computing

(κ1 � . . . � κk) � κk+1 = (κ1 � . . . � κk)κk+1

κ
↓Kk+1∩(K1∪...∪Kk)
k+1

,

one has to marginalize distribution κk+1, which is assumed to be a low-
dimensional, and therefore this marginalization is easily tractable. Recall
the comment on page 28 discussing the property composition preserves the
first marginal. We mentioned that in [15], an operator preserving the second
argument was also defined. If we considered models created with the help
of this alternative operator of composition, we would have to marginalize
the model assembled from κ1, κ2, . . . , κk instead of marginalizing a single
distribution κk+1. And the marginalization of a model would quite often be
intractable. This stresses the importance of Property 3 of Theorem 2.3.

Notice that when defining a compositional model we have not imposed
any conditions on sets of variables for which the distributions are defined. For
example, considering a model, in which one distribution is defined for a subset
of variables of another distribution (i.e., Kj ⊂ Kk) is fully sensible and may
carry information about the distribution. If π(X, Y, Z) = κ1(X) � κ2(Y) �
κ3(X, Y, Z) is a compositional model of a three-dimensional distribution, one
can immediately see that variables X and Y are independent. Not knowing
the numbers defining the distribution, one cannot say anything similar
about distribution π(X, Y, Z). (How to read the conditional independence
relationships from a compositional model will be discussed in Chapter 4.)

3.1 Perfect models

Not all compositional models are equally efficient when used for the rep-
resentation of multidimensional distributions. Among them, the so-called
perfect models hold an important position.

text B5.indd 46text B5.indd 46 23.10.2019 14:40:5423.10.2019 14:40:54

3.1. PERFECT MODELS 39

Definition 3.2 A compositional model κ1 � κ2 � . . . � κn is called perfect if

κ1 � κ2 = κ2 � κ1,

κ1 � κ2 � κ3 = κ3 � (κ1 � κ2),
...

κ1 � κ2 � . . . � κn = κn � (κ1 � κ2 � . . . � κn−1).

From this definition one can hardly see the importance of perfect se-
quences. This importance becomes clearer from the following characterization
given in Theorem 3.4. First, however, let us present a technical property,
which, being an immediate consequence of an inductive application of Prop-
erty 7 of Theorem 2.3, can be used for testing the perfectness of compositional
models.

Theorem 3.3 A compositional model κ1 � κ2 � . . . � κn is perfect if and only
if the pairs of distributions (κ1 � . . . � κi−1) and κi are consistent for all
i = 2, 3, . . . , n.

Theorem 3.4 A compositional model κ1 � κ2 � . . . � κn is perfect if and
only if all the distributions in this sequence are marginals of the distribution
(κ1 � κ2 � . . . � κn), i.e.,

∀i = 1, 2, . . . , n (κ1 � κ2 � . . . � κn)↓Ki = κi.

This Theorem is very important, and its proof is surprisingly simple.
It is based on the following idea. Consider a perfect compositional model
(κ1 � κ2 � . . . � κn). Clearly, κ1 is its marginal because of Property 3 of
Theorem 2.3 Due to the same reason, κ1 � κ2 is also its marginal. For perfect
models, fulfilment of the condition κ1 � κ2 = κ2 � κ1 is required, which means
that κ2 is a marginal of κ1 � κ2 and therefore of the entire model. We can
now consider κ1 � κ2 � κ3, which is a marginal of the entire model. Due to
the perfectness of the model, we know that

κ1 � κ2 � κ3 = κ3 � (κ1 � κ2),

which means that κ3, being a marginal of κ1 � κ2 � κ3, is a marginal to the
entire model. Repeating this reasoning, we can prove that all elements of a
perfect model are its marginal distributions.

Assuming that all κ1, κ2, . . . , κn are marginals of a compositional model
κ1 � κ2 � . . . � κn, one knows that all these distributions are pairwise consis-
tent. Therefore κ1 � κ2 = κ2 � κ1 holds due to Property 7 of Theorem 2.3
(Commutativity under consistency). Because of Property 3 (Composition
preserves the first marginal) of the same Theorem, κ1 � κ2 is also a marginal

text B5.indd 47text B5.indd 47 23.10.2019 14:40:5423.10.2019 14:40:54

40 CHAPTER 3. COMPOSITIONAL MODELS

Table 3.1: Three-dimensional distribution π(X, Y, Z)

X = 0 X = 1
π

Y = 0 Y = 1 Y = 0 Y = 1

Z = 0 0.1 0.1 0.2 0.1
Z = 1 0.0 0.1 0.0 0.1
Z = 2 0.2 0.0 0.0 0.1

of the considered model, and we assume the same condition about κ3. It
means that these two distributions must be consistent, and therefore

κ1 � κ2 � κ3 = κ3 � (κ1 � κ2).

Again, this simple idea can be repeated until we prove that the model is
perfect, i.e., it meets the requirements of Definition 3.2.

In other words, Theorem 3.4 says that taking low-dimensional distri-
butions κi for carriers of local information, the resulting multidimensional
distribution, if it is a perfect model, represents global information faithfully
reflecting all the local information. This is one of the reasons why we will
be very much interested in perfect sequence models.

Example 3.5 The above-presented Theorem claims that a model preserves
all the given marginals if and only if the model is perfect. If the considered
model is not perfect than some of the marginal distributions differ from the
given ones. In this example we show that non-perfect models need not preserve
one-dimensional marginal distributions – even if the given distributions are
pairwise consistent.

Consider a three-dimensional distribution π(X, Y, Z) from Table 3.1.
Denote κ1(X) = π↓X , κ2(Y) = π↓Y and κ3(X, Y, Z) = π(X, Y, Z) . Let us
further study the distribution

ν(X, Y, Z) = κ1(X) � κ2(Y) � κ3(X, Y, Z)

composed from the pairwise consistent distributions (keeping in mind that
all the marginals of a given distribution are pairwise consistent). Since
both the considered one-dimensional marginal distributions κ1(X), κ2(Y) are
uniform, the composition κ1 � κ2 is also uniform. Thus it is an easy task
to compute distribution ν, which is done in Table 3.2. Computing one-
dimensional marginals π↓Z and ν↓Z from Tables 3.1 and 3.2, we can see that

text B5.indd 48text B5.indd 48 23.10.2019 14:40:5423.10.2019 14:40:54

3.1. PERFECT MODELS 41

Table 3.2: Distribution ν(X, Y, Z) = κ1(X) � κ2(Y) � κ3(X, Y, Z)

X = 0 X = 1

Y = 0 Y = 1 Y = 0 Y = 1

Z = 0 2
24

3
24

6
24

2
24

Z = 1 0.0 3
24 0.0 2

24
Z = 2 4

24 0.0 0.0 2
24

these distributions are different:

κ(Z = 0) = 0.5 ν(Z = 0) = 13
24 ,

κ(Z = 1) = 0.2 ν(Z = 1) = 5
24 ,

κ(Z = 2) = 0.3 ν(Z = 2) = 6
24 .

Let us emphasize yet another difference between distributions π and ν.
Due to Property 3 of Theorem 2.3, we can see that ν↓{X,Y } = κ1(X) · κ2(Y),
which means that X⊥⊥Y [ν]. If we want to verify whether variables X and
Y are independent even with distribution π, we have to check the equality

π{X,Y }(x, y) = πX(x) · πY (y)

for all states (x, y) ∈ {0, 1} × {0, 1}. In our case for distribution from
Table 3.1, we obtain that X�⊥⊥Y [π] because (for example) for x = y = 0

π{X,Y }(0, 0) = 1
3 ,

and
πX(0) = 1

2 , πY (0) = 1
2 .

The following assertion is of a great importance. It says that restricting
our consideration only to perfect models is not a loss of generality because
all compositional models can be transformed into equivalent perfect models.

Theorem 3.6 For any compositional model κ1 � κ2 � . . . � κn, the model
ν1 � ν2 � . . . � νn, the distributions of which are computed by the following

text B5.indd 49text B5.indd 49 23.10.2019 14:40:5423.10.2019 14:40:54

42 CHAPTER 3. COMPOSITIONAL MODELS

process

ν1 = κ1,

ν2 = ν↓K2∩K1
1 � κ2,

ν3 = (ν1 � ν2)↓K3∩(K1∪K2) � κ3,

...
νn = (ν1 � . . . � νn−1)↓Kn∩(K1∪...∪Kn−1) � κn,

is perfect, and
κ1 � . . . � κn = ν1 � . . . � νn.

From the theoretical point of view the process of perfectization described
in Theorem 3.6 is simple. Unfortunately, its computational complexity is
far from being moderate. Namely, the process requires marginalization of
compositional models, which may be multidimensional. As we will see in
Section 3.3, the marginalization may be computationally hard. Nevertheless,
the next Section is devoted to a subclass of models for which the perfectization
procedure may be materialized very efficiently.

Now, let us present another important property of perfect models. An
arbitrary perfect model κ1 �κ2 �. . .�κn (with n > 1) can always be reordered
(permuted) in such a way way that this permutation κi1 � κi2 � . . . � κin is
also perfect. Trivially, if κ1 � κ2 � . . . � κn is perfect then κ2 � κ1 � κ3 � . . . � κn

is perfect, too (it follows directly from Property 7 of Theorem 2.3 and
Theorem 3.4). The following assertion guarantees that if two perfect models
are set up from the same system of low-dimensional distributions then these
models are equivalent.

Theorem 3.7 If a compositional model κ1, κ2, . . . , κn and its permutation
κi1, κi2, . . . , κin are both perfect then

κ1 � κ2 � . . . � κn = κi1 � κi2 � . . . � κin .

From the practical point of view, it is important to realize that, for perfect
models, one can always compute their information-theoretic characteristics in
an efficient way. It is guaranteed by the following two assertions. Theorem 3.8
gives instructions for how to compute entropy of a distribution represented
by a perfect sequence model. Theorem 3.9 presents instructions for how to
compute the informational content of distributions represented by perfect
models. Both these assertions are utilized in the procedures for model
learning.

text B5.indd 50text B5.indd 50 23.10.2019 14:40:5423.10.2019 14:40:54

3.2. DECOMPOSABLE MODELS 43

Theorem 3.8 If the model κ1 � κ2 � . . . � κn is perfect then

H(κ1 � κ2 � . . . � κn) =
n∑

i=1
H(κi) −

n∑
i=2

H
(
κ

↓Ki∩(K1∪...∪Ki−1)
i

)
≥ H(μ)

for any μ, which is a joint extension of all distributions1 κi:

μ ∈
n⋂

i=1
Π(K1∪...∪Kn)(κi) =

{
ν(K1 ∪ . . . ∪ Kn) : ∀i = 1, . . . , n ν↓Ki = κi

}
.

Theorem 3.9 If the model κ1 � κ2 � . . . � κn is perfect, then

IC(κ1 � κ2 � . . . � κn) =
n∑

i=1
IC(κi) −

n∑
i=2

IC
(
κ

↓Ki∩(K1∪...∪Ki−1)
i

)
.

Let us realize that both the computational formulas expressed in The-
orems 3.8 and 3.9 can only be used for perfect models. If a model is not
perfect then the computation of entropy and/or informational content of the
model is usually more complex (the process usually requires the computation
of a system of marginal distributions). Roughly speaking, from the algorith-
mic point of view, it is as complex as the realization of the perfectization
procedure described in Theorem 3.6.

3.2 Decomposable models

Having a compositional model, one can apply Theorem 3.3 to verify whether
the model is perfect or not. The perfectness of a model is a strong property
and it may happen that its verification is not easy. Nevertheless, in some
special situations one can see the answer immediately. As a degenerate
example, the reader can consider a model composed from uniform distribu-
tions, the perfectness of which is easy to prove. Naturally, this situation is
degenerate and therefore uninteresting. From the practical point of view,
more important situations are covered by Theorem 3.11 below. In fact, this
assertion is just a "translation" of a classical result of Kellerer [22] into the
language of this text. To formulate it, let us recall that a sequence of sets
K1, K2, . . . , Kn is said to meet the running intersection property if

∀j = 2, . . . , n ∃k (1 ≤ k < j)

⎛
⎝Kj ∩

⎛
⎝j−1⋃

i=1
Ki

⎞
⎠ ⊆ Kk

⎞
⎠ .

In agreement with Definition 1.12, in which we defined a notion of a decom-
posable distribution, we can define a decomposable model in the following
way.

1Notice that the perfectness of κ1 � κ2 � . . . � κn guarantees that Π(K1∪...∪Kn)(κi) �= ∅.

text B5.indd 51text B5.indd 51 23.10.2019 14:40:5523.10.2019 14:40:55

44 CHAPTER 3. COMPOSITIONAL MODELS

Definition 3.10 We call a compositional model κ1(K1) � κ2(K2) � . . . �
κn(Kn) decomposable if the sequence K1, . . . , Kn meets the RIP.

Let us point out the relationship between Definitions 1.12 and 3.10.

• If a decomposable distribution π(N) can be decomposed into its
marginals π(M1), π(M2), . . . , π(Mn), then (iteratively using Prop-
erty 2 of Theorem 2.3) one can easily show that π(N) = π(M1) �
π(M2) � . . . � π(Mn), for any ordering M1, M2, . . . , Mn that meets the
RIP.

• For any decomposable model π(K1 ∪ . . .∪Kn) = κ1(K1)�κ2(K2)�. . .�
κn(Kn), distribution π can be decomposed (again using Property 2 of
Theorem 2.3) into a system of its marginals π↓K1 , π↓K2 , . . . , π↓Kn .

Thus, any decomposable probability distribution can be represented in
a form of a decomposable model; and any decomposable model represents
a decomposable distribution. As we will see below, the importance of
decomposable models stems from the fact that, for them, most of the
computational procedures appear to be computationally very efficient. As a
typical example, let us consider the perfectization procedure described in
Theorem 3.6

ν1 = κ1,

ν2 = ν↓K2∩K1
1 � κ2,

ν3 = (ν1 � ν2)↓K3∩(K1∪K2) � κ3,

...
νn = (ν1 � . . . � νn−1)↓Kn∩(K1∪...∪Kn−1) � κn,

and focus on its j-th step: νj = (ν1 � . . . � νj−1)↓Kj∩(K1∪...∪Kj−1) � κj . Recall
that, due to the the RIP, there exists k < j such that (after a trivial
reformulation) Kj ∩ (K1 ∪ . . . ∪ Kj−1) = Kj ∩ Kk. In the j-th step, the
submodel ν1(K1) � ν2(K2) � . . . � νj−1(Kj−1) is already perfect. Therefore νk

is a marginal of ν1 �. . .�νj−1, and (ν1 �. . .�νj−1)↓Kj∩(K1∪...Kj−1) = ν
↓Kj∩Kk

k ,
which means that the computation of ν

↓Kj∩Kk

k is very simple. This is what
Lauritzen and Spiegelhater call local computations [27]. They use this term
for a computational process realized as a sequence of steps in which each
step performs computations with only one of the distributions from which
the multidimensional model is composed.

The next assertion yields a simple rule to decide whether a decomposable
model is perfect or not: it is enough to check whether the distributions are
pairwise consistent.

text B5.indd 52text B5.indd 52 23.10.2019 14:40:5523.10.2019 14:40:55

3.2. DECOMPOSABLE MODELS 45

Table 3.3: Two-dimensional distributions

κ(X, Z) X = 0 X = 1

Z = 0 0.25 0.25
Z = 1 0.25 0.25

λ(Y, Z) Y = 0 Y = 1

Z = 0 0.1 0.1
Z = 1 0.4 0.4

Theorem 3.11 Let the sequence K1, . . . , Kn meet the RIP. Then the prob-
ability distributions κ1, κ2, . . . , κn are pairwise consistent if and only if
κ1(K1) � κ2(K2) � . . . � κn(Kn) is a perfect model.

Before proceeding to other computational procedures studied in the
next Sections, let us briefly summarize what we know about perfect and
decomposable models.

Theorem 3.7 says that, if a compositional model κ1 � κ2 � . . . � κn and
its permutation κj1 � κj2 � . . . � κjn are both perfect models, then they both
represent the same multidimensional distribution

κ1 � κ2 � . . . � κn = κj1 � κj2 � . . . � κjn .

It means that perfectness guarantees uniqueness of the model, and all the
information is utilized from the low-dimensional distributions from which
the model is set up. Perfect models allow for certain reorderings of the
distributions in the model, but not more than two different permutations
are guaranteed.

We know that a RIP sequence can be reordered in many ways such
that all these permutations meet the RIP (Theorem 1.11). It means that
decomposable models can be reordered in many ways without violating the
decomposability. But we must realize that it does not mean that these
models represent the same multidimensional distribution; the resulting
models may differ from each other. Therefore, re-ordering the distributions
in a model without changing the resulting multidimensional distribution
requires that this decomposable model should also be perfect. In such a case,
all its RIP permutations are also perfect and all of them define the same
multidimensional distribution (due to Theorem 3.7).

Example 3.12 Consider two two-dimensional distributions from Table 3.3.
Since a sequence of two sets always meets the RIP, it is evident that both
models κ � λ and λ � κ are decomposable. The reader can easily verify that
these models define different three-dimensional distributions: κ � λ �= λ � κ
because κ and λ are not consistent. While κ � λ is a uniform distribution,
(λ � κ)↓{Y,Z} = λ, and therefore it cannot be uniform.

text B5.indd 53text B5.indd 53 23.10.2019 14:40:5523.10.2019 14:40:55

46 CHAPTER 3. COMPOSITIONAL MODELS

Thus, perfect decomposable models manifest lot of advantageous prop-
erties. We said above that it is an easy task to perfectize a decomposable
model. Having a perfect model κ1(K1) � κ2(K2) � . . . � κn(Kn), a natural
question arises whether one can find a decomposable model representing the
same multidimensional probability distribution. The precise formulation of
this task is the following:
For a perfect compositional model κ1(K1) � κ2(K2) � . . . � κn(Kn), find a
RIP sequence of variable sets M1, M2, . . . , Mm, and compute probability
distributions π1(M1), π2(M2), . . . , πm(Mm), such that

• ∀ Kj (j = 1, . . . , n) ∃ Mk (Kj ⊆ Mk);

• πj(Mj) = (κ1(K1) � κ2(K2) � . . . � κn(Kn))↓Mj for all j = 1, 2, . . . , m;

• π(M1) � π(M2) � . . . � π(Mm) = κ1(K1) � κ2(K2) � . . . � κn(Kn).

If we set certain formal criteria for an optimal solution of this task (e.g., to
find – in a way – the smallest possible sets M1, M2, . . . , Mm), the problem
is known to be NP-hard. Therefore, only heuristic solutions of the task are
used in practical situations. One possibility is to use the following algorithm
based on the ideas of Tarjan and Yanakakis [36, 37].

Algorithm 3.13 – Transformation into a decomposable model.
INPUT: Perfect model κ1(K1) � κ2(K2) � . . . � κn(Kn).

OUTPUT: Perfect decomposable model μ1(M1)�μ2(M2)�. . .�μm(Mm).

STEP I: Define a graph G = (V, E):
V = K1 ∪ K2 ∪ . . . ∪ Kn;
E = {(X, Y) ∈ V × V : X �= Y & ∃j ∈ {1, . . . , n}{X, Y } ⊆ Kj}.

STEP II: Enumerate the nodes of G using the maximum cardinality
search:

1. Assign number “1” to an arbitrary node of G.

2. Repeat assigning the next number to any node with
the highest number of already enumerated neighbors2

until all nodes are enumerated.

STEP III: For k = n, n − 1, n − 2, . . . 2 do:
Let X be the node enumerated by k in the previous step.
Let L denote the set of all nodes with assigned numbers smaller
than k.
Let N be the set of neighbors of X in G.
Denote F = {(X, Y) ∈ L ∩ N × L ∩ N : X �= Y }.
Redefine E := E ∪ F .

text B5.indd 54text B5.indd 54 23.10.2019 14:40:5523.10.2019 14:40:55

3.3. MARGINALIZATION 47

STEP IV: Find all cliques of graph G and order them to meet the
RIP3. Denote them by M1, M2, . . . , Mm.

STEP V: For all j = 1, 2, . . . , m, define μj = (κ1 � . . . � κn)↓Mj .

3.3 Marginalization

The task studied in this Section is the following4: for a compositional model
κ1 � κ2 � . . . � κn, and a subset of variables M ⊂ K1 ∪ K2 ∪ . . . ∪ Kn, find a
compositional model λ1(L1) � λ2(L2) � . . . � λm(Lm) such that

(κ1 � κ2 � . . . � κn)↓M = λ1(L1) � λ2(L2) � . . . � λm(Lm).

Unfortunately, there is no general solution to the marginalization task that
would be optimal in the sense of computational efficiency. Several heuristic
procedures supported by different theoretical results appear in the literature.
In this Section, we present some results published in [10, 11, 13, 3], and
discuss a heuristic process, which, employing the theorems presented below,
solves the problem of marginalization in a way that can be applied to real-size
problems.

The simplest rule used for marginalization is a direct application of
Property 3 in Theorem 2.3 (Composition preserves first marginal). It says
that, in the process of marginalization, we can always cut off the "tail" of
the model.

Theorem 3.14 If there exists j ∈ {1, 2, . . . , n} such that M = K1∪. . .∪Kj,
then

(κ1 � κ2 � . . . � κn)↓M = κ1 � . . . � κj .

A direct generalization of Property 12 in Theorem 2.3 (Simple marginal-
ization) says that one can easily exclude a variable from a model if the
variable is among the arguments of only one distribution.

Theorem 3.15 Let X ∈ N = K1 ∪ K2 ∪ . . . ∪ Kn. If there exists j ∈
{1, 2, . . . , n} such that X ∈ Kj, and X /∈ K1 ∪ . . . ∪ Kj−1 ∪ Kj+1 ∪ . . . ∪ Kn,
then

(κ1 � κ2 � . . . � κn)↓N\{X} = κ1 � . . . � κj−1 � κ
↓Kj\{X}
j � κj+1 � . . . � κn.

2If there are more nodes meeting this condition, choose an arbitrary one from among
them.

3The procedure realized in Step III guarantees that it can always be done.
4In [29], F. Malvestuto solves the marginalization problem for a more general class

of models called compositional expressions introduced in [28]. We do not include his
procedure into this text because we exclusively concentrate on the marginalization of
compositional models, which, forming a subclass of Malvestuto’s sequential expressions,
possess special properties that are employed to enhance the process of marginalization.

text B5.indd 55text B5.indd 55 23.10.2019 14:40:5623.10.2019 14:40:56

48 CHAPTER 3. COMPOSITIONAL MODELS

The following assertion enables us to formulate a rule that eliminates
occurrence of a variable among the arguments of individual distributions.
Therefore, an iterative application of such a rule eventually makes the
deletion of any variable possible.

Theorem 3.16 Consider X ∈ N = K1 ∪ K2 ∪ . . . ∪ Kn. Let j and k
be indices from {1, 2, . . . , n} such that j < k, X ∈ Kj ∩ Kk, and X /∈
Kj+1 ∪ . . . ∪ Kk−1, then

κ1 � κ2 � . . . � κk = κ1 � . . . � κj−1 � κ
↓Kj\{X}
j � κj+1 � . . . � κk−1 � (κj ©�Lκk) ,

where L = (K1 ∪ K2 ∪ . . . ∪ Kk−1) \ {X}.

Theorems 3.14 through 3.16 enable us to formulate the following marginal-
ization rules. Their multiple application to a compositional model κ1�κ2�. . .�
κn always lead to the required marginal distribution (κ1 � κ2 � . . . � κn)↓M.

Tail deletion rule. Find the smallest j such that M ⊆ K1 ∪ . . . ∪ Kj , and
consider only κ1 � κ2 � . . . � κj .

Variable deletion rule. If there is a variable X /∈ M for which there exists
j ∈ {1, 2, . . . , n} such that X ∈ Kj , and X /∈ Ki for all the remaining
i = 1, . . . , j − 1, j + 1, . . . , n, then consider model

κ1 � . . . � κj−1 � κ
↓Kj\{X}
j � κj+1 � . . . � κn.

Decrease of a variable appearance rule. For any X /∈ M for which
there exist indices j, k ∈ {1, 2, . . . , n} such that j < k, X ∈ Kj ∩ Kk,
and X /∈ Kj+1 ∪ . . . ∪ Kk−1, define L = (K1 ∪ . . . ∪ Kk−1) \ {X}, and
consider model

κ1 � . . . �κj−1 �κ
↓Kj\{X}
j �κj+1 � . . . �κk−1 � (κj ©�Lκk)�κk+1 � . . . �κn.

Let us once more emphasize that a suitable iterative application of these
rules always leads to the desired marginal distribution. It fully corresponds to
Shachter’s marginalization procedure [29] (the names of our rules are inspired
by Shachter’s node deletion and edge reversal rules). In fact, application of
the anticipating operator in a way corresponds to the inheritance of parents
in his edge reversal rule.

