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Abstract. We consider metric gradient flows and their discretizations in time

and space. We prove an abstract convergence result for time-space discretiza-

tions and identify their limits as curves of maximal slope. As an application,
we consider a finite element approximation of a quasistatic evolution for vis-

coelastic von Kármán plates [44]. Computational experiments exploiting C1

finite elements are provided, too.

1. Introduction. Neglecting inertia, a nonlinear viscoelastic material in Kelvin’s-
Voigt’s rheology (i.e., a spring and a dashpot coupled in parallel) obeys the following
system of equations

−div
(
∂FW (∇y) + ∂ḞR(∇y, ∂t∇y)

)
= f in [0, T ]× Ω. (1)

Here, [0, T ] is the process time interval with T > 0, Ω ⊂ R3 is a smooth bounded
domain representing the reference configuration, and y : [0, T ] × Ω → R3 is the
deformation mapping with corresponding deformation gradient ∇y. Further, W :
R3×3 → [0,∞] is a stored energy density, which represents a potential of the first
Piola-Kirchhoff stress tensor TE , i.e., TE := ∂FW , and F ∈ R3×3 is the placeholder
for ∇y. Moreover, R : R3×3 × R3×3 → [0,∞) denotes a (pseudo)potential of
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dissipative forces, where Ḟ ∈ R3×3 is the placeholder of ∂t∇y. Finally, f : Ω→ R3

is a volume density of external forces acting on Ω.
A standard assumption for W is frame indifference, i.e., W (F ) = W (QF ) for

every proper rotation Q ∈ SO(3) and every F ∈ R3×3. This implies that W depends
on the right Cauchy-Green strain tensor C := F>F , see e.g. [17]. The second term

on the left-hand side of (1) is the stress tensor S(F, Ḟ ) := ∂ḞR(F, Ḟ ) which has its
origin in viscous dissipative mechanisms of the material. Notice that its potential
R plays an analogous role as W in the case of purely elastic, i.e., non-dissipative
processes. Naturally, we require that R(F, Ḟ ) ≥ R(F, 0) = 0. The viscous stress
tensor must comply with the time-continuous frame-indifference principle, meaning
that S(F, Ḟ ) = FS̃(C, Ċ), where S̃ is a symmetric matrix-valued function. This
condition constraints R so that [5, 6, 31]

R(F, Ḟ ) = R̃(C, Ċ)

for some nonnegative function R̃. In other words, R must depend on the right
Cauchy-Green strain tensor C and its time derivative Ċ.

Recently, in [22], the first two authors proved the existence of weak solutions to
equations of the form (1) in three-dimensional nonlinear viscoelasticity for nonsim-
ple materials. While the elastic properties of simple elastic materials depend only
on the first gradient, the notion of a nonsimple (or second-grade) material refers to
the fact that the elastic energy additionally depends on the second gradient of the
deformation. This concept, pioneered by Toupin [41, 42], has proved to be useful
in modern mathematical elasticity, see e.g. [8, 9, 15, 21, 32, 33, 37]. Adopting this
setting currently appears to be inevitable to establish the existence of solutions, see
[22], and [31] for a general discussion about the interplay between the elastic energy
and viscous dissipation. We emphasize, however, that a main justification of the
investigated model is the observation that, in the small strain limit, the problem
leads to the standard system of linear viscoelasticity without second gradient.

In the present paper, we are interested in the analysis of lower-dimensional
analogs of (1) which are derived by considering (1) for thin viscoelastic plates and
by passing to the vanishing-thickness limit. Such studies, often referred to as dimen-
sion reduction, play a significant role in nonlinear analysis and numerics since they
allow for simpler computational approaches still preserving main features of the full-
dimensional system. In particular, it is important that the relationship between the
original models and their lower-dimensional counterparts is made rigorous. Usually,
the main tools in a variational setting are Γ-convergence [19] and geometric rigid-
ity estimates [24]. We refer to [29, 30] for a derivation of membrane models from
three-dimensional elasticity or to [16, 24, 25, 35] for analogous approaches to plate
theory.

In the framework of nonsimple viscoelastic materials, such a scenario was recently
studied by the first two authors in [23], where a von Kármán-like viscoelastic plate
model has been identified as an effective 2D dimension-reduction limit. For this
analysis, besides rigidity estimates and Γ-convergence, the main tools are gradient
flows in metric spaces developed in [3, 34, 39, 40]. Although there are previous
works on viscoelastic plates [10, 36], some even including inertial effects [11, 12],
their starting point is already a plate model. In contrast, [23] provides a rigorous
derivation from a three-dimensional model of viscoelasticity at finite strains by (i)
showing the existence of solutions to the effective 2D system, and by (ii) by proving
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that these solutions are in a certain sense the limits of solutions to the 3D equations
for vanishing thickness.

The main aim of this contribution is to carry out a finite-element convergence
analysis of a fully discrete viscoelastic plate model and to investigate its behavior by
computational experiments. As a byproduct, we also obtain an alternative existence
proof for solutions to the effective 2D system. This analysis is based on proving an
abstract convergence result of time-space discretizations to metric gradient flows,
see Theorem 3.2.

At many spots, our strategy relies on results obtained in [23] and on the theory
of gradient flows in metric spaces [3] which provide us with a robust approach to
quasistatic evolutionary problems. In particular, Theorem 3.2 exploits a sequence
of minimization problems to construct fully discrete approximations (see (19) and
(36)) of curves of maximal slope which are then solutions to the viscoelastic plate
equations. This makes the proof partially constructive and, at the same time, it
suggests a numerical method to be used.

The plan of the paper is as follows. Section 2 reviews equations of nonlinear
viscoelasticity in the framework of nonsimple materials and the resulting system for
the von Kármán plates. Mathematical tools from the theory of gradient flows in
metric spaces [3], such as generalized minimizing movements and curves of maximal
slope [2, 20], are introduced in Section 3. Moreover, Section 3 contains our main
abstract convergence result for time-space discretizations whose limits are curves
of maximal slope, see Theorem 3.2. Section 4 applies the abstract results to the
2D system of viscoelastic von Kármán plate equations, see (15) below: we provide
an approximation of the original problem by a finite element method, see Theo-
rem 4.1. As a byproduct, this approximation result yields an alternative proof of
the existence of solutions to the viscoelastic plate model originally obtained in [23].
Finally, Section 5 provides computational examples simulating the behavior of the
viscoelastic plate exposed to external forces.

