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ABSTRACT
Learning parameters of a probabilistic model is a necessary step in
machine learning tasks. We present a method to improve learning
from small datasets by usingmonotonicity conditions. Monotonicity
simplifies the learning and it is often requiredby users.Wepresent an
algorithm for Bayesian Networks parameter learning. The algorithm
andmonotonicity conditions are described, and it is shown that with
the monotonicity conditions we can better fit underlying data. Our
algorithm is tested on artificial and empiric datasets.We use different
methods satisfying monotonicity conditions: the proposed gradient
descent, isotonic regressionEM, andnon-linearoptimization.Wealso
provide results of unrestricted EM and gradient descent methods.
Learned models are compared with respect to their ability to fit data
in termsof log-likelihoodand their fit of parameters of thegenerating
model. Our proposed method outperforms other methods for small
sets, and provides better or comparable results for larger sets.
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1. Introduction

Our research is focused in the domain of Computerized Adaptive Testing (CAT) work-
ing with Bayesian Networks (BNs) to model students’ abilities, which is also addressed, for
example, byAlmond andMislevy (1999), van der Linden andGlas (2000). CAT is a concept
of testing latent student abilities, which allows creating shorter tests, asking fewer ques-
tions while keeping the same level of information. This task is performed by asking each
individual student the right questions. Questions are selected based on a student model.
In common practice, experts often use Item Response Theory models (IRT) (Rasch 1960),
which are well explored and have been in use for a long time. Nevertheless, we have focused
our attention on a different family of models. The reason is that Bayesian Networks pro-
vide us with better relationships in the model. It is, for example, possible to model more
complex influences between skills and questions because BNs are not limited to connect-
ing each skill with each question; moreover, we can introduce relationships between skills
themselves. We address the topic of the model selection in larger detail in our previous
work, e.g. Plajner and Vomlel (2016b).
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During our research, we have noticed that there are certain conditions which should
be satisfied in this specific modeling task. We have especially been focused on monotonic-
ity conditions. Monotonicity conditions incorporate qualitative influences into a model.
These influences restrict conditional probabilities inside the model in a specific way to
avoid unwanted behavior. Monotonicity in Bayesian Networks has been discussed in the
literature for a long time. Themost relevant papers are (Wellman 1990; Druzdzel andHen-
rion 1993) and more recently (Restificar and Dietterich 2013; Masegosa, Feelders, and der
Gaag 2016). Monotonicity restrictions are often motivated by reasonable demands from
model users. In our case of CAT, it means we want to guarantee that students having a
higher level of skill(s) will have a higher probability of answering questions correctly. As
another example ofmonotonicity usage, imagine a BN that is learned to predict the effect of
commercial promotions of products in retail stores. There are certain factors which should
have an isotone effect. For example, secondary placement in the store, i.e. the position in
the store’s layout. A better position should provide a better result. If it does not, it is most
likely caused by other factors or noise in the data. In this case, we want the learned effect
to be isotone and our proposed algorithm can be used to provide it.

Certain types of models include monotonicity naturally, due to the way in which they
are constructed. This is not true in the case of general BNs. In order to satisfy these condi-
tions, we have to introduce restrictions to conditional probabilities during the process of
parameter learning.

In our previous work, we showed that monotonicity conditions are useful in the context
of CAT (Plajner and Vomlel 2016b). Later we applied these conditions to Bayesian Net-
works (Plajner and Vomlel 2017). In this article, we present a gradient descent optimum
search method for BN parameter learning under monotonicity conditions. The algorithm
we present provides a tool to include monotonicity in the BN models with multiple-state
variables. We implemented the new method in R language and performed experimental
verification of our assumptions. Experiments were performed on two datasets. The first
one, a synthetic dataset, is generated from artificial models satisfying monotonicity condi-
tions. The second one, an empirical dataset, is newly obtained and it consists of data from
the Czech high school state final exam. This second dataset contains a large volume of reli-
able data, and it is very useful for the empirical verification of our approach. Experiments
on these datasets were performed with various parameter learning methods both satis-
fying and not satisfying the monotonicity restrictions. The results are compared to show
differences between individual methods and the approaches with and without considering
monotonicity.

In contrast to our previously published articles, this paper brings significant modi-
fications and improvements. Here, we establish a way of using our proposed gradient
descent algorithm for BNs that have other than binary variables.We alsomodified the irEM
method, which we use as a reference for the work with multi-state variables. In this article,
we add a new dataset, which is based on large scale real-world data in a domain where the
monotonicity should apply. Moreover, we have revised the way to evaluate models in order
to create a more precise and comprehensive evaluation. This step includes adding to the
comparison of additional monotonicity-ensuring methods.

The structure of this article is as follows. First, we establish our notation and describe
monotonicity conditions in detail in Section 2.1. Next, we present different methods for
learning parameters undermonotonicity conditions in Section 3 and afterwordswe present
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our proposed method in Section 3.1. In Section 4, we take a closer look at the experimen-
tal setup and present results of our experiments. Section 5 contains an overview and a
discussion of the obtained results.

2. BNmodels andmonotonicity

2.1. Models and adaptive testing

In our work we focus on computerized adaptive testing and assessing student knowledge
and abilities, using Bayesian Networks with a specific structure. The structure is a bipartite
network, which consists of a layer of skills and a layer of questions. Skills are parents in our
structure and correspond to specific abilities a student may or may not have. Individual
states of these skills are interpreted as levels of knowledge. This interpretation is generally
difficult as skills are unobserved variables. Having monotonicity constraints in our mod-
els, we are able to introduce an ordering of these levels and refer to them as increasing
(or decreasing) qualities of skills. Children in the bipartite structure are question nodes,
which correspond to particular questions in a test. Levels of these nodes correspond to
the points obtained by solving the specific problem (the problem can be divided into sub-
problemswith different scores). Thesemodels are described in further detail in Plajner and
Vomlel (2016a).

2.2. Notation

In this article, we use BNs to model students in the domain of CAT. Details about BNs can
be found, for example, in Pearl (1988), Nielsen and Jensen (2007). Themodel we use can be
considered a special BN structure such as Multi-dimensional Bayesian Network Classifier
which is described, e.g. in van der Gaag andWaal (2006). We restrict ourselves to the BNs
that have two levels. In compliance with our previous articles, variables in the parent level
are skill variables S. The child level contains question variables X. Examples of network
structures, which we also used for experiments, are shown in Figures 1 and 2.

