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Abstract. Rahman and Valdman (2013) introduced a new vectorized
way to assemble finite element matrices. We utilize underlying vectoriza-
tion concepts and extend MATLAB codes to implementation of Bogner-
Fox-Schmit C1 rectangular elements in 2D. Our focus is on the detailed
construction of elements and simple computer demonstrations including
energies evaluations and their visualizations.
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1 Introduction

Boundary problems with fourth order elliptic operators [3] appear in many appli-
cations including thin beams and plates and strain gradient elasticity [5]. Weak
formulations and implementations of these problems require H2-conforming
finite elements, leading to C1 continuity (of functions as well as of their gradients)
of approximations over elements edges. This continuity condition is generally
technical to achieve and few types of finite elements are known to guarantee it.
We consider probably the simplest of them, the well known Bogner-Fox-Schmit
rectangle [2], i.e., a rectangular C1 element in two space dimensions.

We are primarily interested in explaining the construction of BFS elements,
their practical visualization and evalutions. Our MATLAB implementation is
based on codes from [1,6,9]. The main focus of these papers were assemblies
of finite element matrices and local element matrices were computed all at
once by array operations and stored in multi-dimentional arrays (matrices).
Here, we utilize underlying vectorization concepts without the particular inter-
est in corresponding FEM matrices. More details on our recent implementa-
tions of C1 models in nonlinear elastic models of solids can be found in [4,7,8].
The complementary software to this paper is available at https://www.
mathworks.com/matlabcentral/fileexchange/71346 for download and testing.

The work was supported by the Czech Science Foundation (GACR) through the grant
GA18-03834S.
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Fig. 1. Reference basis functions Ĥi, i = 1, . . . , 4 on [0, 1] (left) and example of actual
basis functions Hi, i = 1, . . . , 4 on [a, b] = [2, 5] (right).

2 Construction of C1 Finite Elements

2.1 Hermite Elements in 1D

We define four cubic polynomials

Ĥ1(x̂) := 2x̂3 − 3x̂2 + 1,

Ĥ2(x̂) := −2x̂3 + 3x̂2,

Ĥ3(x̂) := x̂3 − 2x̂2 + x̂,

Ĥ4(x̂) := x̂3 − x̂2

(1)

over a reference interval Î := [0, 1] and can easily check the conditions:

Ĥ1(0) = 1, Ĥ1(1) = 0, Ĥ ′
1(0) = 0, Ĥ ′

1(0) = 0,

Ĥ2(0) = 0, Ĥ2(1) = 1, Ĥ ′
2(0) = 0, Ĥ ′

2(0) = 0,

Ĥ3(0) = 0, Ĥ3(1) = 0, Ĥ ′
3(0) = 1, Ĥ ′

3(0) = 0,

Ĥ4(0) = 0, Ĥ4(1) = 0, Ĥ ′
4(0) = 0, Ĥ ′

4(0) = 1,

(2)
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so only one value or derivative is equal to 1 and all other three values are equal
to 0. These cubic functions create a finite element basis on Î. More generally, we
define

H1(x) := Ĥ1(x̂(x)),

H2(x) := Ĥ2(x̂(x)),

H3(x̂) := h Ĥ3(x̂(x)),

H4(x̂) := h Ĥ4(x̂(x))

(3)

for x ∈ I := [a, b], where x̂(x) := (x − a)/h is an affine mapping from I to Î and
h denotes the interval I size

h := b − a.

These functions are also cubic polynomials and satisfy again the conditions (2)
with function arguments 0, 1 replaced by a, b. They create actual finite element
basis which ensures C1 continuity of finite element approximations. The chain
rule provides higher order derivatives:

H ′
1(x) = Ĥ ′

1(x̂) /h, H ′′
1 (x) = Ĥ ′′

1 (x̂) /h2,

H ′
2(x) = Ĥ ′

2(x̂) /h, H ′′
2 (x) = Ĥ ′′

2 (x̂) /h2,

H ′
3(x) = Ĥ ′

3(x̂), H ′′
3 (x) = Ĥ ′′

3 (x̂) /h,

H ′
4(x) = Ĥ ′

4(x̂), H ′′
4 (x) = Ĥ ′′

4 (x̂) /h.

