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and Tzong-Ru Lee3

1 University of Economics, Prague
Faculty of Management, Czech Republic

2 Czech Academy of Sciences
Institute of Information Theory and Automation, Czech Republic

3 National Chung Hsing University
Department of Marketing, Taichung City, Taiwan

bina@vse.cz, velorex@utia.cas.cz, vachova@vse.cz, radim@utia.cas.cz,

trlee@dragon.nchu.edu.tw

Abstract. This paper aims to perform modeling of Taiwanese farm and
ecotourism data using compositional models as a probabilistic approach
and to compare its results with the performance of an artificial neu-
ral network approach. Authors use probabilistic compositional models
together with the artificial neural network as a classifier and compare
the accuracy of both approaches. The probabilistic model structure is
learned using hill climbing algorithm, the weights of multi-layer feedfor-
ward artificial neural network are learned using an R implementation of
H2O library for deep learning. In case of both approaches, we employ
a non-exhaustive cross-validation method and compare the models. The
comparison is augmented by the structure of the compositional model
and basic characterization of artificial neural network. As expected, the
compositional models show significant advantages in interpretability of
results and (probabilistic) relations between variables, whereas the arti-
ficial neural network provides more accurate yet ”black-box” model.

Keywords: compositional models, artificial neural network, model com-
parison, Taiwanese ecotourism dataset

1 Introduction

When analyzing a sample data set, we cannot infer any results concerning some
population with certainty. Therefore, during last more than one hundred years,
many tools were developed which are able in a way to handle data having the
uncertain nature. They start from the basic test methods of mathematical statis-
tics and so far arrived at the probabilistic and other alternative algorithms and
systems more or less capable of serving as a basis for artificial intelligence ap-
proaches.
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The probabilistic graphical models were considered as a standard tool for
support of decision-making under uncertainty and become popular as a tool
interconnecting probabilistic description and graphical presentation. The ap-
proaches for decision-support initially started from the simple managerial tools
assessing causes of problematical status. Then it continued as qualitative schemes
of influence diagrams and evolved into the tools of flowcharts, causal loop dia-
grams, stock and flow diagrams and in the last three decades developed influence
diagrams based on Bayesian networks. However, the usability and local compu-
tations of Bayesian networks (see, e.g., Jensen [1]) brink together one important
source of confusion, namely its graphical representation using directed acyclic
graphs. The arrows used in such graphical tools resembles less experienced users
direction from causes to effects which is rather intuitive and usually accepted
but not correct. Moreover, this graphical presentation is of only little use in case
of large diagrams having higher tens or even hundreds of nodes (as we show
below). In these situations, one may acknowledge an alternative, yet equivalent
algebraic approach based on compositional models Jiroušek [2] and Jiroušek and
Kratochv́ıl [3].

In recent year, based on better algorithms of deep learning and higher perfor-
mance of computers the approach of artificial neural networks become successful
in a wide variety of tasks including computer vision, text and opinion mining,
machine translation, image and video processing, etc. It is sometimes referred
as a ”deep learning revolution” (see, e.g., Sejnowski [4]). Similarly to the com-
parison of probabilistic and neural network approaches by Tavana et al. [5] or
by Simfukwe et al. [6], the aim of this paper is to compare the accuracy of the
powerful and well-developed methodology of artificial neural networks with a
(yet developing) probabilistic approach of compositional models. Of course, the
main disadvantage of compositional models is rather the current state of the art
which (unlike the case of neural networks) lack a professional and user-friendly
implementation of algorithms. But still, compositional models represent an easy
to interpret ”white-box” approach and have thus a great advantage in compari-
son with neural networks. On a simple (but not toy) example data set concerning
Taiwanese farm and ecotourism, we present that under certain circumstances,
the performance of compositional models is comparable to the performance of
artificial neural networks.

2 Brief Summary of Theoretical Background

Throughout the paper, we use two modeling approaches. Compositional mod-
els as a probabilistic model structure a multi-layer feedforward artificial neural
network. In this section, we will briefly characterize both approaches and set a
basis for their comparison using a Taiwanese farm and ecotourism data.

2.1 Compositional Models

The theory of compositional models was summarized in Jiroušek [2] with the
important structural properties summarized in Jiroušek and Kratochv́ıl [3]. Sim-
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ilarly, we will adopt the notation in the following sense. Throughout this paper
we analyze a set of n finite valued variables {X1, X2, . . . , Xn}. Subsets of vari-
ables are denoted by lower-case Roman alphabets (e.g., x, y, and z). 〈Xi〉 denotes
the set of values (states) of variable Xi. Analogously, for sets of variables x, y
the respective Cartesian products of all combinations of their values are denoted
by 〈x〉, 〈y〉, respectively. Elements of these sets, i.e., the (combinations of) val-
ues of variables will be denoted by lower-case boldface Roman characters (e.g.,
a ∈ 〈x〉).