• We use the symbol X to denote the multivariable (X1, . . . ,Xn) taking states x =
(x1, . . . , xn). The total number of question variables is n, the set of all indices of question
variables is N = {1, . . . , n}. Question variables’ individual states are xi,t , t ∈ {0, . . . , ni}
and they are observable. Each question can have a different number of states; the max-
imum number of states over all variables is Nmax = maxi(ni) + 1. States are integers
with the natural ordering.1

Figure 1. An artificial BN model.
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Figure 2. A BNmodel for CAT.

• We use the symbol S to denote the multivariable (S1, . . . , Sm) taking states s =
(s1, . . . , sm). The set of all indices of skill variables is M = {1, . . . ,m}. Skill variables
have variable numbers of states, the number of states of a variable Sj ismj, and individual
states are sj,k, k ∈ {1, . . . ,mj}. The variable Si = Spa(i) stands for amultivariable contain-
ing the parent variables of the question Xi. Indices of these variables areMi ⊆ M. The
set of all possible state configurations of Si is Val(Si). Skill variables are unobservable.

The BN is defined by, along with its structure, parameters of all questions Xi, i ∈ N , si ∈
Val(Si) which define conditional probabilities as

θ ti,si = P(Xi = t|Si = si),

and, parameters of all skills Sj, j ∈ M as

θ̃j,sj = P(Sj = sj).

From the definition above it follows that the parameters are constrained to be between zero
and one with constraints for question variables

∑
t θ

t
i,si = 1, ∀i, si and, for parent variables,∑

sj θ̃j,sj = 1, ∀j. To avoid these constraints in our gradient method, we reparametrize

θ ti,si =
exp(μt

i,si)∑ni
t′=0 exp(μ

t′
i,si)

,

θ̃j,sj = exp(μ̃j,sj)∑mi
s′j=1 exp(μ̃j,s′j)

.

The set of all question parameters θ ti,si and all skills parameters θ̃j,sj is denoted by θ and μ

is the set of reparameterized parameters. The symbol μi,si = {μt′
i,si , t

′ ∈ {0, . . . , ni}} stands
for the set of parameters for all states of a question Xi given one parent configuration si.
Theoretically,μt′

i,si ∈ R,∀i,∀t′ but for the practical computational issues we forbid the two
extreme values of θ , i.e. 0 and 1. We elaborate more on exact bounds in the experimental
section of this paper in Section 4.



92 M. PLAJNER AND J. VOMLEL

2.3. Monotonicity

The concept of monotonicity in BNs has been discussed in the literature since the 1990s,
see Wellman (1990), Druzdzel and Henrion (1993). Later, its benefits for BN parameter
learning were addressed, for example, by van der Gaag, Bodlaender, and Feelders (2004),
Altendorf, Restificar, andDietterich (2005), Feelders and der Gaag (2005). This topic is still
active, see, e.g. Restificar and Dietterich (2013), Masegosa, Feelders, and der Gaag (2016).

We consider only variables with states from N0 with their natural ordering, i.e. the
ordering of states of skill variable Sj for j ∈ M is

sj,1 ≺ · · · ≺ sj,mj .

A variable Sj has an isotone effect on its child Xi if for all k, l ∈ {1, . . . ,mj}, t′ ∈ {0, . . . , ni −
1} the following holds:2

sj,k � sj,l ⇒
t′∑
t=0

P(Xi = t|Sj = sj,k, s) ≥
t′∑
t=0

P(Xi = t|Sj = sj,l, s),

and antitone effect:

sj,k � sj,l ⇒
t′∑
t=0

P(Xi = t|Sj = sj,k, s) ≤
t′∑
t=0

P(Xi = t|Sj = sj,l, s),

where s is a configuration of the remaining parents of question iwithout Sj. For each ques-
tion Xi, i ∈ M we denote by Si,+ the set of parents with an isotone effect and by Si,− the set
of parents with an antitone effect.

The conditions above are defined for the states of question variable Xi in the set
{0, . . . , ni − 1}. The sum property of conditional probabilities

ni∑
t=0

θ ti,si = 1,

implies that, for ni in the case of the isotone effect:

sj,k � sj,l ⇒ P(Xi = ni|Sj = sj,k, s) ≤ P(Xi = ni|Sj = sj,l, s),

and in the case the antitone effect:

sj,k � sj,l ⇒ P(Xi = ni|Sj = sj,k, s) ≥ P(Xi = ni|Sj = sj,l, s).

Next, we define a partial ordering �i on all state configurations of parents Si of the i-th
question, if for all si, ri ∈ Val(Si):

si �i ri ⇔
(
sij � rij , j ∈ Si,+

)
and

(
rij � sij, j ∈ Si,−

)
.

The monotonicity condition requires that the probability of an incorrect answer is higher
for a lower order parent configuration (the chance of a correct answer increases for higher
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ordered parents’ states), i.e. for all si, ri ∈ Val(Si), k ∈ {0, . . . , ni − 1}:

si �i ri ⇒
k∑

t=0
P(Xi = t|Si = si) ≥

k∑
t=0

P(Xi = t|Si = ri).

In our experimental part, we consider only the isotone effect of parents on their children.
The difference with antitone effects is only in the partial ordering.

3. Learningmodel parameters under monotonicity conditions

Different methods can be used to learn model parameters while satisfying monotonicity
conditions. In this section, we will outline some of them and then we will describe our
newly proposed method. All optimization methods we consider are optimizing the log-
likelihood of the model. Methods, in the order as they are described below, are:

• isotonic regression EM (irEM),
• bounded non-linear optimization (Cobyla),
• restricted gradient method (res gradient).

Isotonic regression EM

Isotonic Regression EM was proposed in Masegosa, Feelders, and der Gaag (2016). The
authors propose a method for parameter learning which ensures convergence to mono-
tonicity satisfying parameters. The method is a modification of the well-known EM
algorithmwhere theM-step is modified to contain an isotonic regression step. This step, in
the case of a solution not complying with the monotonicity conditions, moves the solution
to the border of the admissible parameter space. The steps of the algorithm are applied
iteratively as in the case of the regular EM. In each step a new solution, starting from the
previous point, is found. This solution may or may not satisfy the monotonicity condi-
tions. If it does not, isotonic regression is performed to satisfy them. As we show later in
this paper, this behavior has a tendency to end at the border of the admissible parameter
space. This behavior may imply that the algorithm fails to provide an optimal solution.