(4)

Example 1. Example of basis functions defined on reference and actual intervals
are shown in Fig. 1 and pictures can be reproduced by

draw_C1basis_1D

script located in the main folder.

2.2 Bogner-Fox-Schmit Rectangular Element in 2D

Products of functions

ϕ̃j,k(x̂, ŷ) := Ĥj(x̂) Ĥk(ŷ), j, k = 1, . . . , 4

define 16 Bogner-Fox-Schmit (BFS) basis functions on a reference rectangle R̂ :=
[0, 1] × [0, 1]. For practical implementations, we reorder them as

ϕ̂i(x̂, ŷ) := ϕ̃ji,ki
(x̂, ŷ), i = 1, . . . , 16, (5)

where sub-indices are ordered in a sequence

(ji, ki)16i=1 =

{(1, 1), (2, 1), (2, 2), (1, 2),
(3, 1), (4, 1), (4, 2), (3, 2),
(1, 3), (2, 3), (2, 4), (1, 4),
(3, 3), (4, 3), (4, 4), (3, 4)}.

(6)
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Fig. 2. Bogner-Fox-Schmit basis functions ϕ̂i(x̂, ŷ) for i = 2 (top left), i = 6 (top
right), i = 8 (bottom left), i = 13 (bottom right) defined over a reference rectangle
R̂ = [0, 1] × [0, 1].

With this ordering, a finite element approximation v ∈ C1(R̂) rewrites as a linear
combination

v(x̂, ŷ) =
16∑

i=1

vi ϕ̂i(x̂, ŷ),

where:

– coefficients v1, . . . , v4 specify values of v,
– coefficients v5, . . . , v8 specify values of ∂v

∂x ,
– coefficients v9, . . . , v12 specify values of ∂v

∂y ,

– coefficients v13, . . . , v16 specify values of ∂2v
∂x∂y

at nodes
N̂1 := [0, 0], N̂2 := [1, 0], N̂3 := [1, 1], N̂4 := [0, 1].

Example 2. Four (out of 16) reference basis functions corresponding to the node
N̂2 are shown in Fig. 2 and pictures can be reproduced by

draw_C1basis_2D

script located in the main folder.
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Fig. 3. Examples of a triangulation in rectangles: of a square domain (left) and of
a pincers domain (right) taken from [7] and used for nonlinear elasticity simulations
satisfying a non-selfpenetration condition.

More Implementation Details on Functions Evaluations. For a general
rectangle R := [a, b] × [c, d], we define an affine mapping

(x̂, ŷ)(x, y) := ((x − a)/hx, (y − c)/hy),

from R to R̂, where the rectangular lengths are

hx := b − a, hy := d − c.

It enables us to define BFS basis functions on R as

ϕi(x, y) := Ĥji

(
x − a

hx

)
Ĥki

(
y − c

hy

)
, i = 1, . . . , 16, (7)

Based on (4), higher order derivatives up to the second order,

∂ϕi

∂x
,

∂ϕi

∂y
,

∂2ϕi

∂x2
,

∂2ϕi

∂y2
,

∂2ϕi

∂x∂y
, i = 1, . . . , 16 (8)

can be derived as well. All basis functions (7) are evaluated by the function

shapefun(points’,etype,h)

and their derivatives (8) by the function

shapeder(points’,etype,h)

For BFS elements, we have to set etype=’C1’ and a vector of rectangular lengths
h=[hx,hy]. The matrix points then contains a set of points x̂ ∈ R̂ in a reference
element at which functions are evaluated. Both functions are vectorized and their
outputs are stored as vectors, matrices or three-dimensional arrays.
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Example 3. The command