We use standard notation for Lebesgue spaces, Lp(Ω), which consist of mea-
surable maps on Ω ⊂ Rd, d = 2, 3, that are integrable with the p-th power (if
1 ≤ p < +∞) or essentially bounded (if p = +∞). With W k,p(Ω) we denote
Sobolev spaces, i.e., linear spaces of maps which, together with their weak deriva-

tives up to the order k ∈ N, belong to Lp(Ω). Further, W k,p
0 (Ω) contains maps from

W k,p(Ω) having zero boundary conditions (in the sense of traces). To emphasize
the target space Rk, k = 1, 2, 3, we write Lp(Ω;Rk). If k = 1, we write Lp(Ω)
as usual. We refer to [1] for more details on Sobolev spaces. We also denote the
components of vector functions y by y1, y2, and y3, and so on. By Id we denote
the identity matrix in R3×3. If A ∈ R3×3×3×3 and e ∈ R3×3, then Ae ∈ R3×3 is
such that for i, j ∈ {1, 2, 3} we define (Ae)ij := Aijklekl where we use Einstein’s
summation convention. An analogous convention is used in similar occasions, in the
sequel. Finally, at many spots, we closely follow the notation introduced in [3] to
ease readability of our work because the theory developed there is one of the main
tools of our analysis.

2. Equations of viscoelasticity in 3D and 2D. We first introduce a 3D setting
following the setup in [23, 25]. We consider a right-handed orthonormal system
{e1, e2, e3} and S ⊂ R2 open, bounded with Lipschitz boundary, in the span of e1

and e2. Let h > 0 small. We consider deformations w : S × (−h2 ,
h
2 ) → R3. It is

convenient to work in a fixed domain Ω = S × I with I := (− 1
2 ,

1
2 ) and to rescale
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deformations according to y(x) = w(x′, hx3), so that y : Ω→ R3, where we use the
abbreviation x′ = (x1, x2). We also introduce the notation ∇′y = y,1⊗ e1 + y,2⊗ e2

for the in-plane gradient, and the scaled gradient

∇hy :=
(
∇′y, 1

h
y,3

)
= ∇w. (2)

Moreover, we define the scaled second gradient by

(∇2
hy)ijk := h−δ3j−δ3k(∇2y)ijk = (∇2w)ijk = ∂2

jkwi for i, j, k ∈ {1, 2, 3}, (3)

where δ3j , δ3k denotes the Kronecker delta.

Stored elastic energy density and body forces: We assume that W :
R3×3 → [0,∞] is a single-well, frame-indifferent stored energy density with the
usual assumptions in nonlinear elasticity. We suppose that there exists c > 0 such
that

(i) W continuous and C3 in a neighborhood of SO(3),

(ii) frame indifference: W (QF ) = W (F ) for all F ∈ R3×3, Q ∈ SO(3),

(iii) W (F ) ≥ cdist2(F, SO(3)), W (F ) = 0 iff F ∈ SO(3),

(4)

where SO(3) = {Q ∈ R3×3 : Q>Q = Id, detQ = 1}. Moreover, for p > 3, let
P : R3×3×3 → [0,∞] be a higher order perturbation satisfying

(i) frame indifference: P (QZ) = P (Z) for all Z ∈ R3×3×3, Q ∈ SO(3),

(ii) P is convex and C1,

(iii) growth condition: For all Z ∈ R3×3×3 we have

c1|Z|p ≤ P (Z) ≤ c2|Z|p, |∂ZP (Z)| ≤ c2|Z|p−1

(5)

for 0 < c1 < c2. Finally, f ∈ L∞(Ω) denotes a volume normal force, i.e., a force
oriented in the e3 direction.

Dissipation potential and viscous stress: We now introduce a dissipation
potential. We follow here the discussion in [31, Section 2.2] and [23, Section 2].
Consider a time-dependent deformation y : [0, T ] × Ω → R3. Viscosity is not
only related to the strain rate ∂t∇hy(t, x) but also to the strain ∇hy(t, x). It
can be expressed in terms of a dissipation potential R(∇hy, ∂t∇hy), where R :
R3×3 ×R3×3 → [0,∞). An admissible potential has to satisfy frame indifference in
the sense (see [5, 31])

R(F, Ḟ ) = R(QF,Q(Ḟ +AF )) ∀Q ∈ SO(3), A ∈ R3×3
skew (6)

for all F ∈ GL+(3) and Ḟ ∈ R3×3, where GL+(3) = {F ∈ R3×3 : detF > 0} and
R3×3

skew = {A ∈ R3×3 : A = −A>}.
From the viewpoint of modeling, it is more convenient to postulate the existence

of a (smooth) global distance D : GL+(3)×GL+(3)→ [0,∞) satisfying D(F, F ) =
0 for all F ∈ GL+(3). From this, an associated dissipation potential R can be
calculated by

R(F, Ḟ ) := lim
ε→0

1

2ε2
D2(F + εḞ , F ) =

1

4
∂2
F 2

1
D2(F, F )[Ḟ , Ḟ ] (7)

for F ∈ GL+(3) and Ḟ ∈ R3×3. Here, ∂2
F 2

1
D2(F1, F2) denotes the Hessian of D2 in

the direction of F1 at (F1, F2), which is a fourth order tensor. For some c > 0 we
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suppose that D satisfies

(i) D(F1, F2) > 0 if F>1 F1 6= F>2 F2,

(ii) D(F1, F2) = D(F2, F1), (8)

(iii) D(F1, F3) ≤ D(F1, F2) +D(F2, F3),

(iv) D(·, ·) is C3 in a neighborhood of SO(3)× SO(3),

(v) Separate frame indifference: D(Q1F1, Q2F2) = D(F1, F2)

∀Q1, Q2 ∈ SO(3), ∀F1, F2 ∈ GL+(3),

(vi) D(F, Id) ≥ cdist(F, SO(3)) ∀F ∈ R3×3 in a neighborhood of SO(3).

Note that conditions (i)-(iii) state that D is a true distance when restricted to
symmetric matrices with nonnegative determinants. We cannot expect more due to
the separate frame indifference (v). We also point out that (v) implies (6) as shown
in [31, Lemma 2.1]. Note that in our model we do not require any conditions of
polyconvexity [7] neither for W nor for D. One possible example of D satisfying (8)

is D(F1, F2) = |F>1 F1 − F>2 F2|. This choice leads to R(F, Ḟ ) = |F>Ḟ + Ḟ>F |2/2.
For further examples we refer to [31, Section 2.3].