We have implemented the generalized version of the irEM algorithm working with
multiple-state parent variables in our previous paper (Plajner and Vomlel 2017). In the
present paper, we further generalize the irEM method to work with multiple states of
children variables as well.

The authors of the irEM algorithm also provide quick-irEM, abbreviated to qirEM,
a version of the algorithm which is a speed optimization modification. In this case, the
isotonic regression step is performed only once after the EM algorithm converges. In
experiments, we have tested this version of the algorithm as well.

Bounded non-linear optimization

The monotonicity constraints form a subspace in the whole parameter space of CPTs’
parameters. A possible approach is to apply an optimization method for finding an opti-
mum only inside this subspace. In that case, the solution would satisfy the monotonicity
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constraints and should be optimal (locally or globally based on the algorithm and proper-
ties of the space itself). In our experiments, we used various methods fromNLOPT library
for non-linear optimization problems (Johnson 2018). From among methods available in
the library, we selected Sequential Least-SquaresQuadratic Programming (Kraft 1994) and
Constrained Optimization BY Linear Approximations (Cobyla) (Powell 1994) methods.
Reasons to select these methods are that they are able to work in our domain of restricted
space and non-linear inequalities formed by the monotonicity constraints. They are local
optimization techniques and as such they do not guarantee global optimum. We have also
experimented with global optimization methods but the time required for these meth-
ods to converge was extensive and this is why we decided to skip experiments with these
methods.

Restricted gradient method

Wepropose to use the RestrictedGradient Searchmethod (which is our proposedmethod)
to find parameters of a BN under monotonicity restrictions. This method uses the gra-
dient descent optimum search technique. It takes a penalized log-likelihood function to
be optimized in order to find the solution of this problem. The penalization encour-
ages the solution to leave the non-admissible area of non-monotonic parameters and
leads the gradient towards a monotonic solution. As such, this method does not strictly
ensuremonotonicity to hold. Nevertheless, there are two important comments to bemade.
The strength of the restriction is variable and setting high restriction values effectively
enforces the solution to be monotonic. Moreover, if the solution is not monotonic the rea-
son might be that the underlying data strongly contradicts it. This method provides an
option to balance data evidence and the monotonicity restrictions and allows to create a
non-monotonic solution. Even though this is possible to achieve, there is no general rule
on how to weight these influences. It depends on the data and the model and requires
expertise to evaluate. If the user is not sure, we propose to use large penalty values to prac-
tically ensure a monotonic solution. This method is described in detail in the following
Section.

3.1. Parameter gradient searchwithmonotonicity

We have developed a method based on gradient descent optimization. We follow the work
of Altendorf, Restificar, and Dietterich (2005) where the authors use a gradient descent
method with exterior penalties. The main difference is that we consider models with hid-
den variables. In this article, we generalize the method from Plajner and Vomlel (2017) to
multi-state question variables.

We denote by D the set of indices of the question vectors. One vector xk, k ∈ D cor-
responds to one student and an observation of i-th variable Xi is xki . The number of
occurrences of the k-th configuration vector in the data sample is dk.

We use the BN model described in Section 2.1 where we have unobserved parent vari-
ables and observed children variables. The parent variables correspond to skills and the
number of their levels set the levels of quality/ability of the skill. The child nodes corre-
spond to questions and the number of levels is the number of possible points obtained in
the particular question. Let Ikt , t ∈ {0, . . . ,Nmax} be sets of indices of the questions in a state
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t. Then, we define the following products based on the observations in the k-th vector:3

pt(μ, s, k) =

⎧⎪⎨
⎪⎩
1, if Ikt = ∅∏

i∈Ikt
exp(μt

i,si)∑ni
t′=0 exp(μ

t′
i,si)

, otherwise
, t ∈ {0, . . . ,Nmax},

pμ(μ, s, k) =
Nmax∏
t=0

pt(μ, s, k),

pμ̃(μ, s) =
m∏
j=1

exp(μ̃j,sj).

We work with the log-likelihood of data modeled by BN with the parameter vector μ:

LL(μ) =
∑
k∈D

dk · log
⎛
⎝ ∑

s∈Val(S)

m∏
j=1

exp(μ̃j,sj)∑mj
s′j=1 exp(μ̃j,s′j)

· pμ(μ, s, k)

⎞
⎠

=
∑
k∈D

dk · log
⎛
⎝ ∑

s∈Val(S)
pμ̃(μ, s)pμ(μ, s, k)

⎞
⎠ − N ·

m∑
j=1

log
mj∑
s′j=1

exp(μ̃j,s′j).

Monotonicity restrictions for the gradient search

To enforce monotonicity into the model we apply a penalty function which penal-
izes solutions that do not satisfy the monotonicity conditions. We will use the following
penalization function for the log-likelihood:

C(μi,si ,μi,ri , t̂, c) = max

⎛
⎝0, c ·

⎛
⎝

∑t̂
t=0 exp(μ

t
i,ri)∑ni

t′=0 exp(μ
t′
i,ri)

−
∑t̂

t=0 exp(μ
t
i,si)∑ni

t′=0 exp(μ
t′
i,si)

⎞
⎠

p⎞
⎠ ,

and the penalized log-likelihood is

LL′(μ, c) = LL(μ) −
∑
i∈N

∑
si�iri

Nmax−1∑
t̂=0

C
(
μi,si ,μi,ri , t̂, c

)
,

where p sets the degree of the polynomial function and it takes only odd values, c is a con-
stant determining the slope of the penalization function, and t̂ is the level of the question
node. The higher the value of c the more strict the penalization is. Theoretically, this con-
dition does not ensure monotonicity but, practically, selecting high values of c results in
monotonic estimates. The polynomial penalty uses an odd degree polynomial function.
We discuss the size of the penalty in the following Section.

Using the penalized log-likelihood, LL′(μ, c), and its gradient ∇(LL′(μ, c)), we can use
standard gradient descent optimization methods to learn the parameter vector μ of BN
models. We provide formulas to compute the gradient in Appendix 1.