In contrast to Shachter’s approach, , we still have at our disposal another,
more effective rule for the marginalization of compositional models. This rule
makes the deletion of a number of variables possible in one computationally
simple step. It is applicable under special conditions described in the
following Definition.

text B5.indd 56text B5.indd 56 23.10.2019 14:40:5623.10.2019 14:40:56

3.3. MARGINALIZATION 49

Definition 3.17 Let, for a compositional model κ1 � κ2 � . . . � κn. and index
i ∈ I � {1, . . . , n} be given such that5

⎛
⎝⋃

k∈I
Kk

⎞
⎠ ∩

⎛
⎝⋃

k 	∈I
Kk

⎞
⎠ ⊆ Ki.

Then we say that i and I determine a reduction of compositional model
κ1, . . . , κn (or simply that (i, I) is a reduction for model κ1 � κ2 � . . . � κn).

Theorem 3.18 Let (i, I) be a reduction for a compositional model κ1 � κ2 �
. . .�κn. Let M =

⋃
k∈I

Kk, μ(Ki) = (κ1 �κ2 �. . .�κn)↓Ki . Define distributions

λk

λk(Kk) = κk(Kk) for k ∈ I,
λk(M ∩ Lk) = μ↓M∩Lk for k �∈ I and Lk =

⋃
�∈{1,...,k}\I

K�.

Then the marginal distribution (κ1 � κ2 � . . . � κn)↓M can be expressed as a
compositional model

(κ1 � κ2 � . . . � κn)↓M = λ1 � λ2 � . . . � λn.

The reader should realize that M ∩ Lk ⊆ Ki holds. If Theorem 3.18 is
applied to a perfect model, then μ = κi; this fact simplifies the necessary
computations because λk for all k �∈ I are marginals of κi. So we can
see that application of this assertion to perfect models is computationally
inexpensive. On the other hand, no simple algorithm for seeking a reduction
(i, I) of a general compositional model has been proposed. However, such
an algorithm becomes very simple for decomposable models because of the
following assertion.

Theorem 3.19 If there exists a reduction (i, I) for a decomposable compo-
sitional model, then there also exists a reduction (j, J) for this model such
that |J| = n − 1.

To elaborate, the assertion states that if for a decomposable model there
exists a reduction in the sense of Definition 3.17 then the model described
in Theorem 3.18 can be obtained by a sequence of simple reductions, each
of which reduces the model just by one distribution. This means that the
computational complexity of finding and realizing a reduction is linear in the
length of a model. And this is also why we formulate a simplified version of
the reduction rule valid for perfect decomposable models.

5Symbol k �∈ I stands as an abbreviation for k ∈ {1, 2, . . . , n} \ I.

text B5.indd 57text B5.indd 57 23.10.2019 14:40:5623.10.2019 14:40:56

50 CHAPTER 3. COMPOSITIONAL MODELS

Reduction rule for decomposable models. Let κ1 � κ2 � . . . � κn be a
perfect decomposable model. If there exists Kj such that, for a certain
Kk (k �= j)

Kj ∩
(⋃

i	=j

Ki

)
⊆ Kk,

then find the RIP ordering Kj1 , Kj2 , . . . , Kjn , for which Kj = Kjn is
true, and consider the model κj1 � κj2 � . . . � κjn−1 .

This is the last reduction rule applicable within the following algorithms
to be used for the marginalization of compositional models. Their description
presented below stresses the principles upon which these algorithms are based.
When formulating them, the simplicity of the description is the main criterion.
So, if these algorithms are applicable in the way they are formulated, they
find the required solution; but to do it efficiently, a lot of programming
problems would have to be solved that we do not mention here.

Algorithm 3.20 – Marginalization for decomposable models.
INPUT: Decomposable model λ1(L1) � λ(L2) � . . . � λm(Lm);

M ⊂ L1 ∪ L2 ∪ . . . ∪ Lm.

OUTPUT: Perfect decomposable model κ1(K1) � κ(K2) � . . . � κn(Kn).

STEP I: Copy the input model into the output model, which will subse-
quently be modified:
For i = 1, 2, . . . , m define κi(Ki) = λi(Li);
Define n = m.

STEP II: If κ1 � κ � . . . � κn is not perfect, then perfectize it using
Theorem 3.6.

STEP III: Iteratively use the following rules as long as at least one of

text B5.indd 58text B5.indd 58 23.10.2019 14:40:5623.10.2019 14:40:56

3.3. MARGINALIZATION 51

them is applicable. Then stop.
Always use the applicable rule with the lowest number.

1. If there exist two different indices i, j ≤ m such that
Ki ⊆ Kj, then delete κi from the model. Renumber the
distributions accordingly. Redefine: n = n − 1.

2. If the Reduction rule for decomposable models is ap-
plicable with (Kj \ Kk) ∩ M = ∅, then apply it. Renumber
the distributions accordingly. Redefine: n = n − 1.

3. If the Variable deletion rule is applicable, then apply it.

4. If the Decrease of a variable appearance rule is ap-
plicable, then apply it to that variable X for which |{j ∈
{1, 2, . . . , n} : X ∈ Kj}| is minimal.

Let us complete this Section with the description of a general marginal-
ization algorithm applicable to any compositional model.

Algorithm 3.21 – Marginalization for general models.
INPUT: General compositional model λ1(L1) � λ(L2) � . . . � λm(Lm);

M ⊂ L1 ∪ L2 ∪ . . . ∪ Lm.

OUTPUT: Compositional model κ1(K1) � κ(K2) � . . . � κn(Kn).

STEP I: Copy the input model into the output model, which will subse-
quently be modified:
For i = 1, 2, . . . , m define κi(Ki) = λi(Li);
Define n = m.

STEP III: Iteratively use the following rules as long as at least one of
them is applicable. Then stop.
Always use the applicable rule with the lowest number.

1. If the Tail deletion rule is applicable, then apply it.

2. If there exist i ∈ {1, 2, . . . , n} such that Ki ⊆ K1 ∪ K2 ∪
. . . ∪ Ki−1, then delete κi from the model. Renumber the
distributions accordingly. Redefine: n = n − 1.

3. If the Variable deletion rule is applicable, then apply it.

4. If the Decrease of a variable appearance rule is ap-
plicable, then apply it to that variable X for which |{j ∈
{1, 2, . . . , n} : X ∈ Kj}| is minimal.

text B5.indd 59text B5.indd 59 23.10.2019 14:40:5623.10.2019 14:40:56

52 CHAPTER 3. COMPOSITIONAL MODELS

3.4 Conditioning

This Section, which is a survey of results from [4, 18], describes how the
theoretical results presented in the previous chapters may be employed for the
computation of conditionals. This is a very important part of compositional
models theory, and therefore we include it in this text regardless it not being
used in the process of model construction, even less for data mining.

When computing conditionals, we need a degenerate one-dimensional
distribution expressing certainty. Consider variable X and its value a ∈ XX .
The probability distribution δX

a expressing that variable X = a with certainty,
is defined for each x ∈ XX as

δX
a (x) =

{
1, if x = a;
0, otherwise.

The following assertion gives instructions for how to compute conditional
distributions using the operation of composition (for its proof see Theorem 2.3
in [4]).

Theorem 3.22 Consider a distribution κ(K), variable X ∈ K, its value
a ∈ XX , and L ⊆ K \ {X}. If κ↓{X}(a) > 0, then the corresponding
conditional distribution κL|X=a can be computed as follows:

κL|X=a =
(
δX

a � κ
)↓L

.

Due to Theorem 3.22, the computation of conditionals from a model
κ1 � . . . � κn means to compute

δX
a � (κ1 � κ2 � . . . � κn).

This is an easy task if X ∈ K1, because, in this special case, the following
assertion holds.

Theorem 3.23 Consider a compositional model κ1 � κ2 � . . . � κn, variable
X ∈ K1 and its value a ∈ XX . Then,

δa(u) � (κ1 � κ2 � . . . � κn) = (δa(u) � κ1) � κ2 � . . . � κn.

This equality can be proved by a multiple application of Property 9
(Associativity under the RIP) of Theorem 2.3. It shows that all the necessary
computations are local. If the variable X is not among those for which κ1
is defined, the computation of δX

a � (κ1 � κ2 � . . . � κn) may be space- and
time-demanding. That is why we want to have a conditioning variable among
the arguments of the first distribution, and also why we are so interested in

text B5.indd 60text B5.indd 60 23.10.2019 14:40:5723.10.2019 14:40:57

3.4. CONDITIONING 53

models in which the ordering of distributions in the compositional model
may be changed without modifying the represented distribution. We already
know that, for perfect decomposable models, we can get any variable at the
very beginning of the model. The widest class of models that possess the
required property is that of flexible models.

Definition 3.24 A model κ1 � κ2 � . . . � κn is called flexible if, for each
X ∈ K1 ∪. . .∪Kn, there exists a permutation i1, i2, . . . , in such that X ∈ Ki1

and
κi1 � κi2 � . . . � κin = κ1 � κ2 � . . . � κn.

Theorems 1.11 and 3.11 say that a decomposable model consisting of
pairwise consistent distributions is flexible. Therefore, any decomposable
model can be transformed into a flexible one by applying the perfectization
procedure from Theorem 3.6. Nevertheless, it is important to keep in mind
that flexibility, in contrast to decomposability, is not a structural property.
Decomposability is a property of a sequence of sets K1, K2, . . . , Kn, and
any compositional model with a sequence of variable sets K1, K2, . . . , Kn

meeting the RIP is decomposable. On the contrary, for any sequence of
variable sets K1, K2, . . . , Kn, one can find a compositional model that is
flexible. A trivial example confirming this assertion is a model κ1�κ2�. . .�κn,
where all distributions κi are uniform. In this case, κ1 � κ2 � . . . � κn is a
uniform multidimensional distribution regardless of the actual ordering of
the distributions in the model.

Example 3.25 Consider the following compositional model (representing
two parallel noiseless channels) consisting of four distributions (see Fig-
ure 3.1)

κ1(X1, X2, X3) � κ2(X2, Y2) � κ3(X3, Y3) � κ4(Y1, Y2, Y3).

Further assume that XX2 = XY2 , and XX3 = XY3 , and that the distributions
κ2 and κ3 realize a noiseless duplex transmission:

κ2(x, y) > 0 if and only if x = y,

κ3(x, y) > 0 if and only if x = y,

which means that κ2(x, x) = κ↓X2
2 (x) = κ↓Y2

2 (x), and κ3(x, x) = κ↓X3
3 (x) =

κ↓Y3
3 (x). Under the assumption that κ1 and κ4 are consistent, i.e., the

equality
κ

↓{X2,X3}
1 (x2, x3) = κ

↓{Y2,Y3}
4 (x2, x3),

text B5.indd 61text B5.indd 61 23.10.2019 14:40:5723.10.2019 14:40:57

54 CHAPTER 3. COMPOSITIONAL MODELS
κ2

κ4

κ3

κ1 X1

X2

X3

Y1

Y2

Y3

Figure 3.1: Six-dimensional flexible model.

holds for all (x2, x3) ∈ XX2 × XX3 = XY2 × XY3, it is not difficult to show
that

κ1(X1, X2, X3) � κ2(X2, Y2) � κ3(X3, Y3) � κ4(Y1, Y2, Y3)
= κ4(Y1, Y2, Y3) � κ2(X2, Y2) � κ3(X3, Y3) � κ1(X1, X2, X3)

holds, which means that the model is flexible. To show the latter, consider an
arbitrary state (x1, x2, x3, y1, y2, y3) ∈ XX1 × XX2 × XX3 × XY1 × XY2 × XY3 .
If either x2 �= y2, or x3 �= y3 then both κ1(x1, x2, x3)�κ2(x2, y2)�κ3(x3, y3)�
κ4(y1, y2, y3), and κ4(y1, y2, y3) � κ2(x2, y2) � κ3(x3, y3) � κ1(x1, x2, x3) are
equal to 0. In the opposite case,

κ1(x1, x2, x3) � κ2(x2, y2) � κ3(x3, y3) � κ4(y1, y2, y3)

= κ1(x1, x2, x3) · κ2(x2, y2)
κ↓X2

2 (x2)
· κ3(x3, y3)

κ↓X3
3 (x3)

· κ4(y1, y2, y3)
κ↓Y2,Y3

4 (y2, y3)

= κ1(x1, x2, x3) · κ2(x2, y2)
κ↓X2

2 (x2)
· κ3(x3, y3)

κ↓X3
3 (x3)

· κ4(y1, y2, y3)
κ↓X2,X3

1 (x2, x3)

= κ4(y1, y2, y3) · κ2(x2, y2)
κ↓Y2

2 (y2)
· κ3(x3, y3)

κ↓Y3
3 (y3)

· κ1(x1, x2, x3)
κ↓X2,X3

1 (x2, x3)

= κ4(y1, y2, y3) � κ2(x2, y2) � κ3(x3, y3) � κ1(x1, x2, x3).

Since κ1 �κ2 �κ3 �κ4 = κ4 �κ2 �κ3 �κ1, and since all variables appear among
the arguments of either κ1 or κ4, the introduced model is flexible.

Let us now turn our attention to the problem of conditioning in the flexible
models. We repeat that flexible sequences are those that can be reordered
in many ways so that each variable can appear among the arguments of the
first distribution. As showed in Example 3.25, it does not mean that each
distribution appears at the beginning of the sequence defining the model
(this feature is present in perfect decomposable models, but not only in

text B5.indd 62text B5.indd 62 23.10.2019 14:40:5723.10.2019 14:40:57

3.4. CONDITIONING 55

them). As said above, the flexibility is not a structural property (i.e., it is
not a property of a sequence K1, K2, . . . , Kn). Therefore it is very important
that, as expressed in the following assertion, the perfectization procedure
from Theorem 3.26 preserves the flexibility.

Theorem 3.26 If a model κ1 � κ2 � . . . � κn is flexible then its perfectized
form μ1 � μ2 � . . . � μn defined by the procedure

μ1 = κ1,

μ2 = μ↓K2∩K1
1 � κ2,

μ3 = (μ1 � μ2)↓K3∩(K1∪K2) � κ3,

...
μn = (μ1 � . . . � μn−1)↓Kn∩(K1∪...∪Kn−1) � κn

is also flexible.

So, having a flexible model, we can easily compute a conditional distri-
bution given a value of a variable for which the probability is positive. In
the case of necessity, we can even perfectize the model without violating the
flexibility. But, as a rule, when applying a model to inference, we need a
conditional distribution given values of several variables. To this end, we
need the following Theorem stating that neither does the conditioning spoil
the flexibility of a compositional model.

Theorem 3.27 Consider a flexible model π = κ1 � κ2 � . . . � κn, variable
X ∈ K1 ∪ . . . ∪ Kn, its value a ∈ XX such that π↓{X}(a) > 0, and the
corresponding conditional distribution ϑ = δX

a � (κ1 � κ2 � . . . � κn). Then

ϑ = ϑ↓K1 � ϑ↓K2 � . . . � ϑ↓Kn ,

is a flexible model.

Let us mention that that model ϑ↓K1 �ϑ↓K2 � . . . �ϑ↓Kn can be computed
in the following three steps:

• If X /∈ K1, find a permutation of the model so that X ∈ K1.

• Perfectize the model
(
δX

a � κ1
)

� κ2 � . . . � κn getting ϑ↓K1 � ϑ↓K2 � . . . �

ϑ↓Kn .

• If necessary, reorder the model to the original permutation.

Thanks to Theorem 3.27, the process can be repeated as many times as
necessary to get a compositional model representing the required conditional
distribution given an arbitrary number of values of different variables.

text B5.indd 63text B5.indd 63 23.10.2019 14:40:5823.10.2019 14:40:58

56 CHAPTER 3. COMPOSITIONAL MODELS

Example 3.28 Consider a compositional model from Example 3.1

π(X, Y, Z, U, V, W) = κ1(X, Z) � κ2(Z, V) � κ3(X, U, V, W) � κ4(Y, V, W)

with the goal to compute conditional probability distribution π(U, V |X =
a, Y = b). Since

{X, U.V, W} ∩ ({X.Z} ∪ {Z, V }) = {X, V },

we can immediately see that this model is not decomposable (not knowing
the respective probability distributions (tables), we cannot decide about the
flexibility of this model). Therefore, to make available the possibility of
performing the computations locally, we first transform the model into a
decomposable one.

It is a good exercise for the reader to show that, in this simple case,
Algorithm 3.13 yields a decomposable model λ1(X, Z.V) � λ2(X, U, V, W) �
λ3(Y, V, W) with

λ1(X, Z.V) = κ1(X, Z) � κ2(Z, V),
λ2(X, U, V, W) = κ3(X, U, V, W),
λ3(Y, V, W) = κ4(Y, V, W).

Without loss of generality, we can assume the model is perfect (otherwise
we would first perfectize it using Theorem 3.6). Using this model, we can
compute

δX
a � π = (δX

a � λ1(X, Z.V)) � λ2(X, U, V, W) � λ3(Y, V, W),

which is a decomposable model, but evidently not perfect. The application of
the perfectization process

λ̄1(X, Z.V) = δX
a � λ1(X, Z.V),

λ̄2(X, U, V, W) = λ̄
↓{X,V }
1 � λ2(X, U, V, W)

λ̄3(Y, V, W) = λ̄
↓{V,W }
2 � λ3(Y, V, W)

yields a perfect decomposable model

δX
a � π = λ̄1(X, Z.V)) � λ̄2(X, U, V, W) � λ̄3(Y, V, W)

= λ̄3(Y, V, W) � λ̄2(X, U, V, W) � λ̄1(X, Z.V)).

The latter form, starting with λ̄3(Y, V, W), is convenient for the conditioning
by variable Y . Thus,

δY
b � (δX

a � π) = (δY
b � λ̄3(Y, V, W)) � λ̄2(X, U, V, W) � λ̄1(X, Z.V)

text B5.indd 64text B5.indd 64 23.10.2019 14:40:5823.10.2019 14:40:58

3.5. CAUSAL MODELS 57

is again a decomposable model. Let us perfectize it

¯̄λ1(Y, V, W) = δY
b � λ̄3(Y, V, W),

¯̄λ2(X, U, V, W) = ¯̄λ↓{V,W }
1 � λ̄2(X, U, V, W),

¯̄λ3(X, Z.V) = ¯̄λ↓{X,V }
2 � λ̄1(X, Z.V).

Since this model is perfect, the required probability distribution can be obtained
by simply marginalizing the second distribution of this model

π(U, V |X = a, Y = b) = ¯̄λ↓{U,V }
2 .

3.5 Causal models

In this Section we show that, if the users want and if they have enough
expert knowledge, they can construct causal compositional models. Let
us stress at the very beginning that to interpret a model as causal, one
has to have enough expert knowledge about causal relationships among the
considered variables. One can statistically reveal that there is a relationship
between two variables. But there is principally no statistical way of finding
out whether this dependence is causal. Determining which variable is a cause
of the other goes beyond the power of statistical approaches as well.

Analogously to Pearl [30], who assumes to have expert knowledge that
allows him to interpret the arrows in a Bayesian network as causal relation-
ships, we have to assume that, for each of the considered variables, we know
a group of other variables that are the causes for the variable in question.
And it is this additional knowledge that allows us to infer more information
from causal models than from the stochastic models described in previous
Sections. In addition to conditioning, we can also compute the impact of
an intervention. Let us explain the difference between conditioning and
intervention by the following trivial example from [4].

Example 3.29 Consider two (for simplicity binary) variables describing
whether there is smoke in a room (variable S) and whether a fire alarm
is on or off (variable F). Naturally, since we assume that smoke in the
room switches the alarm on, there is an evident causal relationship between
these variables: S is a cause for F . Clearly, these variables are mutually
dependent, and therefore, denoting the respective probability distribution
π(S, F), we quite naturally expect that π(S = +|F = +) > π(S = +) and
π(F = +|S = +) > π(F = +).

The situation changes when, instead of conditioning, we consider in-
tervention. Using Pearl’s “do” notation [30] we denote by do(S = +) the
situation when we bring the smoke into the room (for example, we smoke

text B5.indd 65text B5.indd 65 23.10.2019 14:40:5823.10.2019 14:40:58

58 CHAPTER 3. COMPOSITIONAL MODELS

a cigar in it). Analogously, do(F = +) denotes the situation when we
switch the alarm on, for example, by pushing a test push-button. In this
setup, it is natural to expect that bringing smoke into the room switches
the alarm on, but switching the alarm on does not bring any smoke into
the room. Therefore, while π(F = +|do(S = +)) > π(F = +), the equality
π(S = +|do(F = +)) = π(S = +) holds. We have thus obtained that
π(S = +|do(F = +)) < π(S = +|F = +), meaning that if there is alarm
on we can expect that there is smoke in the room (stochastic conditioning),
but by switching an alarm on we do not increase the probability that there is
smoke in the room (intervention).

Let us describe the notion of intervention (and the difference between
conditioning and intervention) formally. Consider variable X and a set of
variables C(X) that are causes for X. It means that the behavior of variable
X is fully described by a certain distribution π(M), for M = {X} ∪ C(X).
Using Properties 4 and 7 from Theorem 2.3, one can immediately see that
π(M) = π(C(X)) � π(M), which seems to be unnecessarily complex, but
which is, as we are now going to show, very useful for causal models.

Theorem 3.22 says that

π(C(X)|X = a) = (δa(X) � π(M))↓C(X), (3.1)

and taking into consideration that π(M) = π(C(X)) � π(M), we get

π(C(X)|X = a) = (δa(X) � (π(C(X)) � π(M)))↓C(X) . (3.2)

Realize that until now we have not utilized the assumption that the model
is causal. It comes into our consideration at this moment. Under this
assumption, we can also compute the result of intervention π(C(X)|do(X =
a)). From Theorem 3.30 (below), we will learn that it can be computed by
a formula that differs from Equality (3.2) in just a pair of parentheses:

π(C(X)|do(X = a)) = (δa(X) � π(C(X)) � π(M))↓C(X) . (3.3)

Knowing that the operator of composition is not associative, we know that,
in general,

(δa(X) � (π(C(X)) � π(M)))↓C(X) �= ((δa(X) � π(C(X))) � π(M))↓C(X) .

The difference between these two expressions follows immediately from the
application of Properties 4 and 12 (see Theorem 2.3) to the right hand side
of the above-stated inequality

((δa(X) � π(C(X))) � π(M))↓C(X) = (δa(X) � π(C(X)))↓C(X)

= (δa(X)↓∅ � π(C(X)) = π(C(X)).

text B5.indd 66text B5.indd 66 23.10.2019 14:40:5823.10.2019 14:40:58

3.5. CAUSAL MODELS 59

So, computing ((δa(X) � π(C(X))) � π(M))↓C(X), we get the marginal
π(C(X)). It is in full correspondence with what was illustrated by the
example above. The intervention that changes (fixes) the value of the effect
variable does not influence the behavior of its causes:

π(C(X)|do(X = a)) = ((δa(X) � π(C(X))) � π(M))↓C(X) = π(C(X)).

After explaining the difference between conditioning and intervention in
causal models, we still should find answers to the following two questions:
What do we understand by a notion of a causal compositional model? How
can we compute conditioning and the result of intervention from a causal
compositional model? To answer these questions, we present selected results
from [4].

Let us consider a set of variables N, and, for each variable X ∈ N, let
C(X) ⊂ N\{X} be its causes. Here we only consider Markovian models [30],
i. e., the models in which variables can be ordered (without loss of generality,
we assume it is the ordering {X1, X2, . . . , Xn} = N), which is such that the
causes always precede their effects. So, we assume that

Xk ∈ C(Xi) =⇒ k < i,

which, as the reader has certainly noticed, means that C(X1) = ∅, and
excludes feedback models from our consideration.

In keeping with the notation introduced above, we denote Ki = C(Xi) ∪
{Xi}, and let κi(Ki) stand for the distribution describing the local behavior
of Xi. This means that we consider a causal model

π(X1, X2, . . . , Xn) = κ1(K1) � κ2(K2) � . . . � κn(Kn). (3.4)

In [4], the following Theorem is proved.

Theorem 3.30 For the causal compositional model π given by
Formula (3.4), and for arbitrary X ∈ K1 ∪ . . . ∪ Kn, a ∈ XX ,
L ⊆ K1 ∪ . . . ∪ Kn \ {X},

κ(L|do(X = a)) =
(
δa(X) � κ1(K1) � κ2(K2) � . . . � κn(Kn)

)↓L
. (3.5)

We can thus see that the difference between conditioning and intervention
is given just by a pair of parentheses (see Theorem 3.22):

κ(L|X = a) =
(
δa(X) �

(
κ1(K1) � κ2(K2) � . . . � κn(Kn)

))↓L
. (3.6)

Before we conclude this Section, let us mention two points of great
importance from the application point of view.

text B5.indd 67text B5.indd 67 23.10.2019 14:40:5823.10.2019 14:40:58

60 CHAPTER 3. COMPOSITIONAL MODELS

First, we show that the computation of the effect of multiple interventions
is as simple as when considering just one intervention. Consider a causal
compositional model π(N) = κ1(K1) � . . . � κn(Kn), and (for simplicity) two
variables V, X ∈ N. Let a ∈ XX , b ∈ XV , and denote L = N \ {V, X}. Then

κ(L|do((V, X) = (b, a)) = κ(L|do(V = b), do(X = a))
= (δb(V) � δa(X) � κ1(K1) � κ2(K2) � . . . � κn(Kn))↓L

=
(
δ(b,a)(V, X) � κ1(K1) � κ2(K2) � . . . � κn(Kn)

)↓L
.