Equations of viscoelasticity in a rescaled domain: Following the study in
[23, 28], we introduce the set of admissible configurations by

Sh =
{
y ∈W 2,p(Ω;R3) : y(x′, x3) =

(
x′

hx3

)
for x′ ∈ ∂S, x3 ∈ I

}
, (9)

where I = (− 1
2 ,

1
2 ). Note that in [23, 28] more general clamped boundary conditions

are considered that are not included here for the sake of simplicity. We formulate
the equations of viscoelasticity for a nonsimple material involving the perturbation
P (cf. (5)). We introduce a differential operator associated with P . To this end,
we recall the notation of the scaled gradients in (2)-(3). For i, j ∈ {1, 2, 3}, we de-
note by (∂ZP (∇2

hy))ij∗ the vector-valued function ((∂ZP (∇2
hy))ijk)k=1,2,3. We also

introduce the scaled (distributional) divergence divhg for a function g ∈ L1(Ω;R3)
by divhg = ∂1g1 + ∂2g2 + 1

h∂3g3. We define(
LhP (∇2

hy)
)
ij

= −divh(∂ZP (∇2
hy))ij∗, i, j ∈ {1, 2, 3}

for y ∈ Sh. Let 0 < β < 4. The equations of nonlinear viscoelasticity are defined
by
−divh

(
∂FW (∇hy) + hβLhP (∇2

hy) + ∂ḞR(∇hy, ∂t∇hy)
)

= h3fe3 in [0,∞)× Ω

y(0, ·) = y0 in Ω

y(t, ·) ∈ Sh for t ∈ [0,∞)

(10)

for some y0 ∈ Sh, where ∂FW (∇hy) +hβLhP (∇2
hy) denotes the first Piola-Kirchhoff

stress tensor and ∂ḞR(∇hy, ∂t∇hy) the viscous stress with R as introduced in (7).
We remark that the scaling of the forces corresponds to the so-called von Kármán

regime. The choice 0 < β < 4 ensures that the second-gradient term in the energy
vanishes in the effective 2D limiting model as h→ 0.

Quadratic forms: To formulate the effective 2D problem, we need to con-
sider various quadratic forms. First, we define Q3

W : R3×3 → R by Q3
W (F ) =

∂2
F 2W (Id)[F, F ]. One can show that it depends only on the symmetric part 1

2 (F>+
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F ) and that it is positive definite on R3×3
sym = {A ∈ R3×3 : A = A>}. We also intro-

duce Q2
W : R2×2 → R by

Q2
W (G) = min

a∈R3
Q3
W (G∗ + a⊗ e3 + e3 ⊗ a) (11)

for G ∈ R2×2, where the entries of G∗ ∈ R3×3 are given by G∗ij = Gij for i, j ∈ {1, 2}
and zero otherwise. Note that (11) corresponds to a minimization over stretches in
the e3 direction. In [23] it was assumed that the minimum in (11) is attained for
a = 0. Similarly, we define

Q3
D(F ) =

1

2
∂2
F 2

1
D2(Id, Id)[F, F ], Q2

D(G) = min
a∈R3

Q3
D(G∗ + a⊗ e3 + e3 ⊗ a). (12)

We again assume that the minimum is attained for a = 0. The assumption that
a = 0 is a minimum in (11)-(12) corresponds to a model with zero Poisson’s ratio
in the e3 direction. This assumption is not needed in the purely static analysis
[25, 28]. However, it is adopted in [23] to simplify the study of the evolutionary
problem. We also introduce corresponding symmetric fourth order tensors C2

W and
C2
D by

Q2
W (G) = C2

W [G,G], Q2
D(G) = C2

D[G,G] ∀G ∈ R2×2. (13)

One can check that Q2
W and Q2

D are positive semi-definite, and positive definite on
R2×2

sym.

Equations of viscoelasticity in 2D: We now present the effective 2D equations
which are formulated in terms of in-plane and out-of-plane displacements fields u
and v. Following the discussion in [25], these displacement fields can be related to
the deformation y in the three-dimensional setting by

u(x′) :=
1

h2

∫
I

((
y1

y2

)
(x′, x3)−

(
x1

x2

))
dx3, v(x′) :=

1

h

∫
I

y3(x′, x3) dx3,

where again I = (− 1
2 ,

1
2 ). Let us consider the set of admissible displacement fields

S = {(u, v) ∈W 1,2
0 (S;R2)×W 2,2

0 (S)}. (14)

(Compare with (9).) From now on, we are going to work exclusively on the domain
S ⊂ R2 and therefore ∇ will denote the gradient with respect to x1 and x2, i.e., we
will drop the apostrophe from the notation.

Given (u0, v0) ∈ S , we consider the equations

div
(
C2
W

(
e(u) + 1

2∇v ⊗∇v
)

+ C2
D

(
e(∂tu) +∇∂tv �∇v

))
= 0,

−div
((

C2
W

(
e(u) + 1

2∇v ⊗∇v
)

+ C2
D

(
e(∂tu) +∇∂tv �∇v

))
∇v
)

+ 1
12div div

(
C2
W∇2v + C2

D∇2∂tv
)

= f in [0,∞)× S
u(0, ·) = u0, v(0, ·) = v0 in S

(u(t, ·), v(t, ·)) ∈ S0 for t ∈ [0,∞)

(15)

where C2
W and C2

D are defined in (13), and � denotes the symmetrized tensor
product. Note that the frame indifference of the energy and the dissipation (see
(4)(ii) and (8)(v), respectively) imply that the contributions only depend on the
symmetric part of the strain e(u) := 1

2 (∇u+ (∇u)>) and the strain rate e(∂tu) :=
1
2 (∂t∇u + ∂t(∇u)>). Here, div denotes the distributional divergence in dimension
two.
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We also say that (u, v) ∈W 1,2([0,∞); S ) is a weak solution of (15) if u(0, ·) = u0,
v(0, ·) = v0 and for a.e. t ≥ 0 we have∫

S

(
C2
W

(
e(u) + 1

2∇v ⊗∇v
)

+ C2
D

(
e(∂tu) +∇∂tv �∇v

))
: ∇ϕu = 0, (16a)∫

S

(
C2
W

(
e(u) + 1

2∇v ⊗∇v
))

:
(
∇v �∇ϕv

)
+

∫
S

(
C2
D

(
e(∂tu) +∇∂tv �∇v

))
:
(
∇v �∇ϕv

)
+

1

12

∫
S

(
C2
W∇2v + C2

D∇2∂tv
)

: ∇2ϕv =

∫
S

fϕv, (16b)

for all ϕu ∈ W 1,2
0 (S;R2) and ϕv ∈ W 2,2

0 (S). Note that (16a) corresponds to two
and (16b) corresponds to one equation, respectively. It is proved in [23, Thm. 2.2
and Thm. 2.3] that solutions to a semidiscretized-in-time system (10) converge to
weak solutions (in the sense of (16)) to the initial-boundary value problem (15).

The following von Kármán energy functional φ : S → R and the global dissipa-
tion distance D : S ×S → R due to viscosity will play an important role in our
analysis: we define

φ(u, v) :=

∫
S

1

2
Q2
W

(
e(u) +

1

2
∇v ⊗∇v

)
+

1

24
Q2
W (∇2v)−

∫
S

fv (17)

for (u, v) ∈ S and

D((u0, v0), (u1, v1)) :=
(∫

S

Q2
D

(
e(u1)− e(u0) +

1

2
∇v1 ⊗∇v1 −

1

2
∇v0 ⊗∇v0

)
+

1

12
Q2
D

(
∇2v1 −∇2v0

))1/2

(18)

for (u0, v0), (u1, v1) ∈ S .