96 M. PLAJNER AND J. VOMLEL

3.2. Ensuringmonotonicity with the penalization

Penalization described abovemay provide a solutionwhich is notmonotone. This behavior
is observable especially in instances in which the data strongly contradict the monotonic-
ity conditions. The solution will always be close to the admissible region but the distance
depends on the strength of the penalization. It depends on the specific application whether
we require a strictly monotone result or not. In many cases, it may be acceptable to break
these conditions in order to get a better data fit.When the training sample is very small, it is
particularly easy to have data that contradicts monotonicity. However, in some situations,
we need to enforce monotonicity. It is particularly easy to measure the distance from the
border of the admissible region.We can use the iterative process to ensure monotonicity. If
the final parameter vector after the optimization violates the monotonicity conditions, we
restart the optimization with a stronger penalization and use the end point as a new start-
ing point. This process is repeated until the monotone solution is reached. Nevertheless, in
this section, we also provide a way to ensure monotonicity conditions by setting a strong
enough penalization.

In order to be able to do that and to compare this method with other strictly
monotone methods, we propose the following concept. Below we use the penalization
C(μi,si ,μi,ri , t̂, c).

The penalization of the log-likelihood described above and detailed in Appendix 1 has
to lead the gradient method to the admissible area. We need to ensure that for each μt

i,si

with the parent configuration si in the term

∂LL′(μ, c)
∂μt

i,si
= ∂LL(μ)

∂μt
i,si

(1)

−
∑
si�iri

Nmax∑
t̂=0

∂C
(
μi,si ,μi,ri , t̂, c

)
∂μt

i,si
(2)

−
∑
ri�isi

Nmax∑
t̂=0

∂C
(
μi,ri ,μi,si , t̂, c

)
∂μt

i,si
, (3)

the gradient part of LL(μ, c) (1) is not larger than the penalization terms (2) and (3) while
the parameter vector μ is not in the admissible region. The two terms (2) and (3) of the
penalization gradient are generated by the monotonicity conditions where each condition
generates one item to the outer sum for one or both of them. The first term (2) is for the
situation si �i ri and the second one (3) for the opposite instance ri �i si. For a single
parameter μt

i,si these two gradient parts have opposite effects.
We need to analyze the partial ordering of skill configurations

ri �i si, si �i ri, si, ri ∈ Val(Si),

determining conditions of the question Xi and, more specifically, a single parameter μt
i,si .

Because the penalty and its gradient is zero when the condition is not violated, we can
omit the state configurations for which the condition holds and work only with the con-
figurations for which the penalty is positive, i.e. all pairs si, ri ∈ Val′(Si) ⊆ Val(Si) for
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which

C(μi,si ,μi,ri , t̂, c) > 0.

Given this reduced set Val′(Si) and the partial ordering, there is always one state config-
uration which is the first in the partial ordering. It means that there exists at least one
configuration ŝi for which

{
ŝi �i ri

}
= ∅,∀ri ∈ Val′(Si).

In the part of the gradient corresponding to parameter μt
i,si one of the two sums (ri �i ŝi)

is zero. If we are able to ensure that the penalization part of the gradient is always larger
outside of the admissible region for this parameter, it will bemoved to the admissible region
by the gradientmethod.After this step, thewhole solution either is in the admissible region,
or we can use the same process tomove another parameter to the admissible region as long
as there are any parameters outside of the region.

The penalization drops towards zero as it gets closer to the border of the admissible
region. This behavior creates computational difficulties. The cause of these difficulties lies
in the fact that very small values of penalization can be outweighed by improvements of
the log-likelihood by shifting parameters outside of the admissible space. Thus, it would
be hard to ensure monotonicity in such conditions. To avoid these issues, we shrink the
admissible region by adding a small margin β to the penalization function:

C′
2,p(μi,si ,μi,ri , t̂, c,β)

= max

⎛
⎝0, c ·

⎛
⎝

∑t̂
t=0 exp(μ

t
i,ri)∑ni

t′=0 exp(μ
t′
i,ri)

−
∑t̂

t=0 exp(μ
t
i,si)∑ni

t′=0 exp(μ
t′
i,si)

+ β

⎞
⎠

p⎞
⎠ .

This makes the lowest possible value at the border of the admissible region to be

C∗
2,p(μi,si ,μi,ri , t̂, c,β) = c · βp.

As the penalization function is growing rapidly outside of the admissible region, it is suffi-
cient to ensure the gradient inequality between terms (1), (2) and (3) in the formula above
at the border.

Based on the reasoning above and the formulas to compute the gradient, we set the
constant c = c∗ to ensure monotonicity in the following way

∣∣∣∣∣∂LL(θ)

∂θ ti,si

∣∣∣∣∣ <

∣∣∣∣∣∂C
(
θi,si , θi,ri , t̂, c

)
∂θ ti,si

∣∣∣∣∣
1

(θ̃−)m · (θ−)n
< cpβp−1 · (θ−)2

c > (θ̃−)−m · (θ−)−n−2 · β1−p,
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where β = 0.01 and p = 3 are chosen constants for the penalization. θ̃− and θ− are the
minimal possible parameters values as

θ̃− = exp(μ̃−)

(m − 1)exp(μ̃+) + exp(μ̃−)
,

θ− = exp(μ−)

(n − 1)exp(μ+) + exp(μ−)
,

where μ̃−, μ̃+,μ−,μ+ are the bounds on reparameterized parameters which we use to
prevent the probability values from reaching zero or one. In our case, we use themaximum
of 3 and the minimum of −3, which effectively changes the interval of probabilities of a
three-state variable to approximately [0.0012; 0.995].

3.3. Isotonic regression EM for variables withmultiple states

As mentioned earlier we use the isotonic regression EM method as a comparison method
to our proposed gradient approach. Our algorithm is designed for variables having mul-
tiple states. The original irEM algorithm as it is published in Masegosa, Feelders, and der
Gaag (2016) only works with binary variables. In our previous paper (Plajner and Vom-
lel 2017) we detailed our implementation of this method to work with parent variables in
bipartite networks having multiple states. In order to be able to make the full comparison
with the method proposed in this paper, we also implemented the irEM algorithm based
on original work of Masegosa, Feelders, and der Gaag (2016), and Feelders (2007), where
more information about the generalization to non-binary cases can be found, to work with
multi-state child variables as well.We provide details of our implementation in this section.

For the sake of simplicity, we describe the implementation for isotone effects only as
antitone effects are simple reversions. In our case of multiple states, a variable Sj has an
isotone effect on its child Xi if for all k, l ∈ {1, . . . ,mj}, t′ ∈ {0, . . . , ni − 1}:

sj,k � sj,l ⇒
t′∑
t=0

P(Xi = t|Sj = sj,k, s) ≥
t′∑
t=0

P(Xi = t|Sj = sj,l, s).

More information about the stochastic dominance which is used here to model mono-
tonicity in terms of cumulative distributions can be found in Wellman (1990).