Second, we want to turn the reader’s attention to the fact that one can
consider causal compositional models with hidden (unobservable) variables,
and yet, under certain conditions, the result of the intervention can be
computed. We do not want to go into rather complicated theoretical results
in the present text, and therefore we present just a toy example taken from
[17], showing that a lack of distinction between conditioning and intervention
may lead to incorrect conclusions (and when done deliberately, it may be a
way of cheating customers).

Example 3.31 Assume that there was a statistical survey showing that a
disease d+ has a lower incidence among New-Drink consumers than among
those who do not make use of New-Drink. Since not all people like New-
Drink, we assume that tendency to drink this beverage is influenced by
another cause, say genetic disposition, which influences also development of
disease d+. So, let us start considering a simplest possible causal model with
three variables

b − −drinking New-Drink Xb = {b+, b−} C(b) = {g},
d − −disease Xd = {d+, d−} C(d) = {b, g},
g − −genetic disposition Xg unknown C(g) = ∅,

i.e., the causal compositional model

π(b, d, g) = κ1(g) � κ2(b, g) � κ3(b, d, g).

In this case, unfortunately, the computation of

π(d|do(b = b+)) =
(
δb+(b) � κ1(g) � κ2(b, g) � κ3(b, d, g)

)↓{d}

is obviously impossible; because we can estimate only κ2(b), and κ3(b, d). The
only way of overcoming this problem is to introduce an additional observable
variable. Since the New-Drink producer claims that, say, the positive impact
of drinking their beverage is based on the fact that it decreases the level of

text B5.indd 68text B5.indd 68 23.10.2019 14:40:5923.10.2019 14:40:59

3.5. CAUSAL MODELS 61

Table 3.4: Frequency table for New-Drink Example

b = b+ b = b−

c = chigh c = clow c = chigh c = clow

d = d+ d = d− d = d+ d = d− d = d+ d = d− d = d+ d = d−

0, 010 0, 122 0, 008 0, 520 0, 009 0, 263 0, 006 0, 062

cholesterol, let us add the result of the respective laboratory test into the
model, and consider, now, a new causal model

π(b, c, d, g) = κ1(g) � κ2(b, g) � κ3(b, c) � κ4(c, d, g),

which means that now we are considering variables

Xb = {b+, b−} C(b) = {g},
Xc = {chigh, clow} C(c) = {b},
Xd = {d+, d−} C(d) = {c, g},

b − drinking New-Drink
c − cholesterol
d − disease
g − genetic disposition Xg unknown C(g) = ∅.

Now, though not simple, the computation of

π(d|do(b = b+)) =
(
δb+(b) � κ1(g) � κ2(b, g) � κ3(b, c) � κ4(c, d, g)

)↓{d}

is possible, regardless of the fact that, from the available data, we can estimate
neither κ1, nor κ2, nor κ4, but only κ3. The computations6 take advantage
of the fact that the available data also allows for the estimation of the
three-dimensional distribution of variables c, d, g which do not appear in the
definition of the model. Denoting the estimate of this three-dimensional
distribution κ4, we get

π(d|do(b = b+)) =
(
δb+(b) � κ3(b, c) �

(
κ3(b) · κ3(c) � κ4(b, c, d)

)↓{c,d})↓{d}
,

which is quite different from the conditional distribution that can, for this
example, be computed

π(d|b = b+) =
(
δb+(b) � κ4(b, c, d)

)↓{d}
.

6For a full page of computations, which is not repeated here, the interested reader is
referred either to [16], or to [4]; in the latter source the computations are performed in a
more general form.

text B5.indd 69text B5.indd 69 23.10.2019 14:40:5923.10.2019 14:40:59

62 CHAPTER 3. COMPOSITIONAL MODELS

So, it may easily happen that π(d|b = b+) < π(d), and simultaneously
π(d|do(b = b+)) > π(d). The reader can check these inequalities with the
data from Table 3.4, for which we get

π(d = d+) = 0.033,

π(d = d+|b = b+) = 0.027,

π(d = d+|do(b = b+)) = 0.044.

From these values one can see that, regardless of the fact that the value of
conditional probability π(d = d+|b = b+) = 0.027 may seem promising, the
impact of intervention π(d = d+|do(b = b+)) = 0.044 is, in fact, negative.

text B5.indd 70text B5.indd 70 23.10.2019 14:40:5923.10.2019 14:40:59

Chapter 4

Independence structure of
models

As defined in Section 1.2 (page 8) Independence structure of a probability
distribution is a system of all conditional independence relationships holding
for the distribution in question [35]. When speaking about the independence
structure of a compositional model κ1 �κ2 �. . .�κn, some of the independence
relationships are already encoded in the structure of the model, i.e., in
the sequence K1, K2, . . . Kn. These relationships can be read from this
sequence using Property 2 in Theorem 2.3. Others can be deduced from
them using the Block Independence Property (Theorem 1.6). The conditional
independence relationships that hold for all probability distributions that can
be represented in a form of a compositional model formed by distributions
for variable sets K1, K2, . . . Kn (in the given order) are called structural
independence relationships. Keep in mind that, for a specific compositional
model, some other conditional independence relationships may hold. To
identify them, one has to check whether the respective equations (from
Definition 1.3) hold. In this Chapter we will be interested only in the
structural conditional relationships that can be read from the structure of
the respective compositional model.

In this Section, which is a brief summarization of the main results from
[12, 14, 19], we develop a special tool representing a compositional model
structure that serves for communication of ideas between the user and the
computer. Naturally, it is also convenient for communication among users.
But the main goal, for which it was originally designed in [12], was reading
all of the structural conditional independence relationships that hold in the
respective model.

63

text B5.indd 71text B5.indd 71 23.10.2019 14:40:5923.10.2019 14:40:59

64 CHAPTER 4. INDEPENDENCE STRUCTURE OF MODELS

4.1 Persegrams

To visualize the structure of a compositional model, we use a tool called
persegram1. This tool was originally designed in [14] in a slightly different
way.

Definition 4.1 The persegram of a compositional model κ1 � κ2 � . . . � κn is
a table in which the rows correspond to variables from K1 ∪ . . . ∪ Kn (in an
arbitrary order) and the columns correspond to distributions κ1, . . . , κn in the
respective ordering. A position in the table is marked if the variable is among
the arguments of the respective distribution. Markers for the first occurrence
of each variable (i.e., the leftmost markers in rows) are box-markers, and
for other occurrences there are bullets.

When speaking about the markers, we represent each of them them as a
couple [κi, X], where X is always a variable from Ki.

Example 4.2 In Figure 4.1, we can see persegrams of two compositional
models: κ1(X)�κ2(Y)�κ3(X, Y, Z)�κ4(Y, Z, W)�κ5(Y, U, V, W) and κ2(Y)�
κ1(X) � κ4(Y, Z, W) � κ3(X, Y, Z) � κ5(Y, U, V, W) (i.e., the model in Fig-
ure 4.1b is a simple permutation of the model from Figure 4.1a).

κ1 κ2 κ3 κ4 κ5

X

Y

Z

U

V

W

�

�
•
•
�

•
•

�

•
�

�

•
(a) κ1(X) � κ2(Y) � κ3(X, Y, Z) �
κ4(Y, Z, W) � κ5(Y, U, V, W)

κ2κ2κ2 κ1 κ4 κ3 κ5

X

Y

Z

U

V

W

�

�
•
•
•

•
�

�

•
�

�

•
(b) κ2(Y)�κ1(X)�κ4(Y, Z, W)�
κ3(X, Y, Z) � κ5(Y, U, V, W)

Figure 4.1: Persegrams of a compositional model and its permutation.

Notice the difference between these persegrams. By reordering the columns
– distributions in the model – two markers have changed their shapes: marker
[κ3, Z] is a box-marker in the persegram of κ1(X) � κ2(Y) � κ3(X, Y, Z) �

1This artificial word refers to the fact that it is a graphical representation of perfect
sequences.

text B5.indd 72text B5.indd 72 23.10.2019 14:40:5923.10.2019 14:40:59

4.2. SIMPLE TRAILS 65

κ4(Y, Z, W) � κ5(Y, U, V, W) but a bullet in the persegram of κ2(Y) � κ1(X) �
κ4(Y, Z, W) � κ3(X, Y, Z) � κ5(Y, U, V, W). Conversely, [κ4, Z] is a bullet in
the persegram in Figure 4.1a but a box-marker in Figure 4.1b.

Having a closer look at the persegram in Figure 4.1b, we can also notice
that the fourth column (corresponding to κ3) does not contain any box-
markers – all the corresponding markers are bullets. This means that, due to
Property 4 (Reduction) in Theorem 2.3, this distribution does not influence
the model; hence it is completely unnecessary and may be deleted. This
is a general property that can be deduced from persegrams: distributions
represented in a persegram by columns with no box-markers may be deleted
from the model. In the following Sections we start studying the possibility
of reading other properties of compositional models from persegrams.

4.2 Simple trails

Originally, as already said, persegrams were designed for reading conditional
independence relationships holding in compositional models. Let us start
with a simpler task: reading unconditional independence relationships [12].

Definition 4.3 Consider a compositional model κ1 � κ2 � . . . � κn and the
corresponding persegram. A sequence of markers m0, . . . ,mt in the persegram
of a compositional model is called a simple trail connecting markers m0 and
mt if it meets the following three conditions:

1. for each s = 1, . . . , t, the couple (ms−1,ms) is either in the same
row (i.e., a horizontal connection) or in the same column (a vertical
connection);

2. each vertical connection must be adjacent to a box-marker (i.e., at least
one of the markers in the vertical connection is a box-marker) – the
so-called regular vertical connection;

3. vertical and horizontal connections regularly alternate.

If a simple trail connects two markers corresponding to variables X and Y ,
we say that these variables are connected by a simple trail. This situation is
denoted by X � Y [κ1 � κ2 � . . . � κn]. Symbol X �� Y [κ1 � κ2 � . . . � κn]
denote the situation when there does not exist a simple trail connecting
variables X and Y in the corresponding persegram.

The following theorem reveals the relationship between the existence of
simple trails in a persegram and the relationship of (unconditional) indepen-
dence between variables.

text B5.indd 73text B5.indd 73 23.10.2019 14:41:0023.10.2019 14:41:00

66 CHAPTER 4. INDEPENDENCE STRUCTURE OF MODELS

Theorem 4.4 Consider a compositional model κ1, κ2, . . . , κn and the cor-
responding persegram. Let X and Y be two different variables from K1 ∪
K2 ∪ . . . ∪ Kn. Then

X �� Y [κ1, κ2, . . . , κn] =⇒ X⊥⊥Y [κ1, κ2, . . . , κn].

Example 4.5 To illustrate the notion of a simple trail, consider composi-
tional model κ1(X) � κ2(Y) � κ3(X, Y, Z) � κ4(Y, Z, W) � κ5(Y, U, V, W) from
Example 4.2 and its persegram, shown in Figure 4.1a. The shortest simple
trails connecting two different variables consist from a sole vertical connection:
e.g., trail [κ3, X], [κ3, Z] connects X and Z; trail [κ5, U], [κ5, W] connects U
and W . Therefore X � Z [κ1 � κ2 � . . . � κ5] and U � W [κ1 � κ2 � . . . � κ5].
However, notice that [κ5, Y], [κ5, W] is not a simple trail, because this vertical
connection is not regular – it is not adjacent to a box marker (both [κ5, Y] and
[κ5, W] are bullet markers). For longer, simple trails, see Figure 4.2. Simple
trail [κ1, X], [κ3, X], [κ3, Z], [κ4, Z], [κ4, W], [κ5, W], [κ5, U] connects vari-
ables X and U , and the simple trail [κ2, Y], [κ4, Y], [κ4, W], [κ5, W], [κ5, V]
connects variables Y and V .

κ1 κ2 κ3 κ4 κ5

X

Y

Z

U

V

W

�

�
•
•
�

•
•

�

•
�

�

•
(a) [κ1, X], [κ3, X], [κ3, Z],
[κ4, Z], [κ4, W], [κ5, W], [κ5, U]

κ1 κ2 κ3 κ4 κ5

X

Y

Z

U

V

W

�

�
•
•
�

•
•

�

•
�

�

•
(b) [κ2, Y], [κ4, Y], [κ4, W],
[κ5, W], [κ5, V]

Figure 4.2: Persegram from Figure 4.1a with simple trails.

Let us once more emphasize that [κ1, X], [κ3, X], [κ3, Y], [κ2, Y] is not
a simple trail because the vertical connection [κ3, X], [κ3, Y] is not regular
(not being adjacent to a box marker). The reader can easily verify that there
does not exist a simple trail in this persegram connecting variables X and Y :
X �� Y [κ1 � κ2 � . . . � κ5]. To do it, notice (from Figure 4.2a) that there is
the only connection adjacent to marker [κ1, X], and it is ([κ1, X], [κ3, X]). It
is a horizontal connection, which must be (in any simple trail) followed by a
regular vertical connection: the only one is ([κ3, X], [κ3, Z]). Then, there is
no other possibility to continue until we get the trail [κ1, X], [κ3, X], [κ3, Z],

text B5.indd 74text B5.indd 74 23.10.2019 14:41:0023.10.2019 14:41:00

4.3. AVOIDING TRAILS 67

[κ4, Z], [κ4, W], [κ5, W]. This trail (ending with a horizontal connection) may
be extended either by a regular vertical connection to [κ5, U] (as depicted in
Figure 4.2a) or to [κ5, V]. However, in either of these cases the trail cannot
be extended any more, and thus X �� Y [κ1 � κ2 � . . . � κ5]. Therefore, due
to Theorem 4.4, it holds X⊥⊥Y [κ1 � κ2 � . . . � κ5].

4.3 Avoiding trails

Definition 4.6 A sequence of markers m0, . . . ,mt in the persegram of a
compositional model κ1 � κ2 � . . . � κn is called an M-avoiding trail (M ⊆
K1 ∪ K2 ∪ . . . ∪ Kn) that connects m0 and mt if it meets the following five
conditions:

1. neither m0 nor mt corresponds to a variable from M;

2. for each s = 1, . . . , t, the couple (ms−1,ms) is either in the same
row (i.e., a horizontal connection) or in the same column (a vertical
connection);

3. each vertical connection must be adjacent to a box-marker (i.e., at least
one of the markers in the vertical connection is a box-marker) – the
so-called regular vertical connection;

4. no horizontal connection corresponds to a variable from M;

5. vertical and horizontal connections regularly alternate with the following
possible exception:

at most, two vertical connections may be in direct succession if their
common adjacent marker is a box-marker of a variable from M.

If an M-avoiding trail connects two markers corresponding to variables
X and Y , we say that these variables are connected by an M-avoiding
trail. This situation is denoted by X �M Y [κ1 � κ2 � . . . � κn]. Symbol
X �� M Y [κ1 � κ2 � . . . � κn] denote the situation when there does not exist
an M-avoiding trail connecting variables X and Y in the corresponding
persegram.

The reader is right to expect that, in analogy to Theorem 4.4, there is
a connection between the existence of avoiding trails and the conditional
independence of variables in a compositional model. This property is formally
expressed in the next important theorem, which was originally proved in
[14] (an alternative proof was published in [19]). However, first we should
realize that an ∅-avoiding trail is nothing else but a simple trail. This
corresponds with the fact that the conditional independence coincides with

text B5.indd 75text B5.indd 75 23.10.2019 14:41:0023.10.2019 14:41:00

68 CHAPTER 4. INDEPENDENCE STRUCTURE OF MODELS

the unconditional independence , when the conditioning set of variables is
empty.

Theorem 4.7 Consider a compositional model κ1, κ2, . . . , κn and the cor-
responding persegram. Let X and Y be two different variables from K1 ∪
K2 ∪ . . . ∪ Kn, and M ⊆ K1 ∪ K2 ∪ . . . ∪ Kn \ {X, Y }. Then

X �� M Y [κ1, κ2, . . . , κn] =⇒ X⊥⊥Y |M [κ1, κ2, . . . , κn].

Example 4.8 Extend considering the compositional model κ1(X) � κ2(Y) �
κ3(X, Y, Z)�κ4(Y, Z, W)�κ5(Y, U, V, W) from Example 4.2 and its persegram
in Figure 4.1a. Notice that the simple trail in Figure 4.2a is also an M-
avoiding trail for any M ⊆ {Y, V }. X and U must not be in M, because it
would violate the first condition in the definition of an avoiding trail (the first
and the last markers of an M-avoiding trail do not correspond to variables
from M). Z and W must not be in M, because it would violate the fourth
condition of this definition (no horizontal connection may correspond to a
variable from M). Analogously, the simple trail in Figure 4.2b is also an
M-avoiding trail for any M ⊆ {X, Z, U}.

κ1 κ2 κ3 κ4 κ5

X

Y

Z

U

V

W

�

�
•
•
�

•
•

�

•
�

�

•
(a) {Z}-avoiding trail: [κ1, X],
[κ3, X], [κ3, Z], [κ3, Y], [κ2, Y]

κ1 κ2 κ3 κ4 κ5

X

Y

Z

U

V

W

�

�
•
•
�

•
•

�

•
�

�

•
(b) [κ2, Y], [κ4, Y], [κ4, W],
[κ5, W], [κ5, V]

Figure 4.3: Persegram from Figure 4.1a with avoiding trails.

In contrast to Example 4.5, where we show that there cannot exist a
simple trail connecting X and Y , let us show that there are avoiding trails
connecting this couple of variables. The shortest avoiding trail connecting
X and Y can be seen in Figure 4.3a. It is the trail [κ2, Y], [κ3, Y], [κ3, Z],
[κ3, X], [κ1, X], which is an M-avoiding trail connecting X and Y for any
M such that Z ∈ M ⊆ {Z, U, V, W}. Another, substantially longer is a
{U}-avoiding trail in Figure 4.3b: [κ2, Y], [κ5, Y], [κ5, U], [κ5, W], [κ4, W],
[κ4, Z], [κ3, Z], [κ3, X], [κ1, X]. The reader certainly understands that it is
also a {U, V }-avoiding trail connecting X and Y .

text B5.indd 76text B5.indd 76 23.10.2019 14:41:0023.10.2019 14:41:00

Chapter 5

Avoiding model overfitting

A model overfitting is a well known phenomenon both in statistics [34] and
machine learning (artificial intelligence) [2]. It is used to describe a situation
when a constructed model reflects noninformative properties of the source
data file (like noise and other misleading properties that each randomly
generated data file possesses). Let us illustrate this phenomenon on two
stochastically dependent variables, the dependence of which is known to be
linear. Because the dependence is stochastic, if randomly generated data are
plotted in a graph, the respective dots are concentrated along a straight line
describing the dependence. Naturally, only a certain proportion of the dots
lie directly on the line. If one tries to find a curve that connects all the dots
in the plot (see Fig. 5.1), the model becomes useless since it cannot be used
for inference â€“ (whether for interpolation or for extrapolation). From the
point of view of this Chapter, it is important to realize that such a complex
curve is described (defined) by a much larger number of parameters than
the straight line, which can be determined just by two points.

In agreement with the preceding parts of this text, this Chapter studies
the problem from the perspective of information theory. It is compiled from
papers [20] and [21], which introduced the original idea that data-based
model learning can be viewed as a transformation process, transforming the
information contained in the data into the information represented by the
model. Thus, using one of the basic laws of information theory, which states
that no transformation can increase the amount of information, we get the
basic restriction laid on the models constructed from the data: A model is
acceptable if it does not contain more information than the input data file.

However, the application of this idea leads to a problem: how should we
measure the information in a data file, and the information contained in a
model. For this purpose, we must go more than a half a century back to
seminal papers by Kolmogorov and von Mises, whose ideas are described in
the next Section.

69

text B5.indd 77text B5.indd 77 23.10.2019 14:41:0123.10.2019 14:41:01

70 CHAPTER 5. AVOIDING MODEL OVERFITTING

x0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11

•
• • •

• • •

•
•

•

Figure 5.1: Overfitted linear dependence

5.1 Information and complexity

Both von Mises [38] and Kolmogorov [23] explored relationships interconnect-
ing randomness, complexity and information. They came with the idea that
the amount of information in a sequence of 0’s and 1’s is increasing with the
complexity of the sequence, and that the complexity of such a sequence can
be measured by the length of the shortest program1 generating the sequence.
We accept that idea here, but instead of the length of an (abstract) program
we consider the length of a lossless encoding (one can always generate the
sequence from its lossless encoding).

Kolmogorov and Von Mises were also (among others) interested in the
question what “the quantity of information conveyed by an individual object
’x’ about another individual object ’y’ ” is [23]. To explain the connection
of this question with the aim of this Chapter, take for one of the objects
an arbitrary model M, and for the other one a sequence of 0’s and 1’s.
Considering a lossless encoding S of the considered model M, we know that
S does not contain less information than model M because it contains all
the information of model M. Now, having two sequences S1, S2 of 0’s and
1’s, which are both lossless encodings of a considered model M, we can say
that both these sequences S1, S2 convey the same amount of information
about model M. The same also holds true for an optimum lossless encoding
S∗ of model M. Since the mutual information between two objects is always
smaller than or equal to the amount of the information contained in any of
these objects, the length of the encoding S∗ can be taken as the best upper
estimate of the amount of information contained in model M. Assuming

1An abstract program for the universal Turing machine.

text B5.indd 78text B5.indd 78 23.10.2019 14:41:0123.10.2019 14:41:01

5.1. INFORMATION AND COMPLEXITY 71

further that there is no (relative) redundancy in sequence S∗, we can take
its length as an estimate of the amount of information (measured in bits)
contained in model M (in what follows, we will omit the word “estimate”,
and will speak about the information, or amount of information contained
in M).

The above-presented idea is independent of the type of models considered.
We know that the best model for any object is that object itself. Therefore,
the best model containing all the information contained in the data is the
respective data file itself. Therefore, using the above-presented idea, the
amount of information in the data equals the number of bits necessary
to store an optimum lossless encoding of the respective data file. This
enables us to compare the amount of information contained in the data
and that contained in a data-learned model. If we get a model with a
greater amount of information than that in the data, we can be sure that
some undesirable information has been added into the model. Moreover,
we know that regardless of the way the data has been collected, it always
contains a specific part of the information, employment of which results
in the overfitting of the model. Therefore, it should not be included in
the model. In other words, all the considered models should contain less
information than the input data. Thus we enforce a principle under which
models with the amount of information greater than or equal to
that of the input data file are unacceptable. In fact, we accept only
models containing substantially less information than the input data file.
The meaning of the word substantially is usually left to the user’s discretion.

Notice, that the above-mentioned principle is also fully compatible with
the famous Minimum Description Length (MDL) principle, which is often
used in the process of model learning. For example, it was proposed for
Bayesian network learning by Lam and Bacchus [26] (for general sources of
this principle see, e.g., [7]).

The considered approach is also fully sensible from the statistical point
of view. The less data we have, the smaller amount of bits we are allowed to
use to encode the model. It means, among other things, that for small data
files we cannot consider probability values specified with a high precision.
This fully corresponds to the fact that, having a small amount of data, the
confidence intervals for the estimates of probability parameters are rather
wide. Therefore it does not make a sense to specify these estimates with a
high precision (i.e., , with a large number of digits).

Nevertheless, let us realize that looking for the optimum lossless encoding
is intractable, and we must thus use some heuristics. Instead of the optimum
lossless encoding we will consider the best from those achieved by a battery
of encoding procedures described in Sections 5.3 – 5.5. Though this approach
can be considered only suboptimal, it serves well to the purpose of evaluating

text B5.indd 79text B5.indd 79 23.10.2019 14:41:0123.10.2019 14:41:01

72 CHAPTER 5. AVOIDING MODEL OVERFITTING

compositional models.
The next Section is devoted to the famous Huffman’s encoding [8], which

is utilized by some of these procedures.

5.2 Huffman code

Two of the encoding procedures described in the next Sections take advantage
the famous Huffman’s procedure [8], which is known to produce (in a sense)
an optimum code. The procedure is rather simple and belongs to the
fundamental parts of information theory, and therefore we decided to include
its description in this text.

In the next Sections we will face the following problem: having a list of
nonnegative integers (frequencies) f1, f2, . . . , fd, how many bits do we need
to encode this sequence? Huffman’s encoding is particularly useful for this
purpose in the case that the integers appear in the sequence independently
but with different probabilities. The sequences considered in the next
Sections will usually consist of small numbers of different integers repeated,
and quite often one of them will be prevailing. The Huffman code assigns
short codes to frequent numbers, and rare numbers have longer codes. It
is exactly the idea already employed by Samuel F. B. Morse, who assigned
short codes to (in English) frequent characters (E and T) and long codes to
characters that are not so frequent (e.g., J P, and Q).

Thus, the algorithm is based on two simple ideas:

• The frequencies appearing in the sequence more often are encoded by
a smaller number of binary digits than those appearing less often.

• The two most sparse frequencies are encoded by codes differing from
each other only in the last bit.

Algorithm 5.1 – Huffman algorithm (adapted).
INPUT: A list of nonnegative integers (frequencies) f1, f2, . . . , fd.

OUTPUT: The number NB of bits necessary to encode the input se-
quence.