[shape]=shapefun([0.5 0.5]’,’C1’,[1 1])

returns a (column) vector shape ∈ R
16×1 of all BFS basis function defined on

R̂ := [0, 1] × [0, 1] and evaluated in the rectangular midpoint [0.5, 0.5] ∈ R̂. The
command

[dshape]=shapeder([0.5 0.5]’,’C1’,[2 3])

returns a three-dimensional array dshape ∈ R
16×1×5 of all derivatives up to the

second order of all BFS basis function defined on a general rectangle with lengths
hx = 2 and hy = 3 and evaluated in the rectangular midpoint [0.5, 0.5] ∈ R̂.

For instance, if R := [1, 3] × [2, 5], values of all derivatives are evaluated in
the rectangular midpoint [2, 3.5] ∈ R.

More generally, if points ∈ R
np×2 consists of np > 1 points, then shapefun

return a matrix of size R
16×np and shapeder returns a three-dimensional array

of size R
16×np×5.

2.3 Representation and Visualization of C1 Functions

Let us assume a triangulation T (Ω) into rectangles of a domain Ω. In corre-
spondence with our implementation, we additionally assume that all rectangles
are of the same size, i.e., with lengths hx, hy > 0. Examples of T (Ω) are given
in Fig. 3.

Let N denotes the set of all rectangular nodes and |N | := n the number of
them. A C1 function v ∈ T (Ω) is represented in BSF basis by a matrix

V C1 =

⎛

⎜⎜⎝

v(N1), ∂v
∂x (N1), ∂v

∂y (N1), ∂2v
∂x∂y (N1)

...
...

...
...

v(Nn), ∂v
∂x (Nn), ∂v

∂y (Nn), ∂2v
∂x∂y (Nn)

⎞

⎟⎟⎠

containing values of v, ∂v
∂x , ∂v

∂y , ∂2v
∂x∂y in all nodes of T (Ω). In the spirit of the

finite element method, values of v on each rectangle T ∈ T (Ω) are obtained by
an affine mapping to the reference element R̂. Our implementations allows to
evaluate and visualize continuous fields

v,
∂v

∂x
,

∂v

∂y
,

∂2v

∂x∂y

and also two additional (generally discontinuous) fields

∂2v

∂x2
,

∂2v

∂y2
.

It is easy to evaluate a C1 function in a particular element point for all elements
(rectangles) at once. A simple matrix-matrix MATLAB multiplication

Vfun=VC1_elems*shape



262 J. Valdman

0
1

0.5

10

1

0
-1 -1

-5
1

0

10

5

0
-1 -1

-2
1

0

10

2

0
-1 -1

-2
1

0

10

2

0
-1 -1

-10
1

0

10

10

0
-1 -1

-10
1

0

10

10

0
-1 -1

Fig. 4. A function v(x, y) = (1−x2)2(1−y2)2 on Ω = (−1, 1)2 represented in terms of

BSF elements. Separate pictures show: v (top left), ∂2v
∂x∂y

(top right), ∂v
∂x

(middle left),
∂v
∂y

(middle right), ∂2v
∂x2 (bottom left), ∂2v

∂y2 (bottom right).

where a matrix VC1_elems ∈ R
ne×16 contains in each row all 16 coefficients

(taken from VC1) corresponding to each element (ne denotes a number of ele-
ments) returns a matrix Vfun ∈ R

ne×np containing all function values in all
elements and all points. Alternate multiplications

V1=VC1_elems*squeeze(dshape(:,1,:)); % Dx
V2=VC1_elems*squeeze(dshape(:,2,:)); % Dy

V11=VC1_elems*squeeze(dshape(:,3,:)); % Dxx
V22=VC1_elems*squeeze(dshape(:,4,:)); % Dyy
V12=VC1_elems*squeeze(dshape(:,5,:)); % Dxy

return matrices V1, V2, V11, V22, V12 ∈ R
ne×np containing values of all deriva-

tives up to the second order in all elements and all points. A modification for
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evaluation of function values at particular edges points is also available and
essential for instance for models with energies formulated on boundary edges [8].
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Fig. 5. A function v(x, y) = (1 − x2)2(1 − y2)2 on Ω = (−1, 1)2 and its values in
elements midpoints (left) and edges midpoints (right).