In the next sections, we provide mathematical tools which will be used to show
that fully discretized solutions to (15) (i.e., discretized in time and space) converge
to weak solutions (in the sense of (16)) to (15).

3. An abstract convergence result. In this section we first recall the relevant
definitions for metric gradient flows. Then, based on [34], we prove an abstract
convergence result of time-space discretizations to curves of maximal slope.

3.1. Definitions: Curves of maximal slope and time-discrete solutions.
We consider a complete metric space (S ,D). We say a curve u : (a, b) → S is
absolutely continuous with respect to D if there exists m ∈ L1(a, b) such that

D(u(s), u(t)) ≤
∫ t

s

m(r) dr for all a ≤ s ≤ t ≤ b.

The smallest function m with this property, denoted by |u′|D, is called the metric
derivative of u and satisfies for a.e. t ∈ (a, b) (see [3, Theorem 1.1.2] for the existence
proof)

|u′|D(t) := lim
s→t

D(u(s), u(t))

|s− t|
.

We now define the notion of a curve of maximal slope. We only give the basic
definition here and refer to [3, Section 1.2, 1.3] for motivations and more details.
By h+ := max(h, 0) we denote the positive part of a function h.
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Definition 3.1 (Upper gradients, slopes, curves of maximal slope). We consider a
complete metric space (S ,D) with a functional φ : S → (−∞,+∞].

(i) A function g : S → [0,∞] is called a strong upper gradient for φ if for every
absolutely continuous curve v : (a, b)→ S the function g ◦ v is Borel and

|φ(v(t))− φ(v(s))| ≤
∫ t

s

g(v(r))|v′|D(r) dr for all a < s ≤ t < b.

(ii) For each u ∈ S the local slope of φ at u is defined by

|∂φ|D(u) := lim sup
w→u

(φ(u)− φ(w))+

D(u,w)
.

(iii) An absolutely continuous curve u : (a, b)→ S is called a curve of maximal
slope for φ with respect to the strong upper gradient g if for a.e. t ∈ (a, b)

d

dt
φ(u(t)) ≤ −1

2
|u′|2D(t)− 1

2
g2(u(t)).

We introduce time-discrete solutions for a functional φ : S → (−∞,+∞] and
the metric D by solving suitable time-incremental minimization problems: consider
a fixed time step τ > 0 and suppose that an initial datum Y 0

τ is given. Whenever
Y 0
τ , . . . , Y

n−1
τ are known, Y nτ is defined as (if existent)

Y nτ = argminv∈S Φ(τ, Y n−1
τ ; v), Φ(τ, u; v) :=

1

2τ
D(v, u)2 + φ(v). (19)

We suppose that for a choice of τ a sequence (Y nτ )n∈N solving (19) exists. Then we
define the piecewise constant interpolation by

Ỹτ (0) = Y 0
τ , Ỹτ (t) = Y nτ for t ∈ ((n− 1)τ, nτ ], n ≥ 1. (20)

We call Ỹτ a time-discrete solution. Note that the existence of such solutions is
usually guaranteed by the direct method of the calculus of variations under suitable
compactness, coercivity, and lower semicontinuity assumptions.

3.2. Curves of maximal slope as limits of time-space discretizations. In
this subsection we formulate a result about the approximation of curves of maximal
slope. It is based on a result in [34] recalled in Subsection 3.3 below. We first
state our assumptions. We again consider a complete metric space (S ,D) and a
functional φ : S → [0,∞]. Although D naturally induces a topology on S , it is
often convenient to consider a weaker Hausdorff topology σ on S to have more
flexibility in the derivation of compactness properties (see [3, Remark 2.0.5]). We
assume that for each n ∈ N there exists a σ-sequentially compact set KN ⊂ S such
that

{z ∈ S : φ(z) ≤ N} ⊂ KN . (21)

Moreover, we suppose that the topology σ satisfies

(i) zk
σ→ z, wk

σ→ w ⇒ lim inf
k→∞

D(zk, wk) ≥ D(z, w),

(ii) zk
σ→ z ⇒ lim inf

k→∞
φ(zk) ≥ φ(z). (22)

We further assume the existence of mutual recovery sequences: for each sequence

zk
σ→ z and w ∈ S there exists a sequence (wk)k ⊂ S such that

lim sup
k→∞

D(zk, wk) ≤ D(z, w), φ(z)− φ(w) ≤ lim inf
k→∞

(
φ(zk)− φ(wk)

)
. (23)
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This condition is reminiscent of [32, (2.1.37)]. We also point out that this assump-
tion is weaker than the one considered in [34, (2.26)-(2.27)].

We consider a sequence of subspaces Sk ⊂ S , k ∈ N, such that each Sk is closed
with respect to the topology σ. By ρ we denote a stronger topology on S with the
property that φ and D are continuous with respect to ρ. We suppose that

⋃
k Sk

is ρ-dense in S , i.e., for each z ∈ S we find a sequence (zk)k ∈ S such that

zk
ρ→ z. (24)

In our applications, Sk will represent finite element subspaces.
Finally, we require a property about geodesical convexity : let M > 0 and let

Θ1
M ,Θ

2
M : [0,+∞) → [0,+∞) be continuous, increasing functions which satisfy

limt→0 Θ1
M (t)/t = 1 and limt→0 Θ2

M (t)/t = 0. We suppose that for all z0, z1 ∈ S
with φ(z0) ≤M there exists a curve (γs)s∈[0,1] ⊂ S with γ0 = z0 and γ1 = z1 such
that

(i) D
(
z0, γs

)
≤ sΘ1

M

(
D(z0, z1)

)
,

(ii) φ(γs) ≤ (1− s)φ(z0) + sφ(z1) + sΘ2
M

(
D(z0, z1)

)
. (25)

Moreover, we assume that, if z0, z1 in Sk, then (γs)s∈[0,1] ⊂ Sk, as well. In our
applications, these curves will simply be convex combinations and, in this context,
we will exploit that the finite element spaces Sk are obviously convex sets.

Remark 1 (Convexity assumption on Φ). We mention that the condition presented
here is tailor-made for our applications to the viscoelastic plate model since in this
case we can find curves satisfying (25) for specific Θ1

M and Θ2
M , see Lemma 4.4

below. We point out that the condition is slightly more general than the one used
in [3, Assumption 2.4.5] or [34, Assumption 9]: fix λ ∈ R and let λ− = −λ for λ ≤ 0
and 1/λ− = +∞ else. We suppose that there exists a curve (γs)s∈[0,1] ⊂ S with

γ0 = z0 and γ1 = z1 such that for all τ ∈ (0, 1/λ−) and all s ∈ [0, 1] there holds

Φ(τ, z0; γs) ≤ (1− s)Φ(τ, z0; γ0) + sΦ(τ, z0; γ1)− 1

2

(1

τ
+ λ
)
s(1− s)D(z0, z1)2.