STEP I: Create a list of all values appearing in the input sequence. Let
k denote the length of this list. Denote by p1, p2, . . . , pk the
numbers indicating how many times the respective frequencies
appear in the input sequence.
Define NB := 0

text B5.indd 80text B5.indd 80 23.10.2019 14:41:0123.10.2019 14:41:01

5.2. HUFFMAN CODE 73

STEP II: If k = 1 then stop. Otherwise repeat STEP III until k = 1.

STEP III: Order the values p1, p2, . . . , pk in a descending order.
Redefine NB := NB + pk−1 + pk; pk−1 := pk−1 + pk; k = k − 1.

The reader may have noticed that, for a sequence in which all the
frequencies are the same (i.e., k = 1), the resulting value NB = 0 reflects
the fact that all the frequencies are the same and therefore we need not
encode them.

Table 5.1: Numbers of frequency occurrences in a sequence.

frequency number of occurrences resulting code
1 p1 = 46 0
2 p2 = 16 110
3 p3 = 13 100
4 p4 = 11 101
5 p5 = 8 1110
7 p6 = 6 1111

Example 5.2 Consider a sequence of frequencies 1, 1, 3, 2, 1, 5, 1, 1, 2, 1, 1, 4,
3, 1, . . . , 1, the length of which is 100. There are only six different frequencies
in this sequence, and their occurrences are given in Table 5.1. The behavior
of the Huffman algorithm for this sequence is well depicted in Figure 5.2,
which, perhaps, does not need a detailed explanation.

In the leftmost part of this picture we see that p1, . . . , p6 are ordered in
descending order, and therefore p5 and p6 are joined together during the first
realization of STEP III. New descending ordering of the five numbers are
then depicted in the next column of this figure. Therefore, in the second
realization of STEP III, numbers p3 and p4 are joined together. In this way
we can see that the output value indicating the number of necessary bits to
encode this sequence of frequencies is

NB = (p5 + p6) + (p3 + p4) + (p2 + p5 + p6) + (p2 + p3 + p4 + p5 + p6)
+ (p1 + p2 + p3 + p4 + p5 + p6)

= p1 + 3p2 + +3p3 + 3p4 + 4p5 + 4p6 = 222.

As stated earlier, we do not need the encoding, we just need the number
of bits necessary to encode the data or the model. But we must keep in
mind that, when using the Huffman code, we must also encode the coding

text B5.indd 81text B5.indd 81 23.10.2019 14:41:0123.10.2019 14:41:01

74 CHAPTER 5. AVOIDING MODEL OVERFITTING

�
�
��

�
�
��

��

�� ��

��
�
� �

�
��

��
��p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5+p6

p1

p2

p3+p4

p5+p6

p1

p3+p4

p2+p5+p6

p2+p3+p4+p5+p6

p1

p1+p2+p3
+p4+p5+p6

} } } } }

Figure 5.2: Huffman algorithm applied to numbers from Table 5.1.

table, otherwise nobody would be able to reconstruct the original object
(data, model). To realize how much space we need for this purpose, see a
possible code for this example, which is the content of the right-handpart of
Table 5.1. For each row in this Table, we have to encode the frequency and
the corresponding code word.

5.3 Coding Data

In reference to what was said above, the goal of this and the next Sections
is to assign numbers to compositional models and/or data files that will
be considered to be estimates of their complexity measured in the number
of bits necessary for their optimum encoding. These numbers are then
used for comparison of the complexity between the two models, or the
complexity of the model and that of the data. This is why we neglect
encoding the information describing the problem, such as the number of
variables, variable names and the cardinalities of their value sets. Encoding
this information would just increase all the derived complexity measures
by a constant. Therefore, without loss of generality we can assume in this
Chapter that variables Xi are identified by their indices i, and their values
are Xi = {0, . . . , hi − 1}.

Under the above-stated assumption, when encoding a data file D we
have to encode a matrix of nonnegative integers with d rows (the records of
the data file) and m columns (the variables). To this end, we will consider
the following five simple procedures. Let us once more repeat that we are
aware of the fact that using more sophisticated types of codes, such as, e.g.,
arithmetic codes [39], we could achieve even more economical encodings.
The following codes realized in the system for compositional model handling
are selected as a trade-off between precision and simplicity.

5.3.0.0.1 Direct Encoding. For a binary variable, we need just one
bit for each entry of the matrix. If the respective hi > 2 then we need2

�log2 hi� bits to encode the value of variable Xi. To encode a row from a data
2�r� denotes the smallest integer that is not smaller than r.

text B5.indd 82text B5.indd 82 23.10.2019 14:41:0223.10.2019 14:41:02

5.3. CODING DATA 75

matrix, we can first transform the respective state (recall that by this term
we understand the combination of values of all variables) (x1, x2, . . . , xm)
into the number

rep(x1, x2, . . . , xm) = x1 ∗
(

m∏
k=2

hk

)
+ x2 ∗

(
m∏

k=3
hk

)
+ . . . + xm.

It is obvious that the number rep is unique for each state, and 0 ≤ rep <
m∏

k=1
hk. Therefore, for its encoding into a binary sequence we need

⌈
log2

m∏
k=1

hk

⌉
=

⌈
m∑

k=1
log2 hk

⌉

bits3. It means that, for direct encoding of the data file, we need

cd(D) = d ×
(⌈

m∑
k=1

log2 hk

⌉)
+ c

bits, where c denotes the number of bits necessary to encode the number of
records d (that is, the number of rows in the matrix).

5.3.0.0.2 Frequency Encoding. For this coding we take advantage
of the fact that we can disregard the ordering of records in the data file. We
increase the data matrix by one column into which we insert the number of
repetitions of each state in the data file. It enables us to keep each state only
once in the matrix. Thus, denoting by dred the number of different states
appearing in the original data file, and denoting by fmax the maximum
number of occurrences of the same state in the data file, then we need

cf (D) = dred ×
(⌈

m∑
k=1

log2 hk

⌉
+ �log2(fmax)�

)
+ 2 × c

bits for this type of encoding. Realize that 2× c bits are necessary to encode
dred and fmax.

5.3.0.0.3 Huffman Frequency Encoding. In the previous frequency
encoding, we paid attention to economical coding of states; but for the
number of repetitions we need �log2(fmax − −1)� regardless of the fact that
in many practical situations the number of repetitions is often 1. So, it may

3Notice that encoding the representative number of the state rep is more efficient than

encoding each value separately. The latter encoding would require
m∑

k=1
�log2 hk� bits.

text B5.indd 83text B5.indd 83 23.10.2019 14:41:0223.10.2019 14:41:02

76 CHAPTER 5. AVOIDING MODEL OVERFITTING

be advantageous to encode the numbers of occurrences using the famous
Huffman code, the algorithm of which was described in the previous Section.
Recall that it means that the states are encoded similar to the previous case,
but for encoding the numbers of occurrences we use the code requiring a
different number of bits for each different number of occurrences. The more
often a number occurs, the fewer bits are required for its encoding. But we
must not forget that in this case we do not encode just the data matrix itself
but also the code used. The total number of necessary bits for this code (i.e.,
the number of bits necessary to encode all states plus the number of bits
yielded by the Algorithm 5.1 plus the number of bits necessary to encode
the coding table) will be denoted by cfH(D).

5.3.0.0.4 Lexicographic Encoding. Analogously to frequency encod-
ing, consider an extended data matrix in which each state appears no more
than once, and the (m + 1)th column contains the number expressing how
many times the state appears in the data file D. If the number of variables
is rather small, it may happen that the following encoding of the considered
matrix is more economical than that by frequency encoding: add to the
matrix all the states that do not appear in data (with the number of repeti-
tion equal to 0), sort all the states in lexicographic order, and then encode
only the numbers from the (m + 1)th column. Because of the introduced
lexicographic ordering, one can easily assign the numbers of occurrences to
the respective states. This encoding requires

cl(D) =
(

m∏
k=1

hk

)
× �log2(fmax + 1)� + c

bits.
∏m

k=1 hk is the number of all states for the considered variables, (fmax +
1) appears in the formula because we must encode numbers of occurrences
that are from {0, 1, 2, . . . , fmax}, and the last c bits are used to encode fmax.

5.3.0.0.5 Huffman Lexicographic Encoding. As in the previous
case, we only encode frequencies for all

m∏
k=1

hk states (regardless of whether

they appear in the data file or not). To encode these frequencies, we use the
Huffman encoding algorithm. Recall that in this case we need the number
of bits yielded by the Algorithm 5.1 and we must not forget to add the
number of bits necessary to encode the coding table. The total number of
bits necessary for this type of encoding will be denoted by clH(D).

Naturally, the reader can imagine that the list of the considered data-
encoding procedures is extended by many other approaches (see, e.g., [39]).
The web system computes the complexity measure for a data file just as

c(D) = min{cd(D), cf (D), cfH(D), cl(D), clH(D)}.

text B5.indd 84text B5.indd 84 23.10.2019 14:41:0223.10.2019 14:41:02

5.3. CODING DATA 77

Example 5.3 For the sake of simplicity, we consider just eight binary
variables (with values 0, 1), and an artificially generated data file D100 with
100 records (binary vectors). To be able to encode much larger data files, let
us fix the number of necessary bits to encode the length of the data file to
c = 32. Recall that we omit encoding the information about the considered
problem, like the number of variables, their values, etc.

To apply the direct encoding approach we need to encode the following
table

d = 100

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 0 1 1 0 1 0 1
1 0 1 1 0 0 0 1

...
1 1 0 0 0 0 1 0

for which cd(D100) = 100 × 8 + 32 = 832 bits are necessary.
To encode the same data file with frequency encoding, first transform the

data file into the form in which all the rows (states) are unique and the last
column contains the numbers of occurrences of the respective state in the
original data file. For the considered data file, we get the following table

dred = 38

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 0 1 1 0 1 0 1 27
1 0 1 1 0 0 0 1 10

...
1 1 0 0 0 0 1 0 1

We thus obtain cf (D100) = 38 × (8 + 5) + 2 × 32 = 558 bits.
To get what we call the Huffman version of frequency encoding, we need

to find the Huffman code for the numbers of occurrences. In our case, such
a code is (the numbers in parentheses – the last column – read how many
times the respective frequency number appears in the table above)

27 11111 (1×)
10 11110 (1×)
5 1110 (2×)
3 110 (5×)
2 10 (9×)
1 0 (20×)

Using the Huffman version of frequency encoding, we must encode the coding
table shown above (which can easily be performed with 6 × (5 + 5) = 60
bits, and for encoding the numbers of occurrences we only need4 NB =
2 × 5 + 2 × 4 + 5 × 3 + 9 × 2 + 20 × 1 = 71 bits (instead of 38 × 5 = 190,

4Recall that NB is the number yielded by the Huffman algorithm described in Sec-
tion 5.2.

text B5.indd 85text B5.indd 85 23.10.2019 14:41:0223.10.2019 14:41:02

78 CHAPTER 5. AVOIDING MODEL OVERFITTING

which is needed for the frequency encodings in the previous case). So, we get
cfH(D100) = 38 × (8) + 60 + 71 + 2 × 32 = 499 bits.

To get the lexicographic encoding, we must consider all 28 states lexico-
graphically ordered:

256

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0

...
0 0 1 1 0 1 0 1 27

...
1 1 1 1 1 1 1 1 0

So, the lexicographic encoding of the framed frequencies requires cl(D100) =
256 × 5 + 32 = 1312 bits. However, if we use the Huffman approach to
encoding all the numbers appearing in the frame, i.e., if we use the following
code

27 111111 (1×)
10 111110 (1×)
5 11110 (2×)
3 1110 (5×)
2 110 (9×)
1 10 (20×)
0 0 (218×)

we will only need 7 × (5 + 6) = 77 bits to encode this coding table, and
clH(D100) = 77 + 2 × 6 + 2 × 5 + 5 × 4 + 9 × 3 + 20 × 2 + 218 × 1 = 404 bits,
which decidedly shows the power of the Huffman codes.

To illustrate the way in which these complexity measures increase with the
amount of the considered data, we have generated (using the same generator)
another three data files with 1 000, 10 000 and 100 000 records. A summary
of the bit requirements to encode all these data files is given in Table 5.2.
From this Table, we can immediately conclude: there is no encoding method
among the introduced five approaches that would be generally better than all
the others.

5.4 Coding Models

To encode compositional model κ1(K1) � κ2(K2) � . . . � κn(Kn), we have to
encode the sequence of distributions κ1, κ2, . . . , κn in the proper order. Each
of these distributions κi is described by (a) the dimension of the distribution
|Ki| (i.e., the number of variables for which it is defined); (b) the list of

text B5.indd 86text B5.indd 86 23.10.2019 14:41:0223.10.2019 14:41:02

5.4. CODING MODELS 79

Table 5.2: Requirements for coding the data files

cd cf cfH cl clH

D100 832 558 499 1,312 404
D1000 8,032 1,680 976 2.080 992
D10000 80,032 4,084 2,713 3,104 2,362
D100000 800,032 5,676 5,800 3,872 4,775

variables Ki for which it is defined; and finally (c) the respective probabilities.
It means that we need to encode

(a) number of variables |Ki| �log2 m� bits,
(b) list of variables |Ki| × �log2 m� bits.

In addition to these (|Ki| + 1) × �log2 n� bits, the encoding of κi requires
the space necessary for the respective probabilities. The total number
of probabilities to be encoded for distribution κi is

∏
Xj∈Ki

hj . Obviously,

encoding the probabilities is, as a rule, much more space-demanding than
encoding the information mentioned above under (a) and (b). So, let us
turn our attention to a simple and efficient way of encoding the list of
probabilities.

Naturally, the space requirements for probability encoding is closely
connected with the precision with which the respective probabilities are
specified. A simple way, which is used in the described web system, is the
following:

Select a positive integer, denote it base, and (approximately) express all
the considered probabilities, each as a ratio of two nonnegative integers

a

base
.

This means that, instead of the respective probability, we need to encode
just the respective numerator a. (Notice that we do not need to encode
the integer base since it is a sum of all the numerators from the considered
distribution.) For obvious reasons, it does not make sense to choose the
integer base larger than the number of records d in the input data file.
However, the base may be much smaller than d and can be defined with
respect to the size of the confidence intervals computed for the probability
estimates, or it can be reduced when we want to reduce the complexity of
the constructed compositional model.

Employing the idea of representing probabilities by integers we get, in
fact, exactly the same situation as in the previous Section: distribution κi

may be well represented as a list of records, out of which each represents

text B5.indd 87text B5.indd 87 23.10.2019 14:41:0323.10.2019 14:41:03

80 CHAPTER 5. AVOIDING MODEL OVERFITTING

a state x ∈ XKi for which the probability κi(x) is positive, and by the
respective integer a for which κi(x) = a

base holds. It means that, for encoding
the distribution κi, we can employ any of the techniques described in the
previous Section (an application of the direct encoding may come into
consideration only in very specific and unusual situations). As a rule, the
most economical encoding is yielded by the Huffman lexicographic encoding.
Frequency encoding (both plain and Huffman’s) may be applicable only for
multi-dimensional distributions, which are positive on a small part of the
respective space XKi .

When encoding compositional models, we will thus face the problem:
is it more economical to construct the Huffman code specifically for each
distribution (and thus also encode the respective coding table), or to construct
a single code for encoding all the marginals from which the model is composed.
The reader need not care about this problem because it is solved automatically
by the software system.

An analogous problem is connected with the selection of the base number.
When considering only simple models, we recommend that a sole base number
should be used for the entire model. However, the reader certainly realizes
that in some situations a greater chances to decrease the complexity of the
model can be achieved when defining different basei numbers for different
marginals. It makes sense to use a smaller base for multi-dimensional
distributions for two reasons. First, multi-dimensional distributions require
encoding of large amount of parameters (probabilities), therefore an efficient
representation of these probabilities is critical. Second, confidence intervals
for the estimates of probabilities in multi-dimensional distributions are larger,
and therefore it does not make sense to specify the probabilities with great
precision. The solution to this problem influences the resulting model, and
therefore it is left to the user to decide which of the possible solutions should
be preferred.

Example 5.3 (continued) Let us illustrate the principles described above
by encoding a model

M1 : μ1 = κ1(X1, X2) � κ2(X3, X4) � κ3(X3, X5) � κ4(X1, X4, X5, X6)
�κ5(X5, X6, X8) � κ6(X2, X5, X6, X7, X8)

constructed from the considered data file D100 with 100 records. As stated
above, we do not encode the information about the considered variables
because it is the information that should be encoded for all models. Next, we
should know how many bits we need to encode the variables and how many
bits are necessary to encode the maximum frequencies. Therefore we also
assume that we know two numbers encodings of which are not considered in

text B5.indd 88text B5.indd 88 23.10.2019 14:41:0323.10.2019 14:41:03

5.5. MODEL SIMPLIFICATION 81

the rest of this Section: the number of variables m, and the size of the data
file d, which is the upper limit for the frequencies.

To describe model M1 we thus need to specify the number of distributions
n = 6 (this can be done by �log2 m� bits because it does not make sense to
compose a model from more distributions than the number of variables).

Let us now turn our attention to efficient encoding of a k-dimensional
distribution of binary variables. To encode it by lexicographic encoding, we
need:

number of variables k �log2 m� bits,
list of variables k × �log2 m� bits,
maximal integer fmax �log2 d� bits,
frequencies (probabilities) 2k × �log2 fmax� bits.

Hence we need
for κ1: 3 + 2 × 3 + 7 + 4 × 7 = 44 bits,
for κ2: 3 + 2 × 3 + 7 + 4 × 7 = 44 bits,
for κ3: 3 + 2 × 3 + 7 + 4 × 7 = 44 bits,
for κ4: 3 + 4 × 3 + 7 + 16 × 6 = 118 bits,
for κ5: 3 + 3 × 3 + 7 + 8 × 6 = 67 bits,
for κ6: 3 + 5 × 3 + 7 + 32 × 5 = 185 bits,

which means that cl(M1) = 502.
Taking into account the fact that, among the 68 frequencies (probabilities)

needed to represent the respective six marginals, there appear twenty times “0”
and sixteen times “1”, it is not surprising that a more economical encoding
is achieved by Huffman’s version of the lexicographic encoding, which yields
clH(M1) = 423 for this model. In any case, whatever type of encoding we may
take into consideration, we cannot reach the coding requirements sufficient
to encode data clH(D100) = 404. Therefore, according to the information-
theoretic principle described at the beginning of this Section, model M1 is
unacceptable, and we have to simplify it by any of the possibilities described
in the next Section.

5.5 Model Simplification

By simplifying a model we understand the realization of such modifications
of models that, with the goal of eliminating a possible model overfitting,
decrease the number of bits necessary for the lossless encoding of the model.
This is also the reason why the best models are often achieved after heuristic
alternative applications of two processes: verification and simplification.

The simplification of models can be achieved in two ways, which can be
properly combined: simplification of the model structure, and/or roughening
of the probability estimates.

text B5.indd 89text B5.indd 89 23.10.2019 14:41:0323.10.2019 14:41:03

82 CHAPTER 5. AVOIDING MODEL OVERFITTING

5.5.0.0.1 Roughening of the probability estimates. This is per-
haps the easiest way to simplify the constructed model. It is realized just
by decreasing the constant base. Considering model M1 with base = 100
means that we take all the probability estimates with two digits of precision.
Considering base = 1, 000 means that we take all the probability estimates
with three digits of precision. However, rounding these estimates to one
decimal digit means to consider base = 10. Nevertheless, it is important to
realize that we can consider finer roughening by choosing any number. We
can set, e.g., base = 64.

Example 5.3 (continued) Denote by clH(M1:50), clH(M1:40) and
clH(M1:32) the complexity values of the Huffman lexicographic encoding
for the model M1 with the base equaling 50, 40 and 32, respectively.
Then, for the probability estimates obtained from the data file D100, we
get clH(M1:50) = 408, clH(M1:40) = 397, and clH(M1:32) = 284. From
the information-theoretic viewpoint principle, the last model is acceptable
(the difference between c(D100) = 404 and clH(M1:40) = 397 is too small
to recommend model M1:40, but, as said above, the decision is up to the
users, their intuition and their expert knowledge of the respective field of
application). Let us also note that a greater simplification achieved when
changing the base from 40 to 32 than when changing base from 50 to
40 is due to the fact that �log2 40� > �log2 32� and �log2 50� = �log2 40�.
Therefore, choosing the constant base from among the powers of 2 may be
recommendable.

5.5.0.0.2 Structure simplification. Another way to simplify the con-
sidered model is to simplify its structure. First of all, if there are two
distributions in a model such that the set of variables for which one distribu-
tion is defined contains the set of variables for which the second distribution
is also defined (i.e., Ki ⊂ Kj for some pair if indices), we should try to
eliminate the smaller distribution without influencing the distribution rep-
resented by the model. If this is not the case for the model in question,
then other modifications to change the modeled distribution must be con-
sidered. Obviously, in the sense of space requirements, multi-dimensional
distributions are more costly. One should therefore try to decrease their di-
mensionality. Different approaches to realize this task may be applied within
different models. The most widespread are the following two. Consider model
π = κ1 � . . . � κi � . . . � κn, and assume distribution κi(Ki) is the one whose
dimension should be decreased. Denote L = Ki ∩ (K1 ∪ K2 ∪ . . . ∪ Ki−1).

• Choose a variable X ∈ L with the lowest direct influence on variables
Ki \ L. Not having an intuition based on expert knowledge about the

text B5.indd 90text B5.indd 90 23.10.2019 14:41:0323.10.2019 14:41:03

5.5. MODEL SIMPLIFICATION 83

field of application, choose

X = argmin
Y ∈L

(
MIπ(Y ;Ki \ L | L \ {Y })

)
.

Instead of π, consider its simplification π̄ = κ1�. . .�κ
↓Ki\{X}
i �. . .�κn, in

which a direct influence of X on Ki \L is compensated by a conditional
influence through variables L \ {Y }.

• If |Ki \ L| > 1, consider the possibility of splitting this set into two
disjoint parts M1 ∪ M2, between which the direct influence can be
compensated by conditional independence through variables L. It can
be done if

MIπ(M1;M2 | L)

is rather low. Then, instead of model π, consider its simplification
π̄ = κ1 � . . . � κ

↓Ki\M2
i � κ

↓Ki\M1
i � . . . � κn.

Example 5.3 (continued) Let us, again, consider model

M1 : μ1 = κ1(X1, X2) � κ2(X3, X4) � κ3(X3, X5) � κ4(X1, X4, X5, X6)
�κ5(X5, X6, X8) � κ6(X2, X5, X6, X7, X8).

Its first simplification is received by a multiple application of the first sim-
plification rule, which suggests deleting variables if their direct influence
may be neglected. Based on the fact that MI(X6;X4|{X1, X5}) is negli-
gible, we can substitute κ4 by its marginal κ

↓{X1,X5,X6}
4 . Similarly, small

MI(X8; X6|X5) suggests to substitute κ5 by its marginal κ
↓{X5,X8}
5 , and small

MI(X7; {X5, X6}|{X2, X8}) suggests the substitution of κ6 by its marginal
κ

↓{X2,X7,X8}
6 . In this way, we get a new model

M2 : μ2 = κ1(X1, X2) � κ2(X3, X4) � κ3(X3, X5) � κ4(X1, X5, X6)
�κ5(X5, X8) � κ6(X2, X7, X8).

Let us compare it with another simple model

M3 : μ3 = λ1(X3, X4) � λ2(X3, X5) � λ3(X1, X5, X6) � λ4(X5, X6, X8)
�λ5(X6, X7, X8) � λ6(X1X2, X7).

Computing complexities of these models, we get cl(M2) = 306 and
cl(M3) = 356 bits, and clH(M2) = 267 and clH(M3) = 304 bits. These
values are obtained for models with base = 100. So, comparing these values
with clH(D100) = 404, we can see that both these models are acceptable from
our point of view.

text B5.indd 91text B5.indd 91 23.10.2019 14:41:0323.10.2019 14:41:03

84 CHAPTER 5. AVOIDING MODEL OVERFITTING

Table 5.3: Kullback-Leibler divergences

M1 M1:50 M1:40 M1:32 M2 M3

complexity 423 408 397 284 267 304
K-L divergence 0.2736 0.2795 0.2846 0.2881 0.2964 0.3036

Nevertheless, it is clear that we cannot evaluate a model just on the
basis of its complexity (information content), i.e., according to the number
of bits necessary for its encoding. We also need a criterion evaluating to
what extent each model carries the information contained in the considered
data. To this end, we use the Kullback-Leibler divergence between the
sample probability distribution defined by the data and the probability
distribution defined by the model. So, for each considered model we can
compute the Kullback-Leibler divergence between the eight-dimensional
sample distribution κ defined by the considered data file with 100 records,
and the distribution defined by the respective model. For example, for
model M1 it is Div(κ; μ1), where κ is the sample distribution, and μ1 is the
distribution defined by the model5. The values of these divergences for all
the considered models are shown in Table 5.3. The reader can see that the
simplifications leading to models M2 and M3 are realized at the expense of
the accuracy of the resulting models.