Conditional distributions will be denoted using a standard notation, e.g.,
π(y |X). In case that we consider conditioning by a specific value of variable X
by π(y|X = a). Let us stress that since we deal with finite valued variables, the
conditional distribution π(y|X) is represented by a table where π(y|X = a) is a
probability distribution for each a ∈ 〈x〉.

For a probability distribution π(x) its marginal distribution for y ⊂ x is
denoted either by π(y), or by π↓y. Under a notion of extension (in a way opposite
to marginalization) we understand any distribution κ defined for a superset of
variables, i.e., κ(z) for z ⊃ x, such that κ(x) = π(x). The set of all extensions
of distribution π(x) for variables z ⊃ x will be denoted by Ψ [π; z]. The symbol
π(x ∩ y) � κ(x ∩ y) denotes that κ(x ∩ y) dominates π(x ∩ y). This holds (in
the considered finite setting) when

κ↓x∩y(b) = 0 =⇒ π↓x∩y(b) = 0

for all b ∈ 〈x ∩ y〉.
Now, consider two distributions π(x) and κ(y). Obviously, there exists their

joint extension if and only if they are consistent, i.e., if π(x ∩ y) = κ(x ∩ y).
In case that they are not consistent then one can be interested in getting an
extension of π containing from κ as much information as possible. Speaking
more precisely, one can look for a distribution µ(x ∪ y) that is a projection of κ
into the set of all extensions Ψ [π;x ∪ y]:

µ(x ∪ y) = arg min
λ∈Ψ [π;x∪y]

Div(λ(y);κ(y)).

If we consider a Kullback-Leibler divergence the Theorem 6.2 in [2] states that
this type of projection can be got as a composition of π and κ. The composition
is defined only if π(x ∩ y)� κ(x ∩ y) by the formula

µ(x ∪ y) = π(x) . κ(y) =
π(x) · κ(y)

κ(x ∩ y)
.

The use of the operator of composition can be iterated. The result of the re-
peated application to the sequence of low-dimensional distributions is (if defined)
a multidimensional distribution which can be written in the following way:

κ1 . κ2 . κ3 . . . . . κn := (. . . ((κ1 . κ2) . κ3) . . . .) . κn.

Throughout this paper we will focus on the models composed from the marginals
of one data distribution, thus there are no inconsistent distributions.
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2.2 Artificial Neural Networks

An approach of Artificial Neural Networks (ANN) had roots in 1940s when the
first computational model for neural networks was developed (see McCulloch
and Pitts[7]). The methodology of ANN became useful and extensively employed
after the development of backpropagation algorithms (see Schmidhuber [8]). But
in the case of networks with higher number of hidden layers tended to give worse
results than the shallow networks (see, e.g., Alom et al. [9]). The success of
deep-learning approaches together with improved computational capacities (use
of GPUs and employment of its vector computation features) resulted in last
ten years in a so-called deep learning revolution, i.e. a radical change of artificial
intelligence industry and massive use of ANNs (this breakthrough resulted in
awarding of Turing Award in March 2019).

Let us clarify that under the notion of deep network we understand an artifi-
cial neural network with at least three hidden layers, oppositely, the ANN with
one or two hidden layers is called shallow (this is quite frequent classification
(see, e.g., [9]).

One of the modern and most successful open-source systems for artificial
intelligence is a H2O platform capable of analyzing (using in-memory compres-
sion) huge data samples. Moreover, it has a linear scalability and is able to
interconnect with, e.g., R, Python and Hadoop (see [10]). We used it as an im-
plementation of artificial neural network and its learning under R software (we
used a version 3.6.1 [11]) augmented by a H2O package version 3.26.0.2 [12].

In our case, we use the artificial neural network as a model of dependencies
among the set of categorical variables (most of them binomial, two multinomial
variables). Because of the architecture of ANN layers, we need to choose one of
the variables as a variable in an output layer. The H2O implementation does not
provide a possibility to handle multiple output variables. The nonlinear character
of activation functions provides a possibility to perform a classification task.

The considered artificial neural network has a structure of a multilayer feed-
forward (nodes do not form a cycle) neural network (perceptron). The network
is trained with stochastic gradient descent algorithm based on backpropagation
and it is necessary to specify the number of network layers and number of neu-
rons in each layer, see [10]. The binary character of variables allowed to choose
among different activation functions (the Tanh activation function performed
with the analyzed data set better than ReLU and Maxout). For the classifi-
cation into multiple classes, i.e., for the multinomial output layer, a softmax
activation function can be used. See, e.g., Glorot et al. [13].