Example 4. We consider a function

v(x, y) = (1 − x2)2(1 − y2)2 (9)

on the domain Ω = (−1, 1)2. This function was also used in [4] as an initial
vertical displacement in a time-dependent simulation of viscous von Kármán
plates.

To represent v in terms of BFS elements, we additionally need to know
values of

∂v

∂x
(x, y) = −4x(1 − x2)(1 − y2)2 (10)

∂v

∂x
(x, y) = −4y(1 − x2)2(1 − y2) (11)

∂2v

∂x∂y
(x, y) = 16xy(1 − x2)(1 − y2) (12)

in nodes of a rectangular mesh T (Ω). The function and its derivatives up to the
second order are shown in Fig. 4 and its values in elements and edges midpoints
in Fig. 5.

All pictures can be reproduced by

draw_C1example_2D

script located in the main folder.
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Fig. 6. 1, 4 and 9 Gauss points shown on actual rectangles of a square domain with 4
rectangles.

2.4 Evaluation and Numerical Integration of C1 Function

Various energy formulations include evaluations of integrals of the types

||v||2 : =
∫

Ω

|v(x, y)|2 dxdy, (13)

||∇v||2 : =
∫

Ω

|∇v(x, y)|2 dxdy, (14)

||∇2v||2 : =
∫

Ω

|∇2v(x, y)|2 dxdy, (15)

(f, v) : =
∫

Ω

f v dxdy, (16)

where v ∈ H2(Ω) and f ∈ L2(Ω) is given. The expression

(||v||2 + ||∇v||2 + ||∇2v||2)1/2

then defines the full norm in the Sobolev space H2(Ω). For v represented in the
BFS basis we can evaluate above mentioned integrals numerically by quadrature
rules. Our implementation provides three different rules with 1, 4 or 9 Gauss
points. Each quadrature rule is defined by coordinates of all Gauss points and
their weights.

Example 5. Gauss points are displayed in Fig. 6 and all pictures can be repro-
duced by

draw_ips

script located in the main folder.

Example 6. An analytical integration for the function v from (9) and f = x2y2

reveals that

||v||2 = 65536/99225 ≈ 0.660478710002520,
||∇v||2 = 131072/33075 ≈ 3.962872260015117,

||∇2v||2 = 65536/1225 ≈ 53.498775510204084,
(f, v) = 256/11025 ≈ 0.023219954648526

for a domain Ω = (−1, 1)2. We consider a sequence of uniformly refined meshes
with levels 1–10:
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Fig. 7. Values of integrals (the left column) and their absolute error (the right column)
for levels 1–10 of uniform refinements using three different quadrature rules: 1 Gauss
point - blue lines with diamonds, 4 Gauss points - yellow lines with circles, 9 Gauss
points - red lines with squares. (Color figure online)

– the coarsest (level = 1) mesh with 9 nodes and 4 elements is shown in Fig. 6,
– a finer (level = 4) mesh with 289 nodes and 256 elements is shown in Fig. 3

(left),
– the finest (level = 10) mesh consists of 1.050.625 nodes and 1.048.576 ele-

ments, not shown here.
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Figure 7 the depicts the convergence of numerical quadratures to the exact val-
ues above. We notice that all three quadrature rules provide the same rates of
convergence. The only exception is the evaluation of the second gradient integral
||∇2v||2, where the numerical quadrature using 1 Gauss point deteriorates the
convergence.

All pictures can be reproduced by

start_integrate

script located in the main folder.
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