From Table 5.3 we can see that the simplification of a model by decreasing
the value of the constant base, i.e., by roughening the estimates of probabili-
ties, leads to the decrease in the complexity of the model and a simultaneous
increase in the Kullback-Leibler divergence value. The greater this type of
simplification, the greater the respective Kullback-Leibler divergence. On
the other hand, from the last two columns in Table 5.3, the reader can see
that a similar relationship valid for the model simplification by decreasing
the complexity of the model would be much more complex. This is based
on the fact that though both models M2 and M3 are the simplification
of M1, neither of them is a simplification of the other. This means that,
for the structure simplification the strength of the simplification cannot be
measured by just one parameter, i.e., the amounts of bits necessary for the
model encoding, but we also have to introduce a partial order in the set of
all potential simplifications, which is a topic for future research.

5Notice that we consider the divergence Div(κ; μ1) and not Div(μ1; κ). This is impor-
tant because of the asymmetry of the Kullback-Leibler divergence. One should realize
that, for real size models, the latter divergence is usually Div(μ1; κ) = +∞ because of
μ1 �� κ.

text B5.indd 92text B5.indd 92 23.10.2019 14:41:0423.10.2019 14:41:04

Chapter 6

Data mining example

The goal of this chapter is to show how the theoretical results presented
in the preceding chapters can be utilized during the process of supervised
model construction, and what type of knowledge can be gained during this
process. A supervised process is used for several reasons. First, no generally
accepted method for optimum model construction is known. Second, the
user usually has some prior knowledge about the area of application, and
this knowledge should be utilized during the process. Further, the user can
have some knowledge about data, and the model is constructed on the basis
of that knowledge. The user may know that the data is not well stratified
and that certain properties should be suppressed, and others emphasized.
The user quite often wishes to adapt the constructed model to the purpose
for which the model is constructed. Therefore, it is natural that we cannot
give general instructions how to proceed when constructing a model. We
can present here just a basic simple example. To this end, we consider a
slightly extended variant of Example 1.14 presented in Chapter 1.

Consider six random variables M = {B, D, N, R, T, W} with XB =
{1, 2, 3} and XD = XN = XR = XT = XW = {1, 2}. We are about to
construct a compositional model for this set of random variables from a
data file containing 1, 000 records. Taking into account the fact that the
cardinality of the considered state space is |XM| = 3 × 25 = 96, we can
hardly expect to get any reasonable (i.e., interpretable) knowledge from the
respective frequency table depicted in Table 6.1.

It is not a bad idea to start with computing the value of entropy for all
considered variables. Using the same notation as in Example 1.14, we get

H(B) = 1.58, H(D) = 0.98, H(N) = 0.96,
H(R) = 0.99, H(T) = 0.99, H(W) = 0.93.

From this set of numbers, we do not get any knowledge about the relationship
among the considered variables, but we get some information how to proceed

85

text B5.indd 93text B5.indd 93 23.10.2019 14:41:0423.10.2019 14:41:04

86 CHAPTER 6. DATA MINING EXAMPLE

Table 6.1: Frequencies of states from X{B,D,N,R,T,W }.

R = 0 R = 1
T = 0 T = 1 T = 0 T = 1

W = 0 W = 1 W = 0 W = 1 W = 0 W = 1 W = 0 W = 1
B = 1, D = 1, N = 1 0 8 4 15 2 9 23 3
B = 1, D = 1, N = 2 0 0 0 0 0 1 3 0
B = 1, D = 2, N = 1 0 0 0 0 1 3 2 0
B = 1, D = 2, N = 2 0 147 12 66 5 9 1 0
B = 2, D = 1, N = 1 0 2 0 10 10 34 70 0
B = 2, D = 1, N = 2 0 10 0 7 3 8 1 2
B = 2, D = 2, N = 1 0 0 0 0 1 6 13 0
B = 2, D = 2, N = 2 0 61 4 31 14 45 22 1
B = 3, D = 1, N = 1 0 0 0 4 20 40 78 4
B = 3, D = 1, N = 2 0 4 0 2 1 9 3 0
B = 3, D = 2, N = 1 0 0 1 0 3 5 13 0
B = 3, D = 2, N = 2 0 13 1 7 23 57 20 0

further. Since the entropy of all binary variables is close to 1, it means
that the minimum of entropies for any pair of variables is also close to one.
In other words, when considering the strength of dependence between two
variables, the value of mutual information MI and the value of information
measure of dependence ID do not significantly differ from each other, and
we compute only values of mutual information. All the same, we must keep
in mind that when the considered variables take on different numbers of
values, there may be substantial differences between the values of entropy of
individual variables. In such a case, considering the information measure of
dependence is preferable.

From the point of view of model construction, we are interested in pairs of
variables which are closely (strongly) connected, and in pairs of independent
variables. Therefore, when computing values of mutual information for
all pairs of variables, we sort the pairs according to the values of mutual
information. In the present example we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

MI(D;N) = 0.4356,
MI(B;R) = 0.2871,
MI(R;W) = 0.2578,
MI(N ;R) = 0.2070,
MI(T ;W) = 0.1813,

MI(N ;W) = 0.1546
MI(D;R) = 0.0958
MI(B;W) = 0.0814

text B5.indd 94text B5.indd 94 23.10.2019 14:41:0423.10.2019 14:41:04

87

MI(N ;T) = 0.0709
MI(D;W) = 0.0627
MI(B;N) = 0.0619
MI(D;T) = 0.0421
MI(B;D) = 0.0342{
MI(R;T) = 0.0019,
MI(B;T) = 0.0007.

Since the mutual information can be interpreted as a measure of dependence,
the pairs of variables appearing at the head of this sequence are closely
connected. On the other hand, if mutual information of a couple of variables
is close to zero, the variables can be considered independent. These pairs of
variables appear at the tail of the above-presented sequence. The first five
pairs are grouped together because they cover the entire M. Let us start
building the compositional models from the two-dimensional distributions
defined for the first five pairs of variables. To get their best ordering in
a model, the multi-information of the entire model should be taken into
account. The higher the multi-information value, the better the model
because it incorporates more information from data. The multi-information
of a model can easily be computed using Theorem 3.9 (after the perfectization,
if necessary). Nevertheless, let us show that, in this example, we can do
without these tedious computations, and instead just utilize the theoretical
results presented in the preceding chapters.

κ1 κ2 κ3 κ4 κ5

B

D

N

R

T

W

�

�

�

� •
�

•
•

�

•
(a) π1 = κ1 � κ2 � κ3 � κ4 � κ5

κ1κ1κ1 κ4 κ2 κ3 κ5

B

D

N

R

T

W

�

�

�

• •
�

�
•

�

•
(b) π2 = κ1 � κ4 � κ2 � κ3 � κ5

Figure 6.1: Persegrams of models π1 and π2.

Consider estimates of the first five two-dimensional distributions and de-
note them respectively: κ1(D, N), κ2(B, R), κ3(R, W), κ4(N, R), κ5(T, W).
If considering model π1 = κ1 � κ2 �κ3 �κ4 �κ5 (see persegram in Figure 6.1a),

text B5.indd 95text B5.indd 95 23.10.2019 14:41:0423.10.2019 14:41:04

88 CHAPTER 6. DATA MINING EXAMPLE

we can immediately see that π1 = κ1 � κ2 � κ3 � κ5. Distribution κ4 may
be deleted from the model because both of the respective markers in the
persegram are bullets. This model is decomposable (the reader may easily
check the RIP) and perfect (the data file does not contain missing values,
and therefore the estimates of marginals are consistent). Therefore (using
Theorem 3.9)

IC(π1) = IC(κ1) + IC(κ2) − IC(κ↓∅
2) + IC(κ3) − IC(κ↓R

3)
+IC(κ5) − IC(κ↓W

5) =
∑

i=1,2,3,5
IC(κi) = 1.1618,

because IC(κ1) = MI(D;N), IC(κ2) = MI(B;R), and so on, and because
the multi-information of probability distribution κ(K) for |K| < 2 equals
zero (see also the comment before Example 1.14). However, it is evident that
π2 = κ1 � κ4 � κ2 � κ3 � κ5 is also a perfect decomposable model, for which

IC(π2) =
5∑

i=1
IC(κi) = 1.3687.

In fact, this model is the best possible among those assembled from distribu-
tions κ1, κ2, κ3, κ4, κ5, if the amount of multi-information is taken as the only
criterion of optimality. This is because this model utilizes all the information
contained in the distributions from which it is assembled. More precisely, it
is one of the best equivalent models, because, as we know from Theorems 3.11
and 3.7, all the RIP orderings of κ1, κ2, κ3, κ4, κ5 yield the same distribution.
However, this model does not reflect the other information we obtained
from computing the mutual information for all pairs of variables: the two
smallest values of mutual information suggest that variables T and R, as
well as variables T and B, are independent. The reader can deduce from the
persegram corresponding to π2 (see persegram in Figure 6.1b) that one can
find simple trails connecting all couples of variables, i.e., also B � T [π2]
and R � T [π2]. Therefore, the independence relationships B⊥⊥T [π2] and
R⊥⊥T [π2] are not guaranteed by the model structure.

To incorporate this knowledge into the model, one can, e.g., consider the
model π3 = κ↓T

5 � κ2 � κ3 � κ4 � κ5 � κ1. However, as the reader can see from
the persegram in Figure 6.2a, π3 = κ↓T

5 � κ2 � κ3 � κ4 � κ1, and therefore

IC(π3) =
4∑

i=1
IC(κi) = 1.1874.

The decrease in the multi-information is due to the fact that π3 does not
incorporate the information from κ5.

It may thus seem that one can incorporate the knowledge about the two
independence relationships into the model only at the cost of decreasing the

text B5.indd 96text B5.indd 96 23.10.2019 14:41:0523.10.2019 14:41:05

89

κ2 κ3 κ4 κ5κ↓T
5 κ1

B

D

N

R

T

W

�

•
�

� •
�

•
�

•
•

�

(a) π3 = κ↓T
5 � κ2 � κ3 � κ4 � κ5 � κ1

κ↓R
6 κ↓T

6 κ6 κ2 κ4 κ1

B

D

N

R

T

W

�

•
�

• •
�

�

�
•
•
�

(b) π5 = κ↓R
6 � κ↓T

6 � κ6 � κ2 � κ4 � κ1

Figure 6.2: Persegrams of models π3 and π5.

multi-information value, i.e., at the cost of the loss of information. To get
out of this trap, let us start studying the way in which the variable T is
connected with all others. Let us compute (from the data) the conditional
mutual information of T and B given the remaining variables, and similarly,
the conditional mutual information of T and R given the remaining variables.
We get

MI(T ;B|D) = 0.002, MI(T ;R|D) = 0.001,
MI(T ;B|N) = 0.006, MI(T ;R|N) = 0.013,
MI(T ;B|W) = 0.024, MI(T ;R|W) = 0.084.

How can we explain the fact that variables T and R can be considered
independent (MI(R;T) = 0.0019) but not conditionally independent
(MI(T ; R|W) = 0.084)? A straightforward explanation is that T and R are
independent and jointly influence other variables. If we know the meanings
of these variables, we should choose the one that is, in our knowledge,
directly influenced by T and R (or T and B). Otherwise, we choose the
one indicated by the highest value of conditional mutual information:
MI(T ;R|W). It leads us to believe that two independent variables T
and R influence W , and the only way to incorporate this knowledge
into the model is to start considering a three-dimensional distribution:
let κ6(R, T, W) be the corresponding estimate obtained from the data.
Naturally, this three-dimensional distribution bears all the information
expressed by both κ3 and κ5, which can now be dropped from further
considerations. Naturally, κ6 contains more information than κ3 and κ5.
It describes the combined influence of T and R on W , which cannot not
be expressed by two two-dimensional distributions. To illustrate the fact
that a three-dimensional distribution may bear more information than a

text B5.indd 97text B5.indd 97 23.10.2019 14:41:0523.10.2019 14:41:05

90 CHAPTER 6. DATA MINING EXAMPLE

collection if its two-dimensional marginals, consider the following simple
example. Children have usually more fun if the weather is warm. Similarly,
they prefer sunny days to days with precipitation. However, in winter,
precipitation in very cold days usually means snowing, which is great fun
for children. And this type of knowledge cannot be expressed just by
describing two separate relationships: day temperature and children fun,
and precipitation and children fun.

Let us turn back to our example. After adding κ6 and deleting κ3
and κ5, the remaining distributions κ1, κ2, κ4, κ6 can easily be ordered to
meet the RIP: e.g., π4 = κ6 � κ2 � κ4 � κ1 is a perfect decomposable model
expressing all the knowledge we consider. Nevertheless, the above-discussed
independence of variables is not visible from the respective persegram, it
is only encoded in the distribution κ6. Therefore, we can prefer model
π5 = κ↓B

6 � κ↓T
6 � κ6 � κ2 � κ4 � κ1, from the persegram of which the considered

independence relationships are obvious (see Figure 6.2b).
What are the differences between the models π4 and π5? Model π4 is

decomposable, and therefore more advantageous when used for computa-
tions. On the other hand, model π5 explicitly manifests the independence
T⊥⊥{R, B}|W [π5]. When computing the multi-information of these models
we get

IC(π4) =
∑

i=6,2,4,1
IC(κi) = 0.5234 + 0.2871 + 0.2070 + 0.4356 = 1.4531,

and

IC(π5) =
∑

i=6,2,4,1
IC(κi) − IC(κ↓{R,T }

6) = IC(π5) − MI(T, R) = 1.4512.

The imperceptible decrease in the value of multi-information when trans-
forming π4 into π5 is due to small changes necessary for introducing the
independence of T and R. The reader can see that this decrease in the
multi-information value exactly corresponds to the amount of the mutual
information of variables T and R included in κ6.

Model π5 seems to meet all the requirements made for data-based mod-
els. Nevertheless, especially when considering supervised approaches, one
should not miss the realization of the following important subsequent steps
belonging to the process of model verification. Let us illustrate these steps
by verifying model π5. Consider the respective persegram in Figure 6.2b,
which enables us to list all (conditional) independence relationships holding
for the model (regarding the comment before Theorem 1.6 we present here

text B5.indd 98text B5.indd 98 23.10.2019 14:41:0523.10.2019 14:41:05

91

only the relationships for singletons):

B⊥⊥D|M for M containing either N or R,
B⊥⊥N |M for R ∈ M,
B⊥⊥T |M for R ∈ M, or W �∈ M,
B⊥⊥W |M for R ∈ M,
D⊥⊥R|M for N ∈ M,
D⊥⊥T |M for N ∈ M, or R ∈ M, or W �∈ M,
D⊥⊥W |M for M containing either N or R,
N⊥⊥T |M for R ∈ M, or W �∈ M,
N⊥⊥W |M for R ∈ M,
R⊥⊥T |M for W �∈ M.

From this list, the eighth relationship covering also the unconditional in-
dependence N⊥⊥T is in contradiction with MI(N ;T) = 0.0709. To set
this serious imperfectness right, we substitute κ4(N, R) by κ7(N, R, T), and
consider model π6 = κ↓B

6 � κ↓T
6 � κ6 � κ2 � κ7 � κ1. For this model we have

IC(π6) =
∑

i=6,2,7,1
IC(κi) − IC(κ↓{R,T }

6) − IC(κ↓{R,T }
7)

= 0.5234 + 0.2871 + 0.3236 + 0.4356 − 2 × 0.0019 = 1.5659.

Generally, to accept a model, the user should perfrom the model verifica-
tion process consisting of the verificationof the following items:

• the independence relationships deduced from the corresponding perseg-
ram do not contradict the intuition of the supervising user,

• the independence relationships deduced from the corresponding perseg-
ram are not in contradiction with the values of (conditional) mutual
information values computed from the data,

• the marginals from which the prefectized model is set up do not differ
substantially from the corresponding estimates based on the data.

To follow these instructions, let us perfectize model π6 using the procedure
described in Theorem 3.6:

ν1(R) = κ↓R
6 (R),

ν2(T) = κ↓T
6 (T),

ν3(R, T, W) = ν1(R) � ν2(T) � κ6(R, T, W),
ν4(B, R) = ν1(R) � κ2(B, R) = κ2(B, R),
ν5(N, R, T) = ν1(R) � ν2(T) � κ7(N, R, T),
ν6(D, N) = ν↓N

5 (N) � κ1(D, N).

text B5.indd 99text B5.indd 99 23.10.2019 14:41:0523.10.2019 14:41:05

92 CHAPTER 6. DATA MINING EXAMPLE

Table 6.2: Probability distributions ν1 – ν6.

ν1(R)
ν1(1) = .437 ν1(2) = .563

ν2(T)
ν2(1) = .566 ν2(2) = .434

ν3(R, T, W)
ν31, 1, 1) = .000 ν3(1, 1, 2) = .247 ν3(1, 2, 1) = .024 ν3(1, 2, 2) = .166
ν3(2, 1, 1) = .085 ν3(2, 1, 2) = .233 ν3(2, 2, 1) = .235 ν3(2, 2, 2) = .010

ν4(B, R)
ν4(1, 1) = .280 ν4(2, 1) = .125 ν4(3, 1) = .032
ν4(1, 2) = .057 ν4(2, 2) = .230 ν4(3, 2) = .276

ν5(N, R, T)
ν5(1, 1, 1) = .010 ν5(1, 1, 2) = .036 ν5(1, 2, 1) = .136 ν5(1, 2, 2) = .197
ν5(2, 1, 1) = .238 ν5(2, 1, 2) = .153 ν5(2, 2, 1) = .182 ν5(2, 2, 2) = .048

ν6(D, N)
ν6(1, 1) = .45 ν6(1, 2) = .05 ν6(2, 1) = .05 ν6(2, 2) = .45

We know that π6 = ν1 � ν2 � ν3 � ν4 � ν5 � ν6, all νi (for i = 1, . . . , 6) are
marginals of π6. The respective probability distributions generating this
model are depicted in Table 6.2, and the respective persegram is shown in Fig-
ure 6.3. From this persegram, the following list of conditional independence

ν1 ν2 ν3 ν4 ν5 ν6

B

D

N

R

T

W

�

•
�

•
•
•
�

�

�
•
•
�

Figure 6.3: Persegram of model π6 = ν1 � ν2 � ν3 � ν4 � ν5 � ν6.

text B5.indd 100text B5.indd 100 23.10.2019 14:41:0623.10.2019 14:41:06

93

relationships can be deduced:

B⊥⊥D|M for M containing either N or R,
B⊥⊥N |M for R ∈ M,
B⊥⊥T |M for M = ∅, or R ∈ M,
B⊥⊥W |M for R ∈ M,
D⊥⊥R|M for N ∈ M,
D⊥⊥T |M for N ∈ M,
D⊥⊥W |M for N ∈ M, or {R, T} ⊆ M,
N⊥⊥W |M for {R, T} ⊆ M,
R⊥⊥T |M for M = ∅, or M = {B},

neither of which is in contradiction with anything what has been said about
the modeled distribution up to now. Distributions ν1, ν2 and ν4 are the
original estimates from the data. The remaining distributions ν3, ν5 and ν6
are slightly different from the originally estimated distributions. This is due
to the modification realized in the process of perfectization. Nevertheless,
the deviations from the original data-based estimates are very small, as can
also be seen from the values of Kullback-Leibler divergence

Div(κ6 � ν3) = 0.00192,

Div(κ7 � ν5) = 0.00192,

Div(κ1 � ν6) = 0.00002.

(Notice that it is not a pure incidence that Div(κ6 � ν3) = MI(R, T); it can
be deduced from other properties of the information-theoretic characteristics.)
Hence we may say that π6 is a reasonable model of the distribution generated
from the data.

Before completing this example, let us mention another way of improving
the constructed model, which has not been employed in this example. Recall
that during the process of model construction/verification, we have twice
substituted two two-dimensional distributions by one three-dimensional one.
In practical situations such an increase of dimensionality of the considered
distributions from which the model is constructed must be repeated several
times. As a rule, even more than three-dimensional distributions are neces-
sary in real situations. So, it can easily happen that one needs to introduce
a distribution defined by too many probabilities. Namely, based on the size
of the data file used for the model construction, one can get acceptable
estimates of probabilities of limited dimensionality. If the dimension of the
distribution to be introduced exceeds the limits corresponding to the data
file, we recommend to compute the required distribution by the Iterative

text B5.indd 101text B5.indd 101 23.10.2019 14:41:0623.10.2019 14:41:06

94 CHAPTER 6. DATA MINING EXAMPLE

Proportional Fitting procedure described in Section 2.4. It should be com-
puted from all those that are to be substituted. For example, if we found
that model π5 does not reflect the relationship between variables N and W
well, we could consider an estimate κ8(N, W) from data, and compute dis-
tribution κ9(N, R, T, W) by the IPF procedure from the three distributions:
κ7(N, R, T), κ8(N, W), and κ6(R, T, W). In this case, we would set up the
final model from κ2(B, R), κ1(D, N) and κ9(N, R, T, W) (possibly including
again the independence R⊥⊥T by considering the respective one-dimensional
marginals).

text B5.indd 102text B5.indd 102 23.10.2019 14:41:0623.10.2019 14:41:06

Part II

SYSTEM MANUAL

95

text B5.indd 103text B5.indd 103 23.10.2019 14:41:0623.10.2019 14:41:06

text B5.indd 104text B5.indd 104 23.10.2019 14:41:0623.10.2019 14:41:06

Chapter 7

Starting with MUDIM

The second part of this text is devoted to the synoptic description of
MUDIM, which is a system for handling with probabilistic multi-dimensional
distributions in the form of compositional models. The MUDIM (MUlti-
DImensional Models) system is written as a package of R [32]. It is based on
R.oo package [1] that implements methods and functions for object-oriented
programming in R. It contains a set of functions to construct and support
discrete probability distribution. Two or more probability distributions can
be composed together - to create the so-called compositional model. The
package contains a set of functions to support work with compositional
models.

In the following text, we will speak about probability distributions and
compositional models. Probability distributions are defined over random
variables. Similarly, some objects in R are usually called variables. E.g.
having a probability distribution Pi over finite discrete variables A, B, it
can be also stored in R using mudim object od class Distribution(). The
object is stored in computer memory and it can be referenced by R variable
Pi that is nothing else that a pointer to that object - a pointer to the specific
place in computer memory.

7.1 Install R

R [32] is a free software environment for statistical computing and graphics.
It compiles and runs on a wide variety of UNIX platforms, Windows and Mac-
OS. To download and install R, please go to R project website https://www.r-
project.org/ and download the latest version based on your operating system.

To work with our package, we strongly recommend using RStudio [33],
which is a free and open-source integrated development environment for R,
a programming language for statistical computing and graphics. To install

97

text B5.indd 105text B5.indd 105 23.10.2019 14:41:0623.10.2019 14:41:06

98 CHAPTER 7. STARTING WITH MUDIM

RStudio, please go to the project website https://www.rstudio.com/ and
download the latest version of the product.

7.2 Install MUDIM

Once R and RStudio are installed, you can proceed and install mudim. To
do so, start RStudio and type the following command in the console.

install.packages("http://gogo.utia.cas.cz/mudim_0.1.0.tar.gz",
repos = NULL)

Once the package is installed, you can easily load it to make all its
functionality available. To load the package, type:

library(mudim)

text B5.indd 106text B5.indd 106 23.10.2019 14:41:0723.10.2019 14:41:07

Chapter 8

Probability distribution

mudim package works with discrete random variables with finitely many
values. By a state of a group of variables, we understand a combination
of values of the respective variables. Recall Example 1.2 about three coins
where the first two are randomly tossed and the third one is laid on a table
in the way that the number of ‘1’ is odd. Probability distribution fully
describing such an experiment can be defined as a table - see Table 1.1. A
possible representation of this distribution in mudim package is as follows.
It appears in the console when you type

data(coins)
dTable(coins)

X Y Z MUDIM.frequency
1: 0 0 1 0.25
2: 0 1 0 0.25
3: 1 0 0 0.25
4: 1 1 1 0.25

You can see that columns of the table, except for the last one, correspond
to random variables. Rows correspond to various states of random variables.
In this case, the three first columns of the table correspond to random
variables {X, Y, Z}. The last column is rather special. It denotes the
frequency/probability of each row - state of the variables. It is denoted
as MUDIM.frequency - it is a keyword and no random variable should be
called by this name. The states with zero probability may be omitted.

8.1 R object

When creating a probability distribution, it is good to start with an empty
distribution - i.e. a probability distribution defined for an empty set of vari-

99

text B5.indd 107text B5.indd 107 23.10.2019 14:41:0723.10.2019 14:41:07

100 CHAPTER 8. PROBABILITY DISTRIBUTION

ables. In R, even an empty distribution is an object of class Distribution.

d <- Distribution("test", info = "my first distribution")

By performing the above command, you have created an empty distri-
bution referenced by d in R. It has a name “test” and additional informa-
tion “my first distribution” for internal purposes. The parameter info in
Distribution() function is auxiliary.

Each object of class Distribution has several slots. In case of a distri-
bution referenced by d the slots look like this:

• name - "test"
• info - "my first distribution"
• data - NULL
• variables - NULL
• dim - 0

Of course, in case of distribution coins, the slots look like this

• name - "3coin"
• info - "3 coins X,Y,Z. X and Y are randomly tossed and the

third one is laid on the table in the way that the number
of 1 is odd"

• data - This slot contains a 4x4 matrix (the rows corresponding to
states, three columns corresponding to variables and the fourth one con-
taining the probabilities) - accessible using command dTable(coins)

• variables - "X" "Y" "Z" - accessible using command variables(coins)
• dim - 3 - accessible using command dim(coins)

To read more about the internal structure of the Distribution class object,
type ?Distribution in the console of your RStudio.