(26)

Note here that the curve (γs)s is chosen independently of τ . A prototypical case is
the case of λ-geodesically convex functionals φ, see [3, Definition 2.4.3]. We briefly
check that (26) implies (25).

In view of (19), multiplying (26) with 2τ and passing to the limit τ → 0 we
obtain

D(z0, γs)
2 ≤ (1− s)D(z0, γ0)2 + sD(z0, γ1)2 − s(1− s)D(z0, z1)2 = s2D(z0, z1)2,

i.e., (25)(i) holds for Θ1
M (t) = t. On the other hand, for τ ↗ 1/λ−, we get

φ(γs) ≤ Φ(1/λ−, z0; γs) ≤ (1− s)Φ(1/λ−, z0; γ0) + sΦ(1/λ−, z0; γ1)

≤ (1− s)φ(z0) + sφ(z1) + s
λ−

2
D(z0, z1)2,

i.e., (25)(ii) holds for Θ2
M (t) = λ−

2 t
2. In this sense, (26) can be understood as a

special case of (25) with Θ1
M being the identity and Θ2

M being quadratic.

We now state or main approximation result. Recall the definition of time-discrete
solutions Ỹτ in (19)-(20). We say that Ỹτ is a time-discrete solution in Sk if Ỹτ (0) ∈
Sk and the minimization problem in (19) is restricted to Sk.
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Theorem 3.2. Let (S ,D) be a complete metric space and let φ : S → [0,∞].
Consider topologies τ and ρ on S such that D and φ are continuous with respect to
ρ. Consider σ-closed subspaces Sk ⊂ S and suppose that (21)-(25) hold. Consider
a null sequence (τk)k. Let z̄0 ∈ S .

Then there exist initial values (Y 0
k,τk

)k satisfying Y 0
k,τk
∈ Sk and

Y 0
k,τk

σ→ z̄0, φ(Y 0
k,τk

)→ φ(z̄0), (27)

sequences of time-discrete solutions (Ỹk,τk)k in Sk starting from (Y 0
k,τk

)k, and a

limiting curve z : [0,+∞)→ S such that up to a subsequence (not relabeled)

Ỹk,τk(t)
σ→ z(t), φ(Ỹτk(t))→ φ(z(t)) ∀t ≥ 0

as k →∞. The function z is a curve of maximal slope for φ with respect to |∂φ|D.

3.3. Curves of maximal slope as limits of time-discrete solutions. In this
subsection we recall a result about the limits of time-discrete solutions obtained
by Ortner [34] which is the main ingredient for the proof of Theorem 3.2. We
consider a set S and a sequence of metrics (Dk)k on S as well as a limiting metric
D. We again assume that all metric spaces are complete. Moreover, let (φk)k be a
sequence of functionals with φk : S → [0,∞].

As before, we consider a Hausdorff topology σ on S which is possibly weaker
than the one induced by D. We suppose that the topology σ satisfies

zk
σ→ z, wk

σ→ w ⇒ lim inf
k→∞

Dk(zk, wk) ≥ D(z, w). (28)

Moreover, assume that for all n ∈ N there exists a σ-sequentially compact set
KN ⊂ S such that for all k ∈ N

{z : z ∈ S , φk(z) ≤ N} ⊂ KN . (29)

Specifically, for a sequence (zk)k with φk(zk) ≤ N , we find a subsequence (not

relabeled) and z ∈ S such that zk
σ→ z. We suppose lower semicontinuity of the

energies and the slopes in the following sense: for all z ∈ S and sequences (zk)k,
zk ∈ Sk, we have

zk
σ→ z ⇒ lim inf

k→∞
φk(zk) ≥ φ(z), (30a)

zk
σ→ z, supk φk(zk) < +∞ ⇒ lim inf

k→∞
|∂φk|Dk

(zk) ≥ |∂φ|D(z). (30b)

We remark that the condition in [34, (2.10)] is slightly stronger than (30b) since
there the condition is required for all sequences and not only on sublevel sets of
φk. The following results remain true under the weaker assumption (30b), cf., e.g.,
[3, Corollary 2.4.12]. Note that nonnegativity of φk and φ can be generalized to
a suitable coerciveness condition, see [3, (2.1.2b)] or [34, (2.5)], which we do not
include here for the sake of simplicity. We formulate the main convergence result
of time-discrete solutions to curves of maximal slope, proved in [34, Section 2].

Theorem 3.3. Suppose that (28)-(30) hold. Moreover, assume that |∂φ|D is a
strong upper gradient for φ. Consider a null sequence (τk)k. Let (Y 0

k,τk
)k with

Y 0
k,τk
∈ S and z̄0 ∈ S be initial data satisfying

(i) supk D
(
Y 0
k,τk

, z̄0

)
< +∞,

(ii) Y 0
k,τk

σ→ z̄0, φk(Y 0
k,τk

)→ φ(z̄0). (31)
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Then for each sequence of discrete solutions (Ỹk,τk)k for φk and Dk starting from
(Y 0
k,τk

)k, see (19)-(20), there exists a limiting function z : [0,+∞) → S such that

up to a subsequence (not relabeled)

Ỹk,τk(t)
σ→ z(t), φk(Ỹτk(t))→ φ(z(t)) ∀t ≥ 0

as k →∞, and z is a curve of maximal slope for φ with respect to |∂φ|D.

For the proof we refer to [34, Proposition 5, 6]. We comment that this convergence
result might seem weak at first glance since in the family of approximations there
exists only a subsequence converging to a solution. In practice, however, this often
does not cause problems, see [34, Remark 7] for a thorough comment.

3.4. Proof of Theorem 3.2. This subsection is devoted to the proof of Theorem
3.2. Consider the complete metric spaces (S ,D) and (Sk,D), the functional φ :
S → [0,+∞], and recall assumptions (21)-(25). We start with a representation
of the local slope defined in Definition 3.1. We also define φk : S → [0,+∞] by
φk(z) = φ(z) if z ∈ Sk and φk(z) = +∞ else.

Lemma 3.4 (Representation of the local slope). Let M > 0. The local slope for
the energy φ in the complete metric space (S ,D) admits the representation

|∂φ|D(z) = sup
w 6=z, w∈S

(
φ(z)− φ(w)−Θ2

M

(
D(z, w)

))+
Θ1
M

(
D(z, w)

)
for all z ∈ S with φ(z) ≤M , where Θ1

M and Θ2
M are the functions from (25). The

local slope is a strong upper gradient for φ. The same representation holds for φk
in place of φ.