Though the H2O package is capable to efficiently handle huge data sets
thanks to the parallelization of its procedures, this was not our case. However,
relatively small Taiwanese data were divided one hundred times in order to per-
form multiple training and validation cycles.

2.3 Measures Based on Confusion Matrix

The paper employs a basic set of measures derived from the confusion matrix
(see, e.g., Fawcett [14]). The confusion matrix visualizes the correspondence of
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predicted class based on model and class observed in data in a contingency table
with the setting according to Table 1.

Table 1. Confusion matrix

Observed class
Predicted True positive (TP) False positive (FP)
class False negative (FN) True negative (TN)

Sensitivity (or true positive rate) is defined as

TPR =
TP

TP + FN
,

specificity (or true negative rate) is given by

TNR =
TN

TN + FP
,

precision (or positive predictive value) is defined as

PPV =
TP

TP + FP
,

under accuracy we understand

ACC =
TP + TN

TP + TN + FP + FN

and F1 score is a harmonic mean of precision and sensitivity which result into

F1 =
2TP

2TP + FP + FN
.

3 Data Set and Preprocessing

The Taiwanese farm and ecotourism data set contains answers of 1235 respon-
dents who filled the questionnaire in the period from 2015 to 2017. The answers
to the questionnaire in case of the first ten respondents are shown in Table 2 as
an illustration of sample data set.

The answers of six main multiple-choice questions were converted into 51
binary variables containing answers accompanied by respondent’s gender and
age category (0–18; 19–25; 26–35; 36–45; 46–55; 56–65 and 66–). The six main
questions are:

Q1 Reasons why you would like to focus on agricultural information.



6 B́ına, Kratochv́ıl et al.

Table 2. Record of answers of the first ten respondents in the Taiwanese farm and
ecotourism data set.

Que. 1 Que. 2 Que. 3 Que. 4 Que. 5 Que. 6 Age Gender
3, 4 1, 2, 8 F, I, L 1, 3 1, 2 1, 2, 3 36–45 female

3, 4, 5
1, 2, 3, 4, 4, 8, 9, A, 1, 2 1, 2 5 19–25 female
5, 6, 7, 8 G, H, K, L

3, 4 3, 4, 8 4 1 1, 2 5 36–45 male
1 1, 6, 7, 8 4, A 5 1 1, 2 19–25 female
5 8 3, 8, D, K, L 3 1 5 36–45 female
4 7 6, A, B, F, I 1, 2, 3, 4 3 5 36–45 male
2, 3 1, 7 C, D 1, 3, 4 1, 2 1, 2, 4 46–55 female
3, 4, 5 4, 5, 7, 8 2, D, I, O 1, 3 2, 3 1, 3 26–35 male
3, 5 1, 8 3, 4, A, B, K 3 1 1, 2 36–45 female
3, 4 6, 7, 8 4, 7, B, L 3, 4 1 2 26–35 male

Q2 What kinds of instant message you would like to see.
Q3 What kinds of products or stories that you are interested in.
Q4 Reasons why you are interested in participating in work exchange.
Q5 What kinds of workshop you are interested in.
Q6 What did you experience from the ecotourism.

Since all the particular questions are not significant for the sake of comparison
of two modeling approaches, we will not describe in detail all possible answers to
the six main questions. Let us only mention that there were 5 possible answers
for the question Q1, 8 answers for the Q2, 24 answers for the Q3, 6 answers
for the Q4 and 3 answers for Q5. Now let us focus on the answer to the 6th
question which will be analyzed as predicted variables. The possible answers to
a multiple-choice question 6 were:

Q6.1 Agricultural experience and understand planting methods.
Q6.2 Enjoy local natural food.
Q6.3 Special festivals participation.
Q6.4 Local culture exchange.
Q6.5 Not yet experienced.

4 Models

The main result of the presented paper includes two types of different model-
ing approaches describing the Taiwanese farm and ecotourism data. The first
approach uses probabilistic compositional models, whereas the second approach
employs the artificial neural network methodology.

4.1 Resulting Compositional Model

The structure of a compositional model is learned from the data set using a
structural EM algorithm (see Friedman [15]) where a maximization step is per-
formed using a tabu search generalization of hill climbing greedy approach in the
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space of models structures (see Russell and Norvig [16]). The resulting compo-
sitional model can be (obviously) written as a model formula. However, because
of its rather complex structure and long formula let us only take a taste on the
shortened expression, i.e.