8.1.1 Probability table

Generally, probability tables and probability distributions are used as syn-
onyms. The probability table is represented by a mudim object of class
Distribution. To create a probability distribution over a set of random
variables, you should design its defining table first. This can be done ei-
ther manually or you can use some external data/measurements. To check,
whether a distribution is empty, you can use functions is.empty() or dim():

text B5.indd 108text B5.indd 108 23.10.2019 14:41:0723.10.2019 14:41:07

8.1. R OBJECT 101

is.empty(d)

[1] TRUE

number of dimensions of the probability distribution
i.e. number of random variables the distribution is defined
for
dim(d)

[1] 0

8.1.1.1 Create manually

Let us try to create manually a table that would describe 3-coin example
mentioned above. We have three random variables X, Y, Z. To describe
their possible states, use the following code:

X and Y are binary, all combinations are allowed
table <- expand.grid(X=c(0,1), Y=c(0,1))
Z is defined by X and Y
table[,"Z"] <- apply(table, 1, function(x) {

return((sum(x)+1) %% 2)})
print the table
table

X Y Z
1 0 0 1
2 1 0 0
3 0 1 0
4 1 1 1

Now, we have all possible outcomes of the 3 coins example as illustrated
by distribution coins. Because we want to create a uniform distribution
over the possible outcomes, we can either add a new column denoted by
MUDIM.frequency with respective probabilities or we can let the system do
it automatically. When you assign a probability table without a column
named MUDIM.frequency, mudim automatically assumes that each row of
the given table has the same probability and adds the frequency column with
weight 1 for each row. Because each row is unique, the resulting distribution
is uniform over the possible outcomes.

text B5.indd 109text B5.indd 109 23.10.2019 14:41:0723.10.2019 14:41:07

102 CHAPTER 8. PROBABILITY DISTRIBUTION

assign the table to an empty distribution referenced by d
dTable(d) <- table
show the table
dTable(d)

X Y Z MUDIM.frequency
1: 0 0 1 1
2: 1 0 0 1
3: 0 1 0 1
4: 1 1 1 1

Note that MUDIM.frequency column denotes frequencies, not probabili-
ties. To change that, call normalize(d).

We can add the frequency column to table by ourselves. To do that,
add a column called MUDIM.frequency, continue as above, and then e.g. nor-
malize it:

table[,"MUDIM.frequency"] <- c(1,3,4,2)
dTable(d) <- table
normalize(d)
dTable(d)

X Y Z MUDIM.frequency
1: 0 0 1 0.1
2: 1 0 0 0.3
3: 0 1 0 0.4
4: 1 1 1 0.2

8.1.1.2 Use data

Another possibility is to create a probability distribution from data. The
data can have their origin from various sources. The easiest way how to
load data to R environment is using a CSV (comma separated) file. For
illustration, we have prepared a data-set X defined over seven variables
D, N, R, T, W, U, B. Similarly, you can load a data set from an external CSV
file using functions read.csv or read.csv2 etc. When creating a respective
distribution over a subset of variables, one can use function dTable as
well. As mentioned above, when assigning a new table to distribution using
function dTable, if column MUDIM.frequency is missing, equal weights are
assigned to all rows. I.e., if rows are not unique, but one of them is repeated
several times, then the weights sum up appropriately. When calling dTable
function, unique rows are stored and MUDIM.frequency column denotes the
numbers of appearances in the source file.

text B5.indd 110text B5.indd 110 23.10.2019 14:41:0723.10.2019 14:41:07

8.1. R OBJECT 103

load the dataset - it is referenced by variable X
data(X)

show the first few rows of the dataset
head(X)

D N R T W U B
1 1 2 1 2 2 1 1
2 1 2 1 1 2 1 1
3 2 2 1 1 2 1 1
4 2 2 1 2 2 2 2
5 2 2 2 1 2 2 2
6 2 2 1 1 2 1 1

create an empty distribution with appropriate comments
dNRT <- Distribution("XNRT", info =
"Distribution from data-set X defined over variables N,R,T")

and load the data into it
dTable(dNRT) <- X[,c("N", "R", "T")]
dTable(dNRT)

N R T MUDIM.frequency
1: 2 1 2 143
2: 2 1 1 250
3: 2 2 1 175
4: 1 2 2 207
5: 1 2 1 131
6: 1 1 2 34
7: 2 2 2 50
8: 1 1 1 10

in case of need, normalize the frequency column to
probabilities
normalize(dNRT)
dTable(dNRT)

N R T MUDIM.frequency
1: 2 1 2 0.143
2: 2 1 1 0.250
3: 2 2 1 0.175
4: 1 2 2 0.207

text B5.indd 111text B5.indd 111 23.10.2019 14:41:0723.10.2019 14:41:07

104 CHAPTER 8. PROBABILITY DISTRIBUTION

5: 1 2 1 0.131
6: 1 1 2 0.034
7: 2 2 2 0.050
8: 1 1 1 0.010

8.1.2 Names of random variables

Each distribution is defined over a set of random variables. Each variable is
supposed to have a unique name. If two random variables have the same
name, we consider them to be the same variable. The names can be set
in two ways. Using column names of the probability table used in dTable
function, or using function variables.

read names of the variables the respective distribution
is defined for
variables(dNRT)

[1] "N" "R" "T"

change the names
variables(dNRT) <- c("A","B","C")
respective table is changed as well
head(dTable(dNRT))

A B C MUDIM.frequency
1: 2 1 2 0.143
2: 2 1 1 0.250
3: 2 2 1 0.175
4: 1 2 2 0.207
5: 1 2 1 0.131
6: 1 1 2 0.034

table <- dTable(dNRT)
changing the names of the columns - except the last one
colnames(table)[-ncol(table)] <- c("x","y","z")
set the table to the distribution
dTable(dNRT) <- table

read the names again
variables(dNRT)

[1] "x" "y" "z"

text B5.indd 112text B5.indd 112 23.10.2019 14:41:0723.10.2019 14:41:07

8.2. MANIPULATIONS WITH PROBABILITY DISTRIBUTIONS 105

8.1.3 Additional information

As mentioned above, each probability distribution in mudim is an object in
computer memory. Such an object can have many R variables pointing at it.
To simplify distribution identification, each object of class Distribution
can have a name and info parameter. To handle these parameters, use
functions name and info

load demo Distribution Pi
data(Pi)

read and write name parameter of a distribution object
name(Pi)

[1] "pi"

name(Pi) <- "distribution 123"
name(Pi)

[1] "distribution 123"

read and write info parameter of a distribution object
info(Pi) <-

"probability distribution over two binary variables A,B"
info(Pi)

[1] "probability distribution over two binary variables A,B"

8.2 Manipulations with probability distributions

8.2.1 Marginal distribution

A probability distribution is defined over a certain set of variables. Sometimes,
we are interested in a probability distribution defined over just a subset of
them. As defined in Section 1.1, the probability distribution over the subset
is known as the marginal probability distribution.

To compute a marginal distribution, specify the distribution and a subset
of variables of interest.

PiMarginal <- marginalize(Pi, variables = variables(Pi)[1])
variables(PiMarginal)

text B5.indd 113text B5.indd 113 23.10.2019 14:41:0823.10.2019 14:41:08

106 CHAPTER 8. PROBABILITY DISTRIBUTION

[1] "A"

Sometimes, you want to remove a set of variables from the distribution.
To do that, you can easily use parameter keep

PiMarginal <- marginalize(Pi,
variables = variables(Pi)[1],
keep = FALSE)

variables(PiMarginal)

[1] "B"

If you want to change the probability distribution without making its
copy, you can use parameter new

variables(Pi)

[1] "A" "B"

marginalize(Pi, variables = variables(Pi)[1], new = FALSE)

Probability distribution
* Name:distribution 123
* Info:probability distribution over two binary variables A,B
* Variables:A
* Non-empty items:2
NULL

variables(Pi)

[1] "A"

8.2.2 Product

Let us have two probability distribution π(K) and κ(L). Then we can
define their product as λ(K ∪ L) such that λ(x) = π(x↓K) ∗ κ(x↓L) for each
x ∈ XK∪L. Please, note that in case of K ∩ L �= ∅ the resulting object does
not have to be a probability distribution.

Lambda <- multiply(Pi, Kappa)
similarly, you can write
Lambda <- Pi * Kappa

text B5.indd 114text B5.indd 114 23.10.2019 14:41:0823.10.2019 14:41:08

8.2. MANIPULATIONS WITH PROBABILITY DISTRIBUTIONS 107

8.2.3 Composition

The key operator of the package is the operator of composition � defined in
Definition 2.1. Consider two probability distributions κ(K) and λ(L), for
which all the compositions appearing in the following statements are defined.
The most important properties of the operator are:

• (Domain) κ � λ is a probability distribution for variables K ∪ L.
• (Conditional independence): K \ L⊥⊥L \ K|K ∩ L [κ � λ].
• (Composition preserves first marginal): (κ � λ)↓K = κ.

To compose two distributions, use function compose

PiKappa <- compose(Pi, Kappa)
the result is a probability distribution
class(PiKappa)

[1] "Distribution" "Object"

defined over the union of variables of the input
distributions
variables(PiKappa)

[1] "A" "B" "C"

and the operator preserves the first marginal
KL.divergence(Pi, marginalize(PiKappa,

variables = variables(Pi)))

[1] 0

and does not generally preserves the second marginal
KL.divergence(Kappa, marginalize(PiKappa,

variables = variables(Kappa)))

[1] 0

Note that function compose is generic. It means that you can have more
functions with the same name and the compiler choose the function based on
the context – more specifically, based on the class of the function parameters.
In this case, if the first parameter is of class ‘Distribution’ then a function
corresponding to the operator of composition is called and the result is of
class ‘Distribution’. On the other hand, if the first parameter is of class
‘Model’, then another function is called and the result is different.

text B5.indd 115text B5.indd 115 23.10.2019 14:41:0823.10.2019 14:41:08

108 CHAPTER 8. PROBABILITY DISTRIBUTION

8.2.4 Anticipating operator

The so-called anticipating composition of two probability distribution is a
generalized version of the operator of composition, for which the following
property holds: If κ(K), λ(L) and μ(M) are such that μ � (κ ©�Mλ) is
defined, then

(μ � κ) � λ = μ � (κ ©�Mλ).

For details see Section 2.2.

d <- anticipate(Pi, Kappa, M = c("A","B","C", "D"))
dTable(d)

B C A MUDIM.frequency
1: 0 0 0 0.15
2: 0 0 1 0.35
3: 0 1 0 0.15
4: 0 1 1 0.35

8.3 Information-theoretic notions

Package ‘mudim’ allows us to compute the most important information-
theoretic characteristics of probability distributions described in Section
1.4. Recall that these characteristics are important for the construction
of compositional models. Fro their meaning and application to model
construction see Section 1.4 and, mainly, Chapter 6.

8.3.1 Shannon entropy

Shannon entropy can be used to quantify the amount of uncertainty in an
entire probability distribution

entropy(Pi, base = 2)

[1] 0.8812909

In other words, the Shannon entropy of a distribution is the expected
amount of information in an event drawn from that distribution. It gives
a lower bound on the number of bits (if the logarithm is base 2, otherwise
the units are different) needed on average to encode symbols drawn from a
given distribution.

Recall that the entropy of nearly deterministic distributions (where the
outcome is almost certain) is close to zero; distributions that are close to
uniform have high entropy.

text B5.indd 116text B5.indd 116 23.10.2019 14:41:0823.10.2019 14:41:08

8.3. INFORMATION-THEORETIC NOTIONS 109

8.3.2 Kullback-Leibler divergence

Having two probability distributions π and κ over the same set of random
variables, we can measurethe difference between these two distributions using
the Kullback-Leibler (KL) divergence:

data(Pi); data(Kappa);
variables(Kappa) <- variables(Pi)
KL.divergence(Kappa, Pi)

[1] 1.821928

KL.divergence(Pi, Kappa)

Warning in KL.divergence.Distribution(Pi, Kappa):
absolute continuity of
input distributions not satisfied

[1] Inf

in case of different sets of random variables,
the KL divergence cannot be computed
data(Kappa)
KL.divergence(Pi, Kappa)

Error in KL.divergence.Distribution(Pi, Kappa): Unable
to compute KL divergence for distributions over different
sets variables.

Recall that the KL divergence defined in Section 1.4 has many useful
properties:

• It is non-negative.
• It is 0 if and only if π and κ are the same distribution in the case of

discrete variables (or equal almost everywhere in the case of continuous
variables).

Recall also that the compared distributions must be defined for the
same set of variables, and if distribution ν does not dominate π, then
Div(π � ν) = +∞. Therefore, if the user tries to compute a divergence
between two distributions that are defined for different variables, the function
will stop and return an error message. Analogously, if the distribution in the
second argument does not dominate the distribution in the first argument,
the function return +∞ and show a warning message.

text B5.indd 117text B5.indd 117 23.10.2019 14:41:0823.10.2019 14:41:08

110 CHAPTER 8. PROBABILITY DISTRIBUTION

8.3.3 Mutual information

Mutual information (MI) (also known as the information gain) of two disjoint
sets of random variables is a measure of the mutual dependence between
the two groups of variables. More specifically, it quantifies the “amount of
information” obtained about one set of variables through observing the other
set of variables; for more properties see Section1.4.

The higher the value, the stronger dependence exists between the consid-
ered two disjoint sets of variables.

data(coins)
MI(coins, K = "X", L = "Y")

[1] 0

MI(coins, K = c("X","Y"), L = "Z")

[1] 1

In case that the user tries to compute the mutual information between
non-disjoint groups of variables, then function will stop and return an error
message.

8.3.4 Conditional mutual information

Analogously to mutual information, one can compute also conditional mutual
information. More precisely, for three disjoint groups of variables, and a
corresponding probability distribution one can compute conditional mutual
information (see Section 1.4). As an example we can take Example 1.2 with
three coins. In this case, of course, variables X and Y are conditionaly
dependent by Z. Note that if one puts M = c() then the function coincides
with MI().

data(coins)
conditionalMI(coins, K = "X", L = "Y", M = "Z")

[1] 2

8.3.5 Multi-information

Multi-information, sometimes called also dependence tightness, total corre-
lation, or informational content (IC) is a relative entropy of a distribution
concerning the product of its one-dimensional marginals. Simply, it expresses

text B5.indd 118text B5.indd 118 23.10.2019 14:41:0823.10.2019 14:41:08

8.3. INFORMATION-THEORETIC NOTIONS 111

the loss when substituting a distribution by a product of its one-dimensional
marginals.

IC(Pi)

[1] 0.005802149

8.3.6 Conditional multiinformation

Analogously to multi-information, one can compute also conditional multi-
information. More precisely, for three disjoint groups of variables, and a
corresponding probability distribution one can compute conditional mutual
information (see Section 1.4).

conditionalIC(Pi, cond = "A", base = 2)

[1] -0.8812909

text B5.indd 119text B5.indd 119 23.10.2019 14:41:0923.10.2019 14:41:09

112 CHAPTER 8. PROBABILITY DISTRIBUTION

text B5.indd 120text B5.indd 120 23.10.2019 14:41:0923.10.2019 14:41:09

Chapter 9

Compositional model

The main purpose of mudim is to enable the users comfortable handling
multidimensional compositional models, i.e., multidimensional probability
distributions assembled from sequences of low-dimensional distributions
using the operator of composition. The result of the composition (if defined)
is a new distribution. We can iteratively repeat the process of composition to
obtain a multidimensional distribution. That is why such a multidimensional
distribution can be called a compositional model.

For the purpose of model processing, we will understand by a composi-
tional model the sequence of low-dimensional distribution. Assume a system
of n probability distributions π1, π2, . . . , πn defined over sets of variables
K1, K2, . . . , Kn, respectively. Thus, in agreement with Chapter 3 the formula
π1 � π2 � . . . � πn, is understood as

π1 � π2 � π3 � . . . � πn = (((π1 � π2) � π3) . . . � πn)

To construct such a model it is sufficient to determine a sequence of
low-dimensional distributions π1, π2, . . . , πn (sometimes called a generating
sequence). Note that there are situations in which the result of the compo-
sition is not defined. To be able to store a compositional model of dozens
or hundreds of variables, a compositional model is kept using its generating
sequence in the computer memory. This, on the other side, brings some trou-
bles when making elementary operations like marginalization, conditioning,
etc.

9.1 R Object

To start creating your compositional model, it is good to start with creating
an empty model - i.e. a compositional model whose generating sequence is
empty. Doing this, you create an object of class Model.

113

text B5.indd 121text B5.indd 121 23.10.2019 14:41:0923.10.2019 14:41:09

114 CHAPTER 9. COMPOSITIONAL MODEL

m <- Model("test", info = "my first compositional model")
class(m)

[1] "Model" "Object"

By doing this, you have created an empty compositional model referenced
by variable m in R. It has a name “test” and additional information “my
first compositional model” for internal purposes. The parameter info in
Model() function is auxiliary.

Each object of class Model has several slots. In case of a compositional
model referenced by m the slots look like this:

• name - "test"
• info - "my first compositional model"
• distributions - list()
• variables - list()
• length - 0
• dim - 0
• perfect - FALSE

To read more about the internal structure of the Model class object, type
?Model in the console of your RStudio.

9.2 Insert distribution

To insert a probability distribution into the generating sequence of a compo-
sitional model, we can use functions insert or compose.

creat a compositional model whose generating
sequence has two distributions
insert(model = m, distribution = Pi)
insert(model = m, distribution = Kappa, position = 2)

Similarly, you can access an arbitrary distribution in a compositional
model by calling function getDistribution() that has three parameters

• model respective compositional model
• k index of the required distribution in the generating sequence
• ref: logical. If TRUE then a reference is returned and by changing

respective probability distribution, you change the generating sequence
as well. Otherwise, a copy of the distribution is returned. The default
value is TRUE.

text B5.indd 122text B5.indd 122 23.10.2019 14:41:0923.10.2019 14:41:09

9.3. MODEL PROPERTIES 115

getDistribution(m, k = 2)

Probability distribution
* Name:Kappa
* Info:uniform discrete probability distribution over two variables
* Variables:B, C
* Non-empty items:2
NULL

9.3 Model properties

Every compositional model has several properties. Some of them are related
to its structure.

9.3.1 Basic overview

To see the basic statistics about the model, it is enough to type the name of
the model, or call function as.character().

m

Compositional model
* Name:test
* Info:my first compositional model
* Variables:B, C, A
* Length:2
NULL

9.3.2 Name and information

For an easier handling of a compositional mode, you case set/change its
name and aditional information about it. The usage is the same as in case
of an object of Distribution class.

name(m)

[1] "test"

info(m) <- "different information"

text B5.indd 123text B5.indd 123 23.10.2019 14:41:0923.10.2019 14:41:09

116 CHAPTER 9. COMPOSITIONAL MODEL

9.3.3 Length

By the length of a model, we understand the number of elements of its
generating sequence. I.e. in case of a model with a generating sequence
π1, π2 we say that its length is 2. To find the length of the model, use
function length().

length(m)

[1] 2

9.3.4 Dimension

By the dimension of a model π1, . . . , πn, we understand the dimension of
the space of the composed probability distribution π1 � . . . � πn. In other
words, the dimension corresponds to the number of unique random variables
probability distributions π1, . . . , πn are defined for.

dim(m)

[1] 3

9.3.5 Structure

Let π1(K1), π2(K2), . . . , πn(Kn) be the generating sequence of a composi-
tional model. Then the sequence of sets of variables K1, K2, . . . , Kn is its
structure.

getStructure(m)

[[1]]
[1] "A" "B"
##
[[2]]
[1] "B" "C"

9.3.6 Random variables

To get the set of all random variables the given compositional model is
defined for, call variables() function.

text B5.indd 124text B5.indd 124 23.10.2019 14:41:0923.10.2019 14:41:09

9.4. MANIPULATIONS WITH MODEL 117

variables(m)

[1] "B" "C" "A"

To get the model structure - which is a sequence of sets of variables the

9.3.7 Decomposability

As discussed in Section 3.1, the perfectness of a compositional model is a
strong property, however, its validity is not easy to check. Note that the fact
whether the model is perfect or not depends on the “numbers” defining the
probability distributions, not on the structure of the compositional model.
By a structure, we denote the sequence of sets of variables the distributions
in the generating sequence are defined for. The ordering of the sets coincides
with the ordering of the generating sequence.

If the structure meets the so-called Running Intersection Property (RIP)
then a compositional model is called decomposable. To check this, one can
use function is.decomposable().

is.decomposable(m)

[1] TRUE

9.4 Manipulations with model

Even though the compositional model is internally represented using its
generating sequence, it is a probability distribution. Therefore one can
manipulate it as a probability distribution

9.4.1 Marginalization

The task studied in this section is the following: for a compositional model
π1 � π2 � . . . � πn, and a subset of variables M ⊂ K1 ∪ K2 ∪ . . . ∪ Kn find a
compositional model κ1 � κ2 � . . . � κm such that

(π1 � π2 � . . . � πn)↓M = κ1 � κ2 � . . . � κm

To do that with mudim package, use function marginalize with the
respective compositional model as its first parameter. The function has five
parameters:

• x: compositional model

text B5.indd 125text B5.indd 125 23.10.2019 14:41:0923.10.2019 14:41:09

118 CHAPTER 9. COMPOSITIONAL MODEL

• variables: vector of variables to be either removed or kept in the
compositional model

• keep: logical variable. If TRUE the resulting compositional model is
defined over variables. If FALSE, variables are removed from the
compositional model. The default value is TRUE.

• perfect: logical variable. If TRUE, the marginalization algorithm
expects a perfect compositional model on the input and some
special techniques speeding up the marginalization process can be used.
The default value is FALSE.

• new: logical variable. If TRUE, a compositional model referenced by x is
left unchanged and a new compositional model is created and returned
by the function. If FALSE, the compositional model referenced by x is
changed. The function marginalize does not return anything in that
case. The default value is TRUE.

Model class
data(m)
variables(m)

[1] "D" "N" "R" "T" "W" "U" "B"

create a new marginalized compositional model
newModel <- marginalize(m,

variables = c("W","U"),
keep = FALSE,
new = TRUE)

variables(newModel)

[1] "D" "N" "R" "T" "B"

Note that the original compositional model loaded from the package
using the command data(m) remains unchanged. To see that, let us print
the vector of random variables the compositional model is defined for.

variables(m)

[1] "D" "N" "R" "T" "W" "U" "B"

To change the original model referenced by m, set the parameter new to
FALSE.

text B5.indd 126text B5.indd 126 23.10.2019 14:41:1023.10.2019 14:41:10

9.4. MANIPULATIONS WITH MODEL 119

marginalize(m, variables = c("W","U"), keep = FALSE, new = FALSE)
variables(m)

[1] "D" "N" "R" "T" "B"

9.4.2 Perfectization

Not all compositional models are equally efficient when used for the repre-
sentation of multidimensional distributions. Among them, so-called perfect
models hold an important position. Recall from Section 3.1 that the impor-
tance of these models arises from the fact that having a compositional model,
each probability distribution from its generating sequence is a marginal
of the compositional model. In other words, one can say that a perfect
compositional model perfectly reflects all the local information stored in
probability distributions of its generating sequence.

If a compositional model is not perfect, one can easily convert it into
a perfect one by replacing each member of its generating sequence by a
respective marginal as shown in Theorem 3.6. To do it in mudim, one can
use the function perfect

mPerfect <- perfect(m, new = TRUE)

9.4.3 Conditioning

We can calculate a conditional compositional model in the case of decom-
posable models only. This is given by the fact that the conditioning variable
has to appear among variables of the first distribution in the model (its
generating sequence). In the case of a decomposable model, it is guaranteed
that the generating sequence can be always reordered in a way that a given
variable appears among arguments of the first distribution in the sequence.

mDecomposable <- toDecomposable(m)
conditioning(mDecomposable, variable = "T", value = 2)

Note that the original model has been changed. If you want to keep the
original model, you have to use function copy first.

m2 <- copy(mDecomposable)

text B5.indd 127text B5.indd 127 23.10.2019 14:41:1023.10.2019 14:41:10

120 CHAPTER 9. COMPOSITIONAL MODEL

9.4.4 Decomposibility

The importance of decomposable models is hidden in the fact that most of
the computational procedures can be done efficiently using so-called local
computations. By this term, one usually denotes computational process
realized as a sequence of steps, in which each step performs computations
with only one of the distributions, from which the multidimensional model
is composed.