Proof. We prove the result only for φ. The argument for φk is exactly the same
which we will explain briefly at the end of the proof. We follow the lines of the proofs
of Theorem 2.4.9 and Corollary 2.4.10 in [3], see also [23, Lemma 4.9]. Let M > 0
and z ∈ S with φ(z) ≤M . Recall that limt→0 Θ1

M (t)/t = 1 and limt→0 Θ2
M (t)/t =

0. We also recall the definition of the local slope in Definition 3.1 and obtain

|∂φ|D(z) = lim sup
w→z

(φ(z)− φ(w))+

D(z, w)
= lim sup

w→z

(
φ(z)− φ(w)−Θ2

M

(
D(z, w)

))+
Θ1
M

(
D(z, w)

)
≤ sup
w 6=z,w∈S

(
φ(z)− φ(w)−Θ2

M

(
D(z, w)

))+
Θ1
M

(
D(z, w)

) .

In the second equality we used that w → z means D(z, w) → 0, and the fact that
limt→0 Θ1

M (t)/t = 1 and limt→0 Θ2
M (t)/t = 0.

To see the other inequality, we fix w 6= z. It is not restrictive to suppose that

φ(z)− φ(w)−Θ2
M

(
D(z, w)

)
> 0.

Let (γs)s∈[0,1] be the curve given in (25) with γ0 = z and γ1 = w. By (25) we obtain

φ(z)− φ(γs)

D(z, γs)
≥
sφ(z)− sφ(w)− sΘ2

M

(
D(z, w)

)
sΘ1

M

(
D(z, w)

) .

Since D(γs, z)→ 0 as s→ 0, see (25)(i), we conclude

|∂φ|D(z) ≥
φ(z)− φ(w)−Θ2

M

(
D(z, w)

)
Θ1
M

(
D(z, w)

) .
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The claim now follows by taking the supremum with respect to w ∈ S .
With this representation of the local slope at hand, one can also show that |∂φ|D

is a strong upper gradient. We refer the reader to [3, Corollary 2.4.10] and [23,
Lemma 4.9] for details.

The same argument works for φk in place of φ. The only important point to
notice is that the curve (γs)s∈[0,1] lies in Sk if z, w ∈ Sk, see the line below (25),
i.e., φk(γs) = φ(γs) for s ∈ [0, 1].

We are now ready for the proof of Theorem 3.2.

Proof of Theorem 3.2. Consider a null sequence (τk)k sequence and z̄0 ∈ S . By
(24) and the fact that φ is continuous with respect to ρ (to recall its definition, see
the paragraph preceding (24)) we find a sequence (Y 0

k,τk
)k satisfying Y 0

k,τk
∈ Sk,

Y 0
k,τk

ρ→ z̄0, and φ(Y 0
k,τk

) → φ(z̄0). This yields (27) and also (31)(ii). Since also D
is continuous with respect to ρ, (31)(i) holds as well.

Recall the definition φk : S → [0,+∞] by φk(z) = φ(z) if z ∈ Sk and φk(z) =

+∞ else. We define time-discrete solutions (Ỹk,τk)k in the sense of (19)-(20) with
respect to φk starting from (Y 0

k,τk
)k. Their existence follows from the direct method

of the calculus of variations, by using (21), (22), and the fact that Sk is closed with
respect to σ. Clearly, these correspond to time-discrete solutions for φ in Sk.

It remains to check that the time-discrete solutions converge to a limiting curve
which is a curve of maximal slope for φ with respect to |∂φ|D. Our goal is to apply
Theorem 3.3. Since (31) has already been verified and |∂φ|D is a strong upper
gradient by Lemma 3.4, it remains to confirm (28)-(30). Set Dk = D for all k ∈ N.
First, (28) and (29) follow from the fact that φ ≤ φk, (21), and (22)(i). In a similar
fashion, (30a) follows from (22)(ii). We now show (30b).

Consider a sequence zk ∈ Sk with supk φk(zk) ≤ M < +∞ and zk
σ→ z. By

(30a) we find also φ(z) ≤M . Let ε > 0. By applying Lemma 3.4 we choose w ∈ S
such that

|∂φ|D(z) ≤
(
φ(z)− φ(w)−Θ2

M

(
D(z, w)

))+
Θ1
M

(
D(z, w)

) + ε. (32)

Let (wk)k ⊂ S be a mutual recovery sequence as given by (23). By (24) and the fact
that D and φ are continuous with respect to the topology ρ, we can suppose that
wk ∈ Sk and convergence (23) still holds. By (32), φ(zk) = φk(zk), φ(wk) = φk(wk),
and the fact that Θi

M is continuous, increasing for i = 1, 2, we then obtain

|∂φ|D(z)− ε ≤ lim inf
k→∞

(
φk(zk)− φk(wk)−Θ2

M

(
D(zk, wk)

))+
Θ1
M

(
D(zk, wk)

) .

By Lemma 3.4 (for φk) we then get

|∂φ|D(z)− ε ≤ lim inf
k→∞

sup
w 6=zk,w∈S

(
φk(zk)− φk(w)−Θ2

M

(
D(zk, w)

))+
Θ1
M

(
D(zk, w)

)
= lim inf

k→∞
|∂φk|D(zk).

As ε was arbitrary, we get (30b).
The statement now follows from the abstract convergence result formulated in

Theorem 3.3.
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4. Finite element approximation of weak solutions to von Kármán vis-
coelastic plates. In this section we apply Theorem 3.2 to our example of von
Kármán viscoelastic plates. Let S = W 1,2

0 (S;R2)×W 2,2
0 (S), see (14). We denote

the strong convergence in W 1,2(S;R2) ×W 2,2(S) by
ρ→. Moreover, we introduce

a weak topology σ on S : we say that (uk, vk)
σ→ (u, v) if uk ⇀ u weakly in

W 1,2(S;R2) and vk ⇀ v weakly in W 2,2(S). We let Sk ⊂ S be finite dimensional
subspaces of finite elements such that Sk is closed with respect to σ and

⋃
k Sk is

ρ-dense in S in the sense of (24). For an example of such spaces we refer to Section
5 below.

We let φ and D as defined in (17) and (18), respectively. For simplicity, we set
f ≡ 0 since the adaptions for the general case are minor and standard.

We recall that Ỹk,τ is called a time-discrete solution in Sk if Ỹk,τ (0) ∈ Sk and the
minimization problem in (19) is restricted to Sk. Our main result is the following.