µ̂ = π(x3.4) . π(x3.O) . π(x3.4, x3.A) . π(x3.A, x3.B) . π(x3.4, x3.5, x3.B) . · · · .

Fig. 1. Persegram of a compositional model structure learned from the Taiwanese farm
and ecotourism data.

As the kind author can imagine, because of the big number of variables the
complete compositional model formula would be very long and not transparent.
Instead of this, we use an equivalent representation, i.e. a structure visualization
using a graphical tool of persegram (introduced by Jiroušek [17], for an appli-
cation, see, e.g., Kratochv́ıl [18]). This tool describes a dependency structure of
considered variables4 and is capable to clearly present both all the particular

4 In Jiroušek [17] the following assertion is formulated: ”Every independence statement
read from the structure (or its persegram) of a compositional model corresponds
to probability independence statement valid for every multidimensional probability
distribution represented by a compositional model with this structure.”
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distributions composed in the model (as columns in the table) and occurrence
of a variable throughout the distributions within a model (as rows of the table)
where the first occurrence is marked by a square and all other occurrences are
marked using a bullet. The model learned from an example data set is depicted
in Figure 1 and provides an easy insight into the dependence structure of con-
sidered variables. Namely, the answers to question 4.1 to 4.5 shows an apparent
interdependency, or similarly, the answers to questions 3.2, 3.4 to 3.8.

Probably, the readers are more accustomed to the expression of probabilistic
models in the form of a directed acyclic graph (DAG). The Figure 2 shows the
above-described dependence structure in the form of DAG, which is obviously
rather hard to read and to search the particular (conditional) dependencies.
Moreover, the arrows in the graph might be misleading and can lead to an
incorrect interpretation as causal relations.

Particular distributions and their conditional variants usable for the process
of composition can be easily computed from the data. E.g., conditional distri-
bution π(x6.1 |x3.B , x4.1, x5.2) can be summarized in a form of Table 3.

Table 3. An example of one probability distribution from compositional model µ̂ in a
form of conditional probability table, namely π(x6.1 |x3.B , x4.1, x5.2).

Q5.2=yes Q5.2=no

Q4.1=yes Q4.1=no Q4.1=yes Q4.1=no
Q3.B Q3.B Q3.B Q3.B

yes no yes no yes no yes no

Q6.1
yes 0.639 0.909 0.500 0.634 0.231 0.671 0.258 0.365
no 0.361 0.091 0.500 0.366 0.769 0.329 0.742 0.635

4.2 Resulting Artificial Neural Network

Deep learning algorithm was used 5 times to build five models. Each of the
models has one of the questions 6.1 to 6.5 as an output node. The method in
each case learned the weights of 5 layers multilayer perceptron with 162 neurons
in an input layer, 100, 40 and 6 neurons in hidden layers with tanh activation
function and an output layer with two nodes uses a softmax activation function.
The algorithm in each case learned values of 20600 weights and biases.

The creation of five models was necessary since the current implementation of
H2O does not support multiple response columns. The authors suggest to train a
new model for each response variable. An example of model metrics achieved for
the model with an output being a Question 6.1 summarized in Table 4. Metrics of
all particular models and their comparison is performed in the next subsection.
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Fig. 2. A directed acyclic graph corresponding to a compositional model structure
learned from the Taiwanese farm and ecotourism data.

Table 4. An example of basic maximum metrics and their indices in case of model for
Q6.1.

Metric Value Index
Max F1 0.867 95
Max accuracy 0.798 79
Max precision 0.966 28
Max sensitivity 1.000 101
Max specificity 0.973 0



10 B́ına, Kratochv́ıl et al.

4.3 Comparison of Both Types of Models

In each case, the data set was divided into a training frame and a validation
frame in the ratio of 80% to 20%. In other words, the training process was
conducted on a sample of 1121, and validation was conducted on 114 statistical
units. For both approaches, a non-exhaustive cross-validation method was used
which do not compute all possible ways of the splitting of the original sample
being thus an approximation of leave-p-out cross-validation approach. In each
case, we used 100 iterations of the cross-validation.

The results of the comparison are summarized in Table 5 where the metrics
of sensitivity, specificity, precision, accuracy and F1 score are provided for both
types of models and for each of the five questions from 6.1 to 6.5. This numerical
comparison is augmented by a graphical presentation in Figure 3 of ROC space
graphs for each of the five questions.

Table 5. The set of measures based on confusion matrix of artificial neural network
(ANN) and compositional model (CM) for particular questions from 6.1 to 6.5.