To convert a compositional model into its decomposable version type:

mDecomposable <- toDecomposable(m)
is.decomposable(mDecomposable)

[1] TRUE

Note that in case of some special operations (like conditioning), it is
necessary to reorder a decomposable model (its generating sequence) in a
way that a specific variable appears among variables of the first distribution
in the generating sequence. To do that, use function reorderRIP:

structure of the compositional model
getStructure(mDecomposable)

[[1]]
[1] "T" "R" "N"
##
[[2]]
[1] "B" "R"
##
[[3]]
[1] "N" "D"

reorderRIP(mDecomposable, root = "D")
after reordering
getStructure(mDecomposable)

[[1]]
[1] "N" "D"
##
[[2]]
[1] "T" "R" "N"
##
[[3]]
[1] "B" "R"

text B5.indd 128text B5.indd 128 23.10.2019 14:41:1023.10.2019 14:41:10

9.4. MANIPULATIONS WITH MODEL 121

9.4.5 Convert to distribution

A compositional model is kept in a form of a generating sequence,
e.g. π1, . . . , πn. If you want to apply all the operators of composition and
create a multidimensional probability distribution π1 � . . . � πn, call function
toDistribution().

d <- toDistribution(m)
d

Probability distribution
* Name:composition
* Info:
* Variables:N, T, R, B, D
* Non-empty items:48
NULL

text B5.indd 129text B5.indd 129 23.10.2019 14:41:1023.10.2019 14:41:10

122 CHAPTER 9. COMPOSITIONAL MODEL

text B5.indd 130text B5.indd 130 23.10.2019 14:41:1023.10.2019 14:41:10

Chapter 10

Others

For other functionality of the package, it is useful to know the following:

10.1 Save and load

To save and load probability distribution as defined in MUDIM package, use R
internal functions save() and load() with parameter file to specify the
location of the stored object.

data(Pi)

d <- copy(Pi)

save distribution Pi
save(d, file = "d.RData")
remove the object from R
rm(d)
check if the object Pi exists
exists("d")

[1] FALSE

load the saved object back to R
load(file = "d.Rdata")

10.2 Referencing

mudim package is based on R.oo package that implements methods and
classes for object-oriented programming in R. When calling constructor

123

text B5.indd 131text B5.indd 131 23.10.2019 14:41:1023.10.2019 14:41:10

124 CHAPTER 10. OTHERS

function d <- Distribution("name"), an object of class "Distribution"
is created and a pointer to that object is stored in variable d. I.e. if one
wants to make a copy of distribution d using command d.copy <- d, just
the pointer is copied. I.e. d.copy still points to the same location in memory
as d. Therefore modifying d.copy, say by changing variables names, d will
also get updated. To avoid this, one has to explicitly copy: d.copy <-
copy(d).

load demo distribution Pi
data(Pi)
show names of the random variables in Pi
variables(Pi)

[1] "A" "B"

create a new R variable Pi.copy
Pi.copy <- Pi
change variable names in Pi.copy
variables(Pi.copy) <- c("C","D")
variables in Pi are changed as well. Pi and Pi.copy are
referencing the same object
variables(Pi)

[1] "C" "D"

to avoid that, copy an entire object first
Pi.copy <- copy(Pi)
variables(Pi.copy) <- c("E","F")
variables(Pi)

[1] "C" "D"

text B5.indd 132text B5.indd 132 23.10.2019 14:41:1023.10.2019 14:41:10

Bibliography

[1] H. Bengtsson. The R.oo package - object-oriented programming with
references using standard R code. In K. Hornik, F. Leisch, and A. Zeileis,
editors, Proceedings of the 3rd International Workshop on Distributed
Statistical Computing (DSC 2003), Vienna, Austria, March 2003.

[2] P. Berka. Dobývání znalostí z databází. Academia, 2003.

[3] V. Bína and R. Jiroušek. Marginalization in multidimensional composi-
tional models. Kybernetika, 42(4):405–422, 2006.

[4] V. Bína and R. Jiroušek. On computations with causal compositional
models. Kybernetika, 51(3):525–539, 2015.

[5] I. Csiszár. I-divergence geometry of probability distributions and mini-
mization problems. The Annals of Probability, pages 146–158, 1975.

[6] W. E. Deming and F. F. Stephan. On a least squares adjustment of a
sampled frequency table when the expected marginal totals are known.
The Annals of Mathematical Statistics, 11(4):427–444, 1940.

[7] P. Grunwald. A tutorial introduction to the minimum description length
principle. arXiv preprint math/0406077, 2004.

[8] D. A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[9] R. Jiroušek. Composition of probability measures on finite spaces. In
Proceedings of the Thirteenth conference on Uncertainty in artificial
intelligence, pages 274–281. Morgan Kaufmann Publishers Inc., 1997.

[10] R. Jiroušek. Marginalization in composed probabilistic models. In
Proceedings of the Sixteenth conference on Uncertainty in artificial
intelligence, pages 301–308. Morgan Kaufmann Publishers Inc., 2000.

[11] R. Jiroušek. Decomposition of multidimensional distributions repre-
sented by perfect sequences. Annals of Mathematics and Artificial
Intelligence, 35(1-4):215–226, 2002.

125

text B5.indd 133text B5.indd 133 23.10.2019 14:41:1123.10.2019 14:41:11

126 BIBLIOGRAPHY

[12] R. Jiroušek. Detection of independence relations from persegrams.
Proceedings of the 9th Information Processing and Management of
Uncertainty in Knowledge-based Systems, pages 1261–1267, 2002.

[13] R. Jiroušek. On computational procedures for probabilistic composi-
tional models. In Proceedings of the 5th Czech-Japan Seminar on Data
Analysis and Decision Making under Uncertainty, pages 3–10, 2002.

[14] R. Jiroušek. Persegrams of compositional models revisited: conditional
independence. In Proceedings of the 12th International Conference on
Information Processing and Management of Uncertainty in Knowledge-
based Systems, Malaga, pages 915–922, 2008.

[15] R. Jiroušek. Foundations of compositional model theory. International
Journal of General Systems, 40(6):623–678, 2011.

[16] R. Jiroušek. On causal compositional models: simple examples. In
International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems, pages 517–526. Springer,
2014.

[17] R. Jiroušek. Brief introduction to causal compositional models. In
Causal Inference in Econometrics, pages 199–211. Springer, 2016.

[18] R. Jiroušek. On conditioning in multidimensional probabilistic models.
In Robustness in Econometrics, pages 201–216. Springer, 2017.

[19] R. Jiroušek and V. Kratochvíl. Foundations of compositional models:
structural properties. International Journal of General Systems, 44(1):2–
25, 2015.

[20] R. Jiroušek and I. Krejčová. Minimum description length principle
for compositional model learning. In International Symposium on
Integrated Uncertainty in Knowledge Modelling and Decision Making,
pages 254–266. Springer, 2015.

[21] R. Jiroušek and I. Krejčová. Avoiding overfitting of models: an applica-
tion to research data on the internet videos. In Proceedings of the 35th
International Conference Mathematical Methods in Economics (MME
2017), pages 289–294, 2017.

[22] H. G. Kellerer. Verteilungsfunktionen mit gegebenen marginalverteilun-
gen. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,
3(3):247–270, 1964.

[23] A. N. Kolmogorov. Tri podchoda k kvantitativnomu opredeleniju infor-
macii. Problemy peredachi informacii, (1):4–7, 1965.

text B5.indd 134text B5.indd 134 23.10.2019 14:41:1123.10.2019 14:41:11

BIBLIOGRAPHY 127

[24] S. Kullback. An information-theoretic derivation of certain limit re-
lations for a stationary markov chain. J. SIAM Control, 4:454–459,
1966.

[25] S. Kullback and R. A. Leibler. On information and sufficiency. Annals
of Mathematical Statistics, 22:76–86, 1951.

[26] W. Lam and F. Bacchus. Learning bayesian belief networks: An ap-
proach based on the mdl principle. Computational intelligence, 10(3):269–
293, 1994.

[27] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with prob-
abilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society. Series B (Methodological), pages
157–224, 1988.

[28] F. M. Malvestuto. Equivalence of compositional expressions and inde-
pendence relations in compositional models. Kybernetika, 50(3):322–362,
2014.

[29] F. M. Malvestuto. Marginalization in models generated by compositional
expressions. Kybernetika, 51(4):541–570, 2015.

[30] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge
university press, 2009.

[31] A. Perez. Personal communication. 1970–1980.

[32] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2018.

[33] RStudio Team. RStudio: Integrated Development Environment for R.
RStudio, Inc., Boston, MA, 2019.

[34] T. P. Ryan. Modern regression methods, volume 655. John Wiley &
Sons, 2008.

[35] M. Studený. Probabilistic conditional independence structures. Springer
Science & Business Media, 2006.

[36] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs. SIAM Journal on computing, 13(3):566–579,
1984.

text B5.indd 135text B5.indd 135 23.10.2019 14:41:1123.10.2019 14:41:11

128 BIBLIOGRAPHY

[37] R. E. Tarjan and M. Yannakakis. Addendum: Simple linear-time
algorithms to test chordality of graphs, test acyclicity of hypergraphs,
and selectively reduce acyclic hypergraphs. SIAM Journal on Computing,
14(1):254, 1985.

[38] R. Von Mises. Probability, statistics, and truth. Courier Corporation,
1981 [Originaly published in German by Springer, 1928].

[39] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540, 1987.

text B5.indd 136text B5.indd 136 23.10.2019 14:41:1123.10.2019 14:41:11

Appendix: List of functions

text B5.indd 137text B5.indd 137 23.10.2019 14:41:1123.10.2019 14:41:11

text B5.indd 138text B5.indd 138 23.10.2019 14:41:1123.10.2019 14:41:11

Package ‘mudim’

October 22, 2019

Type Package

Title Compositional models

Version 0.1.0

Author Radim Jiroušek, Václav Kratochvíl

Maintainer Václav Kratochvíl <velorex@utia.cas.cz>

Description MUDIM is a system for handling with probabilistic multi-
dimensional distributions in the form of compositional models.

License GPL-3

Encoding UTF-8

LazyData true

Depends R.oo, data.table, igraph, stats, utils, gRbase

Imports R.oo, data.table, igraph, stats, utils, gRbase

RoxygenNote 6.1.1

Suggests knitr,
rmarkdown

VignetteBuilder knitr

R topics documented:

*.Distribution . 2
/.Distribution . 3
addIntervence.Model . 4
anticipate . 4
as.character.Distribution . 5
coins . 6
compose . 6
conditionalIC . 8
conditionalMI . 8
conditioning . 9
copy . 10
delete . 11
dim.Distribution . 11
Distribution . 12
dTable . 13
entropy . 15

1

text B5.indd 139text B5.indd 139 23.10.2019 14:41:1123.10.2019 14:41:11

2 *.Distribution

generalMarginalization . 15
getDistribution . 16
getStructure . 17
IC . 18
info . 18
is.decomposable . 19
is.Distribution . 20
is.empty . 21
is.reduced . 21
Kappa . 22
KL.divergence . 22
length.Model . 23
loadFromCsv . 24
m . 25
marginalize . 25
MI . 27
Model . 28
name . 29
normalize . 30
perfect . 30
Pi . 31
rebuild . 31
rebuildFormalRatio . 32
rebuildFrequency . 33
reduce . 33
reorderRIP . 34
replaceDistribution . 34
saveToCsv . 35
splitDistribution . 36
structureEquiv . 36
toDecomposable . 37
toDistribution . 37
toTable . 38
variables . 38
X . 40

Index 41

*.Distribution Product distribution

Description

A product distribution is a probability distribution constructed as the distribution of the product of
random variables having two other known distributions. Given two statistically independent random
variables X and Y, the distribution of the random variable Z that is formed as the product Z = XY
is a product distribution.

Usage

S3 method for class 'Distribution'
Pi * K

text B5.indd 140text B5.indd 140 23.10.2019 14:41:1223.10.2019 14:41:12

/.Distribution 3

Arguments

Pi distribution

K distribution

Value

product distribution

Examples

data(Pi)
data(Kappa)
res <- Pi * Kappa
dTable(res)

/.Distribution Quotient distribution

Description

A quotient distribution is a Distribution class object constructed using a division function instead
of product as in function multiply. Of course, the result is not a probability distribution.

Usage

S3 method for class 'Distribution'
Pi / K

Arguments

Pi distribution

K distribution

Value

Distribution class object

Examples

data(Pi)
data(Kappa)
res <- Pi / Kappa
dTable(res)

text B5.indd 141text B5.indd 141 23.10.2019 14:41:1223.10.2019 14:41:12

4 anticipate

addIntervence.Model Add intervence

Description

Insert a degenerated one-dimensional probability distribution π over variable V such that π(V =
val) == 1 on the first position of respective generating sequence of the model.

Usage

S3 method for class 'Model'
addIntervence(model, variable, value)

Arguments

model compositional model

variable variables name (V)

value value of the variable (V == val)

Value

it is a method. It changes the input model

Examples

data(m)
addIntervence(m, variable = "U", value = 1)

anticipate Aniticipating Operator

Description

The associativity of the operator of composition would be desirable not only to meet the require-
ments of mathematical beauty, but also to make the design of computational algorithms easier. Its
lack is, in a way, compensated by the existence of a generalized operator of composition, which is
called an anticipating operator.

Usage

anticipate(kappa, lambda, M)

Arguments

kappa Distribution κ

lambda Distribution λ

M vector of variables, which is essential for anticipating operator �M

text B5.indd 142text B5.indd 142 23.10.2019 14:41:1223.10.2019 14:41:12

as.character.Distribution 5

Details

Consider an arbitrary set of variables M and two distributions κ(K), λ(L). Their anticipating
composition is given by the formula

κ �M λ = (λ↓(M\K)∩L · κ) � λ.

The operator �M is called an anticipating operator of composition. Notice, it is a generalization of
the operator of composition in the sense that

κ �∅ λ = κ � λ.

Value

Distribution κ �M λ

See Also

multiply, compose, Distribution

Examples

Pi <- Distribution("Pi");
K <- Distribution("K");
#load Data to the Distributions..

K1 <- c("A", "B");

newDist <- anticipate(Pi,K,K1);
getData(newDist);

as.character.Distribution

Print distribution

Description

Show the basic information about the distribution like name etc.

Usage

S3 method for class 'Distribution'
as.character(x, ...)

S3 method for class 'Model'
as.character(model)

Arguments

x Distribution

... further arguments passed to or from other methods

text B5.indd 143text B5.indd 143 23.10.2019 14:41:1223.10.2019 14:41:12

6 compose

Value

character

Examples

d <- Distribution("name")
print(d)

coins Distribution coins

Description

Demo distribution with three variables ${X, Y, Z}$ representing three fair coins, i.e. all variables
are binary with values ${0,1}$, and consider the following random experiment: two coins are
randomly tossed and the third one is laid on a table in the way that the number of ’\,1\!’ is odd.
This experiment is fully described by probability distribution, values of which are in the following
table

X Y Z MUDIM.frequency
0 0 1 0.25
0 1 0 0.25
1 0 0 0.25
1 1 1 0.25

Usage

data(Kappa)

Format

An object of class Distribution;

Examples

data(coins)
getVariables(coins)
dim(coins)
dTable(coins)

compose Operator of composition

Description

For two arbitrary distributions π(K) and κ(L), for which πK∩L is absolutely continuous with
respect to κK∩L, their composition is, for each x ∈ X(K ∪ L), given by the following formula:

(π � κ)(x) =
π(x↓K)κ(x↓L)
κ↓K∩L(x↓K∩L)

.

text B5.indd 144text B5.indd 144 23.10.2019 14:41:1223.10.2019 14:41:12

compose 7

In a case where the absolute continuity is not valid, the composition remains undefined.

Insert a probability distribution to an arbitrary position of a compositional model. Default - insert
to the last position

Usage

compose(Pi, K)

S3 method for class 'Distribution'
compose(Pi, K)

S3 method for class 'Model'
compose(model, distribution, position = -1)
S3 method for class 'Model'
insert(model, distribution, position = -1)

Arguments

Pi left Distribution

K right Distribution

model Compositional model

distribution Probability distribution

position if position == -1, the distribution is put at the end of the generating sequence

Value

Distribution (π �κ)(K ∪L), which arose by composition of the input distributions π(K) and κ(L).

Compositional model

Methods (by class)

• Distribution: Compose two probability distributions

• Model: Add a distribution to a compositional model

See Also

Distribution, Model, multiply, *, anticipate, insert, delete, replace

Examples

-- Distribution class --
define two distributions
Pi <- Distribution("pi");
K <- Distribution("kappa");
load data to the distributions
data <- matrix(c(0,0,1,1), byrow = T, ncol = 2)
colnames(data) <- c("A", "B")
dTable(Pi) <- (data)
data <- matrix(c(0,0,0,1), byrow = T, ncol = 2)
colnames(data) <- c("B", "C")
dTable(K) <- (data)
compose the distributions
PiK <- compose(Pi, K)

text B5.indd 145text B5.indd 145 23.10.2019 14:41:1223.10.2019 14:41:12

8 conditionalMI

show the result
getData(PiK)

conditionalIC Conditional multiinformation

Description

Analogously to multi-information, one can compute also conditional multi-information.

Usage

conditionalIC(x, cond, base = 2)

Arguments

x Distribution
cond conditional variables
base base of the logarithm

Value

numerical

Examples

data(Pi)
conditionalIC(Pi, cond = "B")

conditionalMI Conditional mutual information

Description

Analogously to mutual information, one can compute also conditional mutual information. More
precisely, for three disjoint groups of variables, and a corresponding probability distribution one can
compute conditional mutual information. The higher the value of conditional mutual information
the stronger conditional dependence between the respective group of variables. If the value is zero,
then the respective groups of variables are conditionally independent.

Usage

conditionalMI(x, cond, base = 2)

Arguments

x Distribution
K set of variables
L set of variables (disjoint with K)
M set of variables (disjoint with K, L)
base base of the logarithm

text B5.indd 146text B5.indd 146 23.10.2019 14:41:1223.10.2019 14:41:12

conditioning 9

Value

numerical

Examples

data(Pi)
conditionalMI(coins, K="X", L="Y", M = "Z")

conditioning Decomposable model conditioning

Description

Conditioning is easy only if the compositional model is decomposable. Then, it is enough to reorder
it in a way that the conditional variable appears among arguments of the first probability distribution
in the generating sequence and create a degenerated probability distribution over the variable with
value value

Usage

conditioning(model, variable, value)

Arguments

model Compositional model

variable Name of discrete random variable

value Value of discrete random variable

Value

change original model in its input

Examples

data(m)
conditioning(m, variable = "T", value = 1)
mDecomposable <- toDecomposable(m)

dTable(toDistribution(marginalize(mDecomposable, variables = c("W"), keep = TRUE, new = TRUE))
conditioning(mDecomposable, variable = "T", value = 1)
marginalize(mDecomposable, variables = "W", keep = TRUE, new = FALSE)
dTable(toDistribution(mDecomposable))

text B5.indd 147text B5.indd 147 23.10.2019 14:41:1223.10.2019 14:41:12

10 copy

copy Copy an entire object

Description

In ‘mudim‘ parkage, all objects (distributions, models) refered by *reference*. That is, if a variable
is assigned to an other one, no copy is made at all. Both new variables refer to the same object.

Usage

copy(x)

S3 method for class 'Model'
copy(x)

Arguments

x Distribution, Compositional model

Details

‘mudim‘ provides functions and that operate on objects *by reference* and minimize full object
copies as much as possible. Still, it might be necessary in some situations to work on an object’s
copy which can be done using ‘d.copy <- copy(d)‘. Assume command ‘d.copy <- d‘. Due to R’s
copy-on-modify policy, ‘d.copy‘ still points to the same location in memory as ‘d‘. Therefore
modifying ‘d.copy‘, say by changing variables names, ‘d‘ will also get updated. To avoid this, one
has to *explicitly* copy: ‘d.copy <- copy(d)‘.

Value

Returns a copy of the object

Methods (by class)

• Model: Copy compositonal model

Examples

data(Pi)
variables(Pi)
Pi.copy <- Pi
variables(Pi.copy) <- c("C","D")
variables(Pi)
Pi.copy <- copy(Pi)
variables(Pi.copy) <- c("E","F")
variables(Pi)

text B5.indd 148text B5.indd 148 23.10.2019 14:41:1323.10.2019 14:41:13

delete 11

delete Delete distribution(s) from a model

Description

Delete distributions from a given compositional model’s generating sequence

Usage

delete(model, toDelete = c())

Arguments

model Compositional Model

list vector of integers - Distribution positions to delete

See Also

insert, replace, Model, Distribution

Examples

data(m)
delete(m, toDelete = c(3,2))
m

dim.Distribution Dimension

Description

Dimension of the ditribution

Usage

S3 method for class 'Distribution'
dim(x)

S3 method for class 'Model'
dim(model)

Arguments

x Distribution

Details

The function dim is an internal generic primitive functions. dim has a method for distributions,
which returns the dimension of the space over which the respective distribution is defined. Basically,
it is the number of random variables - the length of vector variables(this).

text B5.indd 149text B5.indd 149 23.10.2019 14:41:1323.10.2019 14:41:13

12 Distribution

Value

It is NULL or an integer.

Methods (by class)

• Distribution: Dimension of a probability distribution

• Model: Dimension of the compositional model

Examples

data(Pi)
variables(Pi)
dim(Pi)

Distribution Probability distribution

Description

Creates an empty discrete probability distribution, i.e. a probability distribution defined over an
empty set of variables. Dimension of the empty distribution is 0. The constructor is based on
Object function from R.oo package.

Usage

Distribution(name, info = "")

Arguments

name Name of the new Distribution (for your information about the distribution only).
One word is fine enough.

info Information about the new Distribution (for your information about the distribu-
tion only)

Details

Distribution class is an object with 5 private variables: name, info, variables, dim, data

Value

Reference to an empty distribution

Slots

name Name of the distribution

info Information about Distribution

variables Vector of discrete variables used in the distribution (like: "A" "B" "C", default:NULL)

dim Dimension of the distribution, ie. number of variables n

data Data.table of n + 1 columns where n is the number of random variables from variables.
The last column represents a probability of a respective row - see the following table

text B5.indd 150text B5.indd 150 23.10.2019 14:41:1323.10.2019 14:41:13

dTable 13

A B C D MUDIM.frequency
0 0 0 1 0.25
0 1 0 1 0.05
1 0 0 1 0.15
1 1 0 1 0.35
1 0 1 1 0.10

Each row represents a unique combination of random discrete variables - its probability is
stored in the last column. Missing combinations are expected to have zero probability.

See Also

Model

Examples

d <- Distribution("new",info="demo distribution");
d; #as.character...
dim(d); #dimension of empty distribution is 0

dTable Data table of Distribution

Description

Retrieve or set the data table describing the discrete probability distribution

Usage

dTable(x, ...)

S3 method for class 'Distribution'
dTable(x)

S3 replacement method for class 'Distribution'
dTable(x) <- value

S3 method for class 'Distribution'
getData(x, ...)

S3 method for class 'Distribution'
setData(x, value)

Arguments

x distribution

value data.table, matrix, data.frame

text B5.indd 151text B5.indd 151 23.10.2019 14:41:1323.10.2019 14:41:13

14 dTable

Details

A discrete distribution describes the probability of occurrence of each value of a discrete random
variable. A discrete random variable is a random variable that has countable values, such as a
list of non-negative integers. With a discrete probability distribution, each possible value of the
discrete random variable can be associated with a non-zero probability. Thus, a discrete probability
distribution is often presented in tabular/matrix form.

In our case, we represent the discrete probability distribution as a matrix (data.table) such that
columns represent random variables and rows represent a unique combination of values of respec-
tive random variables. The last column is special - it contains a probability or a frequency of re-
spective combination of random variables in the row. This column is denoted as MUDIM.frequency.
Columns are named by respective random variables.

When creating a new distribution, the data table does not have to contain a column named MUDIM.frequenc
It is created automatically.

Using functions dTable and dTable<- you can read and set the distribution data matrix.

Value

data.table

Methods (by class)

• Distribution: Retrieve probability table

• Distribution: Set probability table

• Distribution: Retrieve probability table

• Distribution: Set probability table

See Also

Distribution

Examples

data(Pi)
dTable(Pi)

v <- matrix(c(1:10, 1, 1:10, 1),ncol = 2, byrow = FALSE); #columns of variables
colnames(v) <- c("A","B")

print(v);
[,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] 3 3
[4,] 4 4
[5,] 5 5
[6,] 6 6
[7,] 7 7
[8,] 8 8
[9,] 9 9
[10,] 10 10
[10,] 1 1

d <- Distribution("test")

text B5.indd 152text B5.indd 152 23.10.2019 14:41:1323.10.2019 14:41:13

entropy 15

dTable(d) <- v
dTable(d);

entropy Entropy

Description

Computes Shannon entropy of the probability distribution. The entropy quantifies the expected
value of the information contained in a probability distribution.

Usage

entropy(x, base = 2)

Arguments

x probability distribution

base base of the logarithm (default = 2)

Value

numeric

Examples

data(Pi)
Entropy(Pi)

generalMarginalization

General marginalization

Description

More or less an internal function that implements general marginalization algorithm of a composi-
tional model.

Usage

generalMarginalization(this, varToRemove)

Arguments

this compositional model

varToRemove variable to remove from the model

Value

marginalized model

text B5.indd 153text B5.indd 153 23.10.2019 14:41:1323.10.2019 14:41:13

16 getDistribution

Examples

load compositional model
data(m)
generalMarginalization

getDistribution Get specific Distribution from a model

Description

Compositional models is represented by its generating sequence which is a sequence of probability
distributions. This function returns a distribution that is in the specified position in the sequence.