Theorem 4.1 (Finite element approximation of weak solutions). Consider a null
sequence (τk)k and let (u0, v0) ∈ S . Then there exist initial values (U0

k,τk
)k, (V 0

k,τk
)k

satisfying (U0
k,τk

, U0
k,τk

)k ∈ Sk and

(U0
k,τk

, V 0
k,τk

)
ρ→ (u0, v0), φ(U0

k,τk
, U0

k,τk
)→ φ(u0, v0),

sequences of time-discrete solutions (Ũk,τk , Ṽk,τk)k in Sk starting from the initial
values (U0

k,τk
, U0

k,τk
)k, and a weak solution (u, v) : [0,∞) → S to the partial dif-

ferential equations (15) in the sense of (16) such that up to a subsequence (not
relabeled)(
Ũk,τk(t), Ṽk,τk(t)

) ρ→ (u(t), v(t)), φ
(
Ũk,τk(t), Ṽk,τk(t)

)
→ φ(u(t), v(t)) ∀t ≥ 0

as k →∞.

Note that this theorem provides us with the strong convergence of time-discrete
finite-element approximations to a solution to the original problem.

The result relies on our abstract approximation result stated in Theorem 3.2. In
order to apply Theorem 3.2, we need to check the assumptions (21)-(25). To this
end, we recall some of the results obtained in [23].

Lemma 4.2 (Properties of (S ,D) and φ). We have:

(i) (S ,D) is a complete metric space.
(ii) Compactness: If (uk, vk)k ⊂ S is a sequence with supk φ(uk, vk) < +∞, then

(uk, vk)k is bounded in W 1,2(S;R2)×W 2,2(S).
(iii) Topologies: The topology induced by D is equivalent to the topology ρ.
(iv) Continuity: D((uk, vk), (u, v))→ 0 ⇒ limk→∞ φ(uk, vk) = φ(u, v).

Proof. See [23, Lemma 4.6].

Theorem 4.3 (Curves of maximal slope and weak solutions). For all (u0, v0) ∈ S ,
each curve of maximal slope (u, v) : [0,∞) → S for φ with respect to |∂φ|D with
(u, v)(0) = (u0, v0) is a weak solution to the partial differential equations (15) in
the sense of (16).

Proof. See [23, Theorem 2.2].

Lemma 4.4 (Convexity and generalized geodesics). Let M > 0. Then there exist
smooth increasing functions Θ1,Θ2

M : [0,∞)→ [0,∞) satisfying limt→0 Θ1(t)/t = 1
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and limt→0 Θ2
M (t)/t = 0 such that for all (u0, v0) ∈ S with φ(u0, v0) ≤ M and all

(u1, v1) ∈ S there holds

(i) D
(
(u0, v0), (us, vs)

)
≤ sΘ1

(
D
(
(u0, v0), (u1, v1)

))
,

(ii) φ(us, vs) ≤ (1− s)φ(u0, v0) + sφ(u1, v1) + sΘ2
M

(
D
(
(u0, v0), (u1, v1)

))
,

where us := (1− s)u0 + su1 and vs := (1− s)v0 + sv1, s ∈ [0, 1].

Proof. See [23, Lemma 4.8].

Lemma 4.5 (Representation of energy and dissipation). Let Ω = S× (− 1
2 ,

1
2 ). For

(u, v) ∈ S we define for brevity

G(u, v)(x′, x3) = e(u)(x′) +
1

2
∇v(x′)⊗∇v(x′)− x3∇2v(x′) for x = (x′, x3) ∈ Ω.

(33)

Then φ and D can be represented as

(i) φ(u, v) =

∫
Ω

1

2
Q2
W (G(u, v)),

(ii) D
(
(u1, v1), (u2, v2)

)
=
(∫

Ω

Q2
D

(
G(u1, v1)−G(u2, v2)

))1/2

. (34)

Proof. See [23, Remark 5.4]

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. First, note that φ and D are continuous with respect to ρ,
see Lemma 4.2(iii),(iv). We now check that (21)-(25) hold. First, (21) follows from
the choice of σ, Lemma 4.2(ii), and a compactness argument.

Recall (33). Given a sequence (uk, vk)k with (uk, vk)
σ→ (u, v), we observe

G(uk, vk) ⇀ G(u, v) weakly in L2(Ω;R2×2) since W 2,2 ⊂⊂ W 1,4 in dimension two.
Then property (22) follows from (34) and the fact that Q2

W and Q2
D are positive

semi-definite, see below (13). By the definition of Sk we get (24). To see (25), we
use Lemma 4.4 and the fact that, if (u0, v0), (u1, v1) ∈ Sk, the convex combinations
also lie in Sk due to the convexity of the sets Sk.

It remains to prove (23). To this end, consider a sequence (uk, vk) with (uk, vk)
σ→

(u, v), and recall that G(uk, vk) ⇀ G(u, v) weakly in L2(Ω;R2×2). Suppose that
also (ū, v̄) ∈ S is given. We define ūk = uk + ū− u and v̄k = vk + v̄ − v. Then by
(33) and an elementary expansion we get

G(uk, vk)−G(ūk, v̄k)

= e(u− ū)− x3∇2(v − v̄)− 1

2
∇(v − v̄)⊗∇(v − v̄) + sym(∇vk ⊗∇(v − v̄)).

Since vk → v strongly in W 1,4(S), we get that G(uk, vk) − G(ūk, v̄k) converges
strongly in L2(Ω;R2×2) to

e(u− ū)− x3∇2(v − v̄)− 1

2
∇(v − v̄)⊗∇(v − v̄) + sym(∇v ⊗∇(v − v̄)),

i.e., G(uk, vk) − G(ūk, v̄k) converges strongly in L2(Ω;R2×2) to G(u, v) − G(ū, v̄).
In view of (34)(ii), this implies

D
(
(uk, vk), (ūk, v̄k)

)
→ D

(
(u, v), (ū, v̄)

)
. (35)
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Moreover, by an elementary expansion and (34)(i) we get

φ(uk, vk)− φ(ūk, v̄k) =

∫
Ω

1

2

(
Q2
W (G(uk, vk))−Q2

W (G(ūk, v̄k))
)

= −
∫

Ω

C2
W [G(uk, vk), G(ūk, v̄k)−G(uk, vk)]

−
∫

Ω

1

2
Q2
W

(
G(ūk, v̄k)−G(uk, vk)

)
.

Since G(uk, vk)−G(ūk, v̄k) converges strongly to G(u, v)−G(ū, v̄) and G(uk, vk) ⇀
G(u, v) weakly in L2(Ω;R2×2), we get φ(uk, vk)−φ(ūk, v̄k)→ φ(u, v)−φ(ū, v̄). This
along with (35) shows that (25) holds.

Having checked (21)-(25), we can now apply Theorem 3.2. This yields the exis-
tence of time-discrete solutions and of a curve of maximal slope such that conver-
gence of time-discrete solutions holds with respect to σ. The fact that the curve
is a weak solution to (15) follows from Theorem 4.3. It remains to prove that the
convergence of time-discrete solutions holds with respect to the strong topology ρ.