The difference between the binary case and the multi-state case lies in the cumulative
probability. In the binary case, there was only one series of inequalities for t = 0. Never-
theless, the structure of inequalities is the same as in the original irEM algorithm for each
level of t ∈ {0, . . . , ni}. We propose the use of a series of isotonic regression steps. Each step
works with a single level of t, i.e. with cumulative probabilities of question Xi in separate
sets

It =
{ t∑
t′=0

θ t
′
i,si

}
,∀t ∈ {0, . . . , ni}.

We perform the isotonic regression algorithm for each set separately with weights as
relative frequencies in the sameway as in the standard irEMalgorithm to obtain new cumu-
lative probabilities. These probabilities are afterward converted back to non-cumulative
probabilities, i.e. individual variables.
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4. Experiments

In experiments we would like to verify that if we learn parameters of BNs from a small vol-
ume of data it is beneficial to use monotonicity constraints. We designed two experiments
to compare the methods discussed in this paper. In the first experiment we use artificial
(synthetic) data; the other uses a real-world empiric data sample. There are twomodel ver-
sions for each dataset. One with binary and one with ternary question nodes, creating a
total of four different model types we worked with.

Parameters are learned using the methods described above: our gradient method, unre-
stricted gradient descent, irEM, qirEM, regular EM, and Cobyla from NLOPT methods
family .4 For all model types, we learn the model parameters from subsets of data of differ-
ent sizes. The quality of the parameter fit is measured by the log-likelihood of the learned
models. The log-likelihood ismeasured on the whole dataset to provide results comparable
between learning subsets of different sizes.

We implemented the methods in R and its various built-in packages to ease this pro-
cess (R Development Core Team 2008), the NLOPT package mentioned above, and for
computations of the regular EM algorithm, theHugin (Hugin 2014) engine was used as the
most time efficient tool. One important point to mention is that we restricted the parame-
ters of the learned conditional probability tables to be from the specific interval [ε, 1 − ε]
where ε ∈ [0, 1] is a chosen small number; we used ε = 10−3. This step is carried out in
order to avoid extreme parameter values. When the learning sample is very small, the net-
works parameters tend to move towards zero or one, but we know it should not be the
case in reality. These limits are very similar for the reparameterized case of our gradient
method as described in Section 3.2. The gradient method is penalized by the constraint
described in Section 3.1 and it takes the parameter p defining the degree of the polynomial
function. In our experiments we have always used the third degree as it proves, empirically,
to converge fastest to the solution.

4.1. Artificial model

The structure of the first model is shown in Figure 1. This model has a typical model struc-
ture used inCATwhere there are two levels of variables, one level of questions, and one level
of skills (parents). Skills S1 and S2 have three possible states and questions X1,X2,X3,X4
are either binary or ternary, creating two different sets for further testing. Models were
set up with 10 different sets of parameters θ∗

a satisfying the monotonicity conditions. Fur-
thermore, each model was used to generate one million of data samples (test results of a
student, i.e. answers to questions). Parent variables were unobserved in all cases.

To learn the parameters of thesemodels, we drew random subsets of size d = 10k, where
k ∈ {1, 2, 3, 4, 5, 6}. Note that for k = 6 the subset is the set itself. Ten different sets for each
size (indexed by b) were generated. Next, we created 10 initial starting points (indexed by c)
for themodel learning phase. The structures of both the generating and the learnedmodels
are fixed to be the same as it is shown in Figure 1. The starting parameter vectors μb and
the corresponding θb were randomly generated from the interval [0.01, 0.99]. The starting
points were the same for all methods. In this setup, we have 10 different original models, 10
different observation subsets, and 10 different starting parameters, which provides us with
a thousand combinations for each set size and each model. Each modelMd, d ∈ {10k, k ∈
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{1, . . . , 10}} is specified by a set of parameters θda,b,c, a, b, c ∈ {1, . . . , 10}. We performed
experiments for all these combinations and the results are evaluated as follows.

Wemeasure the log-likelihood on the whole dataset in order to keep the results compa-
rable. The log-likelihood of each learned model is compared with the log-likelihood of the
generating model and then averaged over all instances of (a, b, c). This process gives us the
average log-likelihood ratio between the generating and the fitted model for each subset of
size d:

LRd = 1
1000

∑
a,b,c

LL(θ∗
a)

LL(θda,b,c)
.

In this artificial setup, we are also able to measure the distance of the probability distribu-
tions of learned parameters Q from the distribution of generating parameters P. First, we
calculate the average Kullback–Leibler divergence for each learned model:

DKL(θ
∗
a ||θda,b,c) = 1

n

n∑
i=1

DKL(P(Xi|θ∗
a )||Q(Xi|θda,b,c)).

Next we average over all results for each subset of size d:

Dd
KL = 1

1000

∑
a,b,c

DKL(θ
∗
a ||θda,b,c).

We require all methods which are restricted to satisfy the monotonicity conditions. As
described in Section 3.2, we can ensure this behavior by setting a high value of the penaliza-
tion parameter c. In this setting c = 1020 satisfies this condition. Even though it is possible
to use this penalization, it is very high and in certain cases, it is numerically hard to reach
convergencewithout the algorithm failing. Insteadwe use a smaller penalization of c = 105
which is, together with offset β = 0.01, sufficient for practical purposes to satisfy the con-
dition, although it does not theoretically guarantee it. For each solution we verify whether
it lies in the admissible region or not and the solution which does not will not be used. For
the actual penalization settings, none of solutions obtained in our experiments lied outside
the admissible region and, because of that, all restricted methods are comparable as they
provide solutions under the same restrictions. For better detail, we measured the situation
for a much smaller penalization of c = 100 and the smallest learning set size, where the
danger of not satisfying the monotonicity conditions is the highest. Even in this case, only
under 10% of initial solutions end outside the admissible region.

Binary question variables

In this section, we present results for the artificial model with binary question variables.
The resulting values of the relative log-likelihood LR measured on the whole dataset for
all set sizes are shown in Figure 3. Figure 4 then shows the KL divergence of the learned
parameter distributions from the parameters of the generating distribution. In both figures,
the horizontal axis has the logarithmic scale.

As we can see in Figure 3 all methods converge to the same log-likelihood value very
quickly. Differences are mostly in the smaller set sizes of 10 and 100 observations. Unre-
stricted methods are clearly performing worse than the methods using the restrictions.



INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 101

Figure 3. Artificial model, binary questions: The ratio between log-likelihoods of the fitted and the
generating models.

Figure 4. Artificial model, binary questions: The mean KL divergence of the fitted and generating
probability distributions.

The isotonic regression and NLOPT methods provide similar results; and the methods of
restricted gradient provide the best solutions for small sets. In the case of the KL diver-
gence (in Figure 4), we can clearly see that monotonicity helps us obtain parameters which
are closer to the real ones. In order to establish a sound ordering of the methods, we
performed Wilcoxon’s test. The null hypothesis was that one method is not giving bet-
ter (lower) results. The p-values resulting from this test are presented in Table A1. We can
see that, in most cases, the restricted gradient methods outperform the other methods at
a significant level. The Cobyla and irEM methods are scoring very similarly against other
methods but when pair-wise compared, the irEM is performing better.
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Figure 5. Artificial model, ternary questions: The ratio between log-likelihoods of the fitted and the
generating models.

This model is small and all methods converge to a solution quite fast. Nevertheless, the
EM and irEMmethods are the fastest as they use the graph decomposition and update the
CPTs separately. In the case of other methods, the structure remains complex (which is
caused by unobserved parent variables) and such computations are more time-consuming
for larger networks. The main problem is the increasing state space created by the state
combinations of parents. As the number of parameters increases, the number of conditions
increases as well, and computing the gradient also takes considerablymore time. Especially
in the case of NLOPT methods, this problem is significant.

Ternary question variables

The same testing scenario was used for ternary question variables. The results for relative
log-likelihood are shown in Figure 5 and the divergence values of parameter distributions
in Figure 6. These figures are constructed in the sameway as those in the binary case. These
results are very similar to the case with binary question variables. Wilcoxon’s test results
for this case are displayed in Table A2. They are almost identical to the previous case. The
main difference is that the performance of the Cobyla method has significantly decreased.
We can also observe that the order of methods is not exactly the same in both figures. The
first figure shows the ability of methods to fit data. It is measured by the log-likelihood
criterion. The second figure shows the distance of the fitted parameters to the parameters
of the generating distribution. Models that have a high log-likelihood need not necessarily
represent the best fit when it is measured by the distance of the parameters. Therefore we
provide both views.

An interesting point to point out is that, unlike the other methods, the Cobyla one did
not reach exactly the log-likelihood ratio 1 and the estimates of its parameters are leveled
at an early stage. The reason for such behavior lies in the computational demands of this
family of methods. The time which is sufficient for other methods is not sufficient for the
Cobyla method to converge. We have also tested other possible methods from the NLOPT
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Figure 6. Artificial model, ternary questions: The mean KL divergence of the fitted and generating
probability distributions.

family, including the global optimization method. The global optimization method had
problems finding a solution even in the binary problem.AnotherNLOPTmethod, Sequen-
tial Least-SquaresQuadratic Programming (SLSQP), which is a very fast local optimization
method working well for the binary scenario, was not able to reach the solution either for
this specific problem.

Example of isotonic regression EM behavior

We observed a problematic behavior of the irEM algorithm, which happens when the
algorithm repeatedly leaves the space of admissible solutions during the EM step.We illus-
trate this behavior using a simple example. Figure 7 shows the log-likelihood during the
fitting process. For the irEM algorithm, iterations are broken down into two consequent
steps – the EM step and the isotonic regression step; the latter moves the parameters to
the border of the admissible region. We can observe oscillations which are caused by leav-
ing and re-entering the admissible region. This behavior creates an obstacle to finding the
better solution in the similar way as local extremes do. The irEM algorithm fails to find
a better solution which is reachable by the method from inside of the admissible space
(starting parameters alreadymonotonic). In Figure 8 we display the number of the violated
monotonicity conditions. In fact, this behavior may also cause problems with the stopping
criteria as the algorithm returns to the border possibly very close to the previous state after
the ir step with a very similar log-likelihood value.

In Figure 7 we also present results of qirEM method. This method runs as the EM
algorithm and performs the isotonic step after EM iterations. We can observe that the fit-
ted log-likelihood is smaller than for the two other methods, but in the last step as the
qirEM method satisfies the monotonicity conditions the log-likelihood rises above both
concurrent methods. qirEM thus provides a valid solution but it is a heuristic which can
potentially provide worse log-likelihood fits.
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Figure 7. The evolution of the log-likelihood on the training sample during learning iterations of meth-
ods. The x-axis has not the same scale for all methods as the speed of convergence and the number of
steps is not relevant in this case. For the irEMmethod we display both steps of the iteration in sequence
(EM and ir).

Figure 8. The evolution of the number of violated monotonicity constraints on the training sample
for one example case – the binary artificial model. The irEM method displays both steps (EM and ir) in
sequence.

4.2. CATmodel

The structure of the second tested model is presented in Figure 2. Parent variables
S1, . . . , S8 have three states and each of them represents a particular student skill. Child
nodes Xi are variables representing questions that have different numbers of states (based
on the evaluation of the specific question). We learned this model from the data of the
Czech high school final exam .5 This dataset contains answers from over 20,000 students
who took the test in the year 2015. We created the model structure based on our expert
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Figure 9. BN model for CAT empirical data: LLIK scored on the whole dataset for models trained with
the EM and restricted gradient methods for different training set sizes. Notice the modified logarithmic
scale on the x axis (x = log4(x

′/10)).

analysis and assigned questions to relevant skills. We used random subsamples of the
whole data sample with sizes of 10, 40, 160, 640, and 2560. We drew 10 random sets for
each size. Models were initiated with 10 different random parameter vectors μi and the
corresponding θ i.

This model was learned using our restricted gradient method and unrestricted gradient
and EMmethods for reference. In this case, we do not compare to the irEMmethod as we
are not able to measure the divergence of the parameter distributions and the comparison
would not be informative. The NLOPT family methods failed to obtain any solution in the
given time (4 h).

We compute the log-likelihood of the learnedmodels on the whole dataset. These values
are then averaged similarly to the artificial model. The results are presented in Figure 9. In
this case, we cannot compare the learned parameters with the real ones because the latter
are unknown. In the figure, we can observe that, for empirical data, the restricted gradient
methods provide better results for small datasets. The differences in the log-likelihood get
lower for larger sets but, even in these cases, parameters of EM and unrestricted gradient
learning are usually not monotonic. The parameter space is very large and these methods
get easily trapped in a local optimum outside of the monotonicity region.