Usage

getDistribution(model, k = 1, ref = TRUE)

Arguments

model Compositional Model

k position of the Distribution.

ref reference. if TRUE, then a reference is returned. If FALSE, a copy of the distri-
bution is returned

Value

return reference to the Distribution or its copy

See Also

compose, insert, delete, replace

Examples

data(m)
d <- getDistribution(m, k = 2);
d
getData(d)

text B5.indd 154text B5.indd 154 23.10.2019 14:41:1323.10.2019 14:41:13

getStructure 17

getStructure Model structure

Description

Each compositional model is represented by its generating sequence - a sequence of probability
distributions. Each such a probability distribution is defined over a set of random variables. The
sequence of sets of these variables the probability distributions are defined for is call a compositional
model structure.

Usage

getStructure(model, index = 0)

S3 method for class 'Model'
getVariables(model, index = 0)

Arguments

model compositional model

index integer. If not 0, then it returns a vector of variables of respective distribution. It
is equivalent to command (getStructure(model))[[index]].

Details

When speaking about a compositional model π1(K1) � π2(K2) � . . . � πn(Kn), then the sequence
K1,K2, . . .Kn is the structure of the compositional model. The structure can be used to determine
some properties of the model - sometimes denoted as structural properties - like *decomposablity*,
conditional independence relations, etc.

Value

list of vectors of variables

Methods (by class)

• Model: get Structure of the model

Examples

load a compositional model
data(m)
getStructure(m)
getStructure, index = 2)

text B5.indd 155text B5.indd 155 23.10.2019 14:41:1323.10.2019 14:41:13

18 info

IC Multiinformation

Description

Multiinformation, sometimes called also dependence tightness or informational content is a Kullback-
Leibler divergence of a distribution with respect to the product of its one-dimensional marginals.

Usage

IC(x, base = 2)

Arguments

x probability distribution π

base base of the logarithm

Details

I(π(K)) =
∑

x∈X

π(x)
log(π(x))∏
i∈K π(xi)

It is nonnegative, finite, and equals 0 if and only if all variables are mutually independent for the
distribution π

Value

numeric

Examples

data(Pi)
multiInformation(Pi)

info Info

Description

Retrieve or set the additional detailed information about the distribution for your internal name

text B5.indd 156text B5.indd 156 23.10.2019 14:41:1423.10.2019 14:41:14

is.decomposable 19

Usage

info(x)
info(x) <- value

S3 method for class 'Distribution'
info(x, ...)

S3 replacement method for class 'Distribution'
info(x) <- value

S3 method for class 'Model'
info(x, ...)

S3 replacement method for class 'Model'
info(x) <- value

S3 method for class 'Model'
setInfo(x, value)

Arguments

x distribution, model

Details

Using functions info and info<- you can read and set the additional information about the object
(distribution, compositional model) which can be used for your internal needs.

Value

character... information about distribution or model

See Also

Distribution, name

Examples

data(Pi)
info(Pi)
info(Pi) <- "some additional information about the distribution"
Pi

is.decomposable Decomposability

Description

Check if a compositional model is decomposable

text B5.indd 157text B5.indd 157 23.10.2019 14:41:1423.10.2019 14:41:14

20 is.Distribution

Usage

is.decomposable(model)

Arguments

model Compositinal model

Details

Model is decomposable if the structure satisfy Running Intersection Property (RIP). Decomposibil-
ity is a structural property.

Value

logical

Examples

data(m)
is.decomposable(m)

is.Distribution Class

Description

Class

Usage

is.Distribution(this)

Arguments

this Object

Value

Logical value, TRUE if the given object is class Distribution and FALSE otherwise.

Examples

data(Pi)
is.Distribution(Pi)
a <- "A"
is.Distribution(a)

text B5.indd 158text B5.indd 158 23.10.2019 14:41:1423.10.2019 14:41:14

is.empty 21

is.empty Is the distribution empty?

Description

Helper that checks if distribution is "empty", i.e. if is defined over empty set of variables

Usage

is.empty(x, ...)

Arguments

x distribution to be checked

... further arguments passed to or from other methods

Value

logical value

Examples

d <- Distribution("test");
is.empty(d);

is.reduced Check whether the compositional model structure is reduced

Description

A structure is reduced if it corresponds very well to the respective formal ratio. I.e. its structure is
the shortest from all structures representing this system of conditional independence assertions.

Usage

is.reduced(...)

Arguments

model Compositional Model

Details

It creates respective formal ratio and checks whether is has the same number of sets in its numerator
as is the length of the model.

See Also

Model, rebuildFormalRatio

text B5.indd 159text B5.indd 159 23.10.2019 14:41:1423.10.2019 14:41:14

22 KL.divergence

Examples

data(m)
is.reduced(m);

Kappa Distribution Kappa

Description

Testing discrete distribution over two variables B,C.

B C MUDIM.frequency
0 0 0.5
0 1 0.5

Usage

data(Kappa)

Format

An object of class Distribution;

Examples

data(Kappa)
getVariables(Kappa)
dim(Kappa)
dTable(Kappa)

KL.divergence Kullback-Leibler divergence

Description

The Kullback–Leibler divergence is defined only if for all i, Q(i) = 0 implies P (i) = 0 (absolute
continuity).

Usage

KL.divergence(p, q, base = 2)

Arguments

p probability distribution P

q probability distribution Q

base baseof the logarithm

text B5.indd 160text B5.indd 160 23.10.2019 14:41:1423.10.2019 14:41:14

length.Model 23

Value

numerical

Examples

data(Pi)
data <- getData(Pi)
data[1,3] <- 0.2
data[2,3] <- 0.1
Pi2 <- Distribution("Pi2")
setData(Pi2, data)
KL.divergence(Pi, Pi2)

length.Model Length of a compositional model

Description

Compositional model is represented by its generating sequence in a computer memory. The length
of the generating sequence - i.e. the number of probability distributions in the generating sequence
is the length of the compositional model

Usage

S3 method for class 'Model'
length(model)

Arguments

model Compositional model

Value

length of its generating sequence

Methods (by class)

• Model: Length of compositional model generating sequence

Examples

data(m)
length(m)

text B5.indd 161text B5.indd 161 23.10.2019 14:41:1423.10.2019 14:41:14

24 loadFromCsv

loadFromCsv Load Data Matrix from Csv File

Description

Load data matrix from file in CSV format. As a separator has to be used semicolon ;. Frequency
column can be neither contain in file or can be missing. First line has to contain variable names.
Frequency column has to by sign by this name: MUDIM.frequency, if is contain

Usage

loadFromCsv(...)

Arguments

this Distribution

filename filename(path to file: absolute or relative from R main directory)

See Also

saveToCsv, Distribution

Examples

##---- Load MUDIM first

p <- Distribution("NAME");

filename <- "data.csv";
loadFromCsv(p,filename);
####format of input file type A:
A;B
20;0
6;4
7;2
0;1
2;1
9;4
2;2
6;2
2;1
3;2
1;1
0;1
####format of input file type B:
A;B;C;MUDIM.frequency
20;0;1;10
0;0;1;470
2;0;1;720
1;0;1;990
5;0;1;100
3;0;1;480
4;0;1;190

text B5.indd 162text B5.indd 162 23.10.2019 14:41:1423.10.2019 14:41:14

m 25

6;0;1;50
7;0;1;20
20;0;6;10
0;0;6;470
2;0;6;720
1;0;6;990
5;0;6;100
3;0;6;480
4;0;6;190

m Compositional model

Description

A compositional model with a generating sequence having seven probability distributions, over 7
random variables.

Usage

m

Format

A compositional model:
...

Source

publication in ...

marginalize Compute marginal Distribution or Model

Description

Having a probability distribution π(K), and a subset of variables L ⊆ K, π↓L denotes a marginal
distribution of π defined for each x ∈ XL by the formula

π↓L(x) =
∑

y∈XK ;y↓L=x

π(y).

Note that we do not exclude situations when L = ∅, for which we get π↓∅ = 1.

In case of a compositional model, the marginalization is a complicated process.

text B5.indd 163text B5.indd 163 23.10.2019 14:41:1423.10.2019 14:41:14

26 marginalize

Usage

marginalize(x, variables = NULL, keep = TRUE, new = TRUE, ...)

S3 method for class 'Distribution'
marginalize(x, variables = NULL, keep = TRUE,
new = TRUE, ...)

S3 method for class 'Model'
marginalize(x, variables = NULL, keep = TRUE,
perfect = FALSE, new = TRUE, ...)

Arguments

x Distribution, Compositional model

variables vector of variables

keep logical, if TRUE, respective variables are kept, if FALSE the variables are
marginalized out

new logical, if TRUE a new distribution/compositional model is created. Otherwise
the current one is changed.

perfect logical, if TRUE the algorithm expects a perfect sequence in model and its behav-
ior is different

Details

To obtain the marginal distribution over a subset of random variables, one only needs to drop the
irrelevant variables (the variables that one wants to marginalize out).

In case of having a compositional model, the situation is more complex and there are many ap-
proaches how to speed up the process.

Variables in variables will be marginalized out if the keep parameter will be FALSE. In the op-
posite case, variables in variables will stay in Distribution. If the new parameter is TRUE then a
new Distribution is created and the original one stays unchanged. In the other case, the original
distribution referenced in parameter x is changed and marginalized.

Value

If input is:

• Distribution return marginalized Distribution

• Model return marginalized Model

Methods (by class)

• Distribution: Marginalize probability distribution

• Model: Marginalize Compositional model

See Also

Distribution, Model

text B5.indd 164text B5.indd 164 23.10.2019 14:41:1523.10.2019 14:41:15

MI 27

Examples

Distribution class
data(Pi)
variables(Pi);
PiMarginal <- marginalize(Pi, variables = c("A"), keep = TRUE, new = TRUE);
dTable(PiMarginal);
dTable(Pi)
marginalize(Pi, variables = "A", new = FALSE)
dTable(Pi)

Model class
data(m)
m
variables(m)
m2 <- marginalize(m, variables = variables(m)[1:3], keep = FALSE)

MI Mutual information

Description

Mutual information (MI) (also known as the information gain) of two disjoint sets of random vari-
ables is a measure of the mutual dependence between the two groups of variables. More specifically,
it quantifies the "amount of information" obtained about one set of variables through observing the
other set of variables.

Usage

MI(x, K, L, base = 2)

Arguments

x probability distribution π

K set of variables

L set of variables (disjoint with K)

base base of the logarithm

Details

The higher the value, the stronger dependence exists between two disjoint sts of variables.

Value

numeric

Examples

data(Pi)
MI(Pi, K = "A", L = "B")

text B5.indd 165text B5.indd 165 23.10.2019 14:41:1523.10.2019 14:41:15

28 Model

Model Create empty Compositional Model

Description

Create an empty compositional model - i.e. an empty sequence of probability distribution. Dimen-
sion of an empty compositional model is 0. Based on Object(), R.oo package.

Usage

Model(name, info = "")

Arguments

name Name of the new Model(only for Information about Model). One word is good.

info Information about the new Model(only for Information about Model)

Details

Based on Object().

Model has 6 private variables:

Value

return empty Model with name and info

Slots

name: string - name of Model(essential input parametr)

info: string - information about Model (input parametr, default:"")

distribution: list - list of Distributions in Model, default: list()

variables: list - list of variables of each Distribution in .distribution

length: integer - number of distributions in list .distribution

dim: integer -number of unique variables in list .variables

See Also

Object, extend

Examples

m <- Model("compositional model")
data(Pi)
data(K)
compose(m, Pi)
compose(m, K)

text B5.indd 166text B5.indd 166 23.10.2019 14:41:1523.10.2019 14:41:15

name 29

name Name

Description

Retrieve or set the object internal name

Usage

name(x)

S3 method for class 'Distribution'
name(x)

S3 replacement method for class 'Distribution'
name(x) <- value

S3 method for class 'Model'
name(x)

S3 replacement method for class 'Distribution'
name(x) <- value

S3 method for class 'Model'
setName(model, newName)

Arguments

x distribution, compositional model

Details

Using functions name and name<- you can read and set the name of a distribution or a compositional
model which can be used for your internal needs.

Value

character name of distribution or model

See Also

Distribution, info

Examples

data(Pi)
name(Pi)
name(Pi) <- "new name"
Pi

text B5.indd 167text B5.indd 167 23.10.2019 14:41:1523.10.2019 14:41:15

30 perfect

normalize Normalize probability distribution

Description

Normalize probability distribution

Usage

normalize(x)

Arguments

x Distribution

Value

its is a method. The respective distribution is changed

Examples

data(Pi)
normalize(Pi)
dTable(Pi)

perfect Perfectize compositional model

Description

A compositional model with ... is called perfect. To convert a given compositional model to its
perfect equivalent, call this function

Usage

perfect(model, new = TRUE)

Arguments

model compositional model

new logical. If ‘TRUE‘ a new compositional model is created and perfectized. The
original model remains untouched.

Value

perfect compositional model

Examples

data(m)
perfect(m)

text B5.indd 168text B5.indd 168 23.10.2019 14:41:1523.10.2019 14:41:15

rebuild 31

Pi Distribution Pi

Description

Testing discrete distribution over two variables A,B.

A B MUDIM.frequency
0 0 0.1
0 1 0.2
1 0 0.3
1 1 0.4

Usage

data(Pi)

Format

An object of class Distribution;

Examples

data(Pi)
data(Kappa)
Pi.Kappa <- compose(Pi,Kappa)
getData(Pi.Kappa)

rebuild Recalculate dimension and variables in Distribution or Model

Description

Recalculate (rebuild) .dim, .variables, ...in Model or Distribution. This procedure is used, when
you change content of Object. This function is included in most of other functions in Distribution
and Model class.

Usage

rebuild(...)

S3 method for class 'Distribution'
rebuild(x)

S3 method for class 'Model'
rebuild(model)

Arguments

x Distribution, Model

text B5.indd 169text B5.indd 169 23.10.2019 14:41:1523.10.2019 14:41:15

32 rebuildFormalRatio

Methods (by class)

• Distribution: recalculate additional information of the object

• Model: recalculate additional information of the object

See Also

rebuildFrequency, Distribution, Model

Examples

data(Pi)
colnames(Pi$.data)[1] <- "X"
rebuild(Pi)
variables(Pi)

rebuildFormalRatio Recalculate cache matrix in Distribution

Description

Rebuild the formal ratio of the model. At present, this function is used when the formal ratio is
needed, i.e. in structureEquiv.

Usage

rebuildFormalRatio(...)

Arguments

model Model

Details

Formal ratio is a structure composed from two lists representing numerator and denominator of the
formal ratio model$.formalRatio

See Also

rebuild, rebuildFrequency, Distribution

Examples

##---- Load MUDIM first
if you want write your own function, you find this function very useful
...

text B5.indd 170text B5.indd 170 23.10.2019 14:41:1523.10.2019 14:41:15

rebuildFrequency 33

rebuildFrequency Recalculate Frequency Column in Data Matrix in Distribution

Description

Recalculate frequency column in Distribution. Each row in data-matrix is unique.

Usage

rebuildFrequency(x)

Arguments

x Distribution

Details

The 2’nd parameter is used in procedure loadFromCsv, when frequency column is not contained in
the source file.

See Also

rebuild Distribution

Examples

data(Pi)
Pi$.data <- rbind(getData(Pi), getData(Pi)[1:3,])
getData(Pi)
rebuildFrequency(Pi)
getData(Pi)

reduce Reduce compositional model

Description

Convert a composition model into a reduced one, i.e. the resulting compositional model has a
reduced structure.

Usage

reduce(model)

S3 method for class 'Model'
reduce(model)

Arguments

model compositional model

text B5.indd 171text B5.indd 171 23.10.2019 14:41:1523.10.2019 14:41:15

34 replaceDistribution

Details

Not implemented yet.

Value

logical TRUE if the compositional model was changed and FALSE otherwise

reorderRIP RIP-reorder

Description

Reorder generating sequence of the given decomposable model such that the RIP (running intersec-
tion property is kept). The first variable in the root parameter appears in the first distribution of the
model generating sequence. The ordering of the variables given in the root will be followed as far
as possible.

Usage

reorderRIP(model, root = NULL)

Arguments

model Compositional model

root A vector of variables. The first variable in the perfect ordering will be the first
variable on ’root’. The ordering of the variables given in ’root’ will be followed
as far as possible.

Value

Decomposable Compositional model with root variable in the first distribution

Examples

data(m)
mDecomposable <- toDecomposable(m)
getVariables(mDecomposable)

replaceDistribution Replace distribution

Description

Replace probability distributions on the given positions

Usage

replaceDistribution(model, k, distr.list = list())

text B5.indd 172text B5.indd 172 23.10.2019 14:41:1623.10.2019 14:41:16

saveToCsv 35

Arguments

model compositional model
k vector of indices - positions in the generating sequence of the model
distr.list list of distributions to replace with

Examples

data(m); data(Pi);
replaceDistribution(m, k = 1, list(Pi))

saveToCsv Save Distribution as CSV file

Description

Save Distribution to the file in CSV format. As a separator is used a semicolon. Information and
Name are not save.

Usage

saveToCsv(...)

Arguments

this Distribution
filename filename(path to file: absolute or relative from R main directory)

Details

first line in file contains names of columns(variables). Last is MUDIM.frequency.

See Also

loadFromCsv, Distribution

Examples

\code{Format of output file is like this:}
"A";"B";"C";"MUDIM.frequency"
20;0;1;10
0;0;1;470
2;0;1;720
1;0;1;990
5;0;1;100
3;0;1;480
4;0;1;190
6;0;1;50
7;0;1;20
20;0;6;10
0;0;6;470
2;0;6;720

text B5.indd 173text B5.indd 173 23.10.2019 14:41:1623.10.2019 14:41:16

36 structureEquiv

splitDistribution Split distribution

Description

Split distribution

Usage

splitDistribution(model, index, l, m)

Arguments

index index of a probability distribution to be replaced in the generating sequence

l variable l ∈ Ki

m variable m ∈ Ki

Value

change a compositional model with generating sequence π1(K1), . . . , πi−1(Ki−1), π
1
i (Ki\l), π2

i (Ki\
m), πi+1(Ki+1), . . . , πn(Kn). I.e. the length of the new model is n+ 1.

structureEquiv Independence equivalence of structures of respective models

Description

This function finds out whether structures of respective models induce the same system of condi-
tional independence assertions. To do this, it uses the so called formal ratio - a unique representative
of a class of independence equivalent structures.

Usage

structureEquiv(...)

Arguments

modelA Model

modelB Model

Details

Formal ratio is a structure composed from two lists representing numerator and denominator of the
formal ratio model$.formalRatio) Model, rebuildFormalRatio

##—- Load MUDIM first A <- Model("test 1"); B <- Model("test 2"); structureEquiv(A, B); [1]
TRUE;

structural independence least one, from doc/KEYWORDS

text B5.indd 174text B5.indd 174 23.10.2019 14:41:1623.10.2019 14:41:16

toDecomposable 37

toDecomposable Transformation into a decomposable model

Description

Transformation into a decomposable model

Usage

toDecomposable(...)

Arguments

model model

Value

decomposable model

Examples

data(m)
getVariables(m)
mDecomposable <- toDecomposable(m)
getVariables(mDecomposable)

toDistribution Convert to Distribution

Description

Compositional model represents a probability distribution in a form of a sequence of low-dimensional
probability distributions that, when composed together using the operator of composition creates a
multi-dimensional compositional distribution

Usage

toDistribution(model)

Arguments

model Compositional model

Value

Probability distribution

text B5.indd 175text B5.indd 175 23.10.2019 14:41:1623.10.2019 14:41:16

38 variables

Examples

data(m)
newModel <- Model("composition")
compose(newModel, getDistribution(m, 1))
compose(newModel, getDistribution(m, 2))
compose(newModel, getDistribution(m, 3))
d <- toDistribution(newModel)
getData(d)

toTable Contingency table

Description

Print distribution in a table format. For 2 random variables only

Usage

toTable(x)

Arguments

x Distribution

Value

print table

Examples

data(Pi)
toTable(Pi)

variables Names of random variables

Description

Retrieve or set the names of random variables in the case of a probability distribution.

The model is represented by its generating sequence of discrete probability distribution. Each dis-
tribution is defined over a set of variables. This function returns the set of all variables in the model

text B5.indd 176text B5.indd 176 23.10.2019 14:41:1623.10.2019 14:41:16

variables 39

Usage

variables(x)
variables(x) <- value
getVariables(x)
setVariables(x, value)

S3 method for class 'Distribution'
variables(x)

S3 replacement method for class 'Distribution'
variables(x) <- value

S3 method for class 'Model'
variables(x)

Arguments

x distribution

x compositional model

Details

A discrete distribution describes the probability of occurrence of each value of a discrete random
variable. Multidimensional discrete distribution describe probability of occurrence of a combina-
tion of values of discrete random variables. For our use, the random variables are named. Using
functions variables and variables<- you can read and set the distribution data matrix.

Value

character

Methods (by class)

• Distribution: Retrieve vector of random variables

• Distribution: Set vector of random variables

• Model: Retrieve vector of random variables

See Also

Distribution

Examples

Distribution class
data(Pi)
variables(Pi)
variables(Pi) <- c("C", "D")
dTable(Pi)
Model class
data(m)
variables(m)

text B5.indd 177text B5.indd 177 23.10.2019 14:41:1623.10.2019 14:41:16

40 X

X Dataset X

Description

Discrete data set over 7 variables D,N,R, T,W,U,B.

Usage

data(X)

Format

An object of class data.frame;

Examples

data(X)
head(X)

text B5.indd 178text B5.indd 178 23.10.2019 14:41:1623.10.2019 14:41:16

Index

∗Topic >
compose, 6

∗Topic Distribution
getDistribution, 16

∗Topic Model
Model, 28

∗Topic anticipate,
anticipate, 4

∗Topic compose
compose, 6

∗Topic create
Model, 28

∗Topic csv
loadFromCsv, 24
saveToCsv, 35

∗Topic datasets
coins, 6
Kappa, 22
m, 25
Pi, 31
X, 40

∗Topic data
dTable, 13

∗Topic delete
delete, 11

∗Topic formal
is.reduced, 21
rebuildFormalRatio, 32

∗Topic frequency
rebuildFrequency, 33

∗Topic getDistribution
getDistribution, 16

∗Topic independence
is.reduced, 21

∗Topic info
info, 18

∗Topic insert
compose, 6

∗Topic loadFromCsv
loadFromCsv, 24

∗Topic marginalize
marginalize, 25

∗Topic marginal

marginalize, 25
∗Topic name

name, 29
∗Topic operator

anticipate, 4
∗Topic ratio

is.reduced, 21
rebuildFormalRatio, 32

∗Topic rebuild
rebuild, 31
rebuildFormalRatio, 32
rebuildFrequency, 33

∗Topic reduced
is.reduced, 21

∗Topic saveToCsv
saveToCsv, 35

∗Topic structural
is.reduced, 21

∗Topic structure
is.reduced, 21

∗Topic variables
variables, 38

*, 7
*.Distribution, 2
/.Distribution, 3

addIntervence.Model, 4
anticipate, 4, 7
as.character.Distribution, 5
as.character.Model

(as.character.Distribution), 5

coins, 6
compose, 5, 6, 16
conditionalIC, 8
conditionalMI, 8
conditioning, 9
copy, 10

delete, 7, 11, 16
dim.Distribution, 11
dim.Model (dim.Distribution), 11
Distribution, 5, 7, 11, 12, 14, 19, 24, 26, 29,

32, 33, 35, 39

41

text B5.indd 179text B5.indd 179 23.10.2019 14:41:1623.10.2019 14:41:16

42 INDEX

dTable, 13
dTable<-.Distribution (dTable), 13

entropy, 15
extend, 28

generalMarginalization, 15
getData.Distribution (dTable), 13
getDistribution, 16
getInfo (info), 18
getName (name), 29
getStructure, 17
getVariables (getStructure), 17
getVariables (variables), 38
getVariablesUnion (variables), 38

IC, 18
info, 18, 29
info<-.Distribution (info), 18
info<-.Model (info), 18
insert, 7, 11, 16
insert (compose), 6
is.decomposable, 19
is.Distribution, 20
is.empty, 21
is.reduced, 21

Kappa, 22
KL.divergence, 22

length.Model, 23
loadFromCsv, 24, 35

m, 25
marginalize, 25
MI, 27
Model, 7, 11, 13, 21, 26, 28, 32, 36
multiply, 5, 7
multiply (*.Distribution), 2

name, 19, 29
name<-.Distribution (name), 29
normalize, 30

Object, 28

perfect, 30
Pi, 31

quotient (/.Distribution), 3

rebuild, 31, 32, 33
rebuildFormalRatio, 21, 32, 36
rebuildFrequency, 32, 33
reduce, 33

reorderRIP, 34
replace, 7, 11, 16
replaceDistribution, 34

saveToCsv, 24, 35
setData.Distribution (dTable), 13
setInfo.Model (info), 18
setName.Model (name), 29
setVariables (variables), 38
splitDistribution, 36
structureEquiv, 32, 36

toDecomposable, 37
toDistribution, 37
toTable, 38

variables, 38
variables<- (variables), 38

X, 40

text B5.indd 180text B5.indd 180 23.10.2019 14:41:1723.10.2019 14:41:17