To confirm the latter property, we use the principle that weak convergence to-
gether with energy convergence induces strong convergence. More specifically, given

(uk, vk)
σ→ (u, v) and φ(uk, vk) → φ(u, v), we argue as follows. Since G(uk, vk) ⇀

G(u, v) weakly in L2(Ω;R2×2), we get by (34)(i) that∫
Ω

1

2
Q2
W

(
G(uk, vk)−G(u, v)

)
=

∫
Ω

C2
W [G(u, v), G(u, v)−G(uk, vk)]

+ φ(uk, vk)− φ(u, v)→ 0.

Since Q2
W is positive definite on R2×2

sym, see below (13), we get sym(G(uk, vk)) →
sym(G(u, v)) strongly in L2(Ω;R2×2

sym). Then, in view of (33), using Poincaré’s and
Korn’s inequality, together with zero boundary conditions, it is elementary to check

that uk → u in W 1,2(S;R2) and vk → v in W 2,2(S), i.e., (uk, vk)
ρ→ (u, v).

5. Numerical experiments. In this section we describe two numerical experi-
ments on a homogeneous and isotropic viscoelastic plate. Our computational strat-
egy relies on a sequence of minimization problems based on (17) and (18). Take a
time horizon T > 0 and a time step τ > 0 such that nmax := T/τ ∈ N. Having an
initial condition (u0, v0) ∈ Sk in a finite element space Sk detailed below, we find,
for 1 ≤ n ≤ nmax, a solution (un, vn) ∈ Sk of the following problem

minimize φ(u, v) +
1

2τ
D2((un−1, vn−1), (u, v))

subject to (u, v) ∈ Sk, (36)

where φ and D are defined in (17) and (18), respectively. As Q2
W we take an

isotropic material, i.e.,

Q2
W (G) := λtr2(G) + 2µ|G|2,

and
Q2
D(G) := 4c|G|2, c > 0

for every symmetric G ∈ R2×2
sym. The constants λ, µ are Lamé constants and c > 0

represents a viscosity parameter.
A finite element method (FEM) is applied for the numerical approximation of

the in-plane and out-of-plane displacement fields u and v. This space corresponds
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Figure 1. A rectangular mesh with Gauss integration points:
midpoints are used for evaluation of Q1 elements (left) and four
points for evaluation of Bogner-Fox-Schmit elements (right).

to Sk, for some k ∈ N large enough, as considered in Section 4. We assume a
uniform rectangular mesh in 2D discretizing a square domain

S = (−1, 1)× (−1, 1)

into square elements with the edge of the length h = 1/k and further approximate:

1. a vector function u = (u1, u2) by Q1k elements, i.e., elementwise bilinear and
globally continuous in each component u1 and u2,

2. a scalar function v by the Bogner-Fox-Schmit (BFSk) rectangular elements
[13], i.e., a bi-cubic Hermite elements, that provide globally C1 approxima-
tions.

We define Sk = {(u, v) ∈ Q1k × BFSk}. The ρ-denseness of
⋃
k Sk in S follows

from the properties of the finite-element interpolants, see [18, Thms. 3.2.3 and 6.1.7]
or [14]. A rectangular mesh with 81 nodes and 64 rectangles is shown in Figure 1
together with Gauss integration points used in quadrature formulas.

5.1. Benchmark I. We consider a time sequence of minimization problems with
the time step τ = 1, Lamé parameters λ = µ = 1e3, the viscosity parameter c = 3e3,
and the constant volume force f = −1e3. The initial condition is given by

u0 = (0, 0), v0 = (1− x2
1)2(1− x2

2)2 for x = (x1, x2) ∈ S, (37)

and the boundary condition for t ≥ 0 by

u(t, x) = (0, 0), v(t, x) = 0, ∇v(t, x) = (0, 0) for x ∈ ∂S.

Although the choice of parameters above is not physically relevant, the meaning
of this benchmark is clear: The initial condition (u0, v0) is not equilibrated and
therefore after some time (the speed of this transition is driven by the viscosity
constant c) the energy stabilizes at its equilibrium given by the volume force oriented
in the gravity direction. The first 8 minimizers are displayed in Figure 2. The scalar
field v is displayed as a vertical plate deformation, whereas the vector displacement
field u is displayed as a deformed mesh.
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

(e) t=5 (f) t=6

(g) t=7 (h) t=8

Figure 2. Time sequence of energy minimizers (u, v) in Bench-
mark I. To emphasize the mesh deformation, the nodes displace-
ment is magnified by a factor of 4.
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

(e) t=5 (f) t=6

(g) t=7 (h) t=8

Figure 3. Time sequence of energy minimizers (u, v) in Bench-
mark II. To emphasize the mesh deformation, the nodes displace-
ment is magnified by a factor of 7.
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(a) v0 (b) ∂2v0
∂x1∂x2

(c) ∂v0
∂x1

(d) ∂v0
∂x2

Figure 4. Example of C1 approximation by the Bogner-Fox-
Schmit rectangular elements: the function v0 = (1− x2

1)2(1− x2
2)2

from Benchmark 1 is represented by its value (A), gradient com-
ponents (C), (D) and the second mixed derivative (B) in all mesh
nodes.

5.2. Benchmark II. The theoretical part of this paper covers boundary conditions
defined on the full boundary of S only. The computer simulations, however, are
possible also for boundary conditions given on a part of the boundary ∂S. We
consider a time sequence of minimization problems with the time step τ = 1, Lamé
parameters λ = µ = 1e3, the viscosity parameter c = 3e3, and the constant volume
force f = 1e2. The initial condition is given by

u0 = (0, 0), v0 = 0 for x ∈ S,

and the boundary condition for t ≥ 0 by

u(t, x) = (0, 0), v(t, x) = 0, ∇v(t, x) = (0, 0) for x ∈ (−1, 1)× {−1, 1},

so boundary conditions are given on the lower and upper parts of the domain
boundary only. The first 8 minimizers are displayed in Figure 3.

5.3. Implementation details. Our Matlab implementation is based on former
vectorized codes of [4, 26, 38] that allow for a fast assembly of various finite element
matrices. The code is available at

https://www.mathworks.com/matlabcentral/fileexchange/72991

https://www.mathworks.com/matlabcentral/fileexchange/72991
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for download. It includes an own implementation of the Bogner-Fox-Schmit (BFS)
rectangular elements for a uniformly refined rectangular mesh [43], where all rect-
angular elements are for simplicity of the same size hx1×hx2 (in our computations
hx1 = hx2 = h). The basis functions on each rectangle are based on bicubic polyno-
mials, i.e., tensor products of 4 cubic (Hermite) polynomials. They have 16 degrees
of freedom with 4 degrees in each of its 4 corner nodes approximating: a function
value, its gradient (two components), and the second mixed derivative. Therefore,
the initial function v0 must have all these fields available in our simulations. Figure
4 depicts v0 from (37) represented in terms of BFS elements. We recall that BFS
elements were also successfully tested in [27].
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