5. Conclusions

In this article, we present a new gradient-basedmethod for learning parameters of Bayesian
Networks under monotonicity restrictions. Our method is tested on two datasets. When
considering the log-likelihood criterion, it is clearly visible in Figures 3, 5 and 9 that the new
method provides better results than other methods for small training set sizes. When the
size of the learning set grows, all methods are getting more accurate and fit the data better.
The results obtained by all tested methods are very similar in terms of the log-likelihood
criterion – except for the non-linear optimization approach, which in some cases, failed
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to obtain any solution due to computational difficulties. For synthetic data, all methods
converge to models with the same log-likelihood values, which are nearly identical with
those of the log-likelihood of the generating model. In the case of empirical data, we can
observe the same behavior. Again, for small training set sizes, the new gradient method is
scoring better. All methods converge to identical log-likelihood values for large training
data sets. Nevertheless, even for the large sets, parameters learned by a non-monotone
method, such as EM or the unrestricted gradient, remain non-monotone. The parameter
space is large and it is easy for these methods to get stuck in a local extreme with a not
worse log-likelihood value but breaking the monotonicity conditions.

With the synthetic data generated from an artificial model, we are able to compare
the fitted parameters with those of the generating model. These comparisons show that
the newly proposed method is able to provide results which are closer to the original
parameters in all cases. The only drawback of the new method is that it requires longer
computational time than the irEM algorithm.

To summarize, we have shown that the learning methods can improve their behavior if
theymake use of validmonotonicity conditions.Wehave thus presented a newmethod that
can be used to learn parameters of BNs under the monotonicity conditions. This method
performs better in terms of the log-likelihood as well as of a distance from the original
model parameters.

There are still open issues concerning themonotonicity conditions and learning param-
eters under them. One point to address is a generalization of our proposed algorithm to
work on general BN structures rather than on bipartite graphs only. The potential applica-
tion area of the general models is large. One example where we can use the monotonicity
conditions regarding promotions planning is mentioned in the introduction of this paper.
Another example is diseasemodelingwherewe could introduce themonotonicity tomodel
increasing chances of a disease occurrence for higher levels of negative effects such as
smoking. Hence it would be beneficial to further explore this research topic to provide
larger possibilities to learn and use monotone models.

Notes

1. In our case, points are specifying the score obtained in the question i. The interpretation of
points is very complex and has to be viewed as per question because we use the CAT framework.
In this context, getting one point in one question is not the same as one point in another.

2. Note that for ni this formula always holds since
∑ni

t=0 P(Xi = t|Sj = sj,k, s) = 1 ∀i,∀j, ∀k.
3. As we use only reparameterized parameters in our gradient method, we provide only formulas

with the reparametrization, i.e. the parameter vector μ as was introduced in Section 2.2
4. The reason to include regular EM and unrestricted gradient methods is to further verify the

benefit of using the monotonicity constraints. We want to provide a reader with a comparison
also between the restricted and unrestricted cases.

5. The test assignment and its solution are accessible in theCzech language at: http://www.statnimat
urita-matika.cz/wp-content/uploads/matematika-test-zadani-mat
urita-2015-jaro.pdf.
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Appendix 1. Monotonicity restricted gradient

In the gradient descent optimization, we need partial derivatives to establish the gradient. The partial
derivatives of LL(μ) with respect to μi,si for i ∈ N , si ∈ Val(Si) are

∂LL(μ)

∂μt
i,si

=
∑
k∈D

dk ·
I(t, i, si, k) −

((∑ni
t′=0 exp(μ

t′
i,si)

)
− exp(μt

i,si)
)

· pμ̃(μ, si)pμ(μ, si, k)∑ni
t′=0 exp(μ

t′
i,si) · ∑

s∈Val(S)
(
pμ̃(μ, s)pμ(μ, s, k)

) ,

where

I(t, i, si, k) =
{
exp(μt

i,si), if t = k,
0, otherwise,
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and with respect to μ̃j,l for j ∈ M, l ∈ {1, . . . ,mj} are

∂LL(μ)

∂μ̃j,l
=

∑
k∈D

dk ·
∑sj=l

s∈Val(S) pμ̃(μ, s)pμ(μ, s, k)∑
s∈Val(S) pμ̃(μ, s)pμ(μ, s, k)

− N · exp(μ̃j,l)∑mj
l′=1 exp(μ̃k,l′)

.

The partial derivative of the penalization function C(μi,si ,μi,ri , t̂, c) is

∂C(μi,si ,μi,ri , t̂, c)
∂μt

i,si
= −p · Cp−1(μi,si ,μi,ri , t̂, c)

·
g(μt

i,si , t̂) ·
(∑ni

t′=0 exp(μ
t′
i,si)

)
− exp(μt

i,si) · ∑t̂
t′=0 exp(μ

t′
i,si)(∑ni

t′=0 exp(μ
t′
i,si)

)2 ,

where

g(μt
i,si , t̂) =

{
0, if t > t̂,
exp(μt

i,si), if t ≤ t̂,

and
∂C(μi,si ,μi,ri , t̂, c)

∂μt
i,ri

= −∂C(μi,si ,μi,ri , t̂, c)
∂μt

i,si
.

The partial derivative of LL′(μ, c) with respect to μt
i,si is then

∂LL′(μ, c)
∂μt

i,si
= ∂LL(μ)

∂μt
i,si

−
∑
si�iri

Nmax∑
t̂=0

∂C
(
μi,si ,μi,ri , t̂, c

)
∂μt

i,si

−
∑
ri�isi

Nmax∑
t̂=0

∂C
(
μi,ri ,μi,si , t̂, c

)
∂μt

i,si
,

and the partial derivatives with respect to μ̃i,l are not affected by the penalization as the parents do
not appear in the penalization function.

∂LL′(μ)

∂μ̃j,l
= ∂LL(μ)

∂μ̃j,l
.

Together
∂LL′(μ)

∂μ̃j,l
for {μ̃j,l|j ∈ M, l ∈ {1, . . . ,mj}},

and
∂LL′(μ, c)

∂μt
i,si

for {μt
i,si |i ∈ N , t ∈ {1, . . . ,Nmax}},

form the gradient ∇LL′(μ, c).