Question Model Sensitivity Specificity Precision Accuracy F1 score

6.1
ANN 0.835 0.887 0.969 0.841 0.897
CM 0.921 0.358 0.785 0.759 0.844

6.2
ANN 0.801 0.867 0.959 0.810 0.872
CM 0.959 0.413 0.776 0.782 0.856

6.3
ANN 0.646 0.852 0.759 0.758 0.692
CM 0.585 0.771 0.598 0.704 0.581

6.4
ANN 0.692 0.821 0.851 0.736 0.760
CM 0.646 0.852 0.759 0.758 0.692

6.5
ANN 0.969 0.993 0.947 0.990 0.957
CM 0.145 0.983 0.538 0.886 0.159

5 Conclusion

The paper presented two model approaches for modeling of categorical data.
The compositional model approach was applied to build and to use one model
approximating the whole data set. The approach of artificial neural networks
was employed in order to create five particular models with an output variable
of each of five questions from 6.1 to 6.5.

The comparison of both approaches showed that in the case of Questions
6.1 and 6.2, both approaches provided more or less similar quality of models. In
case of questions 6.3 and 6.4 the approach of artificial neural networks provided
a model of higher quality, and finally, in case of question 6.5, the approach
of compositional models failed to provide reasonable predictions, whereas the
artificial neural network approach was very successful. This was caused by an
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Fig. 3. ROC space of artificial neural network and compositional model for non-
exhaustive cross-validation of prediction for particular questions from 6.1 to 6.5.
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answer collecting in a way the rest of respondents and having an unbalanced ratio
of answers to question 6.5 (142 positive answers and 1093 negative answers) in
contrary to more or less comparable frequencies of both answers in case of other
answers.

This documents the most serious limitation of the approach of compositional
models. But let us mention an important advantage that the compositional mod-
els represent a white-box approach, i.e., the possibility to analyze and interpret
its building blocks (the low-dimensional distributions to be composed) as proba-
bilities usual for description of uncertainty. Moreover, similarly to the approach
of compositional models, the user is able to insert evidence into the model and
to analyze interesting marginal distributions which can be calculated more or
less easily from the compositional model. The artificial neural network approach
comprises in a way a black-box. It is theoretically possible to look at the weights
of each neuron, but its possible interpretation is very limited.
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3. Jiroušek, R., Kratochv́ıl, V.: Foundations of compositional models: structural prop-
erties. Int. J. of General Systems 44 (1), 2–25 (2015). doi:10.1080/03081079.2014.
934370

4. Sejnowski, T.J.: The deep learning revolution. MIT Press (2018).

5. Tavana, M., Abtahi, A.R., Di Caprio, D., Poortarigh, M.: An Artificial Neural
Network and Bayesian Network model for liquidity risk assessment in banking.
Neurocomputing 275, 2525–2554 (2018). doi:10.1016/j.neucom.2017.11.034

6. Simfukwe, M., Kunda, D., Chembe, C.: Comparing Naive Bayes Method and Ar-
tificial Neural Network for Semen Quality Categorization. International Journal of
Innovative Science, Engineering & Technology 2(7), 689–694 (2015).

7. McCulloch, W., Pitts, W.: A Logical Calculus of Ideas Immanent in Nervous Ac-
tivity. Bulletin of Mathematical Biophysics. 5 (4): 115–133 (1943). doi:10.1007/
BF02478259

8. Schmidhuber, J.: Learning complex, extended sequences using the principle of his-
tory compression. Neural Computation 4, 234–242 (1992).

9. Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M.S.,
Hasan, M., Van Essen, B.C., Awwal, A.A., Asari, V.K.: A state-of-the-art survey
on deep learning theory and architectures. Electronics 8(3), 292 (2019).

10. Candel, A., Parmar, V., LeDell, E., Arora, A.: Deep Learning with H2O. 6th
Edition. H2O.ai, Inc. (2019). http://h2o.ai/resources



Performance of Probabilistic Approach and Artificial Neural Network . . . 13

11. R Core Team: R: A language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria. (2019). https://www.R-project.
org/

12. LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Kraljevic, T., Nykodym,
T., Aboyoun, P., Kurka, M., Malohlava M.: h2o: R Interface for ’H2O’. R package
version 3.26.0.2. (2019). https://CRAN.R-project.org/package=h2o

13. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 315–323 (2011).

14. Fawcett, T.: An Introduction to ROC Analysis. Pattern Recognition Letters 27(8),
861–874 (2006). doi:10.1016/j.patrec.2005.10.010

15. Friedman, N.: Learning Belief Networks in the Presence of Missing Values and
Hidden Variables. In: Proceedings of the 14th International Conference on Machine
Learning, pp. 125–133 (1997).

16. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall,
3rd edition (2009).
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