Appendix 2. Wilcoxon’s tests

This appendix contains two tables, Table A1 and Table A2, with results of Wilcoxon’s test for the KL
divergences of generating and fitted probability distributions in artificial models with binary and
ternary variables.
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Table A1. Wilcoxon’s test to compare results for artificial model with binary variables for different sizes
of the learning sets. this test statistically verifies whether a method in the row statistically fits signifi-
cantly better the generating parameters than another method in the column (H0: there is no shift in
their distributions).

10 res gradient irEM qirEM EM gradient Cobyla

res gradient 0.5005 0.0000 0.0099 0.0000 0.0000 0.1533
irEM 1.0000 0.5005 0.9986 0.0000 0.0000 1.0000
qirEM 0.9902 0.0014 0.5005 0.0000 0.0000 0.8996
EM 1.0000 1.0000 1.0000 0.5005 0.0708 1.0000
gradient 1.0000 1.0000 1.0000 0.9295 0.5005 1.0000
Cobyla 0.8473 0.0000 0.1009 0.0000 0.0000 0.5005

100
res gradient 0.5005 0.0002 0.0055 0.0000 0.0000 0.0966
irEM 0.9998 0.5005 0.8708 0.0000 0.0000 0.9679
qirEM 0.9946 0.1297 0.5005 0.0000 0.0000 0.8624
EM 1.0000 1.0000 1.0000 0.5005 0.0025 1.0000
gradient 1.0000 1.0000 1.0000 0.9976 0.5005 1.0000
Cobyla 0.9038 0.0323 0.1382 0.0000 0.0000 0.5005

1000
res gradient 0.5005 0.1313 0.0000 0.0000 0.0000 0.0010
irEM 0.8692 0.5005 0.0000 0.0000 0.0000 0.0099
qirEM 1.0000 1.0000 0.5005 0.0000 0.0000 0.9556
EM 1.0000 1.0000 1.0000 0.5005 0.0132 1.0000
gradient 1.0000 1.0000 1.0000 0.9869 0.5005 1.0000
Cobyla 0.9990 0.9902 0.0446 0.0000 0.0000 0.5005

1000
res gradient 0.5005 0.8738 0.0000 0.0000 0.0000 0.0027
irEM 0.1267 0.5005 0.0000 0.0000 0.0000 0.0013
qirEM 1.0000 1.0000 0.5005 0.0000 0.0000 0.9951
EM 1.0000 1.0000 1.0000 0.5005 0.1048 1.0000
gradient 1.0000 1.0000 1.0000 0.8956 0.5005 1.0000
Cobyla 0.9973 0.9987 0.0050 0.0000 0.0000 0.5005

100,000
res gradient 0.5005 0.2825 0.0000 0.0000 0.0000 0.0000
irEM 0.7183 0.5005 0.0000 0.0000 0.0000 0.0031
qirEM 1.0000 1.0000 0.5005 0.0000 0.0000 0.9984
EM 1.0000 1.0000 1.0000 0.5005 0.8101 1.0000
gradient 1.0000 1.0000 1.0000 0.1905 0.5005 1.0000
Cobyla 1.0000 0.9970 0.0017 0.0000 0.0000 0.5005

1,000,000
res gradient 0.5151 0.1965 0.0026 0.0000 0.0000 0.0038
irEM 0.8237 0.5151 0.0827 0.0000 0.0000 0.1577
qirEM 0.9981 0.9284 0.5151 0.0000 0.0000 0.6981
EM 1.0000 1.0000 1.0000 0.5151 0.7255 1.0000
gradient 1.0000 1.0000 1.0000 0.3019 0.5177 0.9999
Cobyla 0.9972 0.8612 0.3304 0.0000 0.0001 0.5177
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Table A2. Wilcoxon’s test to compare results for artificial model with ternary variables for different sizes
of the learning sets. this test statistically verifies whether a method in the row statistically fits signifi-
cantly better the generating parameters than another method in the column (H0: there is no shift in
their distributions).

10 res gradient irEM qirEM EM gradient Cobyla

res gradient 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000
irEM 1.0000 0.5000 0.0000 0.0000 0.0000 1.0000
qirEM 1.0000 1.0000 0.5000 0.0000 0.0000 1.0000
EM 1.0000 1.0000 1.0000 0.5000 0.9995 1.0000
gradient 1.0000 1.0000 1.0000 0.0005 0.5000 1.0000
Cobyla 1.0000 0.0000 0.0000 0.0000 0.0000 0.5000

100
res gradient 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000
irEM 1.0000 0.5000 0.0000 0.0000 0.0000 0.0000
qirEM 1.0000 1.0000 0.5000 0.0000 0.0000 1.0000
EM 1.0000 1.0000 1.0000 0.5000 0.0000 1.0000
gradient 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
Cobyla 1.0000 1.0000 0.0000 0.0000 0.0000 0.5000

1000
res gradient 0.5001 0.8917 0.0000 0.0000 0.0000 0.0000
irEM 0.1084 0.5000 0.0000 0.0000 0.0000 0.0000
qirEM 1.0000 1.0000 0.5000 0.0000 0.0000 0.0000
EM 1.0000 1.0000 1.0000 0.5000 0.0000 1.0000
gradient 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
Cobyla 1.0000 1.0000 1.0000 0.0000 0.0000 0.5000

10,000
res gradient 0.5001 0.0000 0.0000 0.0000 0.0000 0.0000
irEM 1.0000 0.5000 0.0000 0.0000 0.0000 0.0000
qirEM 1.0000 1.0000 0.5000 0.0000 0.0000 0.0000
EM 1.0000 1.0000 1.0000 0.5000 0.0000 0.0000
gradient 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
Cobyla 1.0000 1.0000 1.0000 1.0000 0.0000 0.5000

100,000
res gradient 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000
irEM 1.0000 0.5000 0.0000 0.0000 0.0000 0.0000
qirEM 1.0000 1.0000 0.5000 0.0000 0.0000 0.0000
EM 1.0000 1.0000 1.0000 0.5000 0.0000 0.0000
gradient 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
Cobyla 1.0000 1.0000 1.0000 1.0000 0.0000 0.5000

1,000,000
res gradient 0.5005 0.0000 0.0000 0.0000 0.0000 0.0000
irEM 1.0000 0.5005 0.0000 0.0000 0.0000 0.0000
qirEM 1.0000 1.0000 0.5005 0.0000 0.0000 0.0000
EM 1.0000 1.0000 1.0000 0.5005 0.0996 0.0260
gradient 1.0000 1.0000 1.0000 0.9009 0.5005 0.3323
Cobyla 1.0000 1.0000 1.0000 0.9742 0.6686 0.5